-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
238 lines (176 loc) · 9.2 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import random
import numpy as np
import pandas as pd
import pickle
from kNNDTW import KnnDtw
from utils import evaluate
from utils import get_windows_values, get_windows_labels
class Trainer():
def __init__(self, split_test=0.9, split_validation=0.7, seed=108, labels={1:'GOOD', 2:'BAD', 3:'WORST'}, data=None, data_labels=None):
self.split_test = split_test
self.split_validation = split_validation
self.seed = seed
self.labels = labels
self.data = data
self.data_labels = data_labels
self._split()
def _take(self, data, indices):
''' Returns only the data of the indices.
'''
if not data:
return None
if(isinstance(data, (np.ndarray))):
return np.take(data, indices)
else:
result = []
for index in indices:
result.append(data[index])
return result
def _split(self):
random.seed(self.seed)
indices = np.arange(len(self.data))
random.shuffle(indices)
# Splitting into training and test
split = int(round(len(self.data) * self.split_test)) # Split of 90%
train_validation_index = indices[:split]
test_index = indices[split:]
# Splitting into training and validation
training_split = int(round(len(self.data) * self.split_validation)) # Split of 70%
training_index = train_validation_index[:training_split]
validation_index = train_validation_index[training_split:]
self.training_validation_data = self._take(self.data, train_validation_index)
self.training_validation_label_data = self._take(self.data_labels, train_validation_index)
self.test_data = self._take(self.data, test_index)
self.test_label_data = self._take(self.data_labels, test_index)
self.training_data = self._take(self.data, training_index)
self.training_label_data = self._take(self.data_labels, training_index)
self.validation_data = self._take(self.data, validation_index)
self.validation_label_data = self._take(self.data_labels, validation_index)
def evaluate_model(self, k, max_warping_window, train_data, train_label, test_data, test_label):
print ('--------------------------')
print ('--------------------------\n')
print ('Running for k = ', k)
print ('Running for w = ', max_warping_window)
model = KnnDtw(k_neighbours = k, max_warping_window = max_warping_window)
model.fit(train_data, train_label)
predicted_label, probability = model.predict(test_data, parallel=False)
print ('\nPredicted : ', predicted_label)
print ('Actual : ', test_label)
accuracy, precision, recall, f1score = evaluate(self.labels, predicted_label, test_label)
print ('Avg/Total Accuracy :', accuracy)
print ('Avg/Total Precision :', precision)
print ('Avg/Total Recall :', recall)
print ('Avg/Total F1 Score :', f1score)
# result = np.zeros((len(ks),4))
# result[0] = accuracy
# result[1] = precision
# result[2] = recall
# result[3] = f1score
# evaluate the model for each window
def evaluate_online_model(self, k, max_warping_window, train_data, test_data, window_size, feature):
print('--------------------------')
print('--------------------------\n')
print('Running for k = ', k)
print('Running for w = ', max_warping_window)
print('Running for window_size = ', window_size)
print('Running for feature = ', feature)
evaluation_results = []
# For Test
last_second = test_data[0]['seconds'].iloc[-1]
#print('[TEST] Last second: {}'.format(last_second))
for time_window in range(0, last_second, window_size):
print('Time window is: %d ' % time_window)
columns = [feature, 'label']
train = get_windows_values(train_data, feature, time_window, time_window + window_size - 1)
test = get_windows_values(test_data, feature, time_window, time_window + window_size - 1)
train_label = get_windows_labels(train_data, time_window, time_window + window_size - 1)
test_label = get_windows_labels(test_data, time_window, time_window + window_size - 1)
print('Train labels {}'.format(train_label))
print('Test labels {}'.format(test_label))
print(len(train))
print(len(test))
for i in range(0, len(test)):
print('Flight_{}:{}'.format(i, len(test[i])))
model = KnnDtw(k_neighbours = k, max_warping_window = max_warping_window)
model.fit(np.array(train), np.array(train_label))
predicted_label, probability = model.predict(test, parallel=False)
print ('\nPredicted : ', predicted_label)
print ('Actual : ', test_label)
accuracy, precision, recall, f1score = evaluate(self.labels, predicted_label, test_label)
print ('Avg/Total Accuracy :', accuracy)
print ('Avg/Total Precision :', precision)
print ('Avg/Total Recall :', recall)
print ('Avg/Total F1 Score :', f1score)
results = {
'time_window': time_window,
'predicted_labels': predicted_label.tolist(),
'actual_labels': test_label,
'total_accuracy': accuracy,
'total_precision': precision,
'total_recall': recall,
'total_f1score': f1score
}
evaluation_results.append( results )
return evaluation_results
def find_best_k(self, ks, max_warping_window):
for index, k in enumerate(ks):
self.evaluate_model(k, max_warping_window, self.training_data, self.training_label_data, self.validation_data, self.validation_label_data)
def find_best_k_online(self, ks, max_warping_window, window_size, feature):
results = []
for index, k in enumerate(ks):
evaluation = self.evaluate_online_model(k, max_warping_window, self.training_data, self.validation_data, window_size, feature)
results_with_k = {
'k' : k,
'evaluation_all_ks' : evaluation
}
print(results_with_k)
# Save each k result in csv
df_k_res = pd.DataFrame(results_with_k['evaluation_all_ks'])
df_k_res['k'] = results_with_k['k']
df_k_res.to_csv('results/k_results/k_{}_{}.csv'.format(feature, df_k_res['k'][0]), sep=';', encoding='utf-8')
print('CSV saved!')
results.append(results_with_k)
#Save in csv
print(results)
df_result = pd.DataFrame()
for res in results:
df_all_k = pd.DataFrame(res['evaluation_all_ks'])
df_all_k['k'] = res['k']
df_result = df_result.append(df_all_k)
df_result.to_csv('results/k_results/k_{}_all.csv'.format(feature), sep=';', encoding='utf-8')
print('CSV saved!')
#with open('C:\\Users\\anush.manukyan\\Desktop\\Online_detection_uav_degradation\\k_res.txt', 'wb') as f:
# pickle.dump(results, f)
#print(results)
def find_best_w(self, k, max_warping_windows):
for index, w in enumerate(max_warping_windows):
self.evaluate_model(k, w, self.training_data, self.training_label_data, self.validation_data, self.validation_label_data)
def find_best_w_online(self, k, max_warping_windows, window_size, feature):
results = []
for index, w in enumerate(max_warping_windows):
evaluation = self.evaluate_online_model(k, w, self.training_data, self.validation_data, window_size, feature)
results_with_w = {
'w' : w,
'evaluation_all_ws' : evaluation
}
#results.append(results_with_w)
print(results_with_w)
df_w_res = pd.DataFrame(results_with_w['evaluation_all_ws'])
df_w_res['w'] = results_with_w['w']
df_w_res.to_csv('results/w_results/w_{}_{}.csv'.format(df_w_res['w'][0], feature), sep=';', encoding='utf-8')
print('CSV saved!')
results.append(results_with_w)
#Save in csv
print(results)
df_result = pd.DataFrame()
for res in results:
df_all_w = pd.DataFrame(res['evaluation_all_ws'])
df_all_w['w'] = res['w']
df_result = df_result.append(df_all_w)
df_result.to_csv('results/w_results/w_{}_all.csv'.format(feature), sep=';', encoding='utf-8')
print('CSV saved!')
#with open('C:\\Users\\anush.manukyan\\Desktop\\Online_detection_uav_degradation\\k_res.txt', 'wb') as f:
# pickle.dump(results, f)
#print(results)
def evalute_best_model(k, max_warping_window):
self.evaluate_model(k, max_warping_window, self.training_validation_data, self.training_validation_label_data, self.test_data, self.test_label_data)