-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_inequalities_ghz.py
140 lines (126 loc) · 5.49 KB
/
find_inequalities_ghz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Code for
#
# Guarantees on the structure of experimental quantum networks
# npj Quantum Inf. 10, 117 (2024)
# arXiv:2403.02376
#
# Authors: Alejandro Pozas-Kerstjens
#
# Requires: inflation for setting up and solving the problems
# numpy for array operations
# qutip for quantum operations
# sympy for symbolic operations
# tqdm for progress bars
# itertools, numbers
#
# Last modified: Sep, 2023
import numpy as np
import qutip as qt
from inflation import InflationProblem, InflationSDP, max_within_feasible
from itertools import product
from numbers import Real
from sympy import Symbol
from tqdm import tqdm
from utils import export_inequality, prob_noin, rho, rho_ghz_list
meas = [[0.5*(qt.qeye(2)+qt.sigmax()),0.5*(qt.qeye(2)-qt.sigmax())],
[0.5*(qt.qeye(2)+qt.sigmaz()),0.5*(qt.qeye(2)-qt.sigmaz())]]
dag = {"h1": ["A", "B", "C"],
"h2": ["B", "C", "D", "E"],
"h3": ["D", "E", "F"]}
vis = Symbol("v")
ineq_path = "GHZInequalities"
measurements_list = ["".join(m)
for m in product(["X", "Z"], repeat=6)]
###############################################################################
# Single-input inequalities
###############################################################################
InfProb = InflationProblem(dag=dag,
outcomes_per_party=[2, 2, 2, 2, 2, 2],
inflation_level_per_source=2,
verbose=0
)
InfSDP = InflationSDP(InfProb)
Local1Len2 = InfSDP.build_columns("local1", max_monomial_length=2)
info = "Local1Len2"
InfSDP.generate_relaxation(Local1Len2)
try:
with open(f"ghzvisibilities_INF2{info}.txt", "r") as file:
visibilities = file.read()
except FileNotFoundError:
visibilities = ""
for measurements in tqdm(measurements_list, desc=f"Inequalities for {info}"):
if measurements in visibilities:
pass
else:
InfSDP.set_distribution(prob_noin(vis, "ghz", measurements))
if any([not isinstance(val, Real)
for val in InfSDP.known_moments.values()]):
vcrit = max_within_feasible(InfSDP, InfSDP.known_moments, "dual")
if abs(vcrit - 1) > 1e-3:
InfSDP.reset("all")
v = np.ceil(vcrit * 1000) / 1000
InfSDP.set_distribution(prob_noin(v, "ghz", measurements))
InfSDP.solve(feas_as_optim=True)
if InfSDP.solution_object["status"] == "feasible":
cert = InfSDP.certificate_as_probs()
export_inequality(cert,
f"{ineq_path}/{measurements}_INF2{info}.csv")
visibilities += \
f"Critical visibility for {measurements} is {vcrit}\n"
else:
print(f"Problem for {measurements}, failed with status "
+ InfSDP.solution_object["status"])
else:
visibilities += f"Critical visibility for {measurements} is 1\n"
else:
visibilities += f"{measurements} produces a constant distribution\n"
with open(f"ghzvisibilities_INF2{info}.txt", "w") as fileexport:
fileexport.write(visibilities)
###############################################################################
# Binary-input inequality
###############################################################################
def prob_2in(vis):
prob_array = np.zeros((2,2,2,2,2,2,2,2,2,2,2,2))
if isinstance(vis, Real):
state = rho("ghz", vis)
for a,b,c,d,e,f,x,y,z,t,u,v in np.ndindex((2,2,2,2,2,2,2,2,2,2,2,2)):
prob_array[a,b,c,d,e,f,x,y,z,t,u,v] \
= qt.expect(state, qt.tensor(meas[x][a],
meas[y][b],
meas[z][c],
meas[t][d],
meas[u][e],
meas[v][f]))
else:
states = rho_ghz_list()
prob_array = np.asarray(prob_array, dtype=object)
for a,b,c,d,e,f,x,y,z,t,u,v in np.ndindex((2,2,2,2,2,2,2,2,2,2,2,2)):
operator = qt.tensor(meas[x][a], meas[y][b],
meas[z][c], meas[t][d],
meas[u][e], meas[v][f])
prob_array[a,b,c,d,e,f,x,y,z,t,u,v] = (
vis**3 * qt.expect(states[0], operator)
+ vis**2 * qt.expect(states[1], operator)
+ vis * qt.expect(states[2], operator)
+ qt.expect(states[3], operator))
return prob_array
InfProb = InflationProblem(dag=dag,
outcomes_per_party=[2, 2, 2, 2, 2, 2],
settings_per_party=[2, 2, 2, 2, 2, 2],
inflation_level_per_source=2,
verbose=0
)
InfSDP = InflationSDP(InfProb)
info = "NPA1"
InfSDP.generate_relaxation(info)
InfSDP.set_distribution(prob_2in(vis))
if any([not isinstance(val, Real)
for val in InfSDP.known_moments.values()]):
vcrit = max_within_feasible(InfSDP, InfSDP.known_moments, "dual")
InfSDP.reset("all")
InfSDP.set_distribution(prob_2in(min(vcrit, 1.)))
InfSDP.solve(feas_as_optim=True)
if InfSDP.solution_object["status"] == "feasible":
cert = InfSDP.certificate_as_probs()
export_inequality(cert, f"{ineq_path}/twoin_INF2{info}.csv")
print(f"Critical visibility for INF2{info} is {vcrit}")