-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathlightning_modules.py
914 lines (755 loc) · 37.3 KB
/
lightning_modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
import math
from argparse import Namespace
from typing import Optional
from time import time
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import pytorch_lightning as pl
import wandb
from torch_scatter import scatter_add, scatter_mean
from Bio.PDB import PDBParser
from Bio.PDB.Polypeptide import three_to_one
from constants import dataset_params, FLOAT_TYPE, INT_TYPE
from equivariant_diffusion.dynamics import EGNNDynamics
from equivariant_diffusion.en_diffusion import EnVariationalDiffusion
from equivariant_diffusion.conditional_model import ConditionalDDPM, \
SimpleConditionalDDPM
from dataset import ProcessedLigandPocketDataset
import utils
from analysis.visualization import save_xyz_file, visualize, visualize_chain
from analysis.metrics import BasicMolecularMetrics, CategoricalDistribution, \
MoleculeProperties
from analysis.molecule_builder import build_molecule, process_molecule
from analysis.docking import smina_score
class LigandPocketDDPM(pl.LightningModule):
def __init__(
self,
outdir,
dataset,
datadir,
batch_size,
lr,
egnn_params: Namespace,
diffusion_params,
num_workers,
augment_noise,
augment_rotation,
clip_grad,
eval_epochs,
eval_params,
visualize_sample_epoch,
visualize_chain_epoch,
auxiliary_loss,
loss_params,
mode,
node_histogram,
pocket_representation='CA',
virtual_nodes=False
):
super(LigandPocketDDPM, self).__init__()
self.save_hyperparameters()
ddpm_models = {'joint': EnVariationalDiffusion,
'pocket_conditioning': ConditionalDDPM,
'pocket_conditioning_simple': SimpleConditionalDDPM}
assert mode in ddpm_models
self.mode = mode
assert pocket_representation in {'CA', 'full-atom'}
self.pocket_representation = pocket_representation
self.dataset_name = dataset
self.datadir = datadir
self.outdir = outdir
self.batch_size = batch_size
self.eval_batch_size = eval_params.eval_batch_size \
if 'eval_batch_size' in eval_params else batch_size
self.lr = lr
self.loss_type = diffusion_params.diffusion_loss_type
self.eval_epochs = eval_epochs
self.visualize_sample_epoch = visualize_sample_epoch
self.visualize_chain_epoch = visualize_chain_epoch
self.eval_params = eval_params
self.num_workers = num_workers
self.augment_noise = augment_noise
self.augment_rotation = augment_rotation
self.dataset_info = dataset_params[dataset]
self.T = diffusion_params.diffusion_steps
self.clip_grad = clip_grad
if clip_grad:
self.gradnorm_queue = utils.Queue()
# Add large value that will be flushed.
self.gradnorm_queue.add(3000)
self.lig_type_encoder = self.dataset_info['atom_encoder']
self.lig_type_decoder = self.dataset_info['atom_decoder']
self.pocket_type_encoder = self.dataset_info['aa_encoder'] \
if self.pocket_representation == 'CA' \
else self.dataset_info['atom_encoder']
self.pocket_type_decoder = self.dataset_info['aa_decoder'] \
if self.pocket_representation == 'CA' \
else self.dataset_info['atom_decoder']
smiles_list = None if eval_params.smiles_file is None \
else np.load(eval_params.smiles_file)
self.ligand_metrics = BasicMolecularMetrics(self.dataset_info,
smiles_list)
self.molecule_properties = MoleculeProperties()
self.ligand_type_distribution = CategoricalDistribution(
self.dataset_info['atom_hist'], self.lig_type_encoder)
if self.pocket_representation == 'CA':
self.pocket_type_distribution = CategoricalDistribution(
self.dataset_info['aa_hist'], self.pocket_type_encoder)
else:
self.pocket_type_distribution = None
self.train_dataset = None
self.val_dataset = None
self.test_dataset = None
self.virtual_nodes = virtual_nodes
self.data_transform = None
self.max_num_nodes = len(node_histogram) - 1
if virtual_nodes:
# symbol = 'virtual'
symbol = 'Ne' # visualize as Neon atoms
self.lig_type_encoder[symbol] = len(self.lig_type_encoder)
self.virtual_atom = self.lig_type_encoder[symbol]
self.lig_type_decoder.append(symbol)
self.data_transform = utils.AppendVirtualNodes(
self.max_num_nodes, self.lig_type_encoder, symbol)
