diff --git a/data/tool_recommendation_model.hdf5 b/data/tool_recommendation_model.hdf5 new file mode 100644 index 0000000..80ceb7e Binary files /dev/null and b/data/tool_recommendation_model.hdf5 differ diff --git a/output_files/data/cnn_custom_loss/run8/precision.txt b/output_files/data/cnn_custom_loss/run8/precision.txt new file mode 100644 index 0000000..d815fe5 --- /dev/null +++ b/output_files/data/cnn_custom_loss/run8/precision.txt @@ -0,0 +1,10 @@ +9.406301382037950409e-01 9.390636803981691205e-01 9.350382911908047268e-01 +9.401635337510554358e-01 9.395969426298715899e-01 9.372305914766932977e-01 +9.488957027951828715e-01 9.420410611918410559e-01 9.366084522063734541e-01 +9.576945296182731715e-01 9.536061858418877213e-01 9.482365314254428412e-01 +9.501177620761676046e-01 9.462849397858063005e-01 9.423780532966015144e-01 +9.325201084299871157e-01 9.328089588054926384e-01 9.313350812484270103e-01 +9.330978091809980501e-01 9.324978891703328276e-01 9.317794664415114392e-01 +9.638714838021597009e-01 9.590832333466648985e-01 9.539616939963548869e-01 +9.240767897613652027e-01 9.240545705017109146e-01 9.219437408345565466e-01 +9.415411278496200742e-01 9.409078789494733641e-01 9.394747367017737272e-01 diff --git a/output_files/data/cnn_custom_loss/run8/train_loss.txt b/output_files/data/cnn_custom_loss/run8/train_loss.txt new file mode 100644 index 0000000..459b868 --- /dev/null +++ b/output_files/data/cnn_custom_loss/run8/train_loss.txt @@ -0,0 +1,10 @@ +3.447442017954560622e+00 +3.032605540426612567e+00 +2.742131795889509061e+00 +2.478343357978917805e+00 +2.257342595348090786e+00 +2.067952862366100764e+00 +1.932888886735730560e+00 +1.779144155432146546e+00 +1.686574836139052680e+00 +1.585422100327479544e+00 diff --git a/output_files/data/cnn_custom_loss/run8/usage_weights.txt b/output_files/data/cnn_custom_loss/run8/usage_weights.txt new file mode 100644 index 0000000..03c90d6 --- /dev/null +++ b/output_files/data/cnn_custom_loss/run8/usage_weights.txt @@ -0,0 +1,10 @@ +3.936345393657711522e+00 3.956220864457514974e+00 3.925039751856840731e+00 +3.925179001525750611e+00 3.994469675893861815e+00 3.971853111862147401e+00 +4.015317196089235097e+00 4.104230873728798024e+00 4.070394991595565060e+00 +3.910744708596085140e+00 3.954146783531009124e+00 3.947170004865719228e+00 +3.927876564276199023e+00 4.011052305745963942e+00 4.007251774704665870e+00 +3.896312018336436811e+00 3.946214901863008606e+00 3.926146430822128774e+00 +3.844265969379780934e+00 3.926398434653870950e+00 3.895556759874028607e+00 +3.814130870635099146e+00 3.906702958799252556e+00 3.915924946027232068e+00 +3.789132584777637369e+00 3.854966671877742002e+00 3.841349306370368311e+00 +3.666232820131840153e+00 3.794197632862366554e+00 3.807031315773607982e+00 diff --git a/output_files/data/cnn_custom_loss/run8/validation_loss.txt b/output_files/data/cnn_custom_loss/run8/validation_loss.txt new file mode 100644 index 0000000..3f37d90 --- /dev/null +++ b/output_files/data/cnn_custom_loss/run8/validation_loss.txt @@ -0,0 +1,10 @@ +3.855386945146317412e+00 +3.124217235089435718e+00 +2.544980639367000919e+00 +2.212079491026095912e+00 +2.122859110816682993e+00 +1.983663900657135493e+00 +1.802326244486429863e+00 +2.012231487156037169e+00 +1.655694580661460691e+00 +1.587806274781172311e+00 diff --git a/output_files/data/models/model_rnn_custom_loss_keras_2.3.0.hdf5 b/output_files/data/models/model_rnn_custom_loss_keras_2.3.0.hdf5 new file mode 100644 index 0000000..406feb3 Binary files /dev/null and b/output_files/data/models/model_rnn_custom_loss_keras_2.3.0.hdf5 differ diff --git a/output_files/data/rnn/run3/precision.txt b/output_files/data/rnn/run3/precision.txt new file mode 100644 index 0000000..8db0339 --- /dev/null +++ b/output_files/data/rnn/run3/precision.txt @@ -0,0 +1,10 @@ +9.723148024707817250e-01 9.630604808247789084e-01 9.620717237701688074e-01 +9.742256588010487217e-01 9.644491845531706353e-01 9.625679539024464271e-01 +9.793583077811847115e-01 9.722703639514731488e-01 9.674561910263813624e-01 +9.750255521486024257e-01 9.669932897835844532e-01 9.641825534373248408e-01 +9.751588677065280431e-01 9.676043194240767642e-01 9.647380349286813761e-01 +9.734924232324578819e-01 9.645713904812691641e-01 9.637603875038948109e-01 +9.744256321379372032e-01 9.648380215971203988e-01 9.636641040453924889e-01 +9.744478513975913803e-01 9.663711505132649426e-01 9.636048526863129071e-01 +9.800471048304670862e-01 9.689263653735057380e-01 9.638122324430861143e-01 +9.772252588543749452e-01 9.686708438874817029e-01 9.638714838021653630e-01 diff --git a/output_files/data/rnn/run3/train_loss.txt b/output_files/data/rnn/run3/train_loss.txt new file mode 100644 index 0000000..662d2c1 --- /dev/null +++ b/output_files/data/rnn/run3/train_loss.txt @@ -0,0 +1,10 @@ +4.802699544467869779e-04 +4.273360533625727726e-04 +4.039634591400698442e-04 +3.593671435125180350e-04 +3.555946465726244721e-04 +3.332630187252748951e-04 +3.187152041339375778e-04 +3.042372855247271334e-04 +2.968075000402442976e-04 +2.859094250268788616e-04 diff --git a/output_files/data/rnn/run3/usage_weights.txt b/output_files/data/rnn/run3/usage_weights.txt new file mode 100644 index 0000000..0620e69 --- /dev/null +++ b/output_files/data/rnn/run3/usage_weights.txt @@ -0,0 +1,10 @@ +2.639223463407977199e+00 3.162304827395501672e+00 3.002933578572025031e+00 +2.640435049423367708e+00 3.178556340135207048e+00 2.980619358110639716e+00 +2.682672318055179694e+00 3.198413707240802317e+00 3.040913682115776506e+00 +2.636460751649627454e+00 3.173390977783855593e+00 3.000292057078069341e+00 +2.643382580919789948e+00 3.132824303494126994e+00 2.979020830576209367e+00 +2.645108158370484297e+00 3.172562938889210926e+00 3.011074741901686558e+00 +2.603392238543586590e+00 3.059977187417030731e+00 2.948180655529843541e+00 +2.455593373966231674e+00 2.989562178601280706e+00 2.916373133052857280e+00 +2.450515659634514343e+00 2.978212519748875575e+00 2.900591683249116759e+00 +2.494280683908981722e+00 3.031274722598638505e+00 2.931875422053293434e+00 diff --git a/output_files/data/rnn/run3/validation_loss.txt b/output_files/data/rnn/run3/validation_loss.txt new file mode 100644 index 0000000..cdd0e68 --- /dev/null +++ b/output_files/data/rnn/run3/validation_loss.txt @@ -0,0 +1,10 @@ +3.200215093165471175e-03 +2.832872110851423694e-03 +3.414532355753112369e-03 +2.974444527831834797e-03 +2.785137674981451837e-03 +3.116628717649228865e-03 +3.693625316708692118e-03 +3.440773388241248881e-03 +3.555314441048499762e-03 +3.532970938563382689e-03 diff --git a/output_files/data/rnn/run8/precision.txt b/output_files/data/rnn/run8/precision.txt new file mode 100644 index 0000000..1f9e075 --- /dev/null +++ b/output_files/data/rnn/run8/precision.txt @@ -0,0 +1,10 @@ +9.896680442607652672e-01 9.809692041061192080e-01 9.764031462471712830e-01 +9.899346753766165019e-01 9.810914100342176258e-01 9.765068361255581086e-01 +9.903124027907390658e-01 9.813247122605874839e-01 9.767364351419849378e-01 +9.899568946362706789e-01 9.812025063324889551e-01 9.766994030425619755e-01 +9.900902101941962963e-01 9.812247255921432432e-01 9.767290287221011003e-01 +9.901568679731591605e-01 9.814135892992045251e-01 9.768697506999112212e-01 +9.903346220503932429e-01 9.813580411500688605e-01 9.768919699595658424e-01 +9.902679642714304897e-01 9.814246989290317247e-01 9.768993763794507901e-01 +9.903568413100475309e-01 9.814246989290317247e-01 9.769364084788736413e-01 +9.903790605697018190e-01 9.814691374483401898e-01 9.769067827993350717e-01 diff --git a/output_files/data/rnn/run8/train_loss.txt b/output_files/data/rnn/run8/train_loss.txt new file mode 100644 index 0000000..5343d7b --- /dev/null +++ b/output_files/data/rnn/run8/train_loss.txt @@ -0,0 +1,10 @@ +5.864146855659916171e-04 +5.633366759281050471e-04 +6.545921258797564443e-04 +5.475326251216883428e-04 +5.672426932793488879e-04 +1.258756600341643132e-03 +6.017132126703749395e-04 +6.092219044824460396e-04 +1.321081984164688538e-03 +5.829874503500343712e-04 diff --git a/output_files/data/rnn/run8/usage_weights.txt b/output_files/data/rnn/run8/usage_weights.txt new file mode 100644 index 0000000..02663ef --- /dev/null +++ b/output_files/data/rnn/run8/usage_weights.txt @@ -0,0 +1,10 @@ +4.378735079483125681e+00 3.968104365814237866e+00 3.843236071828839862e+00 +4.381539278064927601e+00 3.903176569754001513e+00 3.903759890740498228e+00 +4.386123251224291586e+00 3.968987887433257367e+00 3.823754638521313254e+00 +4.391737366630641404e+00 4.113654657850194241e+00 3.840281456530012072e+00 +4.403949362040771476e+00 4.197625586743011006e+00 3.966169187623515224e+00 +4.397725108537621885e+00 4.012280744140413802e+00 3.739170578580423232e+00 +4.381264523133343580e+00 3.945400544386926001e+00 3.861414646466194256e+00 +4.406938428516977702e+00 3.905414775520493098e+00 3.841673246885459747e+00 +4.397726666076190227e+00 4.348804265355178167e+00 4.206314850830318086e+00 +4.402439583579986326e+00 4.399751702229505845e+00 4.176577369189176991e+00 diff --git a/output_files/data/rnn/run8/validation_loss.txt b/output_files/data/rnn/run8/validation_loss.txt new file mode 100644 index 0000000..2d9564d --- /dev/null +++ b/output_files/data/rnn/run8/validation_loss.txt @@ -0,0 +1,10 @@ +3.804541184578469522e-04 +3.670656945136249651e-04 +3.880013795301148153e-04 +3.904127285129954552e-04 +3.701605151980723210e-04 +3.722056163683904275e-04 +9.814247817029374613e-04 +3.945000151901545209e-04 +4.165869904311884377e-04 +4.400969773753974756e-04 diff --git a/output_files/evaluate_rnn_19_09.ipynb b/output_files/evaluate_rnn_19_09.ipynb deleted file mode 100644 index b235fa6..0000000 --- a/output_files/evaluate_rnn_19_09.ipynb +++ /dev/null @@ -1,254 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 39, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'1': 'bcftools_filter', '2': 'cd_hit_protein', '3': 'augustus_training', '4': 'mothur_homova', '5': 'cuffcompare', '6': 'smooth_running_window', '7': 'mtbls520_08a_species_shannon', '8': 't_coffee', '9': 'ctb_np-likeness-calculator', '10': 'hicexplorer_hicplotmatrix', '11': 'ProteinResolver', '12': 'tabular_to_fastq', '13': 'trinity_samples_qccheck', '14': 'samtool_filter2', '15': 'tp_sort_header_tool', '16': 'tp_head_tool', '17': '_ensembl_gtf2gene_list', '18': 'vcftools_merge', '19': 'mtbls520_23_seasons_rda', '20': 'prepare_receptor', '21': 'rseqc_inner_distance', '22': 'ssake', '23': 'vcfbedintersect', '24': 'jcvi_gff_stats', '25': 'cat1', '26': 'scanpy_run_tsne', '27': 'ip_scale_image', '28': 'eden_sequence_converter', '29': 'methtools_tiling', '30': 'vcfcheck', '31': 'blast_reciprocal_best_hits', '32': 'snpeff_to_peptides', '33': 'camera-annotate-peaks', '34': 'Filter1', '35': 'EMBOSS: shuffleseq87', '36': 'calc_fitness', '37': 'cardinal_data_exporter', '38': 'MapStatistics', '39': 'rarefaction', '40': 'cd_hit_est', '41': 'resize_coordinate_window', '42': 'quast', '43': 'passatutto', '44': 'pipmir', '45': 'docking', '46': 'Fetch Taxonomic Ranks', '47': 'cshl_word_list_grep', '48': 'stacks_genotypes', '49': 'metaquantome_stat', '50': 'iqtree', '51': 'biosigner', '52': 'map-msms2camera', '53': 'pileometh', '54': 'term_id_vs_term_def', '55': 'cshl_fastx_clipper', '56': 'genbank_to_gff', '57': 'treebest_best', '58': 'Nucleosome', '59': 'checkFormat', '60': 'snpSift_extractFields', '61': 'gemini_inheritance', '62': 'export2graphlan', '63': 'Univariate', '64': 'cshl_princeton_fastx_barcode_splitter', '65': 'freebayes', '66': 'blastxml_to_tabular_selectable', '67': 'MapAlignerPoseClustering', '68': 'bam_to_bigwig', '69': 'mlocarna', '70': 'EMBOSS: revseq82', '71': 'xcms_plot_chromatogram', '72': 'numeric_clustering', '73': 'samtools_stats', '74': 'deeptools_compute_matrix', '75': 'fastq_trimmer', '76': 'flexbar_split_RYYR_bcs', '77': 'bg_uniq', '78': 'mothur_metastats', '79': 'samtools_bedcov', '80': 'dt_profiler', '81': 'ctb_filter', '82': 'minfi_getsnp', '83': 'picard_CollectGcBiasMetrics', '84': 'OpenSwathDecoyGenerator', '85': 'ctb_alignit_create_db', '86': 'eukaryotic_ncbi_submission', '87': 'locarna_multiple', '88': 'deeptools_multi_bigwig_summary', '89': 'regionalgam_gls', '90': 'gtf2bedgraph', '91': 'samtools_slice_bam', '92': 'gmx_em', '93': 'flexbar_split_RR_bcs', '94': 'sklearn_nn_classifier', '95': 'intarna', '96': 'mothur_make_biom', '97': 'mimodd_varcall', '98': 'bwa_wrapper', '99': 'mtbls520_09_species_venn', '100': 'gemini_pathways', '101': 'cardinal_preprocessing', '102': 'viennarna_rnafold', '103': 'mtbls520_08e_species_features', '104': 'spocc_occ', '105': 'bed_to_protein_map', '106': 'OpenSwathAssayGenerator', '107': 'hisat', '108': 'fasta2tab', '109': 'FalseDiscoveryRate', '110': 'vcftools_isec', '111': 'ip_2d_filter_segmentation_by_features', '112': 'bg_find_subsequences', '113': 'prinseq', '114': 'HighResPrecursorMassCorrector', '115': 'eden_vectorizer', '116': 'macs2_predictd', '117': 'mtbls520_08d_concentration', '118': 'graphclust_glob_report_no_align', '119': 'cuffnorm', '120': 'feelnc', '121': 'CONVERTER_bam_to_bigwig_0', '122': 'bg_protein_properties', '123': 'snpSift_annotate', '124': 'get_sequences', '125': 'trinity_contig_exn50_statistic', '126': 'muscle', '127': 'sickle', '128': 'find_in_reference', '129': 'bedtools_genomecoveragebed_histogram', '130': 'Datamash', '131': 'rseqc_junction_saturation', '132': 'DatamashTranspose', '133': 'scanpy_compute_graph', '134': 'bctools_remove_tail', '135': 'vigiechiro_bilanenrichirp', '136': 'FileInfo', '137': 'mothur_classify_otu', '138': 'nanoplot', '139': 'stoceps_glm', '140': 'ctb_change_title', '141': '__APPLY_RULES__', '142': 'seurat_find_markers', '143': 'sm_mirdeep2core_without_Randfold', '144': 'TrimByN', '145': 'newick_display', '146': 'tp_sort_rows', '147': 'computeMatrix', '148': 'transdecoder', '149': '__RELABEL_FROM_FILE__', '150': 'pieplots_macs', '151': 'viennarna_rnaalifold', '152': 'gd_calc_freq', '153': 'mothur_summary_seqs', '154': 'rbc_mafft', '155': 'deeptools_bam_pe_fragmentsize', '156': 'Extract_RNA_seq_Evidence', '157': 'uchime', '158': 'fragmenter', '159': 'gene2exon1', '160': 'ctb_rdkit_describtors', '161': 'build_ucsc_custom_track_1', '162': 'gops_cluster_1', '163': 'bwa_mem', '164': 'mycrobiota-split-multi-otutable', '165': 'wtdbg', '166': 'mtbls520_18_phylogeny', '167': 'locarna_best_subtree', '168': 'extract_bcs.py', '169': 'bamCoverage_deepTools', '170': 'hicexplorer_hicmergematrixbins', '171': 'ctb_chemfp_butina_clustering', '172': 'tophat2', '173': 'megablast_xml_parser', '174': 'mothur_remove_lineage', '175': 'rseqc_bam_stat', '176': 'proteomics_search_tandem_1', '177': 'minfi_ppfun', '178': 'deeptools_heatmapper', '179': 'glimmer_not-knowlegde-based', '180': 'seq_filter_by_mapping', '181': 'qiime_summarize_taxa_through_plots', '182': 'hisat2', '183': 'snpfinder', '184': 'ctb_silicos_qed', '185': 'bowtie_wrapper', '186': 'blastxml_to_tabular', '187': 'openbabel_compound_convert', '188': 'bcftools_consensus', '189': 'cshl_fastx_renamer', '190': 'prokka', '191': 'fastq_manipulation', '192': 'snpSift_int', '193': 'mummer_mummer', '194': 'metilene', '195': 'maker', '196': 'bctools_extract_alignment_ends', '197': 'vcffilter2', '198': 'get_flanks1', '199': 'minfi_maptogenome', '200': 'ncbi_blastp_wrapper', '201': 'ip_filter_standard', '202': 'cshl_awk_tool', '203': 'humann2_renorm_table', '204': 'cutadapt', '205': 'ete_homology_classifier', '206': 'cuffquant', '207': 'meme_meme', '208': 'venn_list', '209': 'stacks_populations', '210': 'aggregate_scores_in_intervals2', '211': 'rarefaction_analyzer', '212': 'bedtools_coveragebed', '213': 'mothur_make_shared', '214': 'CometAdapter', '215': 'CONVERTER_fasta_to_tabular', '216': 'ggplot2_heatmap2', '217': 'XY_Plot_1', '218': 'bwa', '219': 'psy_maps', '220': 'je_markdupes', '221': 'vigiechiro_idcorrect_2ndlayer', '222': 'graphicsmagick_image_convert', '223': 'picard_ValidateSamFile', '224': 'ctb_compound_convert', '225': 'ip_2d_feature_extraction', '226': 'tophat', '227': 'metaphlan2', '228': 'mothur_split_abund', '229': 'gatk2_realigner_target_creator', '230': 'ggplot_point', '231': 'seqtk_trimfq', '232': 'abims_xcms_summary', '233': 'rseqc_mismatch_profile', '234': 'picard_FastqToSam', '235': 'samtools_flagstat', '236': 'wolf_psort', '237': 'racon', '238': 'abricate', '239': 'Extractor', '240': 'tophat_fusion_post', '241': 'hicexplorer_hiccorrectmatrix', '242': 'dunovo', '243': 'get_pdb', '244': 'vcfallelicprimitives', '245': 'qiime_split_libraries', '246': 'seurat_scale_data', '247': 'proteomics_search_protein_prophet_1', '248': 'flanking_features_1', '249': 'blockbuster', '250': 'gemini_recessive_and_dominant', '251': 'nonpareil', '252': 'deeptools_compute_matrix_operations', '253': 'rbc_mirdeep2', '254': 'fastq_paired_end_splitter', '255': 'bgchem_fragment_merger', '256': 'qiime_assign_taxonomy', '257': 'gatk2_indel_realigner', '258': 'gatk2_variant_recalibrator', '259': 'quality_metrics', '260': 'ConsensusID', '261': 'column_remove_by_header', '262': 'samtools_mpileup', '263': 'bedtools_getfastabed', '264': 'spades', '265': 'bedtools_multiintersectbed', '266': 'bio3d_rmsd', '267': 'graphclust_align_cluster', '268': 'correctGCBias', '269': 'stacks_denovomap', '270': 'bedtools_bamtofastq', '271': 'IDFileConverter', '272': 'mothur_summary_tax', '273': 'rbc_rnacode', '274': 'custom_pro_db', '275': 'deeptools_bamCompare', '276': 'stacks_refmap', '277': 'ctb_chemfp_nxn_clustering', '278': 'mothur_screen_seqs', '279': 'openms_id_file_converter', '280': 'BAMTagHistogram', '281': 'rseqc_insertion_profile', '282': 'bio3d_rmsf', '283': 'bismark_methylation_extractor', '284': 'seurat_run_pca', '285': 'cshl_fastx_quality_statistics', '286': 'mothur_heatmap_sim', '287': 'mothur_chimera_uchime', '288': 'mass_spectrometry_imaging_combine', '289': 'samtools_depth', '290': 'ctb_osra', '291': 'Heatmap', '292': 'samtools_sort', '293': 'ncbi_blastx_wrapper', '294': 'wiggle2simple1', '295': 'igvtools_count', '296': 'length_and_gc_content', '297': 'gops_subtract_1', '298': 'diffbind-embl', '299': 'bam2wig', '300': 'bedtools_groupbybed', '301': 'deeptools_plot_correlation', '302': 'deeptools_plot_pca', '303': 'deeptools_bam_compare', '304': 'rm_spurious_events.py', '305': 'fastq_to_fasta_python', '306': 'vcffixup', '307': 'vegan_diversity', '308': 'keras_model_builder', '309': 'gff2bed1', '310': 'CONVERTER_bed_to_fli_0', '311': 'cd_hit_dup', '312': 'cmFinder', '313': 'scanpy_filter_cells', '314': 'hgv_david', '315': 'cummeRbund', '316': 'FileFilter', '317': 'maldi_quant_preprocessing', '318': 'hca_matrix_downloader', '319': 'mothur_get_oturep', '320': 'tp_tail_tool', '321': 'FeatureLinkerUnlabeledQT', '322': 'hgv_linkToGProfile', '323': 'Batch_correction', '324': 'fastq_paired_end_deinterlacer', '325': 'hicexplorer_hicfindtads', '326': 'qiime_make_otu_heatmap', '327': 'qiime_count_seqs', '328': 'fastq_quality_trimmer', '329': 'FROGS_filters', '330': 'fastq_dump', '331': 'Kneeplot', '332': 'qiime_split_libraries_fastq', '333': 'mothur_pcoa', '334': 'rnafold', '335': 'wc_gnu', '336': 'thermo_raw_file_converter', '337': 'regionalgam_flight_curve', '338': 'lastz_wrapper_2', '339': 'align_families', '340': 'scaffold2fasta', '341': 'mtbls520_19d_seasons_concentration', '342': 'lca1', '343': 'deeptools_multi_bam_summary', '344': 'mlst', '345': 'glob_report', '346': 'genrich', '347': 'w4mclstrpeakpics', '348': 'random_lines1', '349': 'stringtie', '350': 'aggregate', '351': 'filter_columns', '352': 'cshl_fastx_collapser', '353': 'metaquantome_viz', '354': 'picard_CASM', '355': 'gemini_burden', '356': 'stringtie_merge', '357': 'velvet', '358': 'wsdl_hmdb', '359': 'mothur_nmds', '360': 'paralyzer', '361': 'snpSift_filter', '362': 'deeptools_bamFingerprint', '363': 'gff_to_sequence', '364': 'EMBOSS: tranalign100', '365': 'mothur_dist_seqs', '366': 'snpEff_download', '367': 'cshl_sort_header', '368': 'qiime_core_diversity', '369': 'p_clip_peaks', '370': 'velveth', '371': 'gmx_setup', '372': 'ctb_ob_genProp', '373': 'jbrowse', '374': 'msms2metfrag-multiple', '375': 'bcftools_plugin_counts', '376': 'seurat', '377': 'hicexplorer_hicplottads', '378': 'datamash_reverse', '379': 'mycrobiota-make-multi-otutable', '380': 'aragorn_trna', '381': 'meme_chip', '382': 'regex1', '383': 'qiime_pick_open_reference_otus', '384': 'bedtools_unionbedgraph', '385': 'fastq_filter', '386': 'tp_text_file_with_recurring_lines', '387': 'uniprot', '388': 'mcClust', '389': 'prokaryotic_ncbi_submission', '390': 'mothur_phylotype', '391': 'mothur_remove_seqs', '392': 'TrimByLength', '393': 'rbc_mirdeep2_quantifier', '394': 'umi_tools_group', '395': 'seqtk_mergepe', '396': 'EMBOSS: textsearch98', '397': 'tp_replace_in_line', '398': 'bam_to_sam', '399': 'deseq2', '400': 'bcftools_stats', '401': 'Flash', '402': 'bam-filter', '403': 'hicexplorer_hicplotviewpoint', '404': 'msnbase_readmsdata', '405': 'mtbls520_06_import_traits', '406': 'bg_sortmerna', '407': 'tp_replace_in_column', '408': 'preMloc', '409': 'graphicsmagick_image_montage', '410': 'abims_xcms_fillPeaks', '411': 'rbc_splitfasta', '412': 'bedtools_annotatebed', '413': 'pygenomeTracks', '414': 'vsearch_dereplication', '415': 'myrimatch', '416': 'staramr_search', '417': 'Summary_Statistics1', '418': 'ip_overlay_segmentation', '419': 'tsne', '420': 'ggplot2_heatmap', '421': 'kraken-translate', '422': 'gffread', '423': 'sam_bw_filter', '424': 'tp_sorted_uniq', '425': 'mothur_merge_files', '426': 'TextExporter', '427': 'macs2_bdgcmp', '428': 'ruvseq', '429': 'ip_projective_transformation', '430': 'express', '431': 'mtbls520_08b_species_unique', '432': 'createInterval', '433': 'vcfvcfintersect', '434': 'gemini_interactions', '435': 'samtools_rmdup', '436': 'Btrim64', '437': 'camera-group-fwhm', '438': 'mothur_heatmap_bin', '439': 'regex_replace', '440': 'htseq_count', '441': 'varscan_somatic', '442': 'infernal_cmsearch', '443': 'gatk2_print_reads', '444': '__BUILD_LIST__', '445': 'EMBOSS: seqret84', '446': 'ctb_subsearch', '447': 'rsem_prepare_reference', '448': 'piranha', '449': 'mothur_classify_seqs', '450': 'heinz', '451': 'tab2fasta', '452': 'FidoAdapter', '453': 'tp_sed_tool', '454': 'regionalgam_glmmpql', '455': 'seurat_run_tsne', '456': 'regionalgam_plot_trend', '457': 'gmx_nvt', '458': 'metaquantome_expand', '459': 'cshl_find_and_replace', '460': 'cardinal_filtering', '461': 'mothur_trim_seqs', '462': 'xcms-group-peaks', '463': 'EMBOSS: newseq59', '464': 'ia_coordinates_of_roi', '465': 'term_id_vs_term_name', '466': 'infernal_cmstat', '467': 'blast2go', '468': 'seq_composition', '469': 'camera-find-adducts', '470': 'msconvert_win', '471': 'rbc_mirdeep2_mapper', '472': 'FROGS_clustering', '473': 'predict_pipeline', '474': 'ExtractFASTAfromFASTQ', '475': 'proteomics_search_peptide_prophet_1', '476': 'secretbt2test', '477': 'fastq_groomer', '478': 'bismark_pretty_report', '479': 'tp_tac', '480': 'mothur_align_seqs', '481': 'gemini_comp_hets', '482': 'melt', '483': 'collapse_dataset', '484': 'ococo', '485': 'picard_SamToFastq', '486': 'ctb_simsearch', '487': 'raceid_inspectclusters', '488': 'vcfselectsamples', '489': 'proteomics_moff', '490': 'rseqc_read_distribution', '491': 'rseqc_bam2wig', '492': 'compose_text_param', '493': 'ProteinQuantifier', '494': 'deeptools_plot_coverage', '495': 'hmmer_hmmsearch', '496': 'CONVERTER_interval_to_bgzip_0', '497': 'fastq_stats', '498': 'CONVERTER_Bam_Bai_0', '499': 'rseqc_read_duplication', '500': 'align_back_trans', '501': 'gatk_depth_of_coverage', '502': 'metaquantome_filter', '503': 'structure_to_gspan', '504': 'scanpy_find_variable_genes', '505': 'map_peptides_to_bed', '506': 'raceid_trajectory', '507': 'ip_projective_transformation_points', '508': 'mothur_dist_shared', '509': 'get_child_terms', '510': 'barchart_gnuplot', '511': 'sam2interval', '512': 'xcms-find-peaks', '513': 'Convert characters1', '514': 'vcfflatten2', '515': 'bedtools_bamtobed', '516': 'annotateMyIDs', '517': 'sam_to_bam', '518': 'deeptools_bigwigCompare', '519': 'collection_column_join', '520': 'trinity_abundance_estimates_to_matrix', '521': 'humann2', '522': 'trinotate', '523': 'trim_reads', '524': 'cds_essential_variability', '525': 'cshl_fastq_to_fasta', '526': 'qiime_pick_rep_set', '527': 'ggplot_histogram', '528': 'cshl_easyjoin', '529': 'clusterprofiler_go', '530': 'sklearn_searchcv', '531': 'salmon', '532': 'ggplot2_histogram', '533': 'deeptools_plot_fingerprint', '534': 'ctb_confab', '535': 'sklearn_clf_metrics', '536': 'picard_ReorderSam', '537': 'umi_tools_dedup', '538': 'cshl_multijoin', '539': 'picard_CleanSam', '540': 'macs2_callpeak', '541': 'ctb_obgrep', '542': 'tp_cat', '543': 'regionalgam_ab_index', '544': 'dexseq_count', '545': 're_he_maldi_image_registration', '546': 'methtools_filter', '547': 'xpath', '548': 'ip_histogram_equalization', '549': 'methtools_plot', '550': '__SORTLIST__', '551': 'filtlong', '552': 'ctb_shapeit', '553': 'mothur_corr_axes', '554': 'PeptideIndexer', '555': 'viz_overlay_moving_and_fixed_image', '556': 'w4mclassfilter', '557': 'cast', '558': 'ncbi_rpsblast_wrapper', '559': 'sailfish', '560': 'bcftools_view', '561': 'gops_coverage_1', '562': 'mtbls520_19a_seasons_shannon', '563': 'msconvert3_raw', '564': 'hcluster_sg', '565': 'glimmer_knowlegde-based', '566': 'translate_bed', '567': 'openms_protein_quantifier', '568': 'trim_galore', '569': 'CONVERTER_fasta_to_2bit', '570': 'mtbls520_12_species_marchantia', '571': 'ctb_remDuplicates', '572': 'bedtools_bedtobam', '573': 'ucsc-twobittofa', '574': 'ctb_sdf2fps', '575': 'RNAlien', '576': 'raceid_main', '577': 'Count1', '578': 'mothur_pairwise_seqs', '579': 'scanpy_parameter_iterator', '580': 'ctb_opsin', '581': 'gmx_npt', '582': 'FROGS_remove_chimera', '583': '__FLATTEN__', '584': 'picard_MergeSamFiles', '585': 'scanpy_scale_data', '586': 'shyft_longitudes', '587': 'GeneModelMapper', '588': 'bedtools_genomecoveragebed_bedgraph', '589': 'rseqc_RNA_fragment_size', '590': 'ip_viz_overlay_moving_and_fixed_image', '591': 'msgfplus', '592': 'cshl_uniq_tool', '593': 'sqlite_to_tabular', '594': 'Show beginning1', '595': 'vcftools_annotate', '596': 'Remove_ending', '597': 'mimodd_varextract', '598': 'minfi_read450k', '599': 'kraken', '600': 'trinity', '601': 'bismark_deduplicate', '602': 'Draw_phylogram', '603': 'picard_MarkDuplicatesWithMateCigar', '604': 'clustalw', '605': 'interproscan', '606': 'extract_element_from_collection', '607': 'CONVERTER_gff_to_bed_0', '608': 'minfi_methcpg', '609': 'picard_EstimateLibraryComplexity', '610': 'gmx_solvate', '611': 'bamtools', '612': 'busco', '613': 'FileMerger', '614': 'heinz_bum', '615': 'scanpy_read_10x', '616': 'graphlan_annotate', '617': 'seurat_find_clusters', '618': 'EMBOSS: fuzztran39', '619': 'gafa', '620': 'samtools_filter', '621': 'trinity_run_de_analysis', '622': 'antismash', '623': 'gatk_unified_genotyper', '624': 'ip_convertimage', '625': 'nn_classifier', '626': 'mothur_lefse', '627': 'flashlfq', '628': 'tp_find_and_replace', '629': 'fastqc', '630': 'cshl_cut_tool', '631': 'mass_spectrometry_imaging_segmentations', '632': 'qiime_pick_otus', '633': 'bismark_bowtie', '634': 'trinity_filter_low_expr_transcripts', '635': 'filter_tabular', '636': 'modencode_peakcalling_spp', '637': 'tabular_to_csv', '638': 'fastq collapser', '639': 'velvetg', '640': 'get_feature_info', '641': 'blast_parser', '642': 'DecoyDatabase', '643': 'Remove beginning1', '644': 'filter_bed_on_splice_junctions', '645': 'diffbind', '646': 'mothur_cluster', '647': 'snippy', '648': 'cshl_fasta_formatter', '649': 'htseq-count', '650': 'gemini_db_info', '651': 'rgweblogo3', '652': 'egsea', '653': 'enhanced_bowtie_wrapper', '654': 'porechop', '655': 'bctools_remove_spurious_events', '656': 'PlasFlow', '657': 'scale_image', '658': 'cor2', '659': 'deeptools_compute_gc_bias', '660': 'abims_xcms_group', '661': 'plotly_parallel_coordinates_plot', '662': 'sklearn_model_validation', '663': 'minimap2', '664': 'minfi_getM', '665': 'mycrobiota-krona-mothur', '666': 'chipseeker', '667': 'mothur_make_design', '668': 'lfq_protein_quant', '669': 'glimmer_build-icm', '670': 'FROGS_affiliation_OTU', '671': 'msconvert_nix', '672': 'fastq_combiner', '673': 'FROGS_preprocess', '674': 'mimodd_varreport', '675': 'sklearn_svm_classifier', '676': 'idr-embl', '677': 'mz_to_sqlite', '678': 'rseqc_infer_experiment', '679': 'scanpy_find_markers', '680': 'bedtools_intersectbed_bam', '681': 'ctb_spectrophore_search', '682': 'tp_uniq_tool', '683': 'preproc', '684': 'ip_landmark_registration', '685': 'wig_to_bigWig', '686': 'multiqc', '687': 'bedtools_multicovtbed', '688': 'seq_filter_by_id', '689': 'ip_imageinfo', '690': 'mtbls520_08c_species_variability', '691': 'mothur_seq_error', '692': 'FilterBAM', '693': 'kraken2', '694': 'tables_arithmetic_operations', '695': 'CONVERTER_fastqgz_to_fastq', '696': 'uparse', '697': 'CONVERTER_interval_to_bed_0', '698': 'edger', '699': 'unzip', '700': 'ConsensusMapNormalizer', '701': 'svm_classifier', '702': 'picard_NormalizeFasta', '703': 'tp_awk_tool', '704': 'snpEff', '705': 'scpipe', '706': 'deeptools_computeMatrix', '707': 'IDMerger', '708': 'seqtk_subseq', '709': 'samtools_flag_filter', '710': 'hicexplorer_hicbuildmatrix', '711': 'ctb_ob_svg_depiction', '712': 'meme_psp_gen', '713': 'meme_dreme', '714': 'abims_CAMERA_annotateDiffreport', '715': 'bio3d_pca', '716': 'bcftools_mpileup', '717': 'methtools_calling', '718': 'FeatureLinkerUnlabeled', '719': 'eggnog_mapper', '720': 'fgsea', '721': 'ip_threshold', '722': 'humann2_regroup_table', '723': 'ip_binary_to_labelimage', '724': 'dexseq_annotate', '725': 'CONVERTER_bed_gff_or_vcf_to_bigwig_0', '726': 'mimodd_map', '727': 'retrieve_scxa', '728': 'w4mcorcov', '729': 'deeptools_plot_profile', '730': 'convert_bc_to_binary_RY.py', '731': 'deeptools_plot_enrichment', '732': 'bg_statistical_hypothesis_testing', '733': 'fastq_to_tabular', '734': 'vcfsort', '735': 'nanopolish_variants', '736': 'ctb_multi_obgrep', '737': 'miniasm', '738': 'graphclust_aggregate_alignments', '739': 'camera-prepareoutput', '740': 'sort1', '741': 'chipsequtil_maptoknowngenes', '742': 'ip_2d_split_binaryimage_by_watershed', '743': 'sample_seqs', '744': 'krona-text', '745': 'mothur_summary_single', '746': 'stoceps_filteringsp', '747': 'ctb_online_data_fetch', '748': 'MetaProSIP', '749': 'qiime_filter_alignment', '750': 'addValue', '751': 'bwameth', '752': 'search_gui', '753': 'EMBOSS: geecee41', '754': 'vcftools_compare', '755': 'msconvert2_raw', '756': 'vcfgenotypes', '757': 'scanpy_run_umap', '758': 'mtbls520_07_species_diversity', '759': 'flexbar_no_split', '760': 'mycrobiota-correct-replicates', '761': 'mothur_chimera_vsearch', '762': 'minfi_getbeta', '763': 'openms_id_mapper', '764': 'EMBOSS: extractseq35', '765': 'gatk_indel_realigner', '766': 'bedtools_coveragebed_counts', '767': 'cardinal_quality_report', '768': 'secure_hash_message_digest', '769': 'cardinal_mz_images', '770': 'umi_tools_whitelist', '771': 'methtools_destrand', '772': 'idpquery', '773': 'trimmomatic', '774': 'blockclust', '775': 'FileConverter', '776': 'scatterplot_rpy', '777': 'xcms-collect-peaks', '778': 'pynast', '779': 'gops_intersect_1', '780': 'mimodd_reheader', '781': 'allele_counts_1', '782': 'mycrobiota-qc-report', '783': 'ncbi_blastn_wrapper', '784': 'sm_mapper', '785': 'mass_spectrometry_imaging_classification', '786': 'cardinal_combine', '787': 'join1', '788': 'cshl_fastq_quality_filter', '789': 'cshl_fastx_nucleotides_distribution', '790': 'AnnovarShed', '791': 'bundle_collection', '792': 'bedtools_slopbed', '793': 'qiime_make_phylogeny', '794': 'bedtools_map', '795': 'iReport', '796': 'hgv_snpFreq', '797': 'mothur_unique_seqs', '798': 'FeatureFinderMetabo', '799': 'TrimPrimer', '800': 'rmcontamination', '801': 'gatk2_variant_annotator', '802': 'gd_rank_terms', '803': 'combine_metaphlan2_humann2', '804': 'tp_grep_tool', '805': 'Extract_features1', '806': 'mothur_make_group', '807': 'maxquant', '808': 'fastp', '809': 'methtools_dmr', '810': 'subtract_query1', '811': 'bandage_info', '812': 'ucsc_cell_browser', '813': 'PicardInsertSize', '814': 'decoyfasta', '815': 'gatk2_depth_of_coverage', '816': 'fasta_filter_by_length', '817': 'sklearn_estimator_attributes', '818': 'dexseq', '819': 'varscan_copynumber', '820': 'ncbi_tblastn_wrapper', '821': 'fraggenescan', '822': 'vcf2pgSnp', '823': 'Transformation', '824': 'mothur_make_contigs', '825': 'bed2gff1', '826': 'fasta-stats', '827': 'ctb_remove_protonation_state', '828': 'create_or_update', '829': 'gffcompare_to_bed', '830': 'picard_SortSam', '831': 'table_compute', '832': 'deeptools_alignmentsieve', '833': 'gemini_annotate', '834': 'FeatureLinkerUnlabeledKD', '835': 'IDMassAccuracy', '836': 'taxonomy_krona_chart', '837': 'blastxml_to_top_descr', '838': 'comp1', '839': 'gemini_stats', '840': 'iframe', '841': 'smf_utils_filter-by-energy', '842': 'table_annovar', '843': 'mothur_classify_rf', '844': 'hmmer_hmmbuild', '845': 'format_metaphlan2_output', '846': 'heatmap2', '847': 'mass_spectrometry_imaging_ion_images', '848': 'gatk2_variant_filtration', '849': 'Paste1', '850': 'mass_spectrometry_imaging_mzplots', '851': 'sam_pileup', '852': 'fasta_merge_files_and_filter_unique_sequences', '853': 'snpEff_build_gb', '854': 'mtbls520_16_ecology_rda', '855': 'mothur_taxonomy_to_krona', '856': 'smf_utils_find-boxes', '857': 'metaphlan2krona', '858': 'gemini_de_novo', '859': 'rseqc_junction_annotation', '860': 'flexbar', '861': 'silac_analyzer', '862': 'flaimapper', '863': 'group_humann2_uniref_abundances_to_go', '864': 'chipeakanno_annopeaks', '865': 'trinity_align_and_estimate_abundance', '866': 'shovill', '867': 'cufflinks_prok', '868': 'poretools_extract', '869': 'freebayes_wrapper', '870': '__FILTER_FAILED_DATASETS__', '871': 'PeakPickerHiRes', '872': 'metams_runGC', '873': 'csv_to_tabular', '874': 'mtbls520_19e_seasons_features', '875': 'dropletutils', '876': 'picard_QualityScoreDistribution', '877': 'metfrag-cli-batch-multiple', '878': 'imagecoordinates_flipaxis', '879': 'sklearn_build_pipeline', '880': 'vigiechiro_idvalid', '881': 'ctb_stripit', '882': 'picard_FilterSamReads', '883': 'bedtools_complementbed', '884': 'deeptools_plot_heatmap', '885': 'plotly_regression_performance_plots', '886': 'unipept', '887': 'flash', '888': 'replace_chromosome_names', '889': 'pilon', '890': 'bed_to_bigBed', '891': 'minfi_rset', '892': 'je_demultiplex', '893': 'fasttree', '894': 'cardinal_spectra_plots', '895': 'gmx_md', '896': 'sam_merge2', '897': 'trimmer', '898': 'CONVERTER_interval_to_bedstrict_0', '899': 'bamSplit', '900': 'query_tabular', '901': 'bedtools_bed12tobed6', '902': 'segemehl', '903': 'cshl_sed_tool', '904': 'gd_raxml', '905': 'md_converter', '906': 'cuffmerge', '907': 'goenrichment', '908': 'picard_CollectInsertSizeMetrics', '909': 'Interval_Maf_Merged_Fasta2', '910': 'sklearn_numeric_clustering', '911': 'MzTabExporter', '912': 'IDFilter', '913': 'mothur_get_seqs', '914': 'rawtools', '915': 'gops_merge_1', '916': 'valet', '917': 'bed_to_bigwig', '918': 'vcfcombine', '919': 'gtftobed12', '920': 'samtools_calmd', '921': 'Psortb', '922': 'metaspades', '923': 'varscan', '924': 'extract_aln_ends.py', '925': 'msnbase-read-msms', '926': 'deeptools_profiler', '927': 'join_files_on_column_fuzzy', '928': 'humann2_unpack_pathways', '929': 'hcluster_sg_parser', '930': 'meme_fimo', '931': 'rseqc_clipping_profile', '932': 'mothur_filter_seqs', '933': 'minfi_mset', '934': 'xcms-blankfilter', '935': 'EMBOSS: water107', '936': 'mimodd_convert', '937': 'trinity_define_clusters_by_cutting_tree', '938': 'disco', '939': 'seurat_filter_cells', '940': 'ctb_chemfp_mol2fps', '941': 'mimodd_vcf_filter', '942': 'metaphlan_hclust_heatmap', '943': 'replace_column_with_key_value_file', '944': 'mtbls520_05a_import_maf', '945': '16Saligner', '946': 'gemini_load', '947': 'roary', '948': 'FROGS_affiliations_stat', '949': 'cshl_fastx_barcode_splitter', '950': 'mass_spectrometry_imaging_preprocessing', '951': 'scanpy_filter_genes', '952': '__UNZIP_COLLECTION__', '953': 'seurat_read10x', '954': 'react_cal_pipeline', '955': 'snpSift_geneSets', '956': 'flye', '957': 'w4mjoinpn', '958': 'minfi_qc', '959': 'sklear_numeric_clustering', '960': 'flexbardsc', '961': 'transpose', '962': 'regionalgam_autocor_acf', '963': 'bedtools_genomecoveragebed', '964': 'deseq2_single', '965': 'gbk_to_orf', '966': 'IDConflictResolver', '967': 'cshl_grep_tool', '968': 'picard_AddOrReplaceReadGroups', '969': 'FeatureFinderMultiplex', '970': 'IsobaricAnalyzer', '971': 'deeptools_bamCoverage', '972': 'picard_MarkDuplicates', '973': 'seurat_dim_plot', '974': 'deeptools_correctGCBias', '975': 'sequence_content_trimmer', '976': 'CONVERTER_fasta_to_fai', '977': 'peptide_shaker', '978': 'remove_tail.py', '979': 'mass_spectrometry_imaging_qc', '980': 'get_subontology_from', '981': 'charts', '982': 'IDPosteriorErrorProbability', '983': 'picard_BamIndexStats', '984': 'gatk2_variant_select', '985': 'miranda', '986': '__TAG_FROM_FILE__', '987': 'velvetoptimiser', '988': 'ctb_ob_addh', '989': 'trinity_analyze_diff_expr', '990': 'mergeCols1', '991': 'ChangeCase', '992': 'minfi_getanno', '993': 'varscan_mpileup', '994': 'cummerbund_to_cuffdiff', '995': 'rgPicFixMate', '996': 'raceid_clustering', '997': 'vigiechiro_bilanenrichipf', '998': 'bamFilter', '999': 'seurat_normalise_data', '1000': 'bcftools_norm', '1001': 'deeptools_bigwig_compare', '1002': 'CONVERTER_bed_to_gff_0', '1003': 'cmv', '1004': 'goseq', '1005': 'gops_join_1', '1006': 'qiime_validate_mapping_file', '1007': 'mothur_rarefaction_single', '1008': 'humann2_genefamilies_genus_level', '1009': 'viennarna_rnaplot', '1010': 'goslimmer', '1011': 'qiime_pick_closed_reference_otus', '1012': 'gatk2_variant_apply_recalibration', '1013': 'tag_stat2', '1014': 'ggplot2_point', '1015': 'bedtools_sortbed', '1016': 'bamleftalign', '1017': 'fastq_paired_end_joiner', '1018': 'ctb_alignit', '1019': 'volcanoplot', '1020': 'bandage_image', '1021': 'picard_FixMateInformation', '1022': 'bamCompare_deepTools', '1023': 'deg_annotate', '1024': 'limma_voom', '1025': 'picard_CollectWgsMetrics', '1026': 'rgPicardMarkDups', '1027': 'Grouping1', '1028': 'mothur_pre_cluster', '1029': 'mothur_count_seqs', '1030': 'column_order_header_sort', '1031': 'tmhmm2', '1032': 'sed_stream_editor', '1033': 'mothur_venn', '1034': 'DatamashOps', '1035': 'mtbls520_19b_seasons_unique', '1036': 't2t_report', '1037': 'mtbls520_04_preparations', '1038': 'cardinal_segmentations', '1039': 'deeptools_bam_coverage', '1040': 'Grep1', '1041': 'rnaz', '1042': 'signalp3', '1043': 'seqtk_sample', '1044': 'mass_spectrometry_imaging_filtering', '1045': 'MassCalculator', '1046': 'bedtools_subtractbed', '1047': 'vsearch_chimera_detection', '1048': 'naive_variant_caller', '1049': 'cufflinks', '1050': 'EMBOSS: wordcount109', '1051': 'minfi_dmr', '1052': 'seqtk_mergefa', '1053': 'ctb_remIons', '1054': 'ip_count_objects', '1055': 'infernal_cmbuild', '1056': 'heinz_visualization', '1057': 'smf_utils_fix-fasta-headers', '1058': 'pureclip', '1059': 'megahit', '1060': 'gatk2_unified_genotyper', '1061': 'CONVERTER_bedgraph_to_bigwig', '1062': 'gffcompare', '1063': 'raceid_filtnormconf', '1064': 'selectsequencesfrommsa', '1065': 'gatk2_base_recalibrator', '1066': 'mycrobiota-otutable_add_blast', '1067': 'gemini_actionable_mutations', '1068': 'bedtools_mergebed', '1069': 'Digestor', '1070': 'xcms_merge', '1071': 'mothur_split_groups', '1072': 'mothur_get_groups', '1073': 'deeptools_correct_gc_bias', '1074': 'bismark_bowtie2', '1075': 'qiime_align_seqs', '1076': 'stacks_procrad', '1077': 'kraken-filter', '1078': 'idpassemble', '1079': 'circgraph', '1080': 'rna_star', '1081': 'translate_bed_sequences', '1082': 'bg_column_arrange_by_header', '1083': 'gdal_ogr2ogr', '1084': 'bowtie2', '1085': 'keras_model_config', '1086': 'rna_starsolo', '1087': 'bigwig_to_bedgraph', '1088': 'vcf2tsv', '1089': 'SequenceCoverageCalculator', '1090': 'prepare_box', '1091': 'CONVERTER_gz_to_uncompressed', '1092': 'mimodd_header', '1093': 'clusterprofiler_bitr', '1094': 'bedtools_intersectbed', '1095': 'fasta_compute_length', '1096': 'gatk2_haplotype_caller', '1097': 'mothur_sub_sample', '1098': 'gff_filter_by_attribute', '1099': 'ip_coordinates_of_roi', '1100': 'pathview', '1101': 'TagBamWithReadSequenceExtended', '1102': 'CONVERTER_gff_to_interval_index_0', '1103': 'kraken-report', '1104': 'hicexplorer_hicsummatrices', '1105': 'peakcalling_macs', '1106': 'megahit_contig2fastg', '1107': 'MapRTTransformer', '1108': 'rcas', '1109': 'mummer_nucmer', '1110': 'EMBOSS: fuzzpro38', '1111': 'Extract genomic DNA 1', '1112': 'peakcalling_macs14', '1113': 'datamash_ops', '1114': 'gtf_filter_by_attribute_values_list', '1115': 'FeatureFinderCentroided', '1116': 'collection_element_identifiers', '1117': 'smf_utils_extract-boxed-sequences', '1118': 'bg_diamond', '1119': 'mothur_unifrac_unweighted', '1120': 'crosscontamination_barcode_filter', '1121': 'rseqc_geneBody_coverage', '1122': 'mothur_remove_groups', '1123': 'fastq_join', '1124': 'coords2clnt.py', '1125': 'iuc_pear', '1126': 'cshl_fastx_artifacts_filter', '1127': 'ChooseTag', '1128': 'prepare_ligands_for_docking', '1129': 'GeMoMa_Annotation_Filter', '1130': 'msconvert', '1131': 'massbank_ws_searchspectrum', '1132': 'datamash_transpose', '1133': 'addName', '1134': 'ProteinInference', '1135': 'umi_tools_count', '1136': 'CONVERTER_bam_to_coodinate_sorted_bam', '1137': 'kallisto_quant', '1138': 'vcfannotate', '1139': 'ngsutils_bam_filter', '1140': 'CONVERTER_sam_to_unsorted_bam', '1141': 'sklearn_ensemble', '1142': 'MAF_To_Fasta1', '1143': 'merge_pcr_duplicates.py', '1144': 'generic_filter', '1145': 'stoceps_maketablecarrer', '1146': 'ctb_remSmall', '1147': 'param_value_from_file', '1148': 'gatk2_reduce_reads', '1149': 'get_read_pipeline', '1150': 'plotly_ml_performance_plots', '1151': 'abims_xcms_xcmsSet', '1152': 'sklearn_feature_selection', '1153': 'QCCalculator', '1154': 'cshl_fasta_nucleotides_changer', '1155': 'mothur_amova', '1156': 'ctb_rdkit_descriptors', '1157': 'make_families', '1158': 'EMBOSS: transeq101', '1159': '16Sclassifier', '1160': 'cshl_fastq_quality_boxplot', '1161': 'gemini_windower', '1162': 'bams2ratio', '1163': 'tp_unfold_column_tool', '1164': 'bedtools_shufflebed', '1165': 'pileup_parser', '1166': 'vcftools_slice', '1167': 'maldi_quant_peak_detection', '1168': 'fasplit', '1169': 'gspan', '1170': 'minfi_dropsnp', '1171': 'seurat_export_cellbrowser', '1172': 'pileup_interval', '1173': 'CONVERTER_bed_to_bgzip_0', '1174': 'snippy_core', '1175': 'scanpy_normalise_data', '1176': 'samtools_idxstats', '1177': 'Multivariate', '1178': 'graphlan', '1179': 'augustus', '1180': 'mtbls520_10_species_varpart', '1181': 'vcffilter', '1182': 'scanpy_run_pca', '1183': 'Cut1', '1184': 'mothur_parsimony', '1185': '__MERGE_COLLECTION__', '1186': 'snpSift_dbnsfp_generic', '1187': 'ete_genetree_splitter', '1188': 'nspdk_sparse', '1189': 'histogram_rpy', '1190': 'mummer_dnadiff', '1191': 'minfi_dmp', '1192': 'featurecounts', '1193': 'bedtools_windowbed', '1194': 'Add_a_column1', '1195': 'XTandemAdapter', '1196': 'tp_easyjoin_tool', '1197': 'vt_normalize', '1198': 'qiime_make_otu_table', '1199': 'MultiplexResolver', '1200': 'rseqc_FPKM_count', '1201': 'mothur_cluster_split', '1202': 'gops_basecoverage_1', '1203': 'velveth_jgi', '1204': 'deeptools_computeGCBias', '1205': 'IDScoreSwitcher', '1206': 'Determine_BC', '1207': 'mothur_tree_shared', '1208': 'heinz_scoring', '1209': 'EMBOSS: getorf42', '1210': 'rsem_calculate_expression', '1211': 'heatmapper_deepTools', '1212': 'picard_ARRG', '1213': 'rnbeads', '1214': 'modencode_peakcalling_macs2', '1215': 'r_correlation_matrix', '1216': 'dbbuilder', '1217': 'smf_utils_estimate-energy', '1218': 'resistome_analyzer', '1219': 'je_clip', '1220': 'cshl_fastx_reverse_complement', '1221': 'hicexplorer_hictransform', '1222': 'IDMapper', '1223': 'idpqonvert', '1224': 'megablast_wrapper', '1225': 'qual_stats_boxplot', '1226': 'heatmapper', '1227': 'OpenSwathWorkflow', '1228': 'gemini_query', '1229': 'correct_barcodes', '1230': 'gmx_merge_topology_files', '1231': 'hicexplorer_hicpca', '1232': 'samtools_split', '1233': 'raceid_inspecttrajectory', '1234': '__FILTER_FROM_FILE__', '1235': 'tp_cut_tool', '1236': 'genomespace_exporter', '1237': 'fastq_paired_end_interlacer', '1238': 'mothur_count_groups', '1239': 'mothur_get_communitytype', '1240': 'snpsift_vartype', '1241': 'camera-find-isotopes', '1242': 'seurat_find_variable_genes', '1243': 'mothur_unifrac_weighted', '1244': 'seurat_create_seurat_object', '1245': 'basil', '1246': 'ncbi_makeblastdb', '1247': 'filter_by_fasta_ids', '1248': 'deeptools_bamCorrelate', '1249': 'bctools_extract_crosslinked_nucleotides', '1250': 'gatk_realigner_target_creator', '1251': 'msnbase-filter-merge-msms', '1252': 'NSPDK_candidateClust', '1253': 'tp_split_on_column', '1254': 'Show tail1', '1255': 'bedtools_intersectBed', '1256': 'MSGFPlusAdapter', '1257': 'cshl_awk_replace_in_column', '1258': 'gops_concat_1', '1259': 'scanpy_find_cluster', '1260': 'bcftools_call', '1261': 'vegan_rarefaction', '1262': 'annotatemyids', '1263': 'unicycler', '1264': 'prepare_ligand', '1265': 'cuffdiff', '1266': 'vcf_filter', '1267': 'picard_CollectRnaSeqMetrics', '1268': '__ZIP_COLLECTION__', '1269': '__EXTRACT_DATASET__', '1270': 'tp_multijoin_tool', '1271': 'umi_tools_extract', '1272': 'cshl_fastx_trimmer', '1273': 'NFS_transfer', '1274': 'ctb_pubchem_download_as_smiles', '1275': 'canu', '1276': 'cardinal_classification', '1277': 'PicardASMetrics', '1278': 'FastTree', '1279': 'velvetg_jgi', '1280': 'peakachu', '1281': 'xcms-dilutionfilter'}\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import json\n", - "import warnings\n", - "import operator\n", - "\n", - "import h5py\n", - "from keras.models import model_from_json\n", - "from keras import backend as K\n", - "from keras.utils import get_custom_objects\n", - "\n", - "warnings.filterwarnings(\"ignore\")\n", - "\n", - "size_title = 18\n", - "size_label = 14\n", - "n_pred = 2\n", - "\n", - "\n", - "def read_file(file_path):\n", - " with open(file_path, 'r') as data_file:\n", - " data = json.loads(data_file.read())\n", - " return data\n", - "\n", - "def create_model(model_path):\n", - " \n", - " reverse_dictionary = dict((str(v), k) for k, v in dictionary.items())\n", - " model_weights = list()\n", - " weight_ctr = 0\n", - " while True:\n", - " try:\n", - " d_key = \"weight_\" + str(weight_ctr)\n", - " weights = trained_model.get(d_key).value\n", - " model_weights.append(weights)\n", - " weight_ctr += 1\n", - " except Exception as exception:\n", - " break\n", - " # set the model weights\n", - " loaded_model.set_weights(model_weights)\n", - " return loaded_model, dictionary, reverse_dictionary, compatibile_tools\n", - "\n", - "\n", - "def verify_model(model, tool_sequence, labels, dictionary, reverse_dictionary, compatible_tools, class_weights, topk=20, max_seq_len=25):\n", - " tl_seq = tool_sequence.split(\",\")\n", - " last_tool_name = reverse_dictionary[str(tl_seq[-1])]\n", - " last_compatible_tools = compatible_tools[last_tool_name]\n", - " sample = np.zeros(max_seq_len)\n", - " for idx, tool_id in enumerate(tl_seq):\n", - " sample[idx] = int(tool_id)\n", - " sample_reshaped = np.reshape(sample, (1, max_seq_len))\n", - "\n", - " tool_sequence_names = [reverse_dictionary[str(tool_pos)] for tool_pos in tool_sequence.split(\",\")]\n", - " \n", - " # predict next tools for a test path\n", - " prediction = model.predict(sample_reshaped, verbose=0)\n", - " \n", - " weight_val = list(class_weights.values())\n", - " weight_val = np.reshape(weight_val, (len(weight_val),))\n", - " \n", - " prediction = np.reshape(prediction, (prediction.shape[1],))\n", - " \n", - " #prediction = prediction * weight_val\n", - " \n", - " prediction = prediction / float(np.max(prediction))\n", - " \n", - " prediction_pos = np.argsort(prediction, axis=-1)\n", - "\n", - " # get topk prediction\n", - " topk_prediction_pos = prediction_pos[-topk:]\n", - " topk_prediction_val = [int(prediction[pos] * 100) for pos in topk_prediction_pos]\n", - " \n", - " # read tool names using reverse dictionary\n", - " pred_tool_ids = [reverse_dictionary[str(tool_pos)] for tool_pos in topk_prediction_pos if tool_pos > 0]\n", - " actual_next_tool_ids = list(set(pred_tool_ids).intersection(set(last_compatible_tools.split(\",\"))))\n", - "\n", - " pred_tool_ids_sorted = dict()\n", - " for (tool_pos, tool_pred_val) in zip(topk_prediction_pos, topk_prediction_val):\n", - " try:\n", - " tool_name = reverse_dictionary[str(tool_pos)]\n", - " if tool_name not in last_tool_name and tool_name in actual_next_tool_ids:\n", - " pred_tool_ids_sorted[tool_name] = tool_pred_val\n", - " except:\n", - " continue\n", - " pred_tool_ids_sorted = dict(sorted(pred_tool_ids_sorted.items(), key=lambda kv: kv[1], reverse=True))\n", - " \n", - " cls_wt = dict()\n", - " usg_wt = dict()\n", - " inv_wt = dict()\n", - " ids_tools = dict()\n", - " keys = list(pred_tool_ids_sorted.keys())\n", - " for k in keys:\n", - " try:\n", - " cls_wt[k] = np.round(class_weights[str(data_dict[k])], 2)\n", - " usg_wt[k] = np.round(usage_weights[k], 2)\n", - " inv_wt[k] = np.round(inverted_weights[str(data_dict[k])], 2)\n", - " except:\n", - " continue\n", - " print(\"Predicted tools: \\n\")\n", - " print(pred_tool_ids_sorted)\n", - " print()\n", - " print(\"Class weights: \\n\")\n", - " cls_wt = dict(sorted(cls_wt.items(), key=lambda kv: kv[1], reverse=True))\n", - " print(cls_wt)\n", - " print()\n", - " print(\"Usage weights: \\n\")\n", - " usg_wt = dict(sorted(usg_wt.items(), key=lambda kv: kv[1], reverse=True))\n", - " print(usg_wt)\n", - " print()\n", - " total_usage_wt = np.mean(list(usg_wt.values()))\n", - " print(\"Mean usage wt: %0.4f\" % (total_usage_wt))\n", - " print()\n", - " print(\"Inverted weights: \\n\")\n", - " inv_wt = dict(sorted(inv_wt.items(), key=lambda kv: kv[1], reverse=True))\n", - " print(inv_wt)\n", - " for key in pred_tool_ids_sorted:\n", - " ids_tools[key] = dictionary[key]\n", - " print()\n", - " print(\"Tool ids\")\n", - " print(ids_tools)\n", - " print(\"======================================\")\n", - " return cls_wt, usg_wt, inv_wt, pred_tool_ids_sorted\n", - "\n", - "#base_path = \"data/rnn_custom_loss/complete_training/\"\n", - "base_path = \"data/models/\"\n", - "\n", - "#model_path = base_path + \"trained_model_19_09_1.h5\"\n", - "model_path = base_path + \"model_rnn.hdf5\"\n", - "\n", - "trained_model = h5py.File(model_path, 'r')\n", - "model_config = json.loads(trained_model.get('model_config').value)\n", - "class_weights = json.loads(trained_model.get('class_weights').value)\n", - " \n", - "loaded_model = model_from_json(model_config)\n", - "dictionary = json.loads(trained_model.get('data_dictionary').value)\n", - "compatibile_tools = json.loads(trained_model.get('compatible_tools').value)\n", - "best_params = json.loads(trained_model.get('best_parameters').value)\n", - "\n", - "model, dictionary, reverse_dictionary, compatibile_tools = create_model(model_path)\n", - "\n", - "print(reverse_dictionary)" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Predicted tools: \n", - "\n", - "{'hicexplorer_hicplottads': 100, 'hicexplorer_hicplotmatrix': 97, 'multiqc': 87, 'tp_sed_tool': 81, 'hicexplorer_hiccorrectmatrix': 78, 'hicexplorer_hictransform': 55, 'hicexplorer_hicfindtads': 52, 'hicexplorer_hicsummatrices': 45, 'hicexplorer_hicmergematrixbins': 42, 'hicexplorer_hicpca': 41, 'hicexplorer_hicplotviewpoint': 31}\n", - "\n", - "Class weights: \n", - "\n", - "{}\n", - "\n", - "Usage weights: \n", - "\n", - "{}\n", - "\n", - "Mean usage wt: nan\n", - "\n", - "Inverted weights: \n", - "\n", - "{}\n", - "\n", - "Tool ids\n", - "{'hicexplorer_hicplottads': 377, 'hicexplorer_hicplotmatrix': 10, 'multiqc': 686, 'tp_sed_tool': 453, 'hicexplorer_hiccorrectmatrix': 241, 'hicexplorer_hictransform': 1221, 'hicexplorer_hicfindtads': 325, 'hicexplorer_hicsummatrices': 1104, 'hicexplorer_hicmergematrixbins': 170, 'hicexplorer_hicpca': 1231, 'hicexplorer_hicplotviewpoint': 403}\n", - "======================================\n" - ] - } - ], - "source": [ - "topk = 30\n", - "tool_seq = \"773,163,710\"\n", - "class_wt, usage_wt, inverse_wt, pred_tools = verify_model(model, tool_seq, \"\", dictionary, reverse_dictionary, compatibile_tools, class_weights, topk)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "6.576772652723754" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "class_weights" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.7" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/output_files/evaluate_rnn_custom_loss_19_03.ipynb b/output_files/evaluate_rnn_custom_loss_19_03.ipynb deleted file mode 100644 index 44e6dd0..0000000 --- a/output_files/evaluate_rnn_custom_loss_19_03.ipynb +++ /dev/null @@ -1,1236 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'1': 'gemini_comp_hets', '2': 'nanoplot', '3': 'mothur_screen_seqs', '4': 'rbc_mirdeep2_quantifier', '5': 'deeptools_bamCoverage', '6': 'abims_xcms_fillPeaks', '7': 'fasta2tab', '8': 'cshl_grep_tool', '9': 'wc_gnu', '10': 'Show tail1', '11': 'sklearn_build_pipeline', '12': 'bamCompare_deepTools', '13': 'fastq_to_fasta_python', '14': 'tp_sort_header_tool', '15': 'plotly_regression_performance_plots', '16': 'IDScoreSwitcher', '17': 'varscan_mpileup', '18': 'bedtools_multiintersectbed', '19': 'gemini_recessive_and_dominant', '20': 'ggplot2_heatmap2', '21': 'varscan_somatic', '22': 'snpsift_vartype', '23': 'blastxml_to_tabular_selectable', '24': 'ctb_remSmall', '25': 'egsea', '26': 'tp_split_on_column', '27': 'Heatmap', '28': 'gafa', '29': 'enhanced_bowtie_wrapper', '30': 'deeptools_correct_gc_bias', '31': 'samtools_slice_bam', '32': 'glimmer_build-icm', '33': 'eden_vectorizer', '34': 'proteomics_search_protein_prophet_1', '35': 'Cut1', '36': 'sam_bw_filter', '37': 'rseqc_junction_saturation', '38': 'mothur_heatmap_bin', '39': 'picard_CleanSam', '40': 'ProteinInference', '41': 'prokaryotic_ncbi_submission', '42': 'gbk_to_orf', '43': 'trimmer', '44': 'bg_column_arrange_by_header', '45': 'deeptools_bam_coverage', '46': 'tp_head_tool', '47': 'qiime_pick_open_reference_otus', '48': 'gops_cluster_1', '49': 'hmmer_hmmsearch', '50': 'datamash_ops', '51': '16Saligner', '52': 'fastq_quality_trimmer', '53': 'w4mjoinpn', '54': 'raceid_main', '55': 'deeptools_plot_correlation', '56': 'pureclip', '57': 'vcftools_isec', '58': 'cmv', '59': 'idpquery', '60': 'vcfflatten2', '61': 'gemini_pathways', '62': 'mothur_classify_otu', '63': 'FalseDiscoveryRate', '64': 'mycrobiota-correct-replicates', '65': 'EMBOSS: seqret84', '66': '__RELABEL_FROM_FILE__', '67': 'CONVERTER_Bam_Bai_0', '68': 'minfi_methcpg', '69': 'naive_variant_caller', '70': 'tp_sort_rows', '71': 'hgv_linkToGProfile', '72': 'Interval_Maf_Merged_Fasta2', '73': 'rseqc_geneBody_coverage', '74': 'w4mclstrpeakpics', '75': 'bctools_remove_tail', '76': 'rbc_mirdeep2', '77': 'limma_voom', '78': 'viennarna_rnafold', '79': 'mothur_remove_groups', '80': 'ggplot2_point', '81': 'ggplot_histogram', '82': 'newick_display', '83': 'cshl_find_and_replace', '84': 'minfi_getanno', '85': 'bamFilter', '86': 't2t_report', '87': 'blockclust', '88': 'antismash', '89': 'picard_NormalizeFasta', '90': 'umi_tools_group', '91': 'column_order_header_sort', '92': 'filter_by_fasta_ids', '93': 'deeptools_plot_enrichment', '94': 'minfi_dmr', '95': 'bedtools_coveragebed', '96': 'disco', '97': 'cuffcompare', '98': 'CometAdapter', '99': 'fastq collapser', '100': 'gtftobed12', '101': 'IsobaricAnalyzer', '102': 'megablast_xml_parser', '103': 'cardinal_quality_report', '104': 'FastTree', '105': 'metaspades', '106': 'shovill', '107': 'openms_protein_quantifier', '108': 'gatk2_reduce_reads', '109': 'locarna_multiple', '110': 'trim_reads', '111': 'multiqc', '112': 'p_clip_peaks', '113': 'gemini_query', '114': 'bedtools_windowbed', '115': 'mothur_summary_single', '116': 'sailfish', '117': 'raceid_trajectory', '118': 'GeneModelMapper', '119': 'stacks_denovomap', '120': 'picard_CollectRnaSeqMetrics', '121': 'mothur_unique_seqs', '122': 'rsem_calculate_expression', '123': 'pileup_parser', '124': 'join1', '125': 'openms_id_mapper', '126': 'annotateMyIDs', '127': 'FeatureFinderMultiplex', '128': 'deeptools_bigwig_compare', '129': 'Summary_Statistics1', '130': 'muscle', '131': 'cummeRbund', '132': 'allele_counts_1', '133': 'msconvert_nix', '134': 'myrimatch', '135': 'replace_column_with_key_value_file', '136': 'ncbi_blastx_wrapper', '137': 'piranha', '138': 'mothur_rarefaction_single', '139': 'map_peptides_to_bed', '140': 'gffcompare', '141': 'correctGCBias', '142': 'samtools_bedcov', '143': 'goenrichment', '144': 'peakcalling_macs14', '145': 'abims_xcms_xcmsSet', '146': 'bwa', '147': 'samtools_sort', '148': 'hicexplorer_hicbuildmatrix', '149': 'join_files_on_column_fuzzy', '150': 'transpose', '151': 'FROGS_preprocess', '152': 'htseq_count', '153': 'w4mclassfilter', '154': 'meme_chip', '155': 'mothur_make_biom', '156': 'bwa_mem', '157': 'mycrobiota-qc-report', '158': 'minfi_mset', '159': 'FeatureFinderMetabo', '160': 'lca1', '161': 'cshl_fastx_reverse_complement', '162': 'sklearn_svm_classifier', '163': 'mimodd_varextract', '164': 'mothur_dist_seqs', '165': 'Show beginning1', '166': 'meme_meme', '167': 'ggplot2_heatmap', '168': 'picard_MarkDuplicatesWithMateCigar', '169': 'minfi_getM', '170': 'bed2gff1', '171': 'regex1', '172': 'featurecounts', '173': 'DatamashTranspose', '174': 'get_read_pipeline', '175': 'rcas', '176': 'fastq_paired_end_joiner', '177': 'mothur_seq_error', '178': 'mass_spectrometry_imaging_classification', '179': 'deeptools_plot_profile', '180': 'sklearn_numeric_clustering', '181': 'modencode_peakcalling_macs2', '182': 'cardinal_segmentations', '183': 'tp_find_and_replace', '184': 'cd_hit_dup', '185': 'createInterval', '186': 'Remove beginning1', '187': 'xpath', '188': 'blastxml_to_top_descr', '189': 'mass_spectrometry_imaging_preprocessing', '190': 'subtract_query1', '191': 'datamash_transpose', '192': 'tp_replace_in_column', '193': 'mothur_get_oturep', '194': 'salmon', '195': 'cardinal_spectra_plots', '196': 'heatmapper', '197': 'get_sequences', '198': 'vcf_filter', '199': 'deeptools_plot_pca', '200': 'vcftools_annotate', '201': 'tp_sorted_uniq', '202': 'bedtools_genomecoveragebed', '203': 'heinz_visualization', '204': 'histogram_rpy', '205': 'stacks_populations', '206': 'gops_basecoverage_1', '207': 'correct_barcodes', '208': 'Paste1', '209': 'vegan_rarefaction', '210': 'rgPicFixMate', '211': 'vcfbedintersect', '212': 'rbc_mirdeep2_mapper', '213': 'wig_to_bigWig', '214': 'gatk2_variant_apply_recalibration', '215': 'samtools_idxstats', '216': 'uniprot', '217': 'TextExporter', '218': 'rnaz', '219': 'spades', '220': 'metaphlan2krona', '221': 'collection_column_join', '222': 'hicexplorer_hictransform', '223': 'bg_uniq', '224': 'thermo_raw_file_converter', '225': 'gff_to_sequence', '226': 'deeptools_multi_bigwig_summary', '227': 'Digestor', '228': 'cshl_fastx_collapser', '229': 'Multivariate', '230': 'bedtools_shufflebed', '231': 'genbank_to_gff', '232': 'CONVERTER_gz_to_uncompressed', '233': 'cshl_fastx_renamer', '234': 'picard_FixMateInformation', '235': 'proteomics_search_peptide_prophet_1', '236': 'porechop', '237': 'mothur_taxonomy_to_krona', '238': 'sklear_numeric_clustering', '239': 'Nucleosome', '240': 'mothur_venn', '241': 'mothur_pre_cluster', '242': 'IDFilter', '243': 'extract_element_from_collection', '244': 'gatk_realigner_target_creator', '245': 'hicexplorer_hicfindtads', '246': 'mothur_lefse', '247': 'metaphlan_hclust_heatmap', '248': 'fastq_dump', '249': 'gff2bed1', '250': 'fastq_paired_end_interlacer', '251': 'FROGS_clustering', '252': '__SORTLIST__', '253': 'igvtools_count', '254': 'ctb_online_data_fetch', '255': 'picard_ReorderSam', '256': 'goseq', '257': 'cat1', '258': 'Count1', '259': 'cshl_fastx_clipper', '260': 'selectsequencesfrommsa', '261': 'Batch_correction', '262': 'pileometh', '263': 'ProteinQuantifier', '264': 'gops_merge_1', '265': 'rarefaction', '266': 'iReport', '267': 'mothur_merge_files', '268': 'tophat2', '269': 'qiime_pick_otus', '270': 'circgraph', '271': 'lastz_wrapper_2', '272': '__FILTER_FAILED_DATASETS__', '273': 'meme_psp_gen', '274': 'methtools_destrand', '275': 'cshl_fastx_artifacts_filter', '276': 'cor2', '277': 'tp_unfold_column_tool', '278': 'bedtools_genomecoveragebed_bedgraph', '279': 'dexseq_annotate', '280': 'EMBOSS: revseq82', '281': 'bundle_collection', '282': 'fastq_paired_end_splitter', '283': 'ctb_filter', '284': 'glob_report', '285': 'gene2exon1', '286': 'fastq_manipulation', '287': 'ngsutils_bam_filter', '288': 'hisat2', '289': 'smooth_running_window', '290': 'FileConverter', '291': 'FROGS_remove_chimera', '292': 'CONVERTER_interval_to_bgzip_0', '293': 'table_annovar', '294': 'qiime_make_otu_heatmap', '295': 'rnbeads', '296': 'nanopolish_variants', '297': 'deeptools_computeMatrix', '298': 'NFS_transfer', '299': 'bedtools_bedtobam', '300': 'tp_cat', '301': 'rseqc_infer_experiment', '302': '__APPLY_RULES__', '303': 'resistome_analyzer', '304': 'Extractor', '305': 'silac_analyzer', '306': 'mergeCols1', '307': 'mass_spectrometry_imaging_mzplots', '308': 'humann2', '309': 'pieplots_macs', '310': 'fasta_compute_length', '311': 'gatk_indel_realigner', '312': 'random_lines1', '313': 'peakcalling_macs', '314': 'PeakPickerHiRes', '315': 'cshl_fastx_nucleotides_distribution', '316': 'mothur_filter_seqs', '317': 'cshl_easyjoin', '318': 'rgweblogo3', '319': 'ncbi_blastp_wrapper', '320': 'sam_pileup', '321': 'deeptools_bam_compare', '322': 'gmx_em', '323': 'tp_uniq_tool', '324': 'qiime_validate_mapping_file', '325': 're_he_maldi_image_registration', '326': 'vt_normalize', '327': 'gemini_load', '328': 'svm_classifier', '329': 'qiime_pick_rep_set', '330': 'cshl_fastq_quality_boxplot', '331': 'fastq_to_tabular', '332': 'mass_spectrometry_imaging_filtering', '333': 'methtools_plot', '334': 'EMBOSS: shuffleseq87', '335': 'EMBOSS: getorf42', '336': 'dt_profiler', '337': 'ggplot_point', '338': 'snpSift_dbnsfp_generic', '339': 'mothur_parsimony', '340': 'coords2clnt.py', '341': 'sklearn_ensemble', '342': 'CONVERTER_bedgraph_to_bigwig', '343': 'flexbardsc', '344': 'heinz_bum', '345': 'MapStatistics', '346': 'msconvert2_raw', '347': 'chipsequtil_maptoknowngenes', '348': 'ctb_remIons', '349': 'IDMapper', '350': 'minfi_dmp', '351': 'aragorn_trna', '352': 'cshl_sort_header', '353': 'Grep1', '354': 'aggregate_scores_in_intervals2', '355': 'bamtools', '356': 'smf_utils_extract-boxed-sequences', '357': 'samtools_calmd', '358': 'bedtools_annotatebed', '359': 'fastq_join', '360': 'mothur_summary_seqs', '361': 'gemini_burden', '362': 'dbbuilder', '363': 'cshl_fasta_nucleotides_changer', '364': 'cshl_awk_tool', '365': 'mlocarna', '366': 'cummerbund_to_cuffdiff', '367': 'proteomics_moff', '368': 'gff_filter_by_attribute', '369': 'bedtools_genomecoveragebed_histogram', '370': 'fasttree', '371': 'mimodd_vcf_filter', '372': 'cshl_fastq_to_fasta', '373': 'flexbar_no_split', '374': 'MapRTTransformer', '375': 'hmmer_hmmbuild', '376': 'sed_stream_editor', '377': 'react_cal_pipeline', '378': 'cardinal_combine', '379': 'sam_to_bam', '380': 'mothur_align_seqs', '381': 'PicardASMetrics', '382': 'dexseq', '383': 'term_id_vs_term_def', '384': 'EMBOSS: transeq101', '385': 'mass_spectrometry_imaging_segmentations', '386': 'cufflinks', '387': 'EMBOSS: tranalign100', '388': 'mothur_chimera_vsearch', '389': 'flexbar_split_RYYR_bcs', '390': 'fgsea', '391': 'Extract_features1', '392': 'picard_CollectWgsMetrics', '393': 'EMBOSS: fuzztran39', '394': 'methtools_dmr', '395': 'picard_MergeSamFiles', '396': 'rm_spurious_events.py', '397': 'deeptools_plot_heatmap', '398': 'raceid_clustering', '399': 'checkFormat', '400': 'jbrowse', '401': '16Sclassifier', '402': 'kallisto_quant', '403': 'velveth_jgi', '404': 'hicexplorer_hicplottads', '405': 'mothur_make_shared', '406': 'locarna_best_subtree', '407': 'Convert characters1', '408': 'mothur_corr_axes', '409': 'preMloc', '410': 'extract_bcs.py', '411': 'vsearch_dereplication', '412': 'cuffnorm', '413': 'cuffquant', '414': 'minimap2', '415': 'mothur_get_groups', '416': 'krona-text', '417': 'bctools_extract_alignment_ends', '418': 'picard_CollectInsertSizeMetrics', '419': 'bcftools_call', '420': 'deeptools_compute_matrix_operations', '421': 'maldi_quant_peak_detection', '422': 'ncbi_rpsblast_wrapper', '423': 'bandage_image', '424': 'stacks_refmap', '425': 'get_feature_info', '426': 'gatk2_variant_annotator', '427': 'sklearn_nn_classifier', '428': 'hcluster_sg_parser', '429': 'segemehl', '430': 'viz_overlay_moving_and_fixed_image', '431': 'heatmapper_deepTools', '432': 'vcfannotate', '433': 'deeptools_profiler', '434': 'picard_MarkDuplicates', '435': 'tabular_to_fastq', '436': 'mothur_metastats', '437': 'CONVERTER_fastqgz_to_fastq', '438': 'tp_tail_tool', '439': 'tag_stat2', '440': 'gd_raxml', '441': 'rbc_mafft', '442': 'ncbi_makeblastdb', '443': 'raceid_inspectclusters', '444': 'mothur_classify_rf', '445': 'infernal_cmstat', '446': 'extract_aln_ends.py', '447': '__UNZIP_COLLECTION__', '448': 'kraken', '449': 'EMBOSS: newseq59', '450': 'gtf_filter_by_attribute_values_list', '451': 'gemini_interactions', '452': 'bamleftalign', '453': 'RNAlien', '454': 'plotly_ml_performance_plots', '455': 'TrimByLength', '456': 'mothur_tree_shared', '457': 'sample_seqs', '458': 'ssake', '459': 'convert_bc_to_binary_RY.py', '460': 'fastq_trimmer', '461': 'scaffold2fasta', '462': 'EMBOSS: textsearch98', '463': '__MERGE_COLLECTION__', '464': 'unipept', '465': 'infernal_cmbuild', '466': 'idr-embl', '467': 'bismark_bowtie', '468': 'rbc_rnacode', '469': 'Add_a_column1', '470': 'ncbi_tblastn_wrapper', '471': 'cshl_word_list_grep', '472': 'bedtools_multicovtbed', '473': 'ucsc-twobittofa', '474': 'bowtie2', '475': 'addValue', '476': 'translate_bed_sequences', '477': 'CONVERTER_sam_to_unsorted_bam', '478': 'gatk2_variant_recalibrator', '479': 'tp_awk_tool', '480': 'mothur_phylotype', '481': 'structure_to_gspan', '482': 'varscan', '483': 'mothur_chimera_uchime', '484': 'cshl_fastq_quality_filter', '485': 'bedtools_unionbedgraph', '486': 'picard_CASM', '487': 'graphclust_aggregate_alignments', '488': 'nn_classifier', '489': 'stacks_procrad', '490': 'bedtools_intersectBed', '491': 'get_subontology_from', '492': 'numeric_clustering', '493': 'methtools_tiling', '494': 'gspan', '495': 'FROGS_affiliation_OTU', '496': 'proteomics_search_tandem_1', '497': 'CONVERTER_interval_to_bed_0', '498': 'smf_utils_fix-fasta-headers', '499': 'fasplit', '500': 'qiime_split_libraries_fastq', '501': 'mothur_sub_sample', '502': 'gops_coverage_1', '503': 'FidoAdapter', '504': 'MSGFPlusAdapter', '505': 'qiime_core_diversity', '506': 'flexbar_split_RR_bcs', '507': 'signalp3', '508': 'tab2fasta', '509': 'snpeff_to_peptides', '510': 'ctb_chemfp_mol2fps', '511': 'metams_runGC', '512': 'umi_tools_whitelist', '513': 'FROGS_filters', '514': 'sklearn_searchcv', '515': 'sklearn_feature_selection', '516': 'goslimmer', '517': 'FROGS_affiliations_stat', '518': 'bam_to_sam', '519': 'hicexplorer_hicmergematrixbins', '520': 'collapse_dataset', '521': 'NSPDK_candidateClust', '522': 'abricate', '523': 'length_and_gc_content', '524': 'je_markdupes', '525': 'tp_replace_in_line', '526': 'bg_diamond', '527': 'cmFinder', '528': 'comp1', '529': 'seurat', '530': 'cardinal_filtering', '531': 'deeptools_bamCorrelate', '532': 'trimmomatic', '533': 'w4mcorcov', '534': 'diffbind-embl', '535': 'tp_grep_tool', '536': 'picard_ARRG', '537': 'bedtools_subtractbed', '538': 'viennarna_rnaplot', '539': 'fastq_filter', '540': 'modencode_peakcalling_spp', '541': 'sickle', '542': 'bam2wig', '543': 'vcfcombine', '544': 'MzTabExporter', '545': 'remove_tail.py', '546': 'samtools_filter', '547': 'IDMassAccuracy', '548': 'glimmer_not-knowlegde-based', '549': 'Extract genomic DNA 1', '550': 'IDPosteriorErrorProbability', '551': 'mothur_make_group', '552': 'ncbi_blastn_wrapper', '553': 'CONVERTER_bed_to_gff_0', '554': 'ete_homology_classifier', '555': 'cast', '556': 'heinz', '557': 'picard_BamIndexStats', '558': 'picard_SamToFastq', '559': 'hicexplorer_hicpca', '560': 'gatk2_unified_genotyper', '561': 'methtools_filter', '562': 'mothur_heatmap_sim', '563': 'gatk_depth_of_coverage', '564': 'samtools_rmdup', '565': 'smf_utils_filter-by-energy', '566': 'gmx_solvate', '567': 'raceid_inspecttrajectory', '568': 'picard_EstimateLibraryComplexity', '569': 'mothur_make_contigs', '570': 'term_id_vs_term_name', '571': 'htseq-count', '572': 'hcluster_sg', '573': 'plotly_parallel_coordinates_plot', '574': 'bedtools_bamtofastq', '575': 'mothur_dist_shared', '576': 'minfi_qc', '577': 'uparse', '578': 'CONVERTER_fasta_to_fai', '579': 'MAF_To_Fasta1', '580': 'rmcontamination', '581': 'hgv_snpFreq', '582': 'hicexplorer_hicsummatrices', '583': 'mass_spectrometry_imaging_combine', '584': 'gemini_windower', '585': 'Flash', '586': 'sequence_content_trimmer', '587': 'Filter1', '588': 'ctb_ob_genProp', '589': 'bcftools_view', '590': 'idpqonvert', '591': 'bg_statistical_hypothesis_testing', '592': 'deeptools_plot_fingerprint', '593': 'cardinal_mz_images', '594': 'blockbuster', '595': 'Remove_ending', '596': 'mothur_homova', '597': 'vcfsort', '598': 'gops_concat_1', '599': 'trim_galore', '600': 'deeptools_plot_coverage', '601': 'ctb_change_title', '602': 'minfi_maptogenome', '603': 'pilon', '604': 'bed_to_bigBed', '605': 'bedtools_sortbed', '606': 'wolf_psort', '607': 'bam-filter', '608': 'ip_projective_transformation', '609': 'methtools_calling', '610': 'FeatureLinkerUnlabeledKD', '611': 'bowtie_wrapper', '612': 'mothur_classify_seqs', '613': 'nspdk_sparse', '614': 'gatk2_depth_of_coverage', '615': 'snpEff', '616': 'filtlong', '617': 'gemini_actionable_mutations', '618': 'samtools_split', '619': 'make_families', '620': 'nonpareil', '621': 'megablast_wrapper', '622': 'pileup_interval', '623': 'qiime_assign_taxonomy', '624': 'snippy_core', '625': 'je_clip', '626': 'gatk_unified_genotyper', '627': 'mycrobiota-make-multi-otutable', '628': 'bedtools_slopbed', '629': 'msgfplus', '630': 'EMBOSS: wordcount109', '631': 'graphclust_align_cluster', '632': 'IDConflictResolver', '633': 'maldi_quant_preprocessing', '634': 'ConsensusMapNormalizer', '635': 'EMBOSS: water107', '636': 'addName', '637': 'SequenceCoverageCalculator', '638': 'scale_image', '639': 'EMBOSS: extractseq35', '640': 'Psortb', '641': 'bedtools_intersectbed', '642': 'Determine_BC', '643': 'samtool_filter2', '644': 'ia_coordinates_of_roi', '645': 'CONVERTER_interval_to_bedstrict_0', '646': 'sam_merge2', '647': 'fragmenter', '648': 'eden_sequence_converter', '649': 'mothur_get_seqs', '650': 'metilene', '651': 'bctools_extract_crosslinked_nucleotides', '652': 'bgchem_fragment_merger', '653': 'umi_tools_count', '654': 'eukaryotic_ncbi_submission', '655': 'TrimByN', '656': 'vcffilter2', '657': 'smf_utils_estimate-energy', '658': 'paralyzer', '659': 'graphlan', '660': 'PeptideIndexer', '661': 'bwameth', '662': 'seq_composition', '663': 'graphicsmagick_image_convert', '664': 'MapAlignerPoseClustering', '665': 'humann2_genefamilies_genus_level', '666': 'bwa_wrapper', '667': 'find_in_reference', '668': 'cshl_sed_tool', '669': 'TrimPrimer', '670': 'vcfgenotypes', '671': 'tp_easyjoin_tool', '672': 'gatk2_haplotype_caller', '673': 'vcf2tsv', '674': 'kraken-report', '675': 'tsne', '676': 'picard_FilterSamReads', '677': 'rsem_prepare_reference', '678': 'preproc', '679': 'je_demultiplex', '680': 'xcms_merge', '681': 'gmx_nvt', '682': 'fastq_paired_end_deinterlacer', '683': 'get_flanks1', '684': '__FLATTEN__', '685': 'vcfvcfintersect', '686': 'hisat', '687': 'biosigner', '688': 'meme_dreme', '689': 'hgv_david', '690': 'Draw_phylogram', '691': 'rseqc_bam2wig', '692': 'mothur_remove_lineage', '693': 'idpassemble', '694': 'cshl_awk_replace_in_column', '695': 'cutadapt', '696': 'format_metaphlan2_output', '697': 'Extract_RNA_seq_Evidence', '698': 'picard_AddOrReplaceReadGroups', '699': 'bamCoverage_deepTools', '700': 'DatamashOps', '701': 'deeptools_bamCompare', '702': 'megahit', '703': 'viennarna_rnaalifold', '704': 'rna_star', '705': 'QCCalculator', '706': 'gemini_de_novo', '707': 'augustus', '708': 'bedtools_map', '709': 'deseq2_single', '710': 'vcfallelicprimitives', '711': 'ProteinResolver', '712': 'ctb_simsearch', '713': 'minfi_dropsnp', '714': 'MultiplexResolver', '715': 'snpfinder', '716': 'ChooseTag', '717': 'picard_SortSam', '718': 'deeptools_heatmapper', '719': 'minfi_rset', '720': 'tp_text_file_with_recurring_lines', '721': 'vcftools_merge', '722': 'mass_spectrometry_imaging_ion_images', '723': 'minfi_ppfun', '724': 'XTandemAdapter', '725': 'heinz_scoring', '726': 'mothur_cluster_split', '727': 'qiime_count_seqs', '728': 'bcftools_norm', '729': 'column_remove_by_header', '730': 'vegan_diversity', '731': 'deeptools_bamFingerprint', '732': 'ExtractFASTAfromFASTQ', '733': 'samtools_flagstat', '734': 'Fetch Taxonomic Ranks', '735': 'regex_replace', '736': 'dunovo', '737': 'snpEff_download', '738': 'ConsensusID', '739': 'bam_to_bigwig', '740': 'mothur_cluster', '741': 'fastq_combiner', '742': 'tp_cut_tool', '743': 'blastxml_to_tabular', '744': 'PicardInsertSize', '745': 'FileInfo', '746': 'varscan_copynumber', '747': 'deeptools_compute_gc_bias', '748': 'iuc_pear', '749': 'gops_join_1', '750': 'mothur_count_seqs', '751': 'bg_find_subsequences', '752': 'mycrobiota-split-multi-otutable', '753': 'Datamash', '754': 'FeatureFinderCentroided', '755': 'racon', '756': 'snpSift_annotate', '757': 'abims_CAMERA_annotateDiffreport', '758': 'get_child_terms', '759': 'picard_ValidateSamFile', '760': 'FileFilter', '761': 'gmx_md', '762': 'gatk2_variant_select', '763': 'export2graphlan', '764': 'scpipe', '765': 'unicycler', '766': 'macs2_bdgcmp', '767': 'umi_tools_dedup', '768': 'humann2_regroup_table', '769': 'metaphlan2', '770': 'tp_multijoin_tool', '771': 'seq_filter_by_mapping', '772': 'rbc_splitfasta', '773': 'vcffilter', '774': 'samtools_flag_filter', '775': 'mothur_nmds', '776': 'bedtools_bamtobed', '777': 'pynast', '778': 'cardinal_preprocessing', '779': 'snippy', '780': 'FeatureLinkerUnlabeledQT', '781': 'meme_fimo', '782': 'FeatureLinkerUnlabeled', '783': 'blast_parser', '784': 'tp_sed_tool', '785': 'bedtools_intersectbed_bam', '786': 'combine_metaphlan2_humann2', '787': 't_coffee', '788': 'Univariate', '789': 'cshl_fastx_barcode_splitter', '790': 'tophat_fusion_post', '791': 'abims_xcms_group', '792': 'mcClust', '793': 'EMBOSS: geecee41', '794': 'fraggenescan', '795': 'minfi_getbeta', '796': 'samtools_stats', '797': 'ctb_silicos_qed', '798': 'bed_to_bigwig', '799': 'FileMerger', '800': 'gffread', '801': 'vcffixup', '802': 'CONVERTER_gff_to_interval_index_0', '803': 'abims_xcms_summary', '804': 'gatk2_indel_realigner', '805': 'interproscan', '806': 'stacks_genotypes', '807': 'deeptools_bigwigCompare', '808': 'annotatemyids', '809': 'XY_Plot_1', '810': 'freebayes', '811': 'mimodd_varcall', '812': 'sort1', '813': 'MassCalculator', '814': 'humann2_renorm_table', '815': 'heatmap2', '816': 'valet', '817': 'fasta-stats', '818': 'tp_tac', '819': 'uchime', '820': 'snpSift_filter', '821': 'CONVERTER_bed_to_bgzip_0', '822': 'mothur_amova', '823': 'stringtie', '824': 'fasta_merge_files_and_filter_unique_sequences', '825': 'mycrobiota-krona-mothur', '826': 'clustalw', '827': 'vcfselectsamples', '828': 'query_tabular', '829': 'DecoyDatabase', '830': 'bg_protein_properties', '831': 'gops_intersect_1', '832': 'gtf2bedgraph', '833': 'bg_sortmerna', '834': 'deseq2', '835': 'gatk2_base_recalibrator', '836': 'bcftools_consensus', '837': 'rseqc_inner_distance', '838': 'macs2_callpeak', '839': 'ggplot2_histogram', '840': 'fastq_groomer', '841': 'flexbar', '842': 'qiime_align_seqs', '843': 'graphclust_glob_report_no_align', '844': 'flye', '845': 'Grouping1', '846': 'GeMoMa_Annotation_Filter', '847': 'mothur_remove_seqs', '848': 'raceid_filtnormconf', '849': 'group_humann2_uniref_abundances_to_go', '850': 'IDMerger', '851': 'edger', '852': 'bedtools_getfastabed', '853': 'mothur_trim_seqs', '854': 'cshl_fastx_quality_statistics', '855': 'seq_filter_by_id', '856': 'bedtools_coveragebed_counts', '857': 'r_correlation_matrix', '858': 'graphlan_annotate', '859': 'gmx_setup', '860': 'ip_projective_transformation_points', '861': 'stringtie_merge', '862': 'gmx_npt', '863': 'gemini_db_info', '864': 'infernal_cmsearch', '865': 'deeptools_compute_matrix', '866': 'gatk2_variant_filtration', '867': 'velvet', '868': 'deeptools_computeGCBias', '869': 'kraken-translate', '870': 'mothur_get_communitytype', '871': 'lfq_protein_quant', '872': 'barchart_gnuplot', '873': 'quast', '874': 'rseqc_read_duplication', '875': 'cshl_princeton_fastx_barcode_splitter', '876': 'gatk2_print_reads', '877': 'cshl_uniq_tool', '878': 'charts', '879': 'umi_tools_extract', '880': 'cshl_multijoin', '881': 'snpSift_geneSets', '882': 'cshl_fasta_formatter', '883': 'cardinal_data_exporter', '884': 'rnafold', '885': 'dexseq_count', '886': 'computeMatrix', '887': 'taxonomy_krona_chart', '888': 'ctb_compound_convert', '889': 'filter_bed_on_splice_junctions', '890': 'mycrobiota-otutable_add_blast', '891': 'chipseeker', '892': 'HighResPrecursorMassCorrector', '893': 'predict_pipeline', '894': 'mz_to_sqlite', '895': 'rseqc_read_distribution', '896': 'gemini_annotate', '897': 'tmhmm2', '898': 'bedtools_mergebed', '899': 'qiime_pick_closed_reference_otus', '900': 'trinity', '901': 'venn_list', '902': 'align_families', '903': 'sam2interval', '904': 'treebest_best', '905': 'cuffdiff', '906': 'kraken-filter', '907': 'openms_id_file_converter', '908': 'rarefaction_analyzer', '909': 'melt', '910': 'Btrim64', '911': 'wsdl_hmdb', '912': 'mimodd_map', '913': 'gatk2_realigner_target_creator', '914': 'velvetoptimiser', '915': 'bigwig_to_bedgraph', '916': 'wiggle2simple1', '917': 'blast2go', '918': 'samtools_mpileup', '919': 'prokka', '920': 'flanking_features_1', '921': 'deeptools_correctGCBias', '922': 'mothur_pcoa', '923': 'peptide_shaker', '924': 'EMBOSS: fuzzpro38', '925': 'ruvseq', '926': 'mimodd_varreport', '927': 'fastqc', '928': 'bams2ratio', '929': 'gops_subtract_1', '930': 'bedtools_complementbed', '931': 'transdecoder', '932': 'secretbt2test', '933': 'sqlite_to_tabular', '934': 'vcf2pgSnp', '935': 'CONVERTER_bed_gff_or_vcf_to_bigwig_0', '936': 'hicexplorer_hiccorrectmatrix', '937': 'CONVERTER_fasta_to_tabular', '938': 'qiime_make_phylogeny', '939': 'bismark_bowtie2', '940': 'search_gui', '941': 'rseqc_bam_stat', '942': 'roary', '943': 'velvetg_jgi', '944': 'smf_utils_find-boxes', '945': 'ete_genetree_splitter', '946': 'merge_pcr_duplicates.py', '947': 'cuffmerge', '948': 'deg_annotate', '949': 'msconvert3_raw', '950': 'macs2_predictd', '951': 'CONVERTER_gff_to_bed_0', '952': '__FILTER_FROM_FILE__', '953': 'IDFileConverter', '954': 'cshl_cut_tool', '955': 'minfi_read450k', '956': 'deeptools_multi_bam_summary', '957': 'fasta_filter_by_length', '958': 'mothur_count_groups', '959': 'hicexplorer_hicplotmatrix', '960': 'peakachu', '961': 'bctools_remove_spurious_events', '962': 'rgPicardMarkDups', '963': 'decoyfasta', '964': '__ZIP_COLLECTION__', '965': 'glimmer_knowlegde-based', '966': 'cufflinks_prok', '967': 'tophat', '968': 'mass_spectrometry_imaging_qc', '969': 'ChangeCase', '970': 'cshl_fastx_trimmer', '971': 'secure_hash_message_digest'}\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import json\n", - "import warnings\n", - "import operator\n", - "\n", - "import h5py\n", - "from keras.models import model_from_json\n", - "from keras import backend as K\n", - "from keras.utils import get_custom_objects\n", - "\n", - "warnings.filterwarnings(\"ignore\")\n", - "\n", - "size_title = 18\n", - "size_label = 14\n", - "n_pred = 2\n", - "\n", - "\n", - "def read_file(file_path):\n", - " with open(file_path, 'r') as data_file:\n", - " data = json.loads(data_file.read())\n", - " return data\n", - "\n", - "def create_model(model_path):\n", - " \n", - " reverse_dictionary = dict((str(v), k) for k, v in dictionary.items())\n", - " model_weights = list()\n", - " weight_ctr = 0\n", - " while True:\n", - " try:\n", - " d_key = \"weight_\" + str(weight_ctr)\n", - " weights = trained_model.get(d_key).value\n", - " model_weights.append(weights)\n", - " weight_ctr += 1\n", - " except Exception as exception:\n", - " break\n", - " # set the model weights\n", - " loaded_model.set_weights(model_weights)\n", - " return loaded_model, dictionary, reverse_dictionary, compatibile_tools\n", - "\n", - "\n", - "def verify_model(model, tool_sequence, labels, dictionary, reverse_dictionary, compatible_tools, class_weights, topk=20, max_seq_len=25):\n", - " tl_seq = tool_sequence.split(\",\")\n", - " last_tool_name = reverse_dictionary[str(tl_seq[-1])]\n", - " last_compatible_tools = compatible_tools[last_tool_name]\n", - " sample = np.zeros(max_seq_len)\n", - " for idx, tool_id in enumerate(tl_seq):\n", - " sample[idx] = int(tool_id)\n", - " sample_reshaped = np.reshape(sample, (1, max_seq_len))\n", - "\n", - " tool_sequence_names = [reverse_dictionary[str(tool_pos)] for tool_pos in tool_sequence.split(\",\")]\n", - " \n", - " # predict next tools for a test path\n", - " prediction = model.predict(sample_reshaped, verbose=0)\n", - " \n", - " weight_val = list(class_weights.values())\n", - " weight_val = np.reshape(weight_val, (len(weight_val),))\n", - " \n", - " prediction = np.reshape(prediction, (prediction.shape[1],))\n", - " \n", - " #prediction = prediction * weight_val\n", - " \n", - " prediction = prediction / float(np.max(prediction))\n", - " \n", - " prediction_pos = np.argsort(prediction, axis=-1)\n", - "\n", - " # get topk prediction\n", - " topk_prediction_pos = prediction_pos[-topk:]\n", - " topk_prediction_val = [int(prediction[pos] * 100) for pos in topk_prediction_pos]\n", - " \n", - " # read tool names using reverse dictionary\n", - " pred_tool_ids = [reverse_dictionary[str(tool_pos)] for tool_pos in topk_prediction_pos if tool_pos > 0]\n", - " actual_next_tool_ids = list(set(pred_tool_ids).intersection(set(last_compatible_tools.split(\",\"))))\n", - "\n", - " pred_tool_ids_sorted = dict()\n", - " for (tool_pos, tool_pred_val) in zip(topk_prediction_pos, topk_prediction_val):\n", - " try:\n", - " tool_name = reverse_dictionary[str(tool_pos)]\n", - " if tool_name not in last_tool_name and tool_name in actual_next_tool_ids:\n", - " pred_tool_ids_sorted[tool_name] = tool_pred_val\n", - " except:\n", - " continue\n", - " pred_tool_ids_sorted = dict(sorted(pred_tool_ids_sorted.items(), key=lambda kv: kv[1], reverse=True))\n", - " \n", - " cls_wt = dict()\n", - " usg_wt = dict()\n", - " inv_wt = dict()\n", - " ids_tools = dict()\n", - " keys = list(pred_tool_ids_sorted.keys())\n", - " for k in keys:\n", - " try:\n", - " cls_wt[k] = np.round(class_weights[str(data_dict[k])], 2)\n", - " usg_wt[k] = np.round(usage_weights[k], 2)\n", - " inv_wt[k] = np.round(inverted_weights[str(data_dict[k])], 2)\n", - " except:\n", - " continue\n", - " print(\"Predicted tools: \\n\")\n", - " print(pred_tool_ids_sorted)\n", - " print()\n", - " print(\"Class weights: \\n\")\n", - " cls_wt = dict(sorted(cls_wt.items(), key=lambda kv: kv[1], reverse=True))\n", - " print(cls_wt)\n", - " print()\n", - " print(\"Usage weights: \\n\")\n", - " usg_wt = dict(sorted(usg_wt.items(), key=lambda kv: kv[1], reverse=True))\n", - " print(usg_wt)\n", - " print()\n", - " total_usage_wt = np.mean(list(usg_wt.values()))\n", - " print(\"Mean usage wt: %0.4f\" % (total_usage_wt))\n", - " print()\n", - " print(\"Inverted weights: \\n\")\n", - " inv_wt = dict(sorted(inv_wt.items(), key=lambda kv: kv[1], reverse=True))\n", - " print(inv_wt)\n", - " for key in pred_tool_ids_sorted:\n", - " ids_tools[key] = dictionary[key]\n", - " print()\n", - " print(\"Tool ids\")\n", - " print(ids_tools)\n", - " print(\"======================================\")\n", - " return cls_wt, usg_wt, inv_wt, pred_tool_ids_sorted\n", - "\n", - "#base_path = \"data/rnn_custom_loss/complete_training/\"\n", - "base_path = \"data/models/\"\n", - "\n", - "#model_path = base_path + \"trained_model_19_09_1.h5\"\n", - "model_path = base_path + \"model_rnn_custom_loss_19_03.hdf5\"\n", - "\n", - "trained_model = h5py.File(model_path, 'r')\n", - "model_config = json.loads(trained_model.get('model_config').value)\n", - "class_weights = json.loads(trained_model.get('class_weights').value)\n", - " \n", - "loaded_model = model_from_json(model_config)\n", - "dictionary = json.loads(trained_model.get('data_dictionary').value)\n", - "compatibile_tools = json.loads(trained_model.get('compatible_tools').value)\n", - "best_params = json.loads(trained_model.get('best_parameters').value)\n", - "\n", - "model, dictionary, reverse_dictionary, compatibile_tools = create_model(model_path)\n", - "\n", - "print(reverse_dictionary)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Predicted tools: \n", - "\n", - "{'Count1': 100, 'bedtools_mergebed': 100, 'datamash_ops': 100, 'comp1': 100, 'tp_replace_in_line': 100, 'addValue': 100, 'collapse_dataset': 100, 'deeptools_compute_matrix': 100, 'dexseq_annotate': 100, 'samtools_flagstat': 100, 'trimmer': 100, 'venn_list': 100, 'cat1': 100, 'Paste1': 100, 'tabular_to_fastq': 100, 'smooth_running_window': 100, 'vegan_rarefaction': 100, 'wig_to_bigWig': 100, 'snpEff': 100, 'sort1': 100, 'gtf_filter_by_attribute_values_list': 100, 'Cut1': 100, 'random_lines1': 100, 'bedtools_sortbed': 100, 'bedtools_coveragebed': 100, 'cardinal_mz_images': 100, 'gops_intersect_1': 100, 'mergeCols1': 100, 'tp_replace_in_column': 100, 'Fetch Taxonomic Ranks': 100}\n", - "\n", - "Class weights: \n", - "\n", - "{}\n", - "\n", - "Usage weights: \n", - "\n", - "{}\n", - "\n", - "Mean usage wt: nan\n", - "\n", - "Inverted weights: \n", - "\n", - "{}\n", - "\n", - "Tool ids\n", - "{'Count1': 258, 'bedtools_mergebed': 898, 'datamash_ops': 50, 'comp1': 528, 'tp_replace_in_line': 525, 'addValue': 475, 'collapse_dataset': 520, 'deeptools_compute_matrix': 865, 'dexseq_annotate': 279, 'samtools_flagstat': 733, 'trimmer': 43, 'venn_list': 901, 'cat1': 257, 'Paste1': 208, 'tabular_to_fastq': 435, 'smooth_running_window': 289, 'vegan_rarefaction': 209, 'wig_to_bigWig': 213, 'snpEff': 615, 'sort1': 812, 'gtf_filter_by_attribute_values_list': 450, 'Cut1': 35, 'random_lines1': 312, 'bedtools_sortbed': 605, 'bedtools_coveragebed': 95, 'cardinal_mz_images': 593, 'gops_intersect_1': 831, 'mergeCols1': 306, 'tp_replace_in_column': 192, 'Fetch Taxonomic Ranks': 734}\n", - "======================================\n" - ] - } - ], - "source": [ - "topk = 30\n", - "tool_seq = \"587\"\n", - "class_wt, usage_wt, inverse_wt, pred_tools = verify_model(model, tool_seq, \"\", dictionary, reverse_dictionary, compatibile_tools, class_weights, topk)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'0': 0.0,\n", - " '1': 0.034741137125159235,\n", - " '2': 3.763522662770899,\n", - " '3': 3.71265533419441,\n", - " '4': 0.07102052374333781,\n", - " '5': 0.09390644047766762,\n", - " '6': 0.3189445052146787,\n", - " '7': 2.692372388608714,\n", - " '8': 0.10751963108964303,\n", - " '9': 0.0,\n", - " '10': 3.7062259531342217,\n", - " '11': 0.9405350918191971,\n", - " '12': 0.0,\n", - " '13': 4.357141792561724,\n", - " '14': 6.625259907325613,\n", - " '15': 0.4526208770636268,\n", - " '16': 0.756977440001906,\n", - " '17': 2.7494567255515547,\n", - " '18': 2.419090246729231,\n", - " '19': 0.24595253342506312,\n", - " '20': 4.756222165541598,\n", - " '21': 0.7869009543379938,\n", - " '22': 0.3643105652442822,\n", - " '23': 0.0,\n", - " '24': 0.0,\n", - " '25': 0.8080419692437555,\n", - " '26': 2.4292177439274116,\n", - " '27': 0.6717404732149909,\n", - " '28': 0.09523834995189549,\n", - " '29': 0.0,\n", - " '30': 0.09210774839937601,\n", - " '31': 2.7305837659262564,\n", - " '32': 0.09530040702929865,\n", - " '33': 0.0,\n", - " '34': 0.09528700680856035,\n", - " '35': 7.805980004273164,\n", - " '36': 0.09528385218502887,\n", - " '37': 0.5145711823951903,\n", - " '38': 0.0,\n", - " '39': 0.0,\n", - " '40': 0.09399472406258753,\n", - " '41': 0.0,\n", - " '42': 0.09531017980432493,\n", - " '43': 3.3301643264864955,\n", - " '44': 0.425440491722942,\n", - " '45': 7.125333828292766,\n", - " '46': 4.155545640914164,\n", - " '47': 0.07920948371577023,\n", - " '48': 3.027412352936221,\n", - " '49': 2.2442495156277253,\n", - " '50': 4.62695114577971,\n", - " '51': 0.0,\n", - " '52': 2.17394649624095,\n", - " '53': 0.27587628001892683,\n", - " '54': 0.09531017980432493,\n", - " '55': 5.438948378303414,\n", - " '56': 1.3404948063669084,\n", - " '57': 0.9509698668868724,\n", - " '58': 0.09531017980432493,\n", - " '59': 0.09531017980432493,\n", - " '60': 0.09053517029766825,\n", - " '61': 0.09531017980432493,\n", - " '62': 2.473621008329315,\n", - " '63': 0.0,\n", - " '64': 0.0,\n", - " '65': 0.09531017980432493,\n", - " '66': 0.1778974933743136,\n", - " '67': 0.0,\n", - " '68': 0.0,\n", - " '69': 0.14995673753304284,\n", - " '70': 0.0,\n", - " '71': 0.09403514911623906,\n", - " '72': 0.08672761840063564,\n", - " '73': 0.44455485755786905,\n", - " '74': 0.0,\n", - " '75': 0.09295317698153237,\n", - " '76': 0.23781173360367788,\n", - " '77': 3.7942626968884996,\n", - " '78': 3.130456882013272,\n", - " '79': 0.201693249747999,\n", - " '80': 1.9694829851040985,\n", - " '81': 0.0,\n", - " '82': 0.053425338465473204,\n", - " '83': 0.0,\n", - " '84': 0.0,\n", - " '85': 5.664348298302605,\n", - " '86': 0.16478027073729404,\n", - " '87': 0.5157033144675311,\n", - " '88': 2.0765527581596728,\n", - " '89': 1.8801587707990515,\n", - " '90': 0.09531017980432493,\n", - " '91': 0.5949741672555412,\n", - " '92': 3.3105430133940246,\n", - " '93': 0.1008299722272554,\n", - " '94': 0.0,\n", - " '95': 5.244101144302667,\n", - " '96': 0.03879819121114823,\n", - " '97': 0.3353771086159494,\n", - " '98': 0.09531017980432493,\n", - " '99': 0.0,\n", - " '100': 4.007333185232471,\n", - " '101': 0.09531017980432493,\n", - " '102': 0.5261084875965082,\n", - " '103': 0.3624357416340157,\n", - " '104': 0.0,\n", - " '105': 2.186051276738094,\n", - " '106': 1.8376814224228901,\n", - " '107': 0.0,\n", - " '108': 0.0,\n", - " '109': 0.0,\n", - " '110': 0.09500902537097122,\n", - " '111': 6.074093650773946,\n", - " '112': 0.09396435640833167,\n", - " '113': 5.523349448185736,\n", - " '114': 0.5858368096136759,\n", - " '115': 2.529277893465101,\n", - " '116': 0.4297272085292739,\n", - " '117': 0.09531017980432493,\n", - " '118': 0.0,\n", - " '119': 0.4872228304567967,\n", - " '120': 3.6335483888903526,\n", - " '121': 3.702773927787817,\n", - " '122': 0.0,\n", - " '123': 0.053450487971490754,\n", - " '124': 6.036155648778407,\n", - " '125': 0.0,\n", - " '126': 0.6373774027068383,\n", - " '127': 1.3605072789411237,\n", - " '128': 3.4478689008652577,\n", - " '129': 3.868944079286008,\n", - " '130': 2.778706729011731,\n", - " '131': 2.028579852821428,\n", - " '132': 0.09525687838382942,\n", - " '133': 1.180862852616858,\n", - " '134': 0.09531017980432493,\n", - " '135': 0.45590274619291615,\n", - " '136': 2.943491023682793,\n", - " '137': 1.5649242307645006,\n", - " '138': 2.9391619220655967,\n", - " '139': 0.0047081492508252885,\n", - " '140': 1.980062038774764,\n", - " '141': 0.0,\n", - " '142': 2.5606620585772397,\n", - " '143': 0.09531017980432493,\n", - " '144': 0.0,\n", - " '145': 0.38439311150354477,\n", - " '146': 4.17156067020863,\n", - " '147': 4.671893818030999,\n", - " '148': 4.750320804118253,\n", - " '149': 3.123165565122568,\n", - " '150': 0.0,\n", - " '151': 0.0,\n", - " '152': 6.289174011119421,\n", - " '153': 0.4128330976853089,\n", - " '154': 2.7348339869656497,\n", - " '155': 1.3103581213953723,\n", - " '156': 7.73740835569087,\n", - " '157': 0.0,\n", - " '158': 0.0,\n", - " '159': 0.15241578719953258,\n", - " '160': 0.14571507422691732,\n", - " '161': 0.7144966696717936,\n", - " '162': 1.3656388446671335,\n", - " '163': 0.1883873062162802,\n", - " '164': 3.058396124375955,\n", - " '165': 4.4677682712905336,\n", - " '166': 3.162795798864902,\n", - " '167': 3.2405794809263795,\n", - " '168': 0.3608287439540522,\n", - " '169': 0.0,\n", - " '170': 1.1173248809154153,\n", - " '171': 0.0,\n", - " '172': 7.242295884418756,\n", - " '173': 0.0,\n", - " '174': 0.09523523154122847,\n", - " '175': 0.0,\n", - " '176': 3.1494066493950843,\n", - " '177': 0.27398398557609077,\n", - " '178': 0.09531017980432493,\n", - " '179': 6.086699314455222,\n", - " '180': 0.30223363553992433,\n", - " '181': 0.0,\n", - " '182': 0.3377175680169402,\n", - " '183': 2.023380578949475,\n", - " '184': 0.0,\n", - " '185': 0.0,\n", - " '186': 5.689371536865888,\n", - " '187': 0.09001451887482737,\n", - " '188': 1.0650856873794008,\n", - " '189': 3.575515729713071,\n", - " '190': 0.09412589700001202,\n", - " '191': 2.857611085629774,\n", - " '192': 6.345071983632831,\n", - " '193': 0.09531017980432493,\n", - " '194': 4.712091022132534,\n", - " '195': 0.2286477672862077,\n", - " '196': 0.0,\n", - " '197': 0.3713748006882039,\n", - " '198': 0.08558819224247942,\n", - " '199': 0.5007752879124892,\n", - " '200': 0.052446471722907485,\n", - " '201': 5.122243458011954,\n", - " '202': 4.001301042385383,\n", - " '203': 0.09531017980432493,\n", - " '204': 2.7788192719904172,\n", - " '205': 0.2265665820540742,\n", - " '206': 0.09359010131715004,\n", - " '207': 0.0,\n", - " '208': 4.014992596362055,\n", - " '209': 0.0952948705962305,\n", - " '210': 0.14436963238770173,\n", - " '211': 4.165616513632278,\n", - " '212': 0.2885136840669677,\n", - " '213': 5.61859352186054,\n", - " '214': 0.0,\n", - " '215': 5.339752375328651,\n", - " '216': 0.20199973190183756,\n", - " '217': 0.0,\n", - " '218': 0.33722653777883776,\n", - " '219': 4.9986290018928905,\n", - " '220': 2.977796266757292,\n", - " '221': 2.6461747973841225,\n", - " '222': 0.0,\n", - " '223': 2.9462670319960855,\n", - " '224': 3.2327222191702663,\n", - " '225': 0.09460866107031453,\n", - " '226': 3.9065078247400358,\n", - " '227': 0.09531017980432493,\n", - " '228': 0.13437746335571898,\n", - " '229': 0.5739204326273354,\n", - " '230': 1.4058319459424755,\n", - " '231': 0.2951544942382898,\n", - " '232': 7.643537247047811,\n", - " '233': 0.08951834857537028,\n", - " '234': 0.2343393003714776,\n", - " '235': 0.09531017980432493,\n", - " '236': 0.690339161762764,\n", - " '237': 0.0,\n", - " '238': 0.0,\n", - " '239': 0.3059076848545588,\n", - " '240': 0.16575845107695875,\n", - " '241': 2.915772312248546,\n", - " '242': 4.797517540176982,\n", - " '243': 0.0,\n", - " '244': 0.0,\n", - " '245': 3.7400477406883357,\n", - " '246': 0.14730490086193443,\n", - " '247': 0.22291682161297355,\n", - " '248': 7.364800301612044,\n", - " '249': 1.0008594683783645,\n", - " '250': 3.084200921541599,\n", - " '251': 0.0,\n", - " '252': 1.5217290413429139,\n", - " '253': 0.0,\n", - " '254': 0.09531017980432493,\n", - " '255': 0.09528133393374126,\n", - " '256': 4.1728476237100445,\n", - " '257': 6.109519150819756,\n", - " '258': 0.53693315098994,\n", - " '259': 0.28464190331723255,\n", - " '260': 0.09531017980432493,\n", - " '261': 0.0,\n", - " '262': 4.131151987853503,\n", - " '263': 0.650339262272817,\n", - " '264': 4.416124885607162,\n", - " '265': 0.0,\n", - " '266': 0.0,\n", - " '267': 1.2023208215534753,\n", - " '268': 4.641824980466656,\n", - " '269': 0.18111165015201602,\n", - " '270': 2.0447856473696215,\n", - " '271': 0.10087258996801492,\n", - " '272': 0.0,\n", - " '273': 0.09576722988647615,\n", - " '274': 0.0,\n", - " '275': 0.09531017980432493,\n", - " '276': 1.3359871567015684,\n", - " '277': 0.09024225042590418,\n", - " '278': 5.2388808914369225,\n", - " '279': 2.2110408515339217,\n", - " '280': 0.08553501270000062,\n", - " '281': 0.0,\n", - " '282': 2.0776963559787616,\n", - " '283': 0.0,\n", - " '284': 3.495790721871086,\n", - " '285': 1.308332819650179,\n", - " '286': 2.773280849539413,\n", - " '287': 4.383218742830514,\n", - " '288': 6.193747578425999,\n", - " '289': 0.09531017980432493,\n", - " '290': 0.3105913030785167,\n", - " '291': 0.0,\n", - " '292': 0.26114190230255424,\n", - " '293': 0.0,\n", - " '294': 0.09531017980432493,\n", - " '295': 0.2638727031247139,\n", - " '296': 1.5187835448958966,\n", - " '297': 0.0,\n", - " '298': 0.0,\n", - " '299': 1.6841529962582311,\n", - " '300': 5.037950319528339,\n", - " '301': 5.030437921392435,\n", - " '302': 0.16345672962574156,\n", - " '303': 0.0,\n", - " '304': 0.0,\n", - " '305': 0.0,\n", - " '306': 4.184639083706476,\n", - " '307': 2.1541713477761792,\n", - " '308': 3.1514749638883344,\n", - " '309': 0.0,\n", - " '310': 2.4336133554004498,\n", - " '311': 0.0,\n", - " '312': 2.3773823578166975,\n", - " '313': 3.268983801484117,\n", - " '314': 0.04897742282591155,\n", - " '315': 0.2858120275071699,\n", - " '316': 3.3821278188285544,\n", - " '317': 0.0,\n", - " '318': 0.09531017980432493,\n", - " '319': 3.514777856696036,\n", - " '320': 2.9063880080402225,\n", - " '321': 4.842348126292399,\n", - " '322': 0.0905762286819796,\n", - " '323': 2.9069034494620065,\n", - " '324': 0.6241369910658953,\n", - " '325': 0.6903063241458224,\n", - " '326': 0.07889270205510061,\n", - " '327': 4.002472908289317,\n", - " '328': 0.02238941592660036,\n", - " '329': 0.09531017980432493,\n", - " '330': 2.204604685001489,\n", - " '331': 2.685118339013814,\n", - " '332': 4.226424169140554,\n", - " '333': 0.09531017980432493,\n", - " '334': 0.09428395341410338,\n", - " '335': 1.850957004220703,\n", - " '336': 0.0,\n", - " '337': 0.0,\n", - " '338': 0.09531017980432493,\n", - " '339': 0.21107051663854212,\n", - " '340': 0.0,\n", - " '341': 3.0130835688875313,\n", - " '342': 3.3985185634971935,\n", - " '343': 0.4904904586967387,\n", - " '344': 0.0,\n", - " '345': 0.05993205263398963,\n", - " '346': 0.0,\n", - " '347': 0.0,\n", - " '348': 0.09531017980432493,\n", - " '349': 0.0,\n", - " '350': 0.0,\n", - " '351': 0.07323479247184887,\n", - " '352': 0.0953006070312332,\n", - " '353': 0.0,\n", - " '354': 0.0905762286819796,\n", - " '355': 3.0516399054922867,\n", - " '356': 0.0,\n", - " '357': 0.19537560573118806,\n", - " '358': 1.2237754316221157,\n", - " '359': 2.770541830034534,\n", - " '360': 3.95823914248753,\n", - " '361': 0.0,\n", - " '362': 3.0678865654810004,\n", - " '363': 0.09523523154122847,\n", - " '364': 0.09453239559040605,\n", - " '365': 0.0,\n", - " '366': 0.4192520959738634,\n", - " '367': 0.7254330038158439,\n", - " '368': 0.09531017980432493,\n", - " '369': 1.13136863028545,\n", - " '370': 0.580260755041663,\n", - " '371': 0.5780053837592434,\n", - " '372': 4.807294370078226,\n", - " '373': 0.0,\n", - " '374': 0.0,\n", - " '375': 2.2442495156277253,\n", - " '376': 1.2403869838068837,\n", - " '377': 0.0,\n", - " '378': 0.3377100487869732,\n", - " '379': 3.8030403167260505,\n", - " '380': 2.968179690318611,\n", - " '381': 2.8832112408078348,\n", - " '382': 1.4959373989254772,\n", - " '383': 0.0,\n", - " '384': 0.0,\n", - " '385': 0.0,\n", - " '386': 4.033091551833833,\n", - " '387': 0.09529134326328187,\n", - " '388': 3.109060958860994,\n", - " '389': 0.0,\n", - " '390': 1.6051076363068384,\n", - " '391': 0.8763494785541448,\n", - " '392': 0.09531017980432493,\n", - " '393': 0.0,\n", - " '394': 0.0,\n", - " '395': 3.529297384289471,\n", - " '396': 0.0,\n", - " '397': 6.444131256700441,\n", - " '398': 0.4526256467462118,\n", - " '399': 0.6358315884857922,\n", - " '400': 2.8350816212683916,\n", - " '401': 0.0,\n", - " '402': 1.4326771608638411,\n", - " '403': 0.0,\n", - " '404': 4.699694843987294,\n", - " '405': 2.688787468196822,\n", - " '406': 6.6388757391796025,\n", - " '407': 3.886030776637364,\n", - " '408': 0.21121226374124571,\n", - " '409': 1.8903707957619686,\n", - " '410': 1.9413903616159938,\n", - " '411': 0.0,\n", - " '412': 1.2168462389435106,\n", - " '413': 0.09531017980432493,\n", - " '414': 3.5260931091579524,\n", - " '415': 0.10827171500191266,\n", - " '416': 1.9507258605947624,\n", - " '417': 1.9830042399121337,\n", - " '418': 1.3719749763353029,\n", - " '419': 0.5170594033250755,\n", - " '420': 0.0905063507807497,\n", - " '421': 4.597291711752961,\n", - " '422': 0.771358402856805,\n", - " '423': 0.2179655365042836,\n", - " '424': 0.05324142355107233,\n", - " '425': 0.09531017980432493,\n", - " '426': 0.09535189711596397,\n", - " '427': 0.13799396302900693,\n", - " '428': 0.0953056888851497,\n", - " '429': 0.6362058396285563,\n", - " '430': 3.831237419338755,\n", - " '431': 0.0,\n", - " '432': 0.09531017980432493,\n", - " '433': 0.0,\n", - " '434': 5.866420470050351,\n", - " '435': 1.1680622321261955,\n", - " '436': 0.14730490086193443,\n", - " '437': 0.4866386592140997,\n", - " '438': 4.713189311389018,\n", - " '439': 0.0,\n", - " '440': 1.2759035424534322,\n", - " '441': 2.065099044281837,\n", - " '442': 3.023034482574021,\n", - " '443': 0.4526256467462118,\n", - " '444': 0.14730490086193443,\n", - " '445': 0.09531017980432493,\n", - " '446': 1.1343696137750456,\n", - " '447': 3.7681032053803536,\n", - " '448': 0.0,\n", - " '449': 0.0,\n", - " '450': 0.09659838607385886,\n", - " '451': 0.0,\n", - " '452': 0.8715503622057538,\n", - " '453': 0.09531017980432493,\n", - " '454': 0.06213353459944471,\n", - " '455': 0.0,\n", - " '456': 1.6562147502691666,\n", - " '457': 1.135694402544708,\n", - " '458': 0.23533498090973276,\n", - " '459': 0.2662148414713118,\n", - " '460': 2.240856285976945,\n", - " '461': 0.0,\n", - " '462': 0.0952265490346423,\n", - " '463': 3.2128651923539966,\n", - " '464': 0.4526256467462118,\n", - " '465': 6.632612255087345,\n", - " '466': 0.0,\n", - " '467': 2.4862258667385464,\n", - " '468': 0.09531017980432493,\n", - " '469': 5.8998973535824915,\n", - " '470': 4.629039813677809,\n", - " '471': 0.0946781255546599,\n", - " '472': 0.5707739039738186,\n", - " '473': 0.11609067998557589,\n", - " '474': 6.776876449656054,\n", - " '475': 6.137790291114809,\n", - " '476': 0.09533012505996236,\n", - " '477': 0.4701750957945066,\n", - " '478': 0.09523523154122847,\n", - " '479': 5.41565585896527,\n", - " '480': 0.09526385145845638,\n", - " '481': 2.9619796409617263,\n", - " '482': 3.987973531165525,\n", - " '483': 0.23928940664440623,\n", - " '484': 4.005513348515485,\n", - " '485': 0.06962075965724422,\n", - " '486': 4.569544125442762,\n", - " '487': 0.09531017980432493,\n", - " '488': 0.13167287039150213,\n", - " '489': 4.23600194334962,\n", - " '490': 0.0,\n", - " '491': 0.004713693072704477,\n", - " '492': 0.08974622970176735,\n", - " '493': 0.0,\n", - " '494': 0.0,\n", - " '495': 0.0,\n", - " '496': 0.09531017980432493,\n", - " '497': 5.533784667551078,\n", - " '498': 0.09295275781280803,\n", - " '499': 0.3055092793008956,\n", - " '500': 0.2516042207314619,\n", - " '501': 2.7194995576896703,\n", - " '502': 0.09531017980432493,\n", - " '503': 1.9598652238975378,\n", - " '504': 0.0,\n", - " '505': 0.09515935934058137,\n", - " '506': 0.2662148414713118,\n", - " '507': 0.6418538861723947,\n", - " '508': 3.419090338331528,\n", - " '509': 0.0,\n", - " '510': 0.0,\n", - " '511': 0.0,\n", - " '512': 0.3156683938474788,\n", - " '513': 0.0,\n", - " '514': 3.591817741270805,\n", - " '515': 0.20378525472851766,\n", - " '516': 0.0,\n", - " '517': 0.0,\n", - " '518': 4.252517376838161,\n", - " '519': 3.63964391976943,\n", - " '520': 3.709343814132402,\n", - " '521': 1.8903707957619686,\n", - " '522': 0.6166552991511789,\n", - " '523': 0.0,\n", - " '524': 0.09531017980432493,\n", - " '525': 4.524930483695722,\n", - " '526': 0.417363039505372,\n", - " '527': 6.611319664533359,\n", - " '528': 5.262690188904886,\n", - " '529': 1.0409728367949749,\n", - " '530': 1.092793837597314,\n", - " '531': 0.0,\n", - " '532': 7.97243148840953,\n", - " '533': 0.4127021242863881,\n", - " '534': 0.0,\n", - " '535': 3.4464902883430875,\n", - " '536': 0.0952265490346423,\n", - " '537': 2.4973291697865574,\n", - " '538': 0.2981841273148866,\n", - " '539': 3.8978411828865203,\n", - " '540': 0.0,\n", - " '541': 0.0,\n", - " '542': 0.0,\n", - " '543': 2.078304531778995,\n", - " '544': 3.1247769308809183,\n", - " '545': 0.0,\n", - " '546': 2.759818364088485,\n", - " '547': 0.09531017980432493,\n", - " '548': 0.09531017980432493,\n", - " '549': 2.552387264501973,\n", - " '550': 2.3123740553824788,\n", - " '551': 1.7476804315048662,\n", - " '552': 4.465837698703893,\n", - " '553': 3.031340701021359,\n", - " '554': 0.0,\n", - " '555': 0.0047081492508252885,\n", - " '556': 0.0,\n", - " '557': 0.22120399959924675,\n", - " '558': 0.0,\n", - " '559': 2.626661479680695,\n", - " '560': 2.717860617877431,\n", - " '561': 0.0,\n", - " '562': 1.8309742592868719,\n", - " '563': 0.0,\n", - " '564': 5.535216218331494,\n", - " '565': 0.0,\n", - " '566': 0.09005238177728328,\n", - " '567': 0.09531017980432493,\n", - " '568': 0.09582059497488181,\n", - " '569': 3.466629574606096,\n", - " '570': 0.004713693072704477,\n", - " '571': 0.0,\n", - " '572': 0.0952689334991623,\n", - " '573': 1.3716290897836467,\n", - " '574': 2.50544752575339,\n", - " '575': 2.8033720002329696,\n", - " '576': 0.0,\n", - " '577': 0.0,\n", - " '578': 3.2827891506118534,\n", - " '579': 0.3052043664690437,\n", - " '580': 0.0,\n", - " '581': 0.0,\n", - " '582': 2.391078026270288,\n", - " '583': 1.9472831018384427,\n", - " '584': 0.0,\n", - " '585': 0.0,\n", - " '586': 0.0,\n", - " '587': 7.358958386603915,\n", - " '588': 0.09531017980432493,\n", - " '589': 0.09531017980432493,\n", - " '590': 0.004713693072704477,\n", - " '591': 0.17736863630860097,\n", - " '592': 4.354325035279239,\n", - " '593': 0.2286477672862077,\n", - " '594': 0.515670355080139,\n", - " '595': 0.0,\n", - " '596': 0.21107051663854212,\n", - " '597': 0.052446471722907485,\n", - " '598': 1.4806036879652171,\n", - " '599': 1.448787276588346,\n", - " '600': 0.03446045879133042,\n", - " '601': 0.09531017980432493,\n", - " '602': 0.0,\n", - " '603': 2.9704145517235436,\n", - " '604': 0.09531017980432493,\n", - " '605': 4.358333785856244,\n", - " '606': 0.2477515086141063,\n", - " '607': 0.0,\n", - " '608': 0.09531017980432493,\n", - " '609': 0.2606129394850694,\n", - " '610': 0.0,\n", - " '611': 2.7961866120592886,\n", - " '612': 2.4999715513396232,\n", - " '613': 3.3054591727664473,\n", - " '614': 2.4652646831852003,\n", - " '615': 5.040439879658114,\n", - " '616': 2.3933374562605096,\n", - " '617': 0.5649695054662016,\n", - " '618': 0.0,\n", - " '619': 0.0,\n", - " '620': 0.09531017980432493,\n", - " '621': 1.1507902284748224,\n", - " '622': 0.09257156048009857,\n", - " '623': 2.8628985106720988,\n", - " '624': 1.8870696490323797,\n", - " '625': 0.09472603649856709,\n", - " '626': 0.0,\n", - " '627': 0.0,\n", - " '628': 1.826139576877558,\n", - " '629': 0.07920601928586876,\n", - " '630': 0.09001445490057117,\n", - " '631': 0.09531017980432493,\n", - " '632': 2.766319109226186,\n", - " '633': 5.6052499207299205,\n", - " '634': 0.09396010522727158,\n", - " '635': 0.0905762286819796,\n", - " '636': 4.33729074083249,\n", - " '637': 0.09531017980432493,\n", - " '638': 0.6903063241458224,\n", - " '639': 0.09523523154122847,\n", - " '640': 0.0,\n", - " '641': 5.514897654250742,\n", - " '642': 0.09531017980432493,\n", - " '643': 5.462785415038647,\n", - " '644': 0.690339161762764,\n", - " '645': 5.570346267710902,\n", - " '646': 3.9950233738002465,\n", - " '647': 0.0,\n", - " '648': 0.0,\n", - " '649': 0.0,\n", - " '650': 3.81973901128164,\n", - " '651': 1.551711252467016,\n", - " '652': 0.0,\n", - " '653': 3.1768601089793447,\n", - " '654': 0.0,\n", - " '655': 0.0,\n", - " '656': 8.020289812020795,\n", - " '657': 0.0,\n", - " '658': 0.09046374570080355,\n", - " '659': 1.4712284702066913,\n", - " '660': 1.8201407613244538,\n", - " '661': 3.986976765359667,\n", - " '662': 0.08886499048617394,\n", - " '663': 1.2459187314772153,\n", - " '664': 0.0,\n", - " '665': 1.999334172540792,\n", - " '666': 0.09520351047899098,\n", - " '667': 0.0941442094158706,\n", - " '668': 0.0,\n", - " '669': 0.0,\n", - " '670': 0.0,\n", - " '671': 6.192822556776964,\n", - " '672': 0.6714571023484229,\n", - " '673': 0.13972998534279915,\n", - " '674': 0.09531017980432493,\n", - " '675': 0.09531017980432493,\n", - " '676': 0.08670330120582515,\n", - " '677': 0.21980929485396158,\n", - " '678': 2.9774720396373535,\n", - " '679': 0.0,\n", - " '680': 0.22405280981338377,\n", - " '681': 0.0905762286819796,\n", - " '682': 2.5488522357992776,\n", - " '683': 3.1780538303479458,\n", - " '684': 1.716796431353402,\n", - " '685': 2.872456241918166,\n", - " '686': 0.0,\n", - " '687': 0.432163110186238,\n", - " '688': 0.7076016150682317,\n", - " '689': 0.0,\n", - " '690': 0.232171310194044,\n", - " '691': 2.972368881633278,\n", - " '692': 2.6878474937846906,\n", - " '693': 0.0,\n", - " '694': 0.0,\n", - " '695': 6.6365519763589385,\n", - " '696': 3.0252910757955354,\n", - " '697': 0.0,\n", - " '698': 2.33214389523559,\n", - " '699': 0.0,\n", - " '700': 0.08673256979318185,\n", - " '701': 0.0946781255546599,\n", - " '702': 3.055939393169686,\n", - " '703': 0.5465465795218372,\n", - " '704': 6.463258411301439,\n", - " '705': 0.09531017980432493,\n", - " '706': 0.3969209101865528,\n", - " '707': 2.752795879258235,\n", - " '708': 0.09531017980432493,\n", - " '709': 0.0,\n", - " '710': 7.995638974057549,\n", - " '711': 0.09531017980432493,\n", - " '712': 0.0,\n", - " '713': 0.0,\n", - " '714': 0.0939602872910706,\n", - " '715': 0.0,\n", - " '716': 0.0,\n", - " '717': 3.7495040759303713,\n", - " '718': 0.0,\n", - " '719': 0.0,\n", - " '720': 0.2972434737212468,\n", - " '721': 0.05972001513610036,\n", - " '722': 0.0,\n", - " '723': 0.0,\n", - " '724': 0.0,\n", - " '725': 0.0,\n", - " '726': 2.6647637932417303,\n", - " '727': 0.20525262690908078,\n", - " '728': 0.09531017980432493,\n", - " '729': 1.736618559445691,\n", - " '730': 0.09531017980432493,\n", - " '731': 0.0,\n", - " '732': 0.0,\n", - " '733': 5.613913523487731,\n", - " '734': 1.7008171562231458,\n", - " '735': 2.300583090323373,\n", - " '736': 0.0,\n", - " '737': 4.0133291593978715,\n", - " '738': 1.0686834044546794,\n", - " '739': 0.0,\n", - " '740': 0.4081468889173157,\n", - " '741': 1.7828903765095365,\n", - " '742': 5.592602590120972,\n", - " '743': 0.9012169714415825,\n", - " '744': 0.09082762999078497,\n", - " '745': 4.0397878030828975,\n", - " '746': 0.09531017980432493,\n", - " '747': 2.3268039338601203,\n", - " '748': 0.0,\n", - " '749': 5.315877405091333,\n", - " '750': 2.8316039320000796,\n", - " '751': 0.0,\n", - " '752': 0.0,\n", - " '753': 0.0,\n", - " '754': 0.09531017980432493,\n", - " '755': 0.09531017980432493,\n", - " '756': 3.513536845112418,\n", - " '757': 0.31868340655929306,\n", - " '758': 0.0,\n", - " '759': 0.09049914348805466,\n", - " '760': 1.3605072789411237,\n", - " '761': 0.0905762286819796,\n", - " '762': 0.09531017980432493,\n", - " '763': 0.0,\n", - " '764': 2.3690244900716544,\n", - " '765': 4.5593879933329635,\n", - " '766': 0.09531017980432493,\n", - " '767': 0.0,\n", - " '768': 0.10756864594274289,\n", - " '769': 3.930135311013602,\n", - " '770': 3.2705667932529643,\n", - " '771': 0.09519620967361252,\n", - " '772': 0.0903075419975192,\n", - " '773': 0.0953006070312332,\n", - " '774': 0.0,\n", - " '775': 0.2508136429088407,\n", - " '776': 3.6220391138221353,\n", - " '777': 0.0,\n", - " '778': 0.9348110314571227,\n", - " '779': 3.6624217633767455,\n", - " '780': 0.09396058769626668,\n", - " '781': 3.0777966468990363,\n", - " '782': 0.09531017980432493,\n", - " '783': 0.1180224736554845,\n", - " '784': 3.889168150191794,\n", - " '785': 0.0,\n", - " '786': 2.894696997214778,\n", - " '787': 0.23935639401714617,\n", - " '788': 0.0794007570519358,\n", - " '789': 2.673280684578136,\n", - " '790': 0.09525886030568383,\n", - " '791': 0.3744275340890571,\n", - " '792': 0.0,\n", - " '793': 0.7373383378718305,\n", - " '794': 3.298066637104915,\n", - " '795': 0.0,\n", - " '796': 4.05969842375529,\n", - " '797': 0.0,\n", - " '798': 0.0,\n", - " '799': 0.7010058104797063,\n", - " '800': 1.9326444271619354,\n", - " '801': 0.09531017980432493,\n", - " '802': 1.1371465226587354,\n", - " '803': 0.0,\n", - " '804': 1.0272575515998303,\n", - " '805': 2.6903181561900213,\n", - " '806': 0.0,\n", - " '807': 0.0,\n", - " '808': 4.275277723279484,\n", - " '809': 2.312535423847214,\n", - " '810': 8.111208135808797,\n", - " '811': 0.474445717297712,\n", - " '812': 4.22683374526818,\n", - " '813': 0.09531017980432493,\n", - " '814': 0.4447741250548586,\n", - " '815': 0.0,\n", - " '816': 0.35423111020815645,\n", - " '817': 0.4526208770636268,\n", - " '818': 0.09523523154122847,\n", - " '819': 0.0,\n", - " '820': 3.7715062328903666,\n", - " '821': 1.5410129068236549,\n", - " '822': 0.21107051663854212,\n", - " '823': 5.6215676565634825,\n", - " '824': 3.4914412728049657,\n", - " '825': 0.0,\n", - " '826': 2.1134577492822753,\n", - " '827': 0.09531017980432493,\n", - " '828': 3.7909846770510898,\n", - " '829': 1.5995796429831515,\n", - " '830': 0.21418592732449615,\n", - " '831': 4.248495242049359,\n", - " '832': 0.09551614041116464,\n", - " '833': 2.884466883388839,\n", - " '834': 6.192362489474872,\n", - " '835': 0.09531017980432493,\n", - " '836': 0.09531017980432493,\n", - " '837': 0.09036602303397259,\n", - " '838': 6.2472280842430505,\n", - " '839': 2.608638642664516,\n", - " '840': 6.221810668944181,\n", - " '841': 0.0953006070312332,\n", - " '842': 0.6763127178019116,\n", - " '843': 0.09531017980432493,\n", - " '844': 1.3716290872467134,\n", - " '845': 5.611104073575521,\n", - " '846': 0.0,\n", - " '847': 2.6979998652487085,\n", - " '848': 0.0,\n", - " '849': 2.203427091911265,\n", - " '850': 3.197787321267333,\n", - " '851': 4.6278017659628095,\n", - " '852': 4.027135812528651,\n", - " '853': 0.004713693072704477,\n", - " '854': 0.8645499099926915,\n", - " '855': 2.164181176883657,\n", - " '856': 0.0,\n", - " '857': 0.0,\n", - " '858': 2.0409653392096834,\n", - " '859': 0.09005238177728328,\n", - " '860': 0.6903636501311061,\n", - " '861': 2.6461841413120992,\n", - " '862': 0.0905762286819796,\n", - " '863': 2.3614831908724767,\n", - " '864': 6.639914596539304,\n", - " '865': 6.871318919428192,\n", - " '866': 0.09529833427962146,\n", - " '867': 0.0,\n", - " '868': 0.0,\n", - " '869': 0.0,\n", - " '870': 0.14730490086193443,\n", - " '871': 0.09531017980432493,\n", - " '872': 0.22842763790613613,\n", - " '873': 3.6418520780077697,\n", - " '874': 0.16493857778637414,\n", - " '875': 0.0,\n", - " '876': 0.0925778230423986,\n", - " '877': 0.0953006070312332,\n", - " '878': 1.9386228107878445,\n", - " '879': 3.5383836225179155,\n", - " '880': 0.0,\n", - " '881': 0.0946351884125189,\n", - " '882': 0.0,\n", - " '883': 0.2285818091478329,\n", - " '884': 0.0,\n", - " '885': 0.48690544172431643,\n", - " '886': 0.0,\n", - " '887': 2.8066291737892617,\n", - " '888': 0.09531017980432493,\n", - " '889': 0.0,\n", - " '890': 0.0,\n", - " '891': 5.8998969101029415,\n", - " '892': 0.7222931985886815,\n", - " '893': 0.09531017980432493,\n", - " '894': 0.0,\n", - " '895': 0.27963381443561636,\n", - " '896': 0.2429461786103894,\n", - " '897': 1.0811674687581974,\n", - " '898': 5.3789249349500174,\n", - " '899': 1.1388389123903393,\n", - " '900': 3.026438073082382,\n", - " '901': 1.8421484894662818,\n", - " '902': 0.0,\n", - " '903': 0.09531017980432493,\n", - " '904': 0.09534077024552352,\n", - " '905': 3.3109358187176627,\n", - " '906': 0.0,\n", - " '907': 0.0,\n", - " '908': 0.0,\n", - " '909': 0.0047081492508252885,\n", - " '910': 0.0,\n", - " '911': 0.0946781255546599,\n", - " '912': 0.18952868130003434,\n", - " '913': 2.2155890947952526,\n", - " '914': 0.4526208770636268,\n", - " '915': 4.188138441508461,\n", - " '916': 0.0,\n", - " '917': 1.9363406975583934,\n", - " '918': 4.683520091094882,\n", - " '919': 4.884657454415866,\n", - " '920': 0.1200999850105872,\n", - " '921': 0.0,\n", - " '922': 0.23644266871736616,\n", - " '923': 4.464263686051753,\n", - " '924': 0.0,\n", - " '925': 0.3364722366212129,\n", - " '926': 0.24674727469447985,\n", - " '927': 8.852765037609048,\n", - " '928': 0.0,\n", - " '929': 3.261935314328648,\n", - " '930': 0.0,\n", - " '931': 3.594228644552266,\n", - " '932': 0.0953006070312332,\n", - " '933': 1.3656388446671335,\n", - " '934': 0.09531077071324111,\n", - " '935': 3.8877303128591016,\n", - " '936': 4.7434312571410455,\n", - " '937': 3.8897773964808264,\n", - " '938': 0.5095018459586498,\n", - " '939': 2.094962403769071,\n", - " '940': 4.56539055062689,\n", - " '941': 2.543745631238352,\n", - " '942': 3.152736022363656,\n", - " '943': 0.0,\n", - " '944': 0.0952265490346423,\n", - " '945': 0.0946781255546599,\n", - " '946': 0.0,\n", - " '947': 3.197506256216384,\n", - " '948': 0.41486747367425525,\n", - " '949': 0.0,\n", - " '950': 0.5125039945135019,\n", - " '951': 3.0064455296423107,\n", - " '952': 0.09531017980432493,\n", - " '953': 0.3258122777559203,\n", - " '954': 0.0,\n", - " '955': 0.0,\n", - " '956': 4.085253136837336,\n", - " '957': 4.141546163706395,\n", - " '958': 2.6461747973841225,\n", - " '959': 4.839875962652278,\n", - " '960': 2.725533696190908,\n", - " '961': 0.18590262876155536,\n", - " '962': 2.3608540011180215,\n", - " '963': 0.09531017980432493,\n", - " '964': 4.240777205626258,\n", - " '965': 0.09534171567070054,\n", - " '966': 0.0,\n", - " '967': 0.0,\n", - " '968': 3.934066971204448,\n", - " '969': 2.844321988662227,\n", - " '970': 4.3901203398459225,\n", - " '971': 1.6048118446635562}" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "class_weights" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (, line 1)", - "output_type": "error", - "traceback": [ - "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m 'fastqc': 100, 'Cut1': 87, 'Filter1': 83, 'tp_sort_header_tool': 74, 'rna_star': 72, 'addValue': 69, 'join1': 68, 'tp_cut_tool': 63, 'bedtools_sortbed': 49, 'mergeCols1': 47, 'Paste1': 45, 'fastq_filter': 44, 'Convert characters1': 43, 'CONVERTER_bed_gff_or_vcf_to_bigwig_0': 43, 'sam_to_bam': 42, 'filter_by_fasta_ids': 37, 'datamash_transpose': 32, 'fastq_to_tabular': 30, 'fasta2tab': 30, 'ggplot2_histogram': 29, 'mass_spectrometry_imaging_combine': 21, 'trim_galore': 16, 'proteomics_moff': 8, 'checkFormat': 7, 'column_order_header_sort': 6, 'w4mclassfilter': 4, 'cardinal_combine': 3, 'barchart_gnuplot': 2, 'hgv_linkToGProfile': 1, 'mothur_phylotype': 1}\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" - ] - } - ], - "source": [ - "'fastqc': 100, 'Cut1': 87, 'Filter1': 83, 'tp_sort_header_tool': 74, 'rna_star': 72, 'addValue': 69, 'join1': 68, 'tp_cut_tool': 63, 'bedtools_sortbed': 49, 'mergeCols1': 47, 'Paste1': 45, 'fastq_filter': 44, 'Convert characters1': 43, 'CONVERTER_bed_gff_or_vcf_to_bigwig_0': 43, 'sam_to_bam': 42, 'filter_by_fasta_ids': 37, 'datamash_transpose': 32, 'fastq_to_tabular': 30, 'fasta2tab': 30, 'ggplot2_histogram': 29, 'mass_spectrometry_imaging_combine': 21, 'trim_galore': 16, 'proteomics_moff': 8, 'checkFormat': 7, 'column_order_header_sort': 6, 'w4mclassfilter': 4, 'cardinal_combine': 3, 'barchart_gnuplot': 2, 'hgv_linkToGProfile': 1, 'mothur_phylotype': 1}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.7" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/output_files/evaluate_rnn_custom_loss_19_09.ipynb b/output_files/evaluate_rnn_custom_loss_19_09.ipynb index b729a11..23489c0 100644 --- a/output_files/evaluate_rnn_custom_loss_19_09.ipynb +++ b/output_files/evaluate_rnn_custom_loss_19_09.ipynb @@ -2,16 +2,20 @@ "cells": [ { "cell_type": "code", - "execution_count": 221, + "execution_count": 1, "metadata": { "scrolled": true }, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'1': 'qual_stats_boxplot', '2': 'mimodd_convert', '3': 'fastq_join', '4': 'scanpy_find_markers', '5': 'glimmer_knowlegde-based', '6': 'flexbar', '7': 'mtbls520_09_species_venn', '8': 'rseqc_geneBody_coverage', '9': 'rsem_calculate_expression', '10': 'mycrobiota-qc-report', '11': 'tmhmm2', '12': 'mothur_count_seqs', '13': 'bedtools_unionbedgraph', '14': 'ConsensusID', '15': 'vt_normalize', '16': 'infernal_cmbuild', '17': 'bcftools_mpileup', '18': 'mothur_classify_rf', '19': 'bg_statistical_hypothesis_testing', '20': 'deeptools_bamCoverage', '21': 'align_back_trans', '22': 'MultiplexResolver', '23': 'transpose', '24': 'fasta_merge_files_and_filter_unique_sequences', '25': 'mz_to_sqlite', '26': 'CONVERTER_fasta_to_tabular', '27': 'ConsensusMapNormalizer', '28': 'velvetg_jgi', '29': 'seurat_read10x', '30': 'mycrobiota-krona-mothur', '31': 'mothur_classify_seqs', '32': 'prokaryotic_ncbi_submission', '33': 'ip_scale_image', '34': 'sklear_numeric_clustering', '35': 'gemini_pathways', '36': 'Transformation', '37': 'picard_CollectInsertSizeMetrics', '38': 'cardinal_data_exporter', '39': 'flexbar_split_RR_bcs', '40': 'cshl_fasta_nucleotides_changer', '41': 'mothur_make_group', '42': 'methtools_calling', '43': 'minfi_getanno', '44': 'addValue', '45': 'ncbi_blastx_wrapper', '46': 'tp_tac', '47': 'mothur_summary_seqs', '48': 'glimmer_build-icm', '49': 'snpSift_annotate', '50': '__SORTLIST__', '51': 'gatk_depth_of_coverage', '52': 'kraken-report', '53': 'ncbi_rpsblast_wrapper', '54': 'fastq_paired_end_joiner', '55': 'tp_sed_tool', '56': 'smf_utils_fix-fasta-headers', '57': 'EMBOSS: fuzztran39', '58': 'Extract genomic DNA 1', '59': 'cuffmerge', '60': 'EMBOSS: newseq59', '61': 'salmon', '62': 'collapse_dataset', '63': 'shovill', '64': 'nanoplot', '65': 'ococo', '66': 'abims_xcms_fillPeaks', '67': 'rseqc_RNA_fragment_size', '68': 'Kneeplot', '69': 'filter_by_fasta_ids', '70': 'iuc_pear', '71': 'gd_rank_terms', '72': 'qiime_count_seqs', '73': 'mergeCols1', '74': 'peakachu', '75': 'bam-filter', '76': 'deg_annotate', '77': 'mass_spectrometry_imaging_classification', '78': 'mass_spectrometry_imaging_ion_images', '79': 'mimodd_vcf_filter', '80': 'msms2metfrag-multiple', '81': 'pieplots_macs', '82': 'mothur_split_groups', '83': 'roary', '84': 'qiime_pick_rep_set', '85': 'gatk2_variant_select', '86': 'eukaryotic_ncbi_submission', '87': 'svm_classifier', '88': 'ctb_chemfp_mol2fps', '89': 'raceid_main', '90': 'macs2_predictd', '91': 'sequence_content_trimmer', '92': 'mothur_phylotype', '93': 'stacks_refmap', '94': 'scanpy_filter_genes', '95': 'gops_merge_1', '96': 'vcfvcfintersect', '97': 'transdecoder', '98': 'mothur_classify_otu', '99': 'scanpy_find_cluster', '100': 'picard_MarkDuplicatesWithMateCigar', '101': 'venn_list', '102': 'mothur_unifrac_weighted', '103': 'minfi_rset', '104': 'map_peptides_to_bed', '105': 'secure_hash_message_digest', '106': 'deeptools_bigwig_compare', '107': 'EMBOSS: geecee41', '108': 'plotly_regression_performance_plots', '109': 'preproc', '110': 'Psortb', '111': 'tp_grep_tool', '112': 'snpfinder', '113': 'custom_pro_db', '114': 'mtbls520_23_seasons_rda', '115': 'bedtools_complementbed', '116': 'seqtk_mergepe', '117': 'CONVERTER_bed_to_fli_0', '118': 'XTandemAdapter', '119': 'translate_bed', '120': 'ctb_filter', '121': 'silac_analyzer', '122': '__FILTER_FAILED_DATASETS__', '123': 'Univariate', '124': 'flexbar_no_split', '125': 'trinity_filter_low_expr_transcripts', '126': 'cshl_fastq_to_fasta', '127': 'bcftools_call', '128': 'freebayes_wrapper', '129': 'deeptools_correctGCBias', '130': 'sklearn_searchcv', '131': 'ctb_osra', '132': 'bismark_bowtie', '133': 'ip_projective_transformation', '134': 'gatk2_unified_genotyper', '135': 'Cut1', '136': 'picard_AddOrReplaceReadGroups', '137': 'deseq2_single', '138': 'minfi_mset', '139': 'smf_utils_filter-by-energy', '140': 'gene2exon1', '141': 'mothur_remove_lineage', '142': 'deeptools_plot_enrichment', '143': 'sam_merge2', '144': 'cshl_fastx_nucleotides_distribution', '145': 'EMBOSS: textsearch98', '146': 'random_lines1', '147': 'mimodd_reheader', '148': 'gemini_annotate', '149': 'methtools_filter', '150': 'createInterval', '151': 'FeatureLinkerUnlabeled', '152': 'mtbls520_08a_species_shannon', '153': 'dexseq_count', '154': 'cd_hit_est', '155': 'gd_raxml', '156': 'map-msms2camera', '157': 'msconvert2_raw', '158': 'scanpy_find_variable_genes', '159': 'datamash_ops', '160': 'cufflinks_prok', '161': 'r_correlation_matrix', '162': 'seurat_scale_data', '163': 'convert_bc_to_binary_RY.py', '164': 'vcffilter', '165': 'ete_genetree_splitter', '166': 'picard_QualityScoreDistribution', '167': 'fragmenter', '168': 'minfi_getbeta', '169': 'cshl_grep_tool', '170': 'picard_ValidateSamFile', '171': 'QCCalculator', '172': 'mimodd_varreport', '173': 'CONVERTER_fasta_to_fai', '174': 'cardinal_filtering', '175': 'bg_find_subsequences', '176': 'ip_viz_overlay_moving_and_fixed_image', '177': 'rseqc_clipping_profile', '178': 'trim_galore', '179': 'PeakPickerHiRes', '180': 'deeptools_heatmapper', '181': 'correct_barcodes', '182': 'Multivariate', '183': 'bedtools_windowbed', '184': 'metaquantome_stat', '185': 'qiime_filter_alignment', '186': 'gmx_setup', '187': 'raceid_clustering', '188': 'mothur_taxonomy_to_krona', '189': 'decoyfasta', '190': 'trinity_analyze_diff_expr', '191': 'gops_basecoverage_1', '192': 'kraken-translate', '193': 'pileup_parser', '194': 'fastq_quality_trimmer', '195': 'bedtools_genomecoveragebed_bedgraph', '196': 'cshl_uniq_tool', '197': 'gffread', '198': 'deseq2', '199': 'bio3d_pca', '200': 'picard_FastqToSam', '201': 'locarna_multiple', '202': 'bed_to_bigwig', '203': 'maldi_quant_preprocessing', '204': 'gatk2_base_recalibrator', '205': 'scanpy_run_umap', '206': 'fastp', '207': 'bamFilter', '208': 'annotatemyids', '209': 'Show tail1', '210': 'cuffquant', '211': 'picard_CollectGcBiasMetrics', '212': 'coords2clnt.py', '213': 'mlocarna', '214': 'minfi_getM', '215': 'FROGS_preprocess', '216': 'minfi_dmp', '217': 'deeptools_plot_correlation', '218': 'mothur_align_seqs', '219': 'openbabel_compound_convert', '220': 'nanopolish_variants', '221': 'PeptideIndexer', '222': 'addName', '223': 'umi_tools_whitelist', '224': 'scanpy_run_pca', '225': 'metilene', '226': 'poretools_extract', '227': 'newick_display', '228': 'graphclust_glob_report_no_align', '229': 'mothur_parsimony', '230': 'velveth', '231': 'ip_coordinates_of_roi', '232': 'genbank_to_gff', '233': 'samtools_filter', '234': 'mothur_filter_seqs', '235': 'rbc_mirdeep2_mapper', '236': 'krona-text', '237': 'bamleftalign', '238': 'mass_spectrometry_imaging_qc', '239': 'gatk2_depth_of_coverage', '240': 'gemini_de_novo', '241': 'stoceps_maketablecarrer', '242': 'HighResPrecursorMassCorrector', '243': 'seurat_run_tsne', '244': 'massbank_ws_searchspectrum', '245': 'vcftools_slice', '246': 'FeatureLinkerUnlabeledKD', '247': 'bams2ratio', '248': 'mothur_get_communitytype', '249': 'scanpy_read_10x', '250': 'combine_metaphlan2_humann2', '251': 'bwa', '252': 'cd_hit_protein', '253': 'busco', '254': 'ncbi_tblastn_wrapper', '255': 'regionalgam_flight_curve', '256': 'fasta-stats', '257': 'trinotate', '258': 'CONVERTER_fasta_to_2bit', '259': 'tp_find_and_replace', '260': 'EMBOSS: shuffleseq87', '261': 'gops_coverage_1', '262': 'tp_sort_rows', '263': 'CONVERTER_interval_to_bedstrict_0', '264': 'methtools_dmr', '265': 'treebest_best', '266': 'gops_concat_1', '267': 'sickle', '268': 'chipseeker', '269': 'mothur_metastats', '270': 'hicexplorer_hiccorrectmatrix', '271': 'mothur_dist_shared', '272': 'get_subontology_from', '273': 'mothur_homova', '274': 'OpenSwathWorkflow', '275': 'graphicsmagick_image_montage', '276': 'seurat', '277': 'vcf2pgSnp', '278': 'metams_runGC', '279': 'abricate', '280': 'bedtools_slopbed', '281': 'blockclust', '282': 'ProteinResolver', '283': 'jcvi_gff_stats', '284': 'rnbeads', '285': 'xcms-dilutionfilter', '286': 'hicexplorer_hicmergematrixbins', '287': 'bamtools', '288': 'idpqonvert', '289': 'mycrobiota-make-multi-otutable', '290': 'biosigner', '291': 'FROGS_affiliation_OTU', '292': 'ExtractFASTAfromFASTQ', '293': 'Extract_RNA_seq_Evidence', '294': 'mothur_trim_seqs', '295': 'megahit_contig2fastg', '296': 'gatk_realigner_target_creator', '297': 'kraken-filter', '298': 'trinity_samples_qccheck', '299': 'search_gui', '300': 'cshl_fastq_quality_filter', '301': 'filter_columns', '302': 'vcfallelicprimitives', '303': 'tp_head_tool', '304': 'picard_SamToFastq', '305': 'genrich', '306': 'gtf_filter_by_attribute_values_list', '307': 'gemini_burden', '308': 'maldi_quant_peak_detection', '309': 'blast2go', '310': 'deeptools_bam_pe_fragmentsize', '311': 'cshl_word_list_grep', '312': 'ip_overlay_segmentation', '313': 'deeptools_bam_compare', '314': 'metaphlan_hclust_heatmap', '315': 'mass_spectrometry_imaging_filtering', '316': 'tp_easyjoin_tool', '317': 'plotly_ml_performance_plots', '318': 'FileMerger', '319': 'vcfcombine', '320': 'IDMassAccuracy', '321': 'pilon', '322': 'MetaProSIP', '323': 'EMBOSS: water107', '324': 'minfi_read450k', '325': 'passatutto', '326': 'picard_SortSam', '327': 'camera-group-fwhm', '328': 'resize_coordinate_window', '329': 'qiime_pick_closed_reference_otus', '330': 'EMBOSS: getorf42', '331': 'gspan', '332': 'bed_to_bigBed', '333': 'macs2_bdgcmp', '334': 'mimodd_header', '335': 'vcf_filter', '336': 'idr-embl', '337': 'scale_image', '338': 'segemehl', '339': 'scpipe', '340': 'rbc_mirdeep2', '341': 'jbrowse', '342': 'stringtie_merge', '343': 'CONVERTER_fastqgz_to_fastq', '344': 'abims_xcms_xcmsSet', '345': 'vcftools_isec', '346': 'hmmer_hmmsearch', '347': 'proteomics_search_peptide_prophet_1', '348': 'proteomics_search_tandem_1', '349': 'vcf2tsv', '350': 'bcftools_consensus', '351': 'lfq_protein_quant', '352': 'velveth_jgi', '353': 'filtlong', '354': 'FilterBAM', '355': 'cardinal_classification', '356': 'qiime_pick_open_reference_otus', '357': 'md_converter', '358': 'bio3d_rmsd', '359': 'IDScoreSwitcher', '360': 'hicexplorer_hicsummatrices', '361': 'circgraph', '362': 'seurat_dim_plot', '363': 'seurat_filter_cells', '364': 'minfi_maptogenome', '365': 'mtbls520_10_species_varpart', '366': 'snpEff_download', '367': 'bio3d_rmsf', '368': 'deeptools_plot_coverage', '369': 'viennarna_rnaalifold', '370': 'cuffcompare', '371': 'regionalgam_gls', '372': 'abims_xcms_group', '373': 'enhanced_bowtie_wrapper', '374': 'vsearch_dereplication', '375': 'MAF_To_Fasta1', '376': 'filter_tabular', '377': 'qiime_split_libraries', '378': 'cardinal_spectra_plots', '379': 'flaimapper', '380': 'tp_text_file_with_recurring_lines', '381': 'ncbi_blastn_wrapper', '382': 'rbc_rnacode', '383': 'join_files_on_column_fuzzy', '384': 'minfi_dropsnp', '385': 'samtools_depth', '386': 'heinz_bum', '387': '__UNZIP_COLLECTION__', '388': 'bismark_deduplicate', '389': 'gemini_interactions', '390': 'fasta_compute_length', '391': 'fastq_paired_end_deinterlacer', '392': 'bg_protein_properties', '393': 'mass_spectrometry_imaging_preprocessing', '394': 'deeptools_profiler', '395': 'cshl_fasta_formatter', '396': 'cmv', '397': 'build_ucsc_custom_track_1', '398': 'minfi_methcpg', '399': 'minfi_ppfun', '400': 'make_families', '401': 'gtftobed12', '402': 'mothur_merge_files', '403': 'bedtools_coveragebed', '404': 'charts', '405': 'bam2wig', '406': 'bowtie2', '407': 'infernal_cmstat', '408': '__FILTER_FROM_FILE__', '409': 'get_read_pipeline', '410': 'dropletutils', '411': 'IDFilter', '412': 'goslimmer', '413': 'mummer_mummer', '414': 'trimmer', '415': 'cshl_awk_tool', '416': 'mothur_amova', '417': 'trim_reads', '418': 'bamSplit', '419': 'MapRTTransformer', '420': 'snpSift_geneSets', '421': 'qiime_make_otu_heatmap', '422': 'meme_meme', '423': 'cds_essential_variability', '424': 'openms_id_file_converter', '425': 'basil', '426': 'hcluster_sg', '427': 'cufflinks', '428': 'seqtk_sample', '429': 'mothur_rarefaction_single', '430': 'hgv_snpFreq', '431': 'AnnovarShed', '432': 'aggregate_scores_in_intervals2', '433': 'ctb_pubchem_download_as_smiles', '434': 'wsdl_hmdb', '435': 'openms_id_mapper', '436': 'mycrobiota-otutable_add_blast', '437': 'rmcontamination', '438': 'FastTree', '439': 'rseqc_read_duplication', '440': 'minfi_dmr', '441': 'gd_calc_freq', '442': 're_he_maldi_image_registration', '443': 'samtools_rmdup', '444': 'vcffilter2', '445': 'annotateMyIDs', '446': 'heatmapper', '447': 'mothur_cluster_split', '448': 'vcfannotate', '449': 'je_demultiplex', '450': 'cardinal_segmentations', '451': 'MassCalculator', '452': 'minimap2', '453': 'unzip', '454': 'tp_replace_in_column', '455': 'FeatureFinderMetabo', '456': 'bedtools_bedtobam', '457': 'seurat_export_cellbrowser', '458': 'flexbar_split_RYYR_bcs', '459': 'hicexplorer_hicfindtads', '460': 'goenrichment', '461': 'miranda', '462': 'ggplot_histogram', '463': 'humann2_genefamilies_genus_level', '464': 'allele_counts_1', '465': 'Fetch Taxonomic Ranks', '466': 'hgv_david', '467': 'tophat', '468': 'cshl_sed_tool', '469': 'idpassemble', '470': 'bandage_image', '471': 'express', '472': 'TagBamWithReadSequenceExtended', '473': 'varscan_somatic', '474': 'sklearn_nn_classifier', '475': 'ngsutils_bam_filter', '476': 'xcms_merge', '477': 'gatk2_variant_apply_recalibration', '478': 'tp_unfold_column_tool', '479': 'cast', '480': 'ncbi_makeblastdb', '481': 'cshl_sort_header', '482': 'htseq-count', '483': 'cutadapt', '484': 'EMBOSS: revseq82', '485': 'mtbls520_05a_import_maf', '486': 'myrimatch', '487': 'samtools_calmd', '488': 'translate_bed_sequences', '489': 'maker', '490': 'ctb_rdkit_descriptors', '491': 'stringtie', '492': 'vcfgenotypes', '493': 'ProteinInference', '494': 'mtbls520_08e_species_features', '495': 'regionalgam_plot_trend', '496': 'cmFinder', '497': 'regionalgam_ab_index', '498': 'w4mjoinpn', '499': 'ctb_remove_protonation_state', '500': 'macs2_callpeak', '501': 'spades', '502': 'extract_element_from_collection', '503': 'IDMapper', '504': 'rgPicardMarkDups', '505': '__ZIP_COLLECTION__', '506': 'seq_composition', '507': 'hisat', '508': 'mass_spectrometry_imaging_mzplots', '509': 'IsobaricAnalyzer', '510': 'cshl_fastx_artifacts_filter', '511': '__BUILD_LIST__', '512': 'rbc_mafft', '513': 'bcftools_view', '514': 'stacks_denovomap', '515': 'TrimPrimer', '516': 'Nucleosome', '517': 'clustalw', '518': 'mothur_venn', '519': 'seq_filter_by_id', '520': 'qiime_make_phylogeny', '521': 'nonpareil', '522': 'snpsift_vartype', '523': 'vigiechiro_bilanenrichirp', '524': 'seurat_find_markers', '525': 'vcfbedintersect', '526': 'staramr_search', '527': 'metaphlan2krona', '528': 'kraken2', '529': 'sklearn_build_pipeline', '530': 'FileInfo', '531': 'valet', '532': 'bamCompare_deepTools', '533': 'je_clip', '534': 'stacks_genotypes', '535': 'react_cal_pipeline', '536': 'remove_tail.py', '537': 'msconvert_nix', '538': 'rarefaction', '539': 'seqtk_trimfq', '540': 'meme_dreme', '541': 'deeptools_plot_fingerprint', '542': 'cummeRbund', '543': 'pipmir', '544': 'rarefaction_analyzer', '545': 'mothur_make_biom', '546': 'cd_hit_dup', '547': 'hcluster_sg_parser', '548': 'metaquantome_expand', '549': 'stacks_populations', '550': 'column_order_header_sort', '551': 'cuffnorm', '552': 'mass_spectrometry_imaging_segmentations', '553': 'mothur_remove_seqs', '554': 'cshl_princeton_fastx_barcode_splitter', '555': 'qiime_align_seqs', '556': 'rawtools', '557': 'egsea', '558': 'methtools_tiling', '559': 'Count1', '560': 'rnaz', '561': 'OpenSwathAssayGenerator', '562': 'GeneModelMapper', '563': 'sm_mapper', '564': 'viennarna_rnafold', '565': 'structure_to_gspan', '566': 'xpath', '567': 'merge_pcr_duplicates.py', '568': '16Sclassifier', '569': 'camera-annotate-peaks', '570': 'hicexplorer_hicplotviewpoint', '571': 'gemini_recessive_and_dominant', '572': 'mtbls520_12_species_marchantia', '573': 'rseqc_junction_saturation', '574': 'deeptools_bamFingerprint', '575': 'eggnog_mapper', '576': 'Show beginning1', '577': 'mothur_count_groups', '578': 'sam_pileup', '579': 'hca_matrix_downloader', '580': 'camera-find-isotopes', '581': 'extract_bcs.py', '582': 'mothur_summary_single', '583': 'tabular_to_fastq', '584': 'numeric_clustering', '585': 'limma_voom', '586': 'Convert characters1', '587': 'mothur_corr_axes', '588': 'vcfsort', '589': 'get_sequences', '590': 'cardinal_preprocessing', '591': 'regionalgam_glmmpql', '592': 'deeptools_plot_heatmap', '593': 'gmx_npt', '594': 'gops_subtract_1', '595': 'bg_sortmerna', '596': 'picard_FixMateInformation', '597': 'mothur_screen_seqs', '598': 'sm_mirdeep2core_without_Randfold', '599': 'snpEff_build_gb', '600': 'sklearn_model_validation', '601': 'gatk2_variant_filtration', '602': 'stoceps_glm', '603': 'blast_reciprocal_best_hits', '604': 'bismark_pretty_report', '605': 'Filter1', '606': 'EMBOSS: wordcount109', '607': 'snippy', '608': 'collection_element_identifiers', '609': 'CONVERTER_interval_to_bgzip_0', '610': 'MapStatistics', '611': 'ssake', '612': 'BAMTagHistogram', '613': 'histogram_rpy', '614': 'smooth_running_window', '615': 'featurecounts', '616': 'picard_CASM', '617': 'vcftools_merge', '618': 'mothur_unique_seqs', '619': 'gbk_to_orf', '620': 'snpeff_to_peptides', '621': 'bundle_collection', '622': 'mycrobiota-split-multi-otutable', '623': 'mothur_seq_error', '624': 'bismark_methylation_extractor', '625': 'mothur_heatmap_sim', '626': 'heatmapper_deepTools', '627': 'smf_utils_find-boxes', '628': 'mummer_nucmer', '629': 'gemini_comp_hets', '630': 'seq_filter_by_mapping', '631': 'get_flanks1', '632': 'snpSift_filter', '633': 'chipsequtil_maptoknowngenes', '634': 'mothur_sub_sample', '635': 'msnbase_readmsdata', '636': 'trinity_contig_exn50_statistic', '637': 'xcms-collect-peaks', '638': 'aragorn_trna', '639': 'ip_filter_standard', '640': 'heinz', '641': 'Grep1', '642': 'ctb_np-likeness-calculator', '643': 'sklearn_svm_classifier', '644': 'dunovo', '645': 'sam_bw_filter', '646': 'fastq_to_tabular', '647': 'flash', '648': 'proteomics_moff', '649': 'aggregate', '650': 'graphlan_annotate', '651': 'gatk2_variant_recalibrator', '652': 'samtools_sort', '653': 'scanpy_run_tsne', '654': 'deeptools_plot_profile', '655': 'uniprot', '656': 'csv_to_tabular', '657': 'intarna', '658': 'metaquantome_viz', '659': 'rbc_splitfasta', '660': 'sklearn_clf_metrics', '661': 'chipeakanno_annopeaks', '662': 'ggplot2_point', '663': 'mothur_lefse', '664': 'bg_uniq', '665': 'Draw_phylogram', '666': 'unipept', '667': '__MERGE_COLLECTION__', '668': 'gatk2_reduce_reads', '669': 'minfi_qc', '670': 'gmx_solvate', '671': 'IDFileConverter', '672': 'quality_metrics', '673': 'nn_classifier', '674': 'samtools_split', '675': 'velvetg', '676': 'xcms-find-peaks', '677': 'umi_tools_group', '678': 'trinity_abundance_estimates_to_matrix', '679': 'DecoyDatabase', '680': 'rna_starsolo', '681': 'secretbt2test', '682': 'picard_BamIndexStats', '683': 'p_clip_peaks', '684': 'CONVERTER_interval_to_bed_0', '685': 'mothur_heatmap_bin', '686': 'msnbase-read-msms', '687': 'varscan', '688': 'gemini_db_info', '689': 'subtract_query1', '690': 'seurat_normalise_data', '691': 'rseqc_infer_experiment', '692': 'bedtools_sortbed', '693': 'Heatmap', '694': 'align_families', '695': 'heinz_visualization', '696': 'tp_replace_in_line', '697': 'tp_sorted_uniq', '698': 'ctb_obgrep', '699': 'term_id_vs_term_def', '700': 'mtbls520_08d_concentration', '701': 'velvetoptimiser', '702': 'cshl_cut_tool', '703': 'replace_chromosome_names', '704': 'ip_threshold', '705': 'mothur_get_oturep', '706': 'rseqc_junction_annotation', '707': 'prepare_box', '708': 'Summary_Statistics1', '709': 'CONVERTER_bam_to_bigwig_0', '710': 'gdal_ogr2ogr', '711': 'gtf2bedgraph', '712': 'mothur_pairwise_seqs', '713': 'bctools_remove_spurious_events', '714': '16Saligner', '715': 'meme_psp_gen', '716': 'sklearn_estimator_attributes', '717': 'htseq_count', '718': 'lca1', '719': 'CONVERTER_sam_to_unsorted_bam', '720': 'find_in_reference', '721': 'mothur_get_groups', '722': 'scanpy_parameter_iterator', '723': 'picard_ARRG', '724': 'bedtools_groupbybed', '725': 'FalseDiscoveryRate', '726': 'sklearn_ensemble', '727': '__TAG_FROM_FILE__', '728': 'pynast', '729': 'Btrim64', '730': 'table_compute', '731': 'clusterprofiler_bitr', '732': 'bowtie_wrapper', '733': 'canu', '734': 'lastz_wrapper_2', '735': 'je_markdupes', '736': 'table_annovar', '737': 'gemini_load', '738': 'IDConflictResolver', '739': 'bcftools_norm', '740': '__FLATTEN__', '741': 'snippy_core', '742': 'diffbind', '743': 'ggplot2_histogram', '744': 'seqtk_subseq', '745': 'ggplot2_heatmap2', '746': 'prepare_receptor', '747': 'feelnc', '748': 'bg_diamond', '749': 'gatk2_realigner_target_creator', '750': 'megablast_xml_parser', '751': 'tp_split_on_column', '752': 'shyft_longitudes', '753': 'ip_binary_to_labelimage', '754': 'ctb_confab', '755': 'mimodd_varcall', '756': 'wig_to_bigWig', '757': 'modencode_peakcalling_spp', '758': 'fasta_filter_by_length', '759': 'ctb_chemfp_nxn_clustering', '760': 'wiggle2simple1', '761': 'extract_aln_ends.py', '762': 'fastq_paired_end_splitter', '763': 'msnbase-filter-merge-msms', '764': 'hgv_linkToGProfile', '765': 'goseq', '766': 'scanpy_normalise_data', '767': 'camera-find-adducts', '768': 'export2graphlan', '769': 'gops_join_1', '770': 'FileConverter', '771': 'prepare_ligands_for_docking', '772': 'CONVERTER_bed_to_bgzip_0', '773': 'mimodd_map', '774': 'smf_utils_estimate-energy', '775': 'mcClust', '776': 'qiime_summarize_taxa_through_plots', '777': 'bgchem_fragment_merger', '778': 'bedtools_mergebed', '779': 'minfi_getsnp', '780': 'ctb_online_data_fetch', '781': 'cardinal_combine', '782': 'ruvseq', '783': 'disco', '784': 'raceid_inspectclusters', '785': 'fraggenescan', '786': 'rseqc_FPKM_count', '787': 'stacks_procrad', '788': 'bctools_extract_crosslinked_nucleotides', '789': 'flanking_features_1', '790': 'gatk2_variant_annotator', '791': 'sample_seqs', '792': 'ctb_subsearch', '793': 'qiime_core_diversity', '794': 'bcftools_filter', '795': 'muscle', '796': 'ctb_spectrophore_search', '797': 'snpSift_int', '798': 'hicexplorer_hictransform', '799': 'TrimByN', '800': 'deeptools_bamCorrelate', '801': 'raceid_inspecttrajectory', '802': 'vcfflatten2', '803': 'CometAdapter', '804': 'uparse', '805': 'umi_tools_dedup', '806': 'mothur_summary_tax', '807': 'melt', '808': 'sqlite_to_tabular', '809': 'samtools_bedcov', '810': 'gemini_windower', '811': 'trinity_align_and_estimate_abundance', '812': 'gmx_nvt', '813': 'rm_spurious_events.py', '814': '__APPLY_RULES__', '815': 'blast_parser', '816': 'camera-prepareoutput', '817': 'ete_homology_classifier', '818': 'CONVERTER_Bam_Bai_0', '819': 'imagecoordinates_flipaxis', '820': 'seqtk_mergefa', '821': 'pileup_interval', '822': 'infernal_cmsearch', '823': 'tp_cat', '824': 'vcfcheck', '825': 'bedtools_bed12tobed6', '826': 'CONVERTER_gff_to_interval_index_0', '827': 'format_metaphlan2_output', '828': 'ctb_remIons', '829': 'seurat_run_pca', '830': 'cshl_easyjoin', '831': 'collection_column_join', '832': 'qiime_pick_otus', '833': 'tophat2', '834': 'qiime_make_otu_table', '835': 'length_and_gc_content', '836': 'mothur_nmds', '837': 'heatmap2', '838': 'meme_fimo', '839': 'clusterprofiler_go', '840': 'scanpy_filter_cells', '841': 'gemini_stats', '842': 'tsne', '843': 'mothur_pre_cluster', '844': 'Extract_features1', '845': 'locarna_best_subtree', '846': 'bg_column_arrange_by_header', '847': 'bwa_wrapper', '848': 'ip_count_objects', '849': 'taxonomy_krona_chart', '850': 'generic_filter', '851': 'docking', '852': 'hmmer_hmmbuild', '853': 'trinity_define_clusters_by_cutting_tree', '854': 'vcftools_compare', '855': 'interproscan', '856': 'Flash', '857': 'ChooseTag', '858': 'fastq_dump', '859': 'IDMerger', '860': 'samtool_filter2', '861': 'seurat_find_variable_genes', '862': 'DatamashTranspose', '863': 'bedtools_genomecoveragebed', '864': 'diffbind-embl', '865': 'EMBOSS: transeq101', '866': 'gemini_inheritance', '867': 'cor2', '868': 'Determine_BC', '869': 'graphclust_aggregate_alignments', '870': 'rgweblogo3', '871': 'mtbls520_19e_seasons_features', '872': 'fasta2tab', '873': 'prinseq', '874': 'vcffixup', '875': 'xcms-blankfilter', '876': 'glimmer_not-knowlegde-based', '877': 'CONVERTER_gz_to_uncompressed', '878': 'crosscontamination_barcode_filter', '879': 'rcas', '880': 'deeptools_correct_gc_bias', '881': 'picard_MergeSamFiles', '882': 'fasttree', '883': 'param_value_from_file', '884': 'fastq_stats', '885': 'ip_convertimage', '886': 'tp_tail_tool', '887': 'qiime_assign_taxonomy', '888': 'vsearch_chimera_detection', '889': 'gatk2_haplotype_caller', '890': 'hicexplorer_hicbuildmatrix', '891': 'mothur_get_seqs', '892': 'column_remove_by_header', '893': 'mummer_dnadiff', '894': 'deeptools_plot_pca', '895': 'ip_2d_split_binaryimage_by_watershed', '896': 'bctools_remove_tail', '897': 'bedtools_intersectBed', '898': 'calc_fitness', '899': 'checkFormat', '900': 'smf_utils_extract-boxed-sequences', '901': 'cshl_fastx_quality_statistics', '902': 'msconvert', '903': 'mass_spectrometry_imaging_combine', '904': 'wolf_psort', '905': 'msconvert_win', '906': 'mlst', '907': 'keras_model_builder', '908': 'computeMatrix', '909': 'fasplit', '910': 'wtdbg', '911': 'rseqc_read_distribution', '912': 'metaspades', '913': 'ProteinQuantifier', '914': 't2t_report', '915': 'viennarna_rnaplot', '916': 'peakcalling_macs', '917': '_ensembl_gtf2gene_list', '918': 'ctb_ob_genProp', '919': 'fastqc', '920': 'psy_maps', '921': 'PicardInsertSize', '922': 'scatterplot_rpy', '923': 'mtbls520_08b_species_unique', '924': 'flexbardsc', '925': 'idpquery', '926': 'tag_stat2', '927': 'nspdk_sparse', '928': 'fastq_to_fasta_python', '929': 'rseqc_insertion_profile', '930': 'wc_gnu', '931': 'humann2_renorm_table', '932': 'umi_tools_extract', '933': 'naive_variant_caller', '934': 'get_feature_info', '935': 'fgsea', '936': 'gatk2_indel_realigner', '937': 'XY_Plot_1', '938': 'graphicsmagick_image_convert', '939': 'bandage_info', '940': 'scanpy_compute_graph', '941': 'trimmomatic', '942': 'heinz_scoring', '943': 'mothur_dist_seqs', '944': 'Add_a_column1', '945': 'tp_uniq_tool', '946': 'gemini_actionable_mutations', '947': 'Interval_Maf_Merged_Fasta2', '948': 'mtbls520_16_ecology_rda', '949': 'sed_stream_editor', '950': 'blastxml_to_top_descr', '951': 'FeatureFinderCentroided', '952': 'peptide_shaker', '953': 'snpEff', '954': 'Paste1', '955': 'stoceps_filteringsp', '956': 'methtools_destrand', '957': 'scanpy_scale_data', '958': 'ctb_remDuplicates', '959': 'abims_xcms_summary', '960': 'raceid_filtnormconf', '961': 'ctb_remSmall', '962': 'blockbuster', '963': 'ggplot2_heatmap', '964': 'cshl_fastx_clipper', '965': 'OpenSwathDecoyGenerator', '966': 'retrieve_scxa', '967': 'ia_coordinates_of_roi', '968': 'velvet', '969': 'ncbi_blastp_wrapper', '970': 'cshl_fastx_collapser', '971': 'eden_sequence_converter', '972': 'humann2', '973': 'w4mclassfilter', '974': 'quast', '975': 'Digestor', '976': 'FeatureFinderMultiplex', '977': 'peakcalling_macs14', '978': 'rsem_prepare_reference', '979': 'bcftools_plugin_counts', '980': 'EMBOSS: seqret84', '981': 'prepare_ligand', '982': 'mothur_unifrac_unweighted', '983': 'TextExporter', '984': 'viz_overlay_moving_and_fixed_image', '985': 'antismash', '986': 'fastq_combiner', '987': 'mothur_chimera_vsearch', '988': 'mothur_make_contigs', '989': 'snpSift_extractFields', '990': 'unicycler', '991': 'samtools_flagstat', '992': 'IDPosteriorErrorProbability', '993': 'fastq_trimmer', '994': 'deeptools_compute_gc_bias', '995': 'picard_FilterSamReads', '996': 'ucsc-twobittofa', '997': 'ctb_chemfp_butina_clustering', '998': 'trinity', '999': 'pureclip', '1000': 'TrimByLength', '1001': 'spocc_occ', '1002': 'sam_to_bam', '1003': 'tp_sort_header_tool', '1004': 'volcanoplot', '1005': 'sam2interval', '1006': 'FileFilter', '1007': 'gff2bed1', '1008': 'humann2_unpack_pathways', '1009': 'ctb_shapeit', '1010': 'rgPicFixMate', '1011': 'FROGS_affiliations_stat', '1012': 'EMBOSS: fuzzpro38', '1013': 'CONVERTER_bed_to_gff_0', '1014': 'maxquant', '1015': 'rseqc_bam2wig', '1016': 'hisat2', '1017': 'query_tabular', '1018': 'Grouping1', '1019': 'mtbls520_07_species_diversity', '1020': 'DatamashOps', '1021': 'gemini_query', '1022': 'fastq_groomer', '1023': 'qiime_validate_mapping_file', '1024': 'mtbls520_04_preparations', '1025': 'Remove beginning1', '1026': 'ip_2d_feature_extraction', '1027': 'bamCoverage_deepTools', '1028': 'sklearn_numeric_clustering', '1029': 'graphlan', '1030': 'vegan_rarefaction', '1031': 'ctb_sdf2fps', '1032': 'msconvert3_raw', '1033': 'bedtools_intersectbed_bam', '1034': 'bed_to_protein_map', '1035': 'ctb_multi_obgrep', '1036': 'gmx_merge_topology_files', '1037': 'graphclust_align_cluster', '1038': 'comp1', '1039': 'ctb_ob_addh', '1040': 'Remove_ending', '1041': 'get_child_terms', '1042': 'picard_CleanSam', '1043': 'gmx_em', '1044': 'sort1', '1045': 'tophat_fusion_post', '1046': 'metfrag-cli-batch-multiple', '1047': 'glob_report', '1048': 'bismark_bowtie2', '1049': 'seurat_create_seurat_object', '1050': 'bam_to_bigwig', '1051': 'regionalgam_autocor_acf', '1052': 'meme_chip', '1053': 'rseqc_mismatch_profile', '1054': 'SequenceCoverageCalculator', '1055': 'iReport', '1056': 'rnafold', '1057': 'CONVERTER_gff_to_bed_0', '1058': 'deeptools_computeGCBias', '1059': 'group_humann2_uniref_abundances_to_go', '1060': 'w4mclstrpeakpics', '1061': 'miniasm', '1062': 'eden_vectorizer', '1063': 'hicexplorer_hicplottads', '1064': 'mtbls520_19a_seasons_shannon', '1065': 'deeptools_bamCompare', '1066': 'CONVERTER_bed_gff_or_vcf_to_bigwig_0', '1067': 'sklearn_feature_selection', '1068': 'sailfish', '1069': 'mothur_make_shared', '1070': 'megablast_wrapper', '1071': 'datamash_transpose', '1072': 'mimodd_varextract', '1073': 'cardinal_quality_report', '1074': 'tables_arithmetic_operations', '1075': 'FROGS_filters', '1076': 'cshl_find_and_replace', '1077': 'multiqc', '1078': 'datamash_reverse', '1079': 'openms_protein_quantifier', '1080': 'vigiechiro_idcorrect_2ndlayer', '1081': 'vcftools_annotate', '1082': 'barchart_gnuplot', '1083': 'cshl_multijoin', '1084': 'bedtools_coveragebed_counts', '1085': 'ctb_silicos_qed', '1086': 'seurat_find_clusters', '1087': 'genomespace_exporter', '1088': 'tab2fasta', '1089': 'gatk2_print_reads', '1090': 'proteomics_search_protein_prophet_1', '1091': 'bedtools_bamtobed', '1092': 'pygenomeTracks', '1093': 'samtools_slice_bam', '1094': 'bedtools_shufflebed', '1095': 'samtools_stats', '1096': 'RNAlien', '1097': 'picard_EstimateLibraryComplexity', '1098': 'gffcompare_to_bed', '1099': 'dexseq', '1100': 'deeptools_alignmentsieve', '1101': 'vegan_diversity', '1102': 'mothur_chimera_uchime', '1103': 'bedtools_multiintersectbed', '1104': 'blastxml_to_tabular_selectable', '1105': 'gff_to_sequence', '1106': 'igvtools_count', '1107': 'keras_model_config', '1108': 'cummerbund_to_cuffdiff', '1109': 'bedtools_map', '1110': 'dbbuilder', '1111': 'pileometh', '1112': 'flye', '1113': 'ucsc_cell_browser', '1114': 'cshl_fastx_renamer', '1115': 'ctb_simsearch', '1116': 'uchime', '1117': 'preMloc', '1118': 'rna_star', '1119': 'ctb_opsin', '1120': 'resistome_analyzer', '1121': 'mothur_cluster', '1122': 'Datamash', '1123': 'metaquantome_filter', '1124': 'samtools_idxstats', '1125': 'deeptools_bam_coverage', '1126': 'ctb_alignit_create_db', '1127': 'bed2gff1', '1128': 'gops_intersect_1', '1129': 'umi_tools_count', '1130': 'bctools_extract_alignment_ends', '1131': 'mothur_make_design', '1132': 'gops_cluster_1', '1133': 'selectsequencesfrommsa', '1134': 'samtools_mpileup', '1135': 'cardinal_mz_images', '1136': 'gffcompare', '1137': 'cshl_fastx_trimmer', '1138': 'megahit', '1139': 'racon', '1140': 'bedtools_multicovtbed', '1141': 'picard_CollectRnaSeqMetrics', '1142': 'create_or_update', '1143': 'Batch_correction', '1144': 'edger', '1145': 'fastq collapser', '1146': 'ChangeCase', '1147': 'term_id_vs_term_name', '1148': 'varscan_copynumber', '1149': 'tp_awk_tool', '1150': 'ctb_change_title', '1151': 'cshl_awk_replace_in_column', '1152': 'ctb_stripit', '1153': 'FidoAdapter', '1154': 'PicardASMetrics', '1155': 'regex1', '1156': 'hicexplorer_hicpca', '1157': 'mtbls520_18_phylogeny', '1158': 'varscan_mpileup', '1159': 'vcfselectsamples', '1160': 'fastq_manipulation', '1161': 'qiime_split_libraries_fastq', '1162': 'flashlfq', '1163': 'ggplot_point', '1164': 'ctb_ob_svg_depiction', '1165': 't_coffee', '1166': 'picard_MarkDuplicates', '1167': 'msgfplus', '1168': 'gatk_indel_realigner', '1169': 'MapAlignerPoseClustering', '1170': 'PlasFlow', '1171': 'modencode_peakcalling_macs2', '1172': 'picard_NormalizeFasta', '1173': 'rseqc_bam_stat', '1174': 'bedtools_bamtofastq', '1175': 'metaphlan2', '1176': 'mtbls520_19b_seasons_unique', '1177': 'augustus', '1178': 'GeMoMa_Annotation_Filter', '1179': 'signalp3', '1180': 'EMBOSS: tranalign100', '1181': 'scaffold2fasta', '1182': 'CONVERTER_bam_to_coodinate_sorted_bam', '1183': 'kallisto_quant', '1184': 'FROGS_remove_chimera', '1185': '__EXTRACT_DATASET__', '1186': 'filter_bed_on_splice_junctions', '1187': 'xcms-group-peaks', '1188': 'dt_profiler', '1189': 'ip_landmark_registration', '1190': 'mycrobiota-correct-replicates', '1191': 'mothur_tree_shared', '1192': 'samtools_flag_filter', '1193': 'cshl_fastx_reverse_complement', '1194': 'FeatureLinkerUnlabeledQT', '1195': 'prokka', '1196': 'methtools_plot', '1197': 'cshl_fastx_barcode_splitter', '1198': 'FROGS_clustering', '1199': 'regex_replace', '1200': 'replace_column_with_key_value_file', '1201': '__RELABEL_FROM_FILE__', '1202': 'gatk_unified_genotyper', '1203': 'deeptools_multi_bigwig_summary', '1204': 'ip_2d_filter_segmentation_by_features', '1205': 'tp_multijoin_tool', '1206': 'kraken', '1207': 'paralyzer', '1208': 'pathview', '1209': 'thermo_raw_file_converter', '1210': 'deeptools_compute_matrix_operations', '1211': 'vigiechiro_bilanenrichipf', '1212': 'piranha', '1213': 'fastq_filter', '1214': 'mtbls520_06_import_traits', '1215': 'abims_CAMERA_annotateDiffreport', '1216': 'ip_imageinfo', '1217': 'EMBOSS: extractseq35', '1218': 'augustus_training', '1219': 'compose_text_param', '1220': 'mothur_split_abund', '1221': 'predict_pipeline', '1222': 'freebayes', '1223': 'deeptools_bigwigCompare', '1224': 'plotly_parallel_coordinates_plot', '1225': 'xcms_plot_chromatogram', '1226': 'bigwig_to_bedgraph', '1227': 'humann2_regroup_table', '1228': 'cuffdiff', '1229': 'vigiechiro_idvalid', '1230': 'gmx_md', '1231': 'bam_to_sam', '1232': 'bedtools_genomecoveragebed_histogram', '1233': 'tp_cut_tool', '1234': 'Extractor', '1235': 'picard_ReorderSam', '1236': 'blastxml_to_tabular', '1237': 'gafa', '1238': 'picard_CollectWgsMetrics', '1239': 'mtbls520_08c_species_variability', '1240': 'iframe', '1241': 'deeptools_compute_matrix', '1242': 'mothur_remove_groups', '1243': 'w4mcorcov', '1244': 'CONVERTER_bedgraph_to_bigwig', '1245': 'snpSift_dbnsfp_generic', '1246': 'MSGFPlusAdapter', '1247': 'bedtools_annotatebed', '1248': 'bedtools_subtractbed', '1249': 'rbc_mirdeep2_quantifier', '1250': 'correctGCBias', '1251': 'raceid_trajectory', '1252': 'deeptools_multi_bam_summary', '1253': 'bedtools_intersectbed', '1254': 'iqtree', '1255': 'trinity_run_de_analysis', '1256': 'tabular_to_csv', '1257': 'deeptools_computeMatrix', '1258': 'cat1', '1259': 'fastq_paired_end_interlacer', '1260': 'ctb_rdkit_describtors', '1261': 'cshl_fastq_quality_boxplot', '1262': 'join1', '1263': 'ctb_compound_convert', '1264': 'bwa_mem', '1265': 'ip_histogram_equalization', '1266': 'rseqc_inner_distance', '1267': 'bwameth', '1268': 'NSPDK_candidateClust', '1269': 'hicexplorer_hicplotmatrix', '1270': 'gff_filter_by_attribute', '1271': 'ctb_alignit', '1272': 'ip_projective_transformation_points', '1273': 'get_pdb', '1274': 'dexseq_annotate', '1275': 'mtbls520_19d_seasons_concentration', '1276': 'bedtools_getfastabed', '1277': 'bcftools_stats', '1278': 'MzTabExporter', '1279': 'porechop', '1280': 'mothur_pcoa', '1281': 'NFS_transfer'}\n" + "ename": "ModuleNotFoundError", + "evalue": "No module named 'numpy'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mjson\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mwarnings\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0moperator\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'numpy'" ] } ], @@ -287,7 +291,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.7.3" } }, "nbformat": 4, diff --git a/output_files/paper_plots_dense_cnn_rnn.py b/output_files/paper_plots_dense_cnn_rnn.py index 3646298..c54afcd 100644 --- a/output_files/paper_plots_dense_cnn_rnn.py +++ b/output_files/paper_plots_dense_cnn_rnn.py @@ -179,7 +179,6 @@ def assemble_usage(): usage_top1 = list() usage_top2 = list() usage_top3 = list() - print(approach) for i in range(1, runs+1): path = base_path + approach + 'run' + str(i) + '/' usage_path = path + 'usage_weights.txt' @@ -188,7 +187,6 @@ def assemble_usage(): usage_top1.append(top1_p) usage_top2.append(top2_p) usage_top3.append(top3_p) - print(i) except Exception: continue mean_top1_usage = np.mean(usage_top1, axis=0) @@ -221,7 +219,7 @@ def plot_accuracy(ax, x_val1, y1_top1, y2_top1, x_val2, y1_top2, y2_top2, x_val3 def assemble_accuracy(): fig = plt.figure(figsize=fig_size) - fig.suptitle('Precision@k for multiple neural network architectures', size=size_title + 2) + fig.suptitle('Mean precision@k for multiple neural network architectures', size=size_title + 2) for idx, approach in enumerate(all_approaches_path): if idx == 0: ax = plt.subplot(gs[0,0]) diff --git a/output_files/plots_paper_presentation.ipynb b/output_files/plots_paper_presentation.ipynb deleted file mode 100644 index 12ceaf0..0000000 --- a/output_files/plots_paper_presentation.ipynb +++ /dev/null @@ -1,490 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "import json\n", - "import warnings\n", - "import operator\n", - "\n", - "import h5py\n", - "from keras.models import model_from_json\n", - "from keras import backend as K\n", - "from keras.utils import get_custom_objects\n", - "\n", - "from matplotlib import pyplot as plt\n", - "import matplotlib.gridspec as gridspec\n", - "\n", - "warnings.filterwarnings(\"ignore\")\n", - "\n", - "base_path = 'data/'\n", - "\n", - "all_approaches_path = ['deep_network_bc/', 'cnn_bc/', 'rnn_bc/', 'rnn_custom_loss/']\n", - "\n", - "titles = ['(a) Deep network', '(b) CNN', '(c) RNN', '(d) RNN with weighted loss']\n", - "\n", - "font = {'family': 'serif', 'size': 14}\n", - "\n", - "alpha_fade = 0.1\n", - "fig_size = (12, 12)\n", - "\n", - "plt.rc('font', **font)\n", - "\n", - "size_title = 18\n", - "size_label = 16\n", - "runs = 10\n", - "n_epochs = 10\n", - "\n", - "def read_file(path):\n", - " with open(path) as f:\n", - " data = f.read()\n", - " data = data.split(\"\\n\")\n", - " data.remove('')\n", - " data = list(map(float, data))\n", - " return data\n", - "\n", - "\n", - "def extract_precision(precision_path):\n", - "\n", - " top1_compatible_precision = list()\n", - " top2_compatible_precision = list()\n", - " top3_compatible_precision = list()\n", - " with open(precision_path) as f:\n", - " data = f.read()\n", - " data = data.split(\"\\n\")\n", - " data.remove('')\n", - " data = data[:n_epochs]\n", - " for row in data:\n", - " row = row.split('\\n')\n", - " row = row[0].split(' ')\n", - " row = list(map(float, row))\n", - " top1_compatible_precision.append(row[0])\n", - " top2_compatible_precision.append(row[1])\n", - " top3_compatible_precision.append(row[2])\n", - " return top1_compatible_precision, top2_compatible_precision, top3_compatible_precision\n", - "\n", - "\n", - "def compute_fill_between(a_list):\n", - " y1 = list()\n", - " y2 = list()\n", - " a_list = np.array(a_list, dtype=float)\n", - " n_cols = a_list.shape[1]\n", - " for i in range(0, n_cols):\n", - " pos = a_list[:, i]\n", - " std = np.std(pos)\n", - " y1.append(std)\n", - " y2.append(std)\n", - " return y1, y2" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvYAAAMbCAYAAAAmTNHIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXl8FEX2wL+PgOEOIAgCSrhPOSQooJABRFddAY8VEHFBxRsRUUFRwVvWC1xdRF1FEVS8gEVdQCHeq+CtgD+uIHKLAiFACMn7/VE9yaQzOSYHgeF9P5/+zEz1q6rXNd2vX1e9qhZVxTAMwzAMwzCMI5tyZa2AYRiGYRiGYRjFxxx7wzAMwzAMw4gCzLE3DMMwDMMwjCjAHHvDMAzDMAzDiALMsTcMwzAMwzCMKMAce8MwDMMwDMOIAsyxN4wiIiK1ReQeEVkqIn+KyAER2SwiH4jIBBHpXNY6Hs6IyAARmSgiNcpal9JGRJJFRL1telnrc6gRkfe8NqjjS4/3zoFAmDzPhLRZcgnpcZOI3FQSZUVQZxsR2SYiU0uovLBtaRSd0jjXDKOsMMfeMIqAiJwLrAZ6AbcD8cCxwJnAt8A4YJmIvFBWOh4BDAAmAFHv2KtqPNC4rPUoQxoDxwFVfOnxuHMg4M+gqteoqgDrS1CPm7ztUFIDqIU71pIgr7Y0ikgpnWuGUSaUL2sFDONIQ0R6A3OBhUA/VT0YsvtH4FYRWQq8jruhG8bRzslAJVX9o6wVOdSo6uciUh/4s4SKPGrb0jCMgrEee8OIABGJBV72fl7jc+qzUNXZwGeHTDHDOIxR1X1HsyOqqttUNb2Eyjqq29IwjPwxx94wImMQ0AD4SFV/LUD2fuA/wR8isj8kjnOiiJwpIp+LSKo/tlNEynvxwN+JyD4R2SUii0XkHH8lIhIjIteJyLcisltEtovIZyIyTkQa+GTPEpEPvZjfFBH5XkQeF5GOYcptIyKvebJpIrJaRCaJSJxPzn9c54jIMi99k4g8KCLlQuQDIqLA372kdaