-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
299 lines (286 loc) · 11.4 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import datetime as dt
import math
from pathlib import Path
from typing import Dict, List, Tuple
import torch
from taoverse.model.competition.data import (
Competition,
ModelConstraints,
NormValidationConstraints,
)
from taoverse.model.competition.epsilon import LinearDecay
from taoverse.model.eval.normalization import NormalizationId
from taoverse.model.eval.task import EvalTask
from transformers import (
BartForCausalLM,
FalconForCausalLM,
Gemma2ForCausalLM,
GemmaForCausalLM,
GPTNeoXForCausalLM,
LlamaForCausalLM,
MistralForCausalLM,
Phi3ForCausalLM,
PhiForCausalLM,
)
from competitions.data import CompetitionId
from finetune.datasets.ids import DatasetId
from finetune.eval.method import EvalMethodId
from finetune.eval.if_eval.version import IfEvalVersion
# ---------------------------------
# Project Constants.
# ---------------------------------
__version__ = "2.8.0"
version_split = __version__.split(".")
__spec_version__ = (
(1000 * int(version_split[0]))
+ (10 * int(version_split[1]))
+ (1 * int(version_split[2]))
)
# The version of the validator state. When incremented, causes validators
# to start from a fresh state.
VALIDATOR_STATE_VERSION = 5
# Block the subnet was registered.
GENESIS_BLOCK = 3138611
# Define the number of blocks per vali "sync". This cadence is used to align validator behavior for better vtrust.
SYNC_BLOCK_CADENCE = 270
# Rough estimate of the number of seconds per block.
SECONDS_PER_BLOCK = 12
# Validator weight moving average term.
# At 0.85 a model will go from 0 -> 0.278 in 2 cycles and from 0 -> 0.833 in 11 cycles.
ALPHA = 0.85
# Any miners with a combined competition weight below this threshold will instead receive 0 weight.
# This is intended to help vtrust in conjunction with a low alpha by handling the tail ends.
# At 1 eval per 270 blocks, newly winning models will start recieving weight after ~540 blocks.
# Previously winning models will phase out after ~2970 blocks, at which point only the new winner will have weight.
MIN_WEIGHT_THRESHOLD = 0.18
# The validator WANDB project.
WANDB_PROJECT = "finetuning"
WANDB_ENTITY = "rusticluftig"
# The uid for this subnet.
SUBNET_UID = 37
# Minimum stake to get sample data from a validator.
SAMPLE_VALI_MIN_STAKE = 100_000
# The uid for the Prompting subnet.
PROMPTING_SUBNET_UID = 1
# The Prompting validator WANDB project and filters
PROMPTING_WANDB_PROJECT = "macrocosmos/prompting-validators"
PROMPTING_MAX_AGE = dt.timedelta(hours=4)
# Minimum number of samples allowed to consider MMLU as an eval task.
MIN_ALLOWED_SAMPLES = 50
# Minimum stake to consider a validator when checking for miners with weights.
WEIGHT_SYNC_VALI_MIN_STAKE = 100_000
# Minimum percent of weight on a vali for a miner to be considered a top miner.
# Since there can be multiple competitions at different reward percentages we can't just check biggest.
# Since we only set weights per competition with a threshold of 0.18 we can just take any percent here.
WEIGHT_SYNC_MINER_MIN_PERCENT = 0.01
# The root directory of this project.
ROOT_DIR = Path(__file__).parent.parent
# The maximum bytes for the hugging face repo.
MAX_HUGGING_FACE_BYTES: int = 15 * 1024 * 1024 * 1024
# Defined model constraints by competition id to ensure they are constant across blocks.
MODEL_CONSTRAINTS_BY_COMPETITION_ID: Dict[CompetitionId, ModelConstraints] = {
CompetitionId.B7_MULTI_CHOICE: ModelConstraints(
max_model_parameter_size=6_900_000_000,
sequence_length=4096,
allowed_architectures=[
MistralForCausalLM,
LlamaForCausalLM,
BartForCausalLM,
FalconForCausalLM,
GPTNeoXForCausalLM,
PhiForCausalLM,
GemmaForCausalLM,
],
tokenizer="Xenova/gpt-4",
kwargs={
"torch_dtype": torch.bfloat16,
},
eval_block_delay=1600, # ~5 hours.
norm_validation_constraints=NormValidationConstraints(
norm_eps_soft=200,
norm_eps_soft_percent_threshold=0.15,
norm_eps_hard=1000,
),
epsilon_func=LinearDecay(0.05, 0.01, 7200 * 5), # Decay over ~5 days.
max_bytes=15 * 1024 * 1024 * 1024,
),
CompetitionId.INSTRUCT_8B: ModelConstraints(
max_model_parameter_size=8_100_000_000,
sequence_length=4096,
allowed_architectures=[
BartForCausalLM,
FalconForCausalLM,
Gemma2ForCausalLM,
GemmaForCausalLM,
GPTNeoXForCausalLM,
LlamaForCausalLM,
MistralForCausalLM,
Phi3ForCausalLM,
PhiForCausalLM,
],
tokenizer=None, # Any tokenizer can be used.
kwargs={
"torch_dtype": torch.bfloat16,
},
eval_block_delay=1600, # ~5 hours.
norm_validation_constraints=NormValidationConstraints(
norm_eps_soft=200,
norm_eps_soft_percent_threshold=0.15,
norm_eps_hard=1000,
),
epsilon_func=LinearDecay(0.05, 0.01, 7200 * 5), # Decay over ~5 days.
max_bytes=20 * (1024**3),
),
}
SUNSET_B7_BLOCK = 4_675_163
# Schedule of competitions by block.
COMPETITION_SCHEDULE_BY_BLOCK: List[Tuple[int, List[Competition]]] = [
(
0,
[
Competition(
CompetitionId.B7_MULTI_CHOICE,
MODEL_CONSTRAINTS_BY_COMPETITION_ID[CompetitionId.B7_MULTI_CHOICE],
0.75,
eval_tasks=[
EvalTask(
name="SYNTHETIC_MMLU",
method_id=EvalMethodId.MULTIPLE_CHOICE,
dataset_id=DatasetId.SYNTHETIC_MMLU,
normalization_id=NormalizationId.NONE,
weight=0.75,
),
EvalTask(
name="WORD_SORTING",
method_id=EvalMethodId.REFERENCE_LOSS,
dataset_id=DatasetId.WORD_SORTING,
normalization_id=NormalizationId.INVERSE_EXPONENTIAL,
normalization_kwargs={"ceiling": 40.0},
weight=0.05,
),
EvalTask(
name="FINEWEB",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.FINEWEB,
normalization_id=NormalizationId.INVERSE_EXPONENTIAL,
normalization_kwargs={"ceiling": 20.0},
weight=0.1,
),
EvalTask(
name="IF_EVAL_V2",
method_id=EvalMethodId.IF_EVAL,
dataset_id=DatasetId.SYNTHETIC_IF_EVAL,
normalization_id=NormalizationId.NONE,
dataset_kwargs={"if_eval_version": IfEvalVersion.V2},
weight=0.1,
),
],
),
Competition(
CompetitionId.INSTRUCT_8B,
MODEL_CONSTRAINTS_BY_COMPETITION_ID[CompetitionId.INSTRUCT_8B],
0.25,
eval_tasks=[
EvalTask(
name="SYNTHETIC_MMLU",
method_id=EvalMethodId.MULTIPLE_CHOICE,
dataset_id=DatasetId.SYNTHETIC_MMLU,
normalization_id=NormalizationId.NONE,
weight=0.75,
),
EvalTask(
name="WORD_SORTING",
method_id=EvalMethodId.REFERENCE_LOSS,
dataset_id=DatasetId.WORD_SORTING,
normalization_id=NormalizationId.INVERSE_EXPONENTIAL,
normalization_kwargs={"ceiling": 40.0},
weight=0.05,
),
EvalTask(
name="FINEWEB",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.FINEWEB,
normalization_id=NormalizationId.INVERSE_EXPONENTIAL,
normalization_kwargs={"ceiling": 20.0},
weight=0.1,
),
EvalTask(
name="IF_EVAL_V2",
method_id=EvalMethodId.IF_EVAL,
dataset_id=DatasetId.SYNTHETIC_IF_EVAL,
normalization_id=NormalizationId.NONE,
dataset_kwargs={"if_eval_version": IfEvalVersion.V2},
weight=0.1,
),
],
),
],
),
(
SUNSET_B7_BLOCK,
[
Competition(
CompetitionId.INSTRUCT_8B,
MODEL_CONSTRAINTS_BY_COMPETITION_ID[CompetitionId.INSTRUCT_8B],
1.0,
eval_tasks=[
EvalTask(
name="SYNTHETIC_MMLU",
method_id=EvalMethodId.MULTIPLE_CHOICE,
dataset_id=DatasetId.SYNTHETIC_MMLU,
normalization_id=NormalizationId.NONE,
weight=0.65,
),
EvalTask(
name="WORD_SORTING",
method_id=EvalMethodId.REFERENCE_LOSS,
dataset_id=DatasetId.WORD_SORTING,
normalization_id=NormalizationId.INVERSE_EXPONENTIAL,
normalization_kwargs={"ceiling": 40.0},
weight=0.05,
),
EvalTask(
name="FINEWEB",
method_id=EvalMethodId.TEXT_LOSS,
dataset_id=DatasetId.FINEWEB,
normalization_id=NormalizationId.INVERSE_EXPONENTIAL,
normalization_kwargs={"ceiling": 20.0},
weight=0.1,
),
EvalTask(
name="IF_EVAL_V2",
method_id=EvalMethodId.IF_EVAL,
dataset_id=DatasetId.SYNTHETIC_IF_EVAL,
normalization_id=NormalizationId.NONE,
dataset_kwargs={"if_eval_version": IfEvalVersion.V2},
weight=0.2,
),
],
),
],
),
]
for block_and_competitions in COMPETITION_SCHEDULE_BY_BLOCK:
assert math.isclose(
sum(competition.reward_percentage for competition in block_and_competitions[1]),
1.0,
)
for comp in block_and_competitions[1]:
assert math.isclose(
sum(task.weight for task in comp.eval_tasks),
1.0,
)
# ---------------------------------
# Miner/Validator Model parameters.
# ---------------------------------
weights_version_key = __spec_version__
# time required between updates to the chain.
chain_update_cadence = dt.timedelta(minutes=20)
# Number of blocks required between retrying evaluation of a model.
model_retry_cadence = 1200 # Roughly 4 hour
# How frequently to check the models given weights by other large validators.
scan_top_model_cadence = dt.timedelta(minutes=30)
# validator eval batch min to keep for next loop.
sample_min = 3
# We allow the sample_min per competition + 7 additional models to be held at any one time.
updated_models_limit = sample_min * len(MODEL_CONSTRAINTS_BY_COMPETITION_ID) + 7