# Update dataset_info dictionary. This is necessary for using the
# visualization functions.
self.dataset_info['atom_encoder'] = self.lig_type_encoder
self.dataset_info['atom_decoder'] = self.lig_type_decoder
self.atom_nf = len(self.lig_type_decoder)
self.aa_nf = len(self.pocket_type_decoder)
self.x_dims = 3
net_dynamics = EGNNDynamics(
atom_nf=self.atom_nf,
residue_nf=self.aa_nf,
n_dims=self.x_dims,
joint_nf=egnn_params.joint_nf,
device=egnn_params.device if torch.cuda.is_available() else 'cpu',
hidden_nf=egnn_params.hidden_nf,
act_fn=torch.nn.SiLU(),
n_layers=egnn_params.n_layers,
attention=egnn_params.attention,
tanh=egnn_params.tanh,
norm_constant=egnn_params.norm_constant,
inv_sublayers=egnn_params.inv_sublayers,
sin_embedding=egnn_params.sin_embedding,
normalization_factor=egnn_params.normalization_factor,
aggregation_method=egnn_params.aggregation_method,
edge_cutoff_ligand=egnn_params.__dict__.get('edge_cutoff_ligand'),
edge_cutoff_pocket=egnn_params.__dict__.get('edge_cutoff_pocket'),
edge_cutoff_interaction=egnn_params.__dict__.get('edge_cutoff_interaction'),
update_pocket_coords=(self.mode == 'joint'),
reflection_equivariant=egnn_params.reflection_equivariant,
edge_embedding_dim=egnn_params.__dict__.get('edge_embedding_dim'),
)
self.ddpm = ddpm_models[self.mode](
dynamics=net_dynamics,
atom_nf=self.atom_nf,
residue_nf=self.aa_nf,
n_dims=self.x_dims,
timesteps=diffusion_params.diffusion_steps,
noise_schedule=diffusion_params.diffusion_noise_schedule,
noise_precision=diffusion_params.diffusion_noise_precision,
loss_type=diffusion_params.diffusion_loss_type,
norm_values=diffusion_params.normalize_factors,
size_histogram=node_histogram,
virtual_node_idx=self.lig_type_encoder[symbol] if virtual_nodes else None
)
self.auxiliary_loss = auxiliary_loss
self.lj_rm = self.dataset_info['lennard_jones_rm']
if self.auxiliary_loss:
self.clamp_lj = loss_params.clamp_lj
self.auxiliary_weight_schedule = WeightSchedule(
T=diffusion_params.diffusion_steps,
max_weight=loss_params.max_weight, mode=loss_params.schedule)
def configure_optimizers(self):
return torch.optim.AdamW(self.ddpm.parameters(), lr=self.lr,
amsgrad=True, weight_decay=1e-12)
def setup(self, stage: Optional[str] = None):
if stage == 'fit':
self.train_dataset = ProcessedLigandPocketDataset(
Path(self.datadir, 'train.npz'), transform=self.data_transform)
self.val_dataset = ProcessedLigandPocketDataset(
Path(self.datadir, 'val.npz'), transform=self.data_transform)
elif stage == 'test':
self.test_dataset = ProcessedLigandPocketDataset(
Path(self.datadir, 'test.npz'), transform=self.data_transform)
else:
raise NotImplementedError
def train_dataloader(self):
return DataLoader(self.train_dataset, self.batch_size, shuffle=True,
num_workers=self.num_workers,
collate_fn=self.train_dataset.collate_fn,
pin_memory=True)
def val_dataloader(self):
return DataLoader(self.val_dataset, self.batch_size, shuffle=False,
num_workers=self.num_workers,
collate_fn=self.val_dataset.collate_fn,
pin_memory=True)
def test_dataloader(self):
return DataLoader(self.test_dataset, self.batch_size, shuffle=False,
num_workers=self.num_workers,
collate_fn=self.test_dataset.collate_fn,
pin_memory=True)
def get_ligand_and_pocket(self, data):
ligand = {
'x': data['lig_coords'].to(self.device, FLOAT_TYPE),
'one_hot': data['lig_one_hot'].to(self.device, FLOAT_TYPE),
'size': data['num_lig_atoms'].to(self.device, INT_TYPE),
'mask': data['lig_mask'].to(self.device, INT_TYPE),
}
if self.virtual_nodes:
ligand['num_virtual_atoms'] = data['num_virtual_atoms'].to(
self.device, INT_TYPE)
pocket = {
'x': data['pocket_coords'].to(self.device, FLOAT_TYPE),
'one_hot': data['pocket_one_hot'].to(self.device, FLOAT_TYPE),
'size': data['num_pocket_nodes'].to(self.device, INT_TYPE),
