-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_depth_estimation.py
421 lines (372 loc) · 22.2 KB
/
train_depth_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
'''
Author: Xingtong Liu, Maia Stiber, Jindan Huang, Masaru Ishii, Gregory D. Hager, Russell H. Taylor, and Mathias Unberath
Copyright (C) 2020 Johns Hopkins University - All Rights Reserved
You may use, distribute and modify this code under the
terms of the GNU GENERAL PUBLIC LICENSE Version 3 license for non-commercial usage.
You should have received a copy of the GNU GENERAL PUBLIC LICENSE Version 3 license with
this file. If not, please write to: xliu89@jh.edu or unberath@jhu.edu
'''
import os
import tqdm
import cv2
import numpy as np
from pathlib import Path
import torchsummary
import math
import torch
import random
from tensorboardX import SummaryWriter
import argparse
import datetime
import json
import os
# Local
import models
import losses
import utils
import dataset
def main():
cv2.destroyAllWindows()
parser = argparse.ArgumentParser(
description='Probabilistic depth training with dense descriptor',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--adjacent_range', nargs='+', type=int, required=True,
help='frame interval range for sampling two frames')
parser.add_argument('--image_downsampling', type=float, default=4.0,
help='image downsampling rate to speed up training and reduce overfitting')
parser.add_argument('--network_downsampling', type=int, default=64,
help='network downsampling rate from input to bottleneck layer')
parser.add_argument('--input_size', nargs='+', type=int, default=None,
help='input size for architecture summary')
parser.add_argument('--batch_size', type=int, default=8,
help='batch size for training and testing')
parser.add_argument('--num_workers', type=int, default=8,
help='number of workers for data loader')
parser.add_argument('--slp_weight', type=float, default=1.0,
help='weight for sparse log prob loss')
parser.add_argument('--dcl_weight', type=float, default=0.5,
help='weight for depth consistency loss')
parser.add_argument('--sfl_weight', type=float, default=100.0,
help='weight for sparse flow loss')
parser.add_argument('--dl_weight', type=float, default=20.0,
help='weight for descriptor loss')
parser.add_argument('--lr_range', nargs='+', type=float, default=[1.0e-4, 1.0e-3],
help='cyclic lr range (min, max)')
parser.add_argument('--inlier_percentage', type=float, default=0.998,
help='percentage of inliers of SfM point clouds (to prune some outliers)')
parser.add_argument('--display_interval', type=int, default=50,
help='iteration interval for image display')
parser.add_argument('--save_interval', type=int, default=2,
help='interval for saving model')
parser.add_argument('--visible_interval', type=int, default=5,
help='range for propagating point visibility information')
parser.add_argument('--training_patient_id', nargs='+', type=int, required=True,
help='id of the training patients')
parser.add_argument('--load_intermediate_data', action='store_true',
help='whether or not to load pre-compute data')
parser.add_argument('--load_trained_model', action='store_true',
help='whether to load pre-trained model')
parser.add_argument('--trained_model_path', type=str, default=None,
help='path to the trained model')
parser.add_argument('--num_epoch', type=int, required=True,
help='number of epochs in total')
parser.add_argument('--display_architecture', action='store_true',
help='summarize the network architecture')
parser.add_argument('--data_root', type=str, required=True,
help='path to the training data')
parser.add_argument('--log_root', type=str, required=True,
help='root of the training logs')
parser.add_argument('--precompute_root', type=str, required=True,
help='root of the pre-compute data')
parser.add_argument('--num_iter', type=int, default=2000,
help='number of iterations per epoch')
parser.add_argument('--descriptor_model_path', type=str, required=True,
help='path to the trained feature matching model')
parser.add_argument("--architecture_summary", action="store_true")
parser.add_argument('--sequence_description', type=str, required=True,
help='description of training sequence')
args = parser.parse_args()
# Fix randomness for reproducibility
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
torch.manual_seed(10085)
np.random.seed(10085)
random.seed(10085)
log_root = Path(args.log_root) / "depth_train_{}".format(args.sequence_description)
if not log_root.exists():
log_root.mkdir(parents=True)
if not Path(args.precompute_root).exists():
Path(args.precompute_root).mkdir(parents=True)
with open(str(log_root / 'commandline_args'), 'w') as f:
f.write("script: {}".format(str(os.path.realpath(__file__))))
json.dump(args.__dict__, f, indent=2)
writer = SummaryWriter(logdir=str(log_root))
print("Tensorboard visualization at {}".format(str(log_root)))
# Get color image filenames
train_filenames = utils.get_color_file_names_by_bag(Path(args.data_root),
id_list=args.training_patient_id)
folder_list = utils.get_parent_folder_names(Path(args.data_root), id_list=args.training_patient_id)
# Build training and validation dataset
train_dataset = dataset.DepthDataset(image_file_names=train_filenames,
folder_list=folder_list,
adjacent_range=args.adjacent_range,
image_downsampling=args.image_downsampling,
network_downsampling=args.network_downsampling,
inlier_percentage=args.inlier_percentage,
load_intermediate_data=args.load_intermediate_data,
intermediate_data_root=Path(args.precompute_root),
visible_interval=args.visible_interval,
num_pre_workers=args.num_workers,
num_iter=args.num_iter,
phase="Train")
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers)
depth_estimation_model = models.FCDenseNetStd(
in_channels=3, down_blocks=(4, 4, 4, 4, 4),
up_blocks=(4, 4, 4, 4, 4), bottleneck_layers=4,
growth_rate=12, out_chans_first_conv=48)
# Initialize the depth estimation network with Kaiming He initialization
utils.init_net(depth_estimation_model, type="kaiming", mode="fan_in", activation_mode="relu",
distribution="normal")
# Multi-GPU running
depth_estimation_model = torch.nn.DataParallel(depth_estimation_model)
# Summary network architecture
if args.architecture_summary:
torchsummary.summary(depth_estimation_model, input_size=(3, args.input_size[0], args.input_size[1]))
# Optimizer
optimizer = torch.optim.SGD(depth_estimation_model.parameters(), lr=args.lr_range[1], momentum=0.9)
lr_scheduler = models.CyclicLR(optimizer, base_lr=args.lr_range[0], max_lr=args.lr_range[1])
# Custom layers
depth_scaling_layer = models.DepthMeanStdScalingLayer()
