Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
arnobotha authored Sep 2, 2024
1 parent f3f8426 commit 179fbac
Showing 1 changed file with 1 addition and 1 deletion.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# Defining and comparing SICR-events for classifying impaired loans under IFRS 9
[![DOI](https://zenodo.org/badge/601805307.svg)](https://zenodo.org/badge/latestdoi/601805307)

The IFRS 9 accounting standard requires the prediction of credit deterioration in financial instruments, i.e., significant increases in credit risk (SICR). However, the definition of such a SICR-event is inherently ambiguous, given its reliance on comparing two subsequent estimates of default risk against some arbitrary threshold. We examine the shortcomings of this approach and propose an alternative framework for generating SICR-definitions, based on three parameters: delinquency, stickiness, and the outcome period. Having varied these parameters, we obtain 27 unique SICR-definitions and fit logistic regression models accordingly using rich South African mortgage data; itself containing various macroeconomic and obligor-specific input variables. This new SICR-modelling approach is demonstrated by analysing the resulting portfolio-level SICR-rates (of each SICR-definition) on their stability over time and their responsiveness to economic downturns. At the account-level, we compare both the accuracy and flexibility of the SICR-predictions across all SICR-definitions, and discover several interesting trends during this process. These trends form a rudimentary expert system for selecting the three parameters optimally, as demonstrated in our recommendations for defining SICR-events. In summary, our work can guide the formulation, testing, and modelling of any SICR-definition, thereby promoting the timeous recognition of credit losses; the main imperative of IFRS 9.
The IFRS 9 accounting standard requires the prediction of credit deterioration in financial instruments, i.e., significant increases in credit risk (SICR). However, the definition of such a SICR-event is inherently ambiguous, given its current reliance on evaluating the change in the estimated probability of default (PD) against some arbitrary threshold. We examine the shortcomings of this PD-comparison approach and propose an alternative framework for generating SICR-definitions based on three parameters: delinquency, stickiness, and the outcome period. Having varied these framework parameters, we obtain 27 unique SICR-definitions and fit logistic regression models accordingly using rich South African mortgage and macroeconomic data. For each definition and corresponding model, the resulting SICR-rates are analysed at the portfolio-level on their stability over time and their responsiveness to economic downturns. At the account-level, we compare both the accuracy and dynamicity of the SICR-predictions, and discover several interesting trends and trade-offs. These results can help any bank with appropriately setting the three framework parameters in defining SICR-events for prediction purposes. We demonstrate this process by comparing the best-performing SICR-model to the PD-comparison approach, and show the latter's inferiority as an early-warning system. Our work can therefore guide the formulation, modelling, and testing of any SICR-definition, thereby promoting the timeous recognition of credit losses; the main imperative of IFRS 9.

## Structure
This R-codebase can be run sequentially using the file numbering itself as a structure. Delinquency measures are algorithmically defined in **DelinqM.R** as data-driven functions, which may be valuable to the practitioner outside of the study's current scope.
Expand Down

0 comments on commit 179fbac

Please sign in to comment.