'mask': data['pocket_mask'].to(self.device, INT_TYPE)
}
return ligand, pocket
def forward(self, data):
ligand, pocket = self.get_ligand_and_pocket(data)
# Note: \mathcal{L} terms in the paper represent log-likelihoods while
# our loss terms are a negative(!) log-likelihoods
delta_log_px, error_t_lig, error_t_pocket, SNR_weight, \
loss_0_x_ligand, loss_0_x_pocket, loss_0_h, neg_log_const_0, \
kl_prior, log_pN, t_int, xh_lig_hat, info = \
self.ddpm(ligand, pocket, return_info=True)
if self.loss_type == 'l2' and self.training:
actual_ligand_size = ligand['size'] - ligand['num_virtual_atoms'] if self.virtual_nodes else ligand['size']
# normalize loss_t
denom_lig = self.x_dims * actual_ligand_size + \
self.ddpm.atom_nf * ligand['size']
error_t_lig = error_t_lig / denom_lig
denom_pocket = (self.x_dims + self.ddpm.residue_nf) * pocket['size']
error_t_pocket = error_t_pocket / denom_pocket
loss_t = 0.5 * (error_t_lig + error_t_pocket)
# normalize loss_0
loss_0_x_ligand = loss_0_x_ligand / (self.x_dims * actual_ligand_size)
loss_0_x_pocket = loss_0_x_pocket / (self.x_dims * pocket['size'])
loss_0 = loss_0_x_ligand + loss_0_x_pocket + loss_0_h
# VLB objective or evaluation step
else:
# Note: SNR_weight should be negative
loss_t = -self.T * 0.5 * SNR_weight * (error_t_lig + error_t_pocket)
loss_0 = loss_0_x_ligand + loss_0_x_pocket + loss_0_h
loss_0 = loss_0 + neg_log_const_0
nll = loss_t + loss_0 + kl_prior
# Correct for normalization on x.
if not (self.loss_type == 'l2' and self.training):
nll = nll - delta_log_px
# always the same number of nodes if virtual nodes are added
if not self.virtual_nodes:
# Transform conditional nll into joint nll
# Note:
# loss = -log p(x,h|N) and log p(x,h,N) = log p(x,h|N) + log p(N)
# Therefore, log p(x,h|N) = -loss + log p(N)
# => loss_new = -log p(x,h,N) = loss - log p(N)
nll = nll - log_pN
# Add auxiliary loss term
if self.auxiliary_loss and self.loss_type == 'l2' and self.training:
x_lig_hat = xh_lig_hat[:, :self.x_dims]
h_lig_hat = xh_lig_hat[:, self.x_dims:]
weighted_lj_potential = \
self.auxiliary_weight_schedule(t_int.long()) * \
self.lj_potential(x_lig_hat, h_lig_hat, ligand['mask'])
nll = nll + weighted_lj_potential
info['weighted_lj'] = weighted_lj_potential.mean(0)
info['error_t_lig'] = error_t_lig.mean(0)
info['error_t_pocket'] = error_t_pocket.mean(0)
info['SNR_weight'] = SNR_weight.mean(0)
info['loss_0'] = loss_0.mean(0)
info['kl_prior'] = kl_prior.mean(0)
info['delta_log_px'] = delta_log_px.mean(0)
info['neg_log_const_0'] = neg_log_const_0.mean(0)
info['log_pN'] = log_pN.mean(0)
return nll, info
def lj_potential(self, atom_x, atom_one_hot, batch_mask):
adj = batch_mask[:, None] == batch_mask[None, :]
adj = adj ^ torch.diag(torch.diag(adj)) # remove self-edges
edges = torch.where(adj)
# Compute pair-wise potentials
r = torch.sum((atom_x[edges[0]] - atom_x[edges[1]])**2, dim=1).sqrt()
# Get optimal radii
lennard_jones_radii = torch.tensor(self.lj_rm, device=r.device)
# unit conversion pm -> A
lennard_jones_radii = lennard_jones_radii / 100.0
# normalization
lennard_jones_radii = lennard_jones_radii / self.ddpm.norm_values[0]
atom_type_idx = atom_one_hot.argmax(1)
rm = lennard_jones_radii[atom_type_idx[edges[0]],
atom_type_idx[edges[1]]]
sigma = 2 ** (-1 / 6) * rm
out = 4 * ((sigma / r) ** 12 - (sigma / r) ** 6)
if self.clamp_lj is not None:
out = torch.clamp(out, min=None, max=self.clamp_lj)
# Compute potential per atom
out = scatter_add(out, edges[0], dim=0, dim_size=len(atom_x))
# Sum potentials of all atoms
return scatter_add(out, batch_mask, dim=0)
def log_metrics(self, metrics_dict, split, batch_size=None, **kwargs):
for m, value in metrics_dict.items():
self.log(f'{m}/{split}', value, batch_size=batch_size, **kwargs)
def training_step(self, data, *args):
if self.augment_noise > 0:
raise NotImplementedError
# Add noise eps ~ N(0, augment_noise) around points.
eps = sample_center_gravity_zero_gaussian(x.size(), x.device)
x = x + eps * args.augment_noise
if self.augment_rotation:
raise NotImplementedError
x = utils.random_rotation(x).detach()
try:
nll, info = self.forward(data)
except RuntimeError as e:
# this is not supported for multi-GPU
if self.trainer.num_devices < 2 and 'out of memory' in str(e):
print('WARNING: ran out of memory, skipping to the next batch')
return None
else:
raise e
loss = nll.mean(0)
info['loss'] = loss
self.log_metrics(info, 'train', batch_size=len(data['num_lig_atoms']))
return info
def _shared_eval(self, data, prefix, *args):
nll, info = self.forward(data)
loss = nll.mean(0)
info['loss'] = loss
self.log_metrics(info, prefix, batch_size=len(data['num_lig_atoms']),
sync_dist=True)
return info
def validation_step(self, data, *args):
self._shared_eval(data, 'val', *args)
def test_step(self, data, *args):
self._shared_eval(data, 'test', *args)
def validation_epoch_end(self, validation_step_outputs):
# Perform validation on single GPU
if not self.trainer.is_global_zero:
return
suffix = '' if self.mode == 'joint' else '_given_pocket'
if (self.current_epoch + 1) % self.eval_epochs == 0:
tic = time()
sampling_results = getattr(self, 'sample_and_analyze' + suffix)(
self.eval_params.n_eval_samples, self.val_dataset,
batch_size=self.eval_batch_size)
self.log_metrics(sampling_results, 'val')
print(f'Evaluation took {time() - tic:.2f} seconds')
if (self.current_epoch + 1) % self.visualize_sample_epoch == 0:
tic = time()
getattr(self, 'sample_and_save' + suffix)(
self.eval_params.n_visualize_samples)
print(f'Sample visualization took {time() - tic:.2f} seconds')
if (self.current_epoch + 1) % self.visualize_chain_epoch == 0:
tic = time()
getattr(self, 'sample_chain_and_save' + suffix)(
self.eval_params.keep_frames)
print(f'Chain visualization took {time() - tic:.2f} seconds')
@torch.no_grad()
def sample_and_analyze(self, n_samples, dataset=None, batch_size=None):
print(f'Analyzing sampled molecules at epoch {self.current_epoch}...')
batch_size = self.batch_size if batch_size is None else batch_size
batch_size = min(batch_size, n_samples)
# each item in molecules is a tuple (position, atom_type_encoded)
molecules = []
atom_types = []
aa_types = []
for i in range(math.ceil(n_samples / batch_size)):
n_samples_batch = min(batch_size, n_samples - len(molecules))
num_nodes_lig, num_nodes_pocket = \
self.ddpm.size_distribution.sample(n_samples_batch)
xh_lig, xh_pocket, lig_mask, _ = self.ddpm.sample(
n_samples_batch, num_nodes_lig, num_nodes_pocket,
device=self.device)
x = xh_lig[:, :self.x_dims].detach().cpu()
atom_type = xh_lig[:, self.x_dims:].argmax(1).detach().cpu()
lig_mask = lig_mask.cpu()
molecules.extend(list(
zip(utils.batch_to_list(x, lig_mask),
utils.batch_to_list(atom_type, lig_mask))
))
atom_types.extend(atom_type.tolist())
aa_types.extend(
xh_pocket[:, self.x_dims:].argmax(1).detach().cpu().tolist())
return self.analyze_sample(molecules, atom_types, aa_types)
def analyze_sample(self, molecules, atom_types, aa_types, receptors=None):
# Distribution of node types
kl_div_atom = self.ligand_type_distribution.kl_divergence(atom_types) \
if self.ligand_type_distribution is not None else -1
kl_div_aa = self.pocket_type_distribution.kl_divergence(aa_types) \
if self.pocket_type_distribution is not None else -1
# Convert into rdmols
rdmols = [build_molecule(*graph, self.dataset_info) for graph in molecules]
# Other basic metrics
(validity, connectivity, uniqueness, novelty), (_, connected_mols) = \
self.ligand_metrics.evaluate_rdmols(rdmols)
qed, sa, logp, lipinski, diversity = \
self.molecule_properties.evaluate_mean(connected_mols)
out = {
'kl_div_atom_types': kl_div_atom,
'kl_div_residue_types': kl_div_aa,
'Validity': validity,
'Connectivity': connectivity,
'Uniqueness': uniqueness,
'Novelty': novelty,
'QED': qed,
'SA': sa,
'LogP': logp,
'Lipinski': lipinski,
'Diversity': diversity
}
# Simple docking score
if receptors is not None:
# out['smina_score'] = np.mean(smina_score(rdmols, receptors))
out['smina_score'] = np.mean(smina_score(connected_mols, receptors))
return out
def get_full_path(self, receptor_name):
pdb, suffix = receptor_name.split('.')
