-
Notifications
You must be signed in to change notification settings - Fork 436
/
apriori.py
185 lines (144 loc) · 5.59 KB
/
apriori.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""
Description : Simple Python implementation of the Apriori Algorithm
Usage:
$python apriori.py -f DATASET.csv -s minSupport -c minConfidence
$python apriori.py -f DATASET.csv -s 0.15 -c 0.6
"""
import sys
from itertools import chain, combinations
from collections import defaultdict
from optparse import OptionParser
def subsets(arr):
""" Returns non empty subsets of arr"""
return chain(*[combinations(arr, i + 1) for i, a in enumerate(arr)])
def returnItemsWithMinSupport(itemSet, transactionList, minSupport, freqSet):
"""calculates the support for items in the itemSet and returns a subset
of the itemSet each of whose elements satisfies the minimum support"""
_itemSet = set()
localSet = defaultdict(int)
for item in itemSet:
for transaction in transactionList:
if item.issubset(transaction):
freqSet[item] += 1
localSet[item] += 1
for item, count in localSet.items():
support = float(count) / len(transactionList)
if support >= minSupport:
_itemSet.add(item)
return _itemSet
def joinSet(itemSet, length):
"""Join a set with itself and returns the n-element itemsets"""
return set(
[i.union(j) for i in itemSet for j in itemSet if len(i.union(j)) == length]
)
def getItemSetTransactionList(data_iterator):
transactionList = list()
itemSet = set()
for record in data_iterator:
transaction = frozenset(record)
transactionList.append(transaction)
for item in transaction:
itemSet.add(frozenset([item])) # Generate 1-itemSets
return itemSet, transactionList
def runApriori(data_iter, minSupport, minConfidence):
"""
run the apriori algorithm. data_iter is a record iterator
Return both:
- items (tuple, support)
- rules ((pretuple, posttuple), confidence)
"""
itemSet, transactionList = getItemSetTransactionList(data_iter)
freqSet = defaultdict(int)
largeSet = dict()
# Global dictionary which stores (key=n-itemSets,value=support)
# which satisfy minSupport
assocRules = dict()
# Dictionary which stores Association Rules
oneCSet = returnItemsWithMinSupport(itemSet, transactionList, minSupport, freqSet)
currentLSet = oneCSet
k = 2
while currentLSet != set([]):
largeSet[k - 1] = currentLSet
currentLSet = joinSet(currentLSet, k)
currentCSet = returnItemsWithMinSupport(
currentLSet, transactionList, minSupport, freqSet
)
currentLSet = currentCSet
k = k + 1
def getSupport(item):
"""local function which Returns the support of an item"""
return float(freqSet[item]) / len(transactionList)
toRetItems = []
for key, value in largeSet.items():
toRetItems.extend([(tuple(item), getSupport(item)) for item in value])
toRetRules = []
for key, value in list(largeSet.items())[1:]:
for item in value:
_subsets = map(frozenset, [x for x in subsets(item)])
for element in _subsets:
remain = item.difference(element)
if len(remain) > 0:
confidence = getSupport(item) / getSupport(element)
if confidence >= minConfidence:
toRetRules.append(((tuple(element), tuple(remain)), confidence))
return toRetItems, toRetRules
def printResults(items, rules):
"""prints the generated itemsets sorted by support and the confidence rules sorted by confidence"""
for item, support in sorted(items, key=lambda x: x[1]):
print("item: %s , %.3f" % (str(item), support))
print("\n------------------------ RULES:")
for rule, confidence in sorted(rules, key=lambda x: x[1]):
pre, post = rule
print("Rule: %s ==> %s , %.3f" % (str(pre), str(post), confidence))
def to_str_results(items, rules):
"""prints the generated itemsets sorted by support and the confidence rules sorted by confidence"""
i, r = [], []
for item, support in sorted(items, key=lambda x: x[1]):
x = "item: %s , %.3f" % (str(item), support)
i.append(x)
for rule, confidence in sorted(rules, key=lambda x: x[1]):
pre, post = rule
x = "Rule: %s ==> %s , %.3f" % (str(pre), str(post), confidence)
r.append(x)
return i, r
def dataFromFile(fname):
"""Function which reads from the file and yields a generator"""
with open(fname, "rU") as file_iter:
for line in file_iter:
line = line.strip().rstrip(",") # Remove trailing comma
record = frozenset(line.split(","))
yield record
if __name__ == "__main__":
optparser = OptionParser()
optparser.add_option(
"-f", "--inputFile", dest="input", help="filename containing csv", default=None
)
optparser.add_option(
"-s",
"--minSupport",
dest="minS",
help="minimum support value",
default=0.15,
type="float",
)
optparser.add_option(
"-c",
"--minConfidence",
dest="minC",
help="minimum confidence value",
default=0.6,
type="float",
)
(options, args) = optparser.parse_args()
inFile = None
if options.input is None:
inFile = sys.stdin
elif options.input is not None:
inFile = dataFromFile(options.input)
else:
print("No dataset filename specified, system with exit\n")
sys.exit("System will exit")
minSupport = options.minS
minConfidence = options.minC
items, rules = runApriori(inFile, minSupport, minConfidence)
printResults(items, rules)