depth_warping_layer = models.DepthWarpingLayer()
feature_warping_layer = models.FeatureWarpingLayer()
flow_from_depth_layer = models.FlowfromDepthLayer()
# Loss functions
sparse_log_prob_loss = losses.SparseLogProbLoss()
dense_log_prob_loss = losses.DenseLogProbLoss()
sparse_masked_l1_loss = losses.NormalizedSparseMaskedL1Loss()
# Load previous student model and so on
if args.load_trained_model:
if Path(args.trained_model_path).exists():
print("Loading {:s} ...".format(str(args.trained_model_path)))
state = torch.load(str(args.trained_model_path), encoding="latin1")
step = state['step']
epoch = state['epoch']
depth_estimation_model.load_state_dict(state["model"])
print('Restored model, epoch {}, step {}'.format(epoch, step))
else:
print("No pre-trained model detected")
raise OSError
else:
epoch = 0
step = 0
descriptor_model = models.FCDenseNetFeature(
in_channels=3, down_blocks=(3, 3, 3, 3, 3),
up_blocks=(3, 3, 3, 3, 3), bottleneck_layers=4,
growth_rate=8, out_chans_first_conv=16, feature_length=256)
# Initialize the depth estimation network with Kaiming He initialization
descriptor_model = utils.init_net(descriptor_model, type="kaiming", mode="fan_in",
activation_mode="relu",
distribution="normal")
# Multi-GPU running
descriptor_model = torch.nn.DataParallel(descriptor_model)
descriptor_model.eval()
if Path(args.descriptor_model_path).exists():
print("Loading {:s} ...".format(str(args.descriptor_model_path)))
state = torch.load(str(args.descriptor_model_path))
descriptor_model.load_state_dict(state["model"])
else:
print("No pre-trained descriptor model detected")
raise OSError
best_mean_loss = 1000000
for cur_epoch in range(epoch, args.num_epoch + 1):
# Set the seed correlated to cur_epoch for reproducibility
torch.manual_seed(10086 + cur_epoch)
np.random.seed(10086 + cur_epoch)
random.seed(10086 + cur_epoch)
depth_estimation_model.train()
if cur_epoch <= 10:
dcl_weight = 0.0
dl_weight = 0.0
slp_weight = 0.0
else:
dcl_weight = args.dcl_weight
dl_weight = args.dl_weight
slp_weight = args.slp_weight
# Update progress bar
tq = tqdm.tqdm(total=len(train_loader) * args.batch_size)
for batch, (
colors_1, colors_2, sparse_depths_1, sparse_depths_2,
sparse_depth_masks_1, sparse_depth_masks_2,
sparse_flows_1, sparse_flows_2, sparse_flow_masks_1, sparse_flow_masks_2, boundaries, shrink_boundaries,
rotations_1_wrt_2,
rotations_2_wrt_1, translations_1_wrt_2, translations_2_wrt_1, intrinsics, folders, file_names) in \
enumerate(train_loader):
# Update learning rate
lr_scheduler.batch_step(batch_iteration=step)
tq.set_description('Epoch {}, lr {}'.format(cur_epoch, lr_scheduler.get_lr()))
with torch.no_grad():
colors_1 = colors_1.cuda()
colors_2 = colors_2.cuda()
sparse_depths_1 = sparse_depths_1.cuda()
sparse_depths_2 = sparse_depths_2.cuda()
sparse_depth_masks_1 = sparse_depth_masks_1.cuda()
sparse_depth_masks_2 = sparse_depth_masks_2.cuda()
sparse_flows_1 = sparse_flows_1.cuda()
sparse_flows_2 = sparse_flows_2.cuda()
sparse_flow_masks_1 = sparse_flow_masks_1.cuda()
sparse_flow_masks_2 = sparse_flow_masks_2.cuda()
boundaries = boundaries.cuda()
shrink_boundaries = shrink_boundaries.cuda()
rotations_1_wrt_2 = rotations_1_wrt_2.cuda()
rotations_2_wrt_1 = rotations_2_wrt_1.cuda()
translations_1_wrt_2 = translations_1_wrt_2.cuda()
translations_2_wrt_1 = translations_2_wrt_1.cuda()
intrinsics = intrinsics.cuda()
colors_1 = boundaries * colors_1
colors_2 = boundaries * colors_2
# Generate dense descriptor map
feature_maps_1 = descriptor_model(colors_1)
feature_maps_2 = descriptor_model(colors_2)
feature_maps_1 = boundaries * feature_maps_1
feature_maps_2 = boundaries * feature_maps_2
# Predicted depth
predicted_mean_depth_maps_1, predicted_std_depth_maps_1 = depth_estimation_model(colors_1)
predicted_mean_depth_maps_2, predicted_std_depth_maps_2 = depth_estimation_model(colors_2)
scaled_mean_depth_maps_1, scaled_std_depth_maps_1 = depth_scaling_layer(
[predicted_mean_depth_maps_1, predicted_std_depth_maps_1,
sparse_depths_1, sparse_depth_masks_1])
scaled_mean_depth_maps_2, scaled_std_depth_maps_2 = depth_scaling_layer(
[predicted_mean_depth_maps_2, predicted_std_depth_maps_2,
sparse_depths_2, sparse_depth_masks_2])
# Feature consistency loss
warped_feature_maps_2_to_1, shrink_intersect_masks_1 = feature_warping_layer(
[scaled_mean_depth_maps_1, feature_maps_2, shrink_boundaries, translations_1_wrt_2,
rotations_1_wrt_2, intrinsics])
warped_feature_maps_1_to_2, shrink_intersect_masks_2 = feature_warping_layer(
[scaled_mean_depth_maps_2, feature_maps_1, shrink_boundaries, translations_2_wrt_1,
rotations_2_wrt_1, intrinsics])
descriptor_loss_1 = torch.mean((torch.sum(
shrink_intersect_masks_1 * (feature_maps_1 - warped_feature_maps_2_to_1) ** 2, dim=(1, 2, 3))) / (
torch.sum(shrink_intersect_masks_1, dim=(1, 2, 3)) + 1.0e-8))
descriptor_loss_2 = torch.mean((torch.sum(
shrink_intersect_masks_2 * (feature_maps_2 - warped_feature_maps_1_to_2) ** 2, dim=(1, 2, 3))) / (
torch.sum(shrink_intersect_masks_2, dim=(1, 2, 3)) + 1.0e-8))
dl_loss = dl_weight * (0.5 * descriptor_loss_1 + 0.5 * descriptor_loss_2)
# Sparse log prob loss
sd_loss = slp_weight * (0.5 * sparse_log_prob_loss([scaled_mean_depth_maps_1, scaled_std_depth_maps_1,
sparse_depths_1, sparse_depth_masks_1]) + 0.5 *
sparse_log_prob_loss([scaled_mean_depth_maps_2, scaled_std_depth_maps_2,
sparse_depths_2, sparse_depth_masks_2]))
warped_mean_depth_maps_2_to_1, intersect_masks_1 = depth_warping_layer(
[scaled_mean_depth_maps_1, scaled_mean_depth_maps_2, boundaries, translations_1_wrt_2,
rotations_1_wrt_2,
intrinsics])
warped_mean_depth_maps_1_to_2, intersect_masks_2 = depth_warping_layer(
[scaled_mean_depth_maps_2, scaled_mean_depth_maps_1, boundaries, translations_2_wrt_1,
rotations_2_wrt_1,
intrinsics])
# Depth consistency loss
dc_loss = dcl_weight * (0.5 * dense_log_prob_loss([scaled_mean_depth_maps_1, scaled_std_depth_maps_1,
warped_mean_depth_maps_2_to_1, intersect_masks_1]) +
0.5 * dense_log_prob_loss([scaled_mean_depth_maps_2, scaled_std_depth_maps_2,
warped_mean_depth_maps_1_to_2, intersect_masks_2]))
flows_from_depth_1 = flow_from_depth_layer(
[scaled_mean_depth_maps_1, boundaries, translations_1_wrt_2, rotations_1_wrt_2,
intrinsics])
flows_from_depth_2 = flow_from_depth_layer(
[scaled_mean_depth_maps_2, boundaries, translations_2_wrt_1, rotations_2_wrt_1,
intrinsics])
sparse_flow_masks_1 = sparse_flow_masks_1 * boundaries
sparse_flow_masks_2 = sparse_flow_masks_2 * boundaries
sparse_flows_1 = sparse_flows_1 * boundaries
sparse_flows_2 = sparse_flows_2 * boundaries
flows_from_depth_1 = flows_from_depth_1 * boundaries
flows_from_depth_2 = flows_from_depth_2 * boundaries
sf_loss = args.sfl_weight * 0.5 * (sparse_masked_l1_loss(
[sparse_flows_1, flows_from_depth_1, sparse_flow_masks_1]) + sparse_masked_l1_loss(
[sparse_flows_2, flows_from_depth_2, sparse_flow_masks_2]))
# Overall Loss
loss = sd_loss + dc_loss + sf_loss + dl_loss
# Display depth and color at TensorboardX
if batch % args.display_interval == 0:
display_list_1 = \
utils.display_color_mean_std_depth_sparse_flow_dense_flow(colors_1,
scaled_mean_depth_maps_1 * boundaries,
scaled_std_depth_maps_1 * boundaries,
sparse_flows_1,
flows_from_depth_1)
display_list_2 = \
utils.display_color_mean_std_depth_sparse_flow_dense_flow(colors_2,
scaled_mean_depth_maps_2 * boundaries,
scaled_std_depth_maps_2 * boundaries,
sparse_flows_2,
flows_from_depth_2)
utils.stack_and_display(phase="Train",
title="Results (c1, d1, sd1, sf1, df1, c2, d2, sd2, sf2, df2)",
step=step, writer=writer,
image_list=display_list_1 + display_list_2)
# Handle nan/inf cases
if math.isnan(loss.item()) or math.isinf(loss.item()):
optimizer.zero_grad()
loss.backward()
optimizer.zero_grad()
continue
else:
optimizer.zero_grad()
loss.backward()
# Prevent one sample from having too much impact on the training
torch.nn.utils.clip_grad_norm_(depth_estimation_model.parameters(), 10.0)
optimizer.step()
if batch == 0:
mean_loss = loss.item()
mean_sd_loss = sd_loss.item()
mean_dc_loss = dc_loss.item()
mean_sf_loss = sf_loss.item()
mean_dl_loss = dl_loss.item()
else:
mean_loss = (mean_loss * batch + loss.item()) / (batch + 1.0)
mean_sd_loss = (mean_sd_loss * batch + sd_loss.item()) / (batch + 1.0)
mean_dc_loss = (mean_dc_loss * batch + dc_loss.item()) / (batch + 1.0)
mean_sf_loss = (mean_sf_loss * batch + sf_loss.item()) / (batch + 1.0)
mean_dl_loss = (mean_dl_loss * batch + dl_loss.item()) / (batch + 1.0)
step += 1
tq.update(colors_1.shape[0])
tq.set_postfix(loss='avg: {:.3f}, cur: {:.3f}'.format(mean_loss, loss.item()),
sd_loss='avg: {:.3f}, cur: {:.3f}'.format(mean_sd_loss,
sd_loss.item()),
dc_loss='avg: {:.3f}, cur: {:.3f}'.format(mean_dc_loss,
dc_loss.item()),
sf_loss='avg: {:.3f}, cur: {:.3f}'.format(mean_sf_loss,
sf_loss.item()),
dl_loss='avg: {:.3f}, cur: {:.3f}'.format(mean_dl_loss,
dl_loss.item())
)
# TensorboardX
writer.add_scalars('Training', {'overall': mean_loss,
'slp loss': mean_sd_loss,
'dcl loss': mean_dc_loss,
'sfl loss': mean_sf_loss,
'dl loss': mean_dl_loss}, step)
tq.close()
if cur_epoch % args.save_interval == 0:
writer.export_scalars_to_json(
str(log_root / ("all_scalars_" + str(cur_epoch) + ".json")))
model_path_epoch = log_root / 'checkpoint_model_epoch_{}_{}_{}_{}_{}_{}.pt'.format(cur_epoch,
mean_loss,
mean_sd_loss,
mean_dc_loss,
mean_sf_loss,
mean_dl_loss)
utils.save_model(model=depth_estimation_model, optimizer=optimizer,
epoch=cur_epoch + 1, step=step, model_path=model_path_epoch,
validation_loss=mean_sf_loss)
if mean_loss < best_mean_loss:
best_mean_loss = mean_loss
best_model_path = log_root / 'best_checkpoint_model.pt'
utils.save_model(model=depth_estimation_model, optimizer=optimizer,
epoch=cur_epoch + 1, step=step, model_path=best_model_path,
validation_loss=mean_sf_loss)
writer.close()
if __name__ == '__main__':
main()