receptor_name = f'{pdb.upper()}-{suffix}.pdb'
return Path(self.datadir, 'val', receptor_name)
@torch.no_grad()
def sample_and_analyze_given_pocket(self, n_samples, dataset=None,
batch_size=None):
print(f'Analyzing sampled molecules given pockets at epoch '
f'{self.current_epoch}...')
batch_size = self.batch_size if batch_size is None else batch_size
batch_size = min(batch_size, n_samples)
# each item in molecules is a tuple (position, atom_type_encoded)
molecules = []
atom_types = []
aa_types = []
receptors = []
for i in range(math.ceil(n_samples / batch_size)):
n_samples_batch = min(batch_size, n_samples - len(molecules))
# Create a batch
batch = dataset.collate_fn(
[dataset[(i * batch_size + j) % len(dataset)]
for j in range(n_samples_batch)]
)
ligand, pocket = self.get_ligand_and_pocket(batch)
receptors.extend([self.get_full_path(x) for x in batch['receptors']])
if self.virtual_nodes:
num_nodes_lig = self.max_num_nodes
else:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
xh_lig, xh_pocket, lig_mask, _ = self.ddpm.sample_given_pocket(
pocket, num_nodes_lig)
x = xh_lig[:, :self.x_dims].detach().cpu()
atom_type = xh_lig[:, self.x_dims:].argmax(1).detach().cpu()
lig_mask = lig_mask.cpu()
if self.virtual_nodes:
# Remove virtual nodes for analysis
vnode_mask = (atom_type == self.virtual_atom)
x = x[~vnode_mask, :]
atom_type = atom_type[~vnode_mask]
lig_mask = lig_mask[~vnode_mask]
molecules.extend(list(
zip(utils.batch_to_list(x, lig_mask),
utils.batch_to_list(atom_type, lig_mask))
))
atom_types.extend(atom_type.tolist())
aa_types.extend(
xh_pocket[:, self.x_dims:].argmax(1).detach().cpu().tolist())
return self.analyze_sample(molecules, atom_types, aa_types,
receptors=receptors)
def sample_and_save(self, n_samples):
num_nodes_lig, num_nodes_pocket = \
self.ddpm.size_distribution.sample(n_samples)
xh_lig, xh_pocket, lig_mask, pocket_mask = \
self.ddpm.sample(n_samples, num_nodes_lig, num_nodes_pocket,
device=self.device)
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
xh_pocket[:, :self.x_dims], self.lig_type_encoder)
else:
x_pocket, one_hot_pocket = \
xh_pocket[:, :self.x_dims], xh_pocket[:, self.x_dims:]
x = torch.cat((xh_lig[:, :self.x_dims], x_pocket), dim=0)
one_hot = torch.cat((xh_lig[:, self.x_dims:], one_hot_pocket), dim=0)
outdir = Path(self.outdir, f'epoch_{self.current_epoch}')
save_xyz_file(str(outdir) + '/', one_hot, x, self.lig_type_decoder,
name='molecule',
batch_mask=torch.cat((lig_mask, pocket_mask)))
# visualize(str(outdir), dataset_info=self.dataset_info, wandb=wandb)
visualize(str(outdir), dataset_info=self.dataset_info, wandb=None)
def sample_and_save_given_pocket(self, n_samples):
batch = self.val_dataset.collate_fn(
[self.val_dataset[i] for i in torch.randint(len(self.val_dataset),
size=(n_samples,))]
)
ligand, pocket = self.get_ligand_and_pocket(batch)
if self.virtual_nodes:
num_nodes_lig = self.max_num_nodes
else:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
xh_lig, xh_pocket, lig_mask, pocket_mask = \
self.ddpm.sample_given_pocket(pocket, num_nodes_lig)
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
xh_pocket[:, :self.x_dims], self.lig_type_encoder)
else:
x_pocket, one_hot_pocket = \
xh_pocket[:, :self.x_dims], xh_pocket[:, self.x_dims:]
x = torch.cat((xh_lig[:, :self.x_dims], x_pocket), dim=0)
one_hot = torch.cat((xh_lig[:, self.x_dims:], one_hot_pocket), dim=0)
outdir = Path(self.outdir, f'epoch_{self.current_epoch}')
save_xyz_file(str(outdir) + '/', one_hot, x, self.lig_type_decoder,
name='molecule',
batch_mask=torch.cat((lig_mask, pocket_mask)))
# visualize(str(outdir), dataset_info=self.dataset_info, wandb=wandb)
visualize(str(outdir), dataset_info=self.dataset_info, wandb=None)
def sample_chain_and_save(self, keep_frames):
n_samples = 1
num_nodes_lig, num_nodes_pocket = \
self.ddpm.size_distribution.sample(n_samples)
chain_lig, chain_pocket, _, _ = self.ddpm.sample(
n_samples, num_nodes_lig, num_nodes_pocket,
return_frames=keep_frames, device=self.device)
chain_lig = utils.reverse_tensor(chain_lig)
chain_pocket = utils.reverse_tensor(chain_pocket)
# Repeat last frame to see final sample better.
chain_lig = torch.cat([chain_lig, chain_lig[-1:].repeat(10, 1, 1)],
dim=0)
chain_pocket = torch.cat(
[chain_pocket, chain_pocket[-1:].repeat(10, 1, 1)], dim=0)
# Prepare entire chain.
x_lig = chain_lig[:, :, :self.x_dims]
one_hot_lig = chain_lig[:, :, self.x_dims:]
one_hot_lig = F.one_hot(
torch.argmax(one_hot_lig, dim=2),
num_classes=len(self.lig_type_decoder))
x_pocket = chain_pocket[:, :, :self.x_dims]
one_hot_pocket = chain_pocket[:, :, self.x_dims:]
one_hot_pocket = F.one_hot(
torch.argmax(one_hot_pocket, dim=2),
num_classes=len(self.pocket_type_decoder))
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
x_pocket, self.lig_type_encoder)
x = torch.cat((x_lig, x_pocket), dim=1)
one_hot = torch.cat((one_hot_lig, one_hot_pocket), dim=1)
# flatten (treat frame (chain dimension) as batch for visualization)
x_flat = x.view(-1, x.size(-1))
one_hot_flat = one_hot.view(-1, one_hot.size(-1))
mask_flat = torch.arange(x.size(0)).repeat_interleave(x.size(1))
outdir = Path(self.outdir, f'epoch_{self.current_epoch}', 'chain')
save_xyz_file(str(outdir), one_hot_flat, x_flat, self.lig_type_decoder,
name='/chain', batch_mask=mask_flat)
visualize_chain(str(outdir), self.dataset_info, wandb=wandb)
def sample_chain_and_save_given_pocket(self, keep_frames):
n_samples = 1
batch = self.val_dataset.collate_fn([
self.val_dataset[torch.randint(len(self.val_dataset), size=(1,))]
])
ligand, pocket = self.get_ligand_and_pocket(batch)
if self.virtual_nodes:
num_nodes_lig = self.max_num_nodes
else:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
chain_lig, chain_pocket, _, _ = self.ddpm.sample_given_pocket(
pocket, num_nodes_lig, return_frames=keep_frames)
chain_lig = utils.reverse_tensor(chain_lig)
chain_pocket = utils.reverse_tensor(chain_pocket)
# Repeat last frame to see final sample better.
chain_lig = torch.cat([chain_lig, chain_lig[-1:].repeat(10, 1, 1)],
dim=0)
chain_pocket = torch.cat(
[chain_pocket, chain_pocket[-1:].repeat(10, 1, 1)], dim=0)
# Prepare entire chain.
x_lig = chain_lig[:, :, :self.x_dims]
one_hot_lig = chain_lig[:, :, self.x_dims:]
one_hot_lig = F.one_hot(
torch.argmax(one_hot_lig, dim=2),
num_classes=len(self.lig_type_decoder))
x_pocket = chain_pocket[:, :, :3]
one_hot_pocket = chain_pocket[:, :, 3:]
one_hot_pocket = F.one_hot(
torch.argmax(one_hot_pocket, dim=2),
num_classes=len(self.pocket_type_decoder))
if self.pocket_representation == 'CA':
# convert residues into atom representation for visualization
x_pocket, one_hot_pocket = utils.residues_to_atoms(
x_pocket, self.lig_type_encoder)
x = torch.cat((x_lig, x_pocket), dim=1)
one_hot = torch.cat((one_hot_lig, one_hot_pocket), dim=1)
# flatten (treat frame (chain dimension) as batch for visualization)
x_flat = x.view(-1, x.size(-1))
one_hot_flat = one_hot.view(-1, one_hot.size(-1))
mask_flat = torch.arange(x.size(0)).repeat_interleave(x.size(1))
outdir = Path(self.outdir, f'epoch_{self.current_epoch}', 'chain')
save_xyz_file(str(outdir), one_hot_flat, x_flat, self.lig_type_decoder,
name='/chain', batch_mask=mask_flat)
visualize_chain(str(outdir), self.dataset_info, wandb=wandb)
def prepare_pocket(self, biopython_residues, repeats=1):
if self.pocket_representation == 'CA':
pocket_coord = torch.tensor(np.array(
[res['CA'].get_coord() for res in biopython_residues]),
device=self.device, dtype=FLOAT_TYPE)
pocket_types = torch.tensor(
[self.pocket_type_encoder[three_to_one(res.get_resname())]
for res in biopython_residues], device=self.device)
else:
pocket_atoms = [a for res in biopython_residues
for a in res.get_atoms()
if (a.element.capitalize() in self.pocket_type_encoder or a.element != 'H')]
pocket_coord = torch.tensor(np.array(
[a.get_coord() for a in pocket_atoms]),
device=self.device, dtype=FLOAT_TYPE)
pocket_types = torch.tensor(
[self.pocket_type_encoder[a.element.capitalize()]
for a in pocket_atoms], device=self.device)
pocket_one_hot = F.one_hot(
pocket_types, num_classes=len(self.pocket_type_encoder)
)
pocket_size = torch.tensor([len(pocket_coord)] * repeats,
device=self.device, dtype=INT_TYPE)
pocket_mask = torch.repeat_interleave(
torch.arange(repeats, device=self.device, dtype=INT_TYPE),
len(pocket_coord)
)
pocket = {
'x': pocket_coord.repeat(repeats, 1),
'one_hot': pocket_one_hot.repeat(repeats, 1),
'size': pocket_size,
'mask': pocket_mask
}
return pocket
def generate_ligands(self, pdb_file, n_samples, pocket_ids=None,
ref_ligand=None, num_nodes_lig=None, sanitize=False,
largest_frag=False, relax_iter=0, timesteps=None,
n_nodes_bias=0, n_nodes_min=0, **kwargs):
"""
Generate ligands given a pocket
Args:
pdb_file: PDB filename
n_samples: number of samples
pocket_ids: list of pocket residues in <chain>:<resi> format
ref_ligand: alternative way of defining the pocket based on a
reference ligand given in <chain>:<resi> format if the ligand is
contained in the PDB file, or path to an SDF file that
contains the ligand
num_nodes_lig: number of ligand nodes for each sample (list of
integers), sampled randomly if 'None'
sanitize: whether to sanitize molecules or not
largest_frag: only return the largest fragment
relax_iter: number of force field optimization steps
timesteps: number of denoising steps, use training value if None
n_nodes_bias: added to the sampled (or provided) number of nodes
n_nodes_min: lower bound on the number of sampled nodes
kwargs: additional inpainting parameters
Returns:
list of molecules
"""
assert (pocket_ids is None) ^ (ref_ligand is None)
self.ddpm.eval()
# Load PDB
pdb_struct = PDBParser(QUIET=True).get_structure('', pdb_file)[0]
if pocket_ids is not None:
# define pocket with list of residues
residues = [
