-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathAdeline.py
122 lines (102 loc) · 3.85 KB
/
Adeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from random import random
def read_train_file(file="OCR_train.txt"): #read train data from file and ready to use
training_data_list = []
train_file = open(file, "r")
for line in train_file:
line = list(line.replace(" ", ""))
line = [int(x) * 2 - 1 for x in line if x != "\n"]
training_data_list.extend([line[:]])
return training_data_list
def active_func(y_in): #activation function
if y_in >= 0:
return 1
elif y_in < 0:
return -1
def make_binary(n):
pos = n.index(1) + 1
res = list(format(pos, 'b').zfill(3))
res = [int(x) for x in res]
return res
def set_weight(num):
weights = []
for x in range(num):
# weights.extend([[random() for _ in range(64)]]) # initialize weights and biases
weights.extend([[0] * 64])
return weights
cal_eroor = lambda error, total: (error / total) * 100
weights = set_weight(7)
"""3 CELLS"""
# weights = set_weight(3)
diff_weights = [] #contain errors of each training pair
for x in range(7):
diff_weights.extend([[0] * 64])
epoch = 0 #counter of epochs
alpha = 0.01
epsilon = 1
training_data = read_train_file()
we = [0]
ch = True
"""TRAINING PHASE OF NN"""
# while max(we) > epsilon or ch: #check stopping condition
for o in range(9):
epoch += 1
ch = False
for j in training_data:
x = j[:63] #set each input unit
b=j[63]
expected = j[-7:]
"""3 CELLS"""
# expected = make_binary(expected)
y_in = 0 # y_in in each training pair
for weight, t, dw in zip(weights, expected, diff_weights): #each output unit
for w, s in zip(weight, x):
y_in += w * s #calculate y_in(j) j = 1, ..., 7
for pos in range(63):
temp = weight[pos]
weight[pos] += (alpha * (t - y_in)) * x[pos] #update weights(i, j) i = 1, ..., 63
dw[pos] = weight[pos] - temp
print(dw[pos])
temp = weight[63]
weight[63] += alpha * (t - y_in) # update bias(j)
dw[63] = weight[63] - temp
we.append(max(dw))
print(str(epoch))
"""WEIGHTS AND BIASES SAVING PHASE OF NN"""
weight_file = open("Adeline_weights.txt", "w")
weight_file.write("Epochs: " + str(epoch) + "th" + "\n" + "\n")
for w in weights:
weight_file.write(str(w) + "\n" + "\n")
weight_file.close()
print("\nThe Neural Network has been trained in " + str(epoch) + "th epochs.") #output
print("Weights and Biases saved in: Adeline_weights.txt")
"""USE PHASE OF ADELINE NN"""
output = []
_error = 0
_total = 0
results = open("results_adeline.txt", "w")
if input("\nDo you want to use your Adeline NN? (y/n)") == 'y':
test_file = read_train_file("OCR_test.txt")
for elem in test_file:
sample = elem[:63]
target = elem[-7:]
b=elem[63]
"""3 CELLS"""
# target = make_binary(target)
output.clear()
_total += 1
for weight in weights:
result = b
for w, s in zip(weight, sample):
result += w * s
output.append(active_func(result))
if target != output:
_error += 1
print("Expected: " + str(target))
results.write("Expected: " + str(target))
print("Result: " + str(output) + "\n------------\n")
results.write("\nResult: " + str(output) + "\n------------\n")
print("\n\nPercent of Error in NN: " + str(cal_eroor(_error, _total)))
print("\nNumber of Cells in NN: " + str(len(weights)))
results.write("\n\nPercent of Error in NN: " + str(cal_eroor(_error, _total)))
results.write("\nNumber of Cells in NN: " + str(len(weights)))
results.close()