This Python library is designed to enhance OpenAI chat completion responses by adding detailed information about token log probabilities. This library works with OpenAI Structured Outputs, which is a feature that ensures the model will always generate responses that adhere to your supplied JSON Schema, so you don't need to worry about the model omitting a required key, or hallucinating an invalid enum value. It provides utilities to analyze and incorporate token-level log probabilities into structured outputs, helping developers understand the reliability of structured data extracted from OpenAI models.
The primary goal of structured-logprobs is to provide insights into the reliability of extracted data. By analyzing token-level log probabilities, the library helps assess how likely each value generated from an LLM's structured outputs is.
The module contains a function for mapping characters to token indices (map_characters_to_token_indices
) and two methods for incorporating log probabilities:
- Adding log probabilities as a separate field in the response (
add_logprobs
). - Embedding log probabilities inline within the message content (
add_logprobs_inline
).
To use this library, first create a chat completion response with the OpenAI Python SDK, then enhance the response with log probabilities. Here is an example of how to do that:
from openai import OpenAI
from openai.types import ResponseFormatJSONSchema
from structured_logprobs import add_logprobs, add_logprobs_inline
# Initialize the OpenAI client
client = OpenAI(api_key="your-api-key")
schema_path = "path-to-your-json-schema"
with open(schema_path) as f:
schema_content = json.load(f)
# Validate the schema content
response_schema = ResponseFormatJSONSchema.model_validate(schema_content)
# Create a chat completion request
completion = client.chat.completions.create(
model="gpt-4o-2024-08-06",
messages = [
{
"role": "system",
"content": (
"I have three questions. The first question is: What is the capital of France? "
"The second question is: Which are the two nicest colors? "
"The third question is: Can you roll a die and tell me which number comes up?"
),
}
],
logprobs=True,
response_format=response_schema.model_dump(by_alias=True),
)
chat_completion = add_logprobs(completion)
chat_completion_inline = add_logprobs_inline(completion)
print(chat_completion.log_probs[0])
{'capital_of_France': -5.5122365e-07, 'the_two_nicest_colors': [-0.0033997903, -0.011364183612649998], 'die_shows': -0.48048785}
print(chat_completion_inline.choices[0].message.content)
{"capital_of_France": "Paris", "capital_of_France_logprob": -6.704273e-07, "the_two_nicest_colors": ["blue", "green"], "die_shows": 5.0, "die_shows_logprob": -2.3782086}
The response_format
in the request body is an object specifying the format that the model must output. Setting to { "type": "json_schema", "json_schema": {...} } ensures the model will match your supplied JSON schema.
Below is the example of the JSON file that defines the schema used for validating the responses.
{
"type": "json_schema",
"json_schema": {
"name": "answears",
"description": "Response to questions in JSON format",
"schema": {
"type": "object",
"properties": {
"capital_of_France": { "type": "string" },
"the_two_nicest_colors": {
"type": "array",
"items": {
"type": "string",
"enum": ["red", "blue", "green", "yellow", "purple"]
}
},
"die_shows": { "type": "number" }
},
"required": ["capital_of_France", "the_two_nicest_colors", "die_shows"],
"additionalProperties": false
},
"strict": true
}
}