pdb_struct[x.split(':')[0]][(' ', int(x.split(':')[1]), ' ')]
for x in pocket_ids]
else:
# define pocket with reference ligand
residues = utils.get_pocket_from_ligand(pdb_struct, ref_ligand)
pocket = self.prepare_pocket(residues, repeats=n_samples)
# Pocket's center of mass
pocket_com_before = scatter_mean(pocket['x'], pocket['mask'], dim=0)
# Create dummy ligands
if num_nodes_lig is None:
num_nodes_lig = self.ddpm.size_distribution.sample_conditional(
n1=None, n2=pocket['size'])
# Add bias
num_nodes_lig = num_nodes_lig + n_nodes_bias
# Apply minimum ligand size
num_nodes_lig = torch.clamp(num_nodes_lig, min=n_nodes_min)
# Use inpainting
if type(self.ddpm) == EnVariationalDiffusion:
lig_mask = utils.num_nodes_to_batch_mask(
len(num_nodes_lig), num_nodes_lig, self.device)
ligand = {
'x': torch.zeros((len(lig_mask), self.x_dims),
device=self.device, dtype=FLOAT_TYPE),
'one_hot': torch.zeros((len(lig_mask), self.atom_nf),
device=self.device, dtype=FLOAT_TYPE),
'size': num_nodes_lig,
'mask': lig_mask
}
# Fix all pocket nodes but sample
lig_mask_fixed = torch.zeros(len(lig_mask), device=self.device)
pocket_mask_fixed = torch.ones(len(pocket['mask']),
device=self.device)
xh_lig, xh_pocket, lig_mask, pocket_mask = self.ddpm.inpaint(
ligand, pocket, lig_mask_fixed, pocket_mask_fixed,
timesteps=timesteps, **kwargs)
# Use conditional generation
elif type(self.ddpm) == ConditionalDDPM:
xh_lig, xh_pocket, lig_mask, pocket_mask = \
self.ddpm.sample_given_pocket(pocket, num_nodes_lig,
timesteps=timesteps)
else:
raise NotImplementedError
# Move generated molecule back to the original pocket position
pocket_com_after = scatter_mean(
xh_pocket[:, :self.x_dims], pocket_mask, dim=0)
xh_pocket[:, :self.x_dims] += \
(pocket_com_before - pocket_com_after)[pocket_mask]
xh_lig[:, :self.x_dims] += \
(pocket_com_before - pocket_com_after)[lig_mask]
# Build mol objects
x = xh_lig[:, :self.x_dims].detach().cpu()
atom_type = xh_lig[:, self.x_dims:].argmax(1).detach().cpu()
lig_mask = lig_mask.cpu()
molecules = []
for mol_pc in zip(utils.batch_to_list(x, lig_mask),
utils.batch_to_list(atom_type, lig_mask)):
mol = build_molecule(*mol_pc, self.dataset_info, add_coords=True)
mol = process_molecule(mol,
add_hydrogens=False,
sanitize=sanitize,
relax_iter=relax_iter,
largest_frag=largest_frag)
if mol is not None:
molecules.append(mol)
return molecules
def configure_gradient_clipping(self, optimizer, optimizer_idx,
gradient_clip_val, gradient_clip_algorithm):
if not self.clip_grad:
return
# Allow gradient norm to be 150% + 2 * stdev of the recent history.
max_grad_norm = 1.5 * self.gradnorm_queue.mean() + \
2 * self.gradnorm_queue.std()
# Get current grad_norm
params = [p for g in optimizer.param_groups for p in g['params']]
grad_norm = utils.get_grad_norm(params)
# Lightning will handle the gradient clipping
self.clip_gradients(optimizer, gradient_clip_val=max_grad_norm,
gradient_clip_algorithm='norm')
if float(grad_norm) > max_grad_norm:
self.gradnorm_queue.add(float(max_grad_norm))
else:
self.gradnorm_queue.add(float(grad_norm))
if float(grad_norm) > max_grad_norm:
print(f'Clipped gradient with value {grad_norm:.1f} '
f'while allowed {max_grad_norm:.1f}')
class WeightSchedule:
def __init__(self, T, max_weight, mode='linear'):
if mode == 'linear':
self.weights = torch.linspace(max_weight, 0, T + 1)
elif mode == 'constant':
self.weights = max_weight * torch.ones(T + 1)
else:
raise NotImplementedError(f'{mode} weight schedule is not '
f'available.')
def __call__(self, t_array):
""" all values in t_array are assumed to be integers in [0, T] """
return self.weights[t_array].to(t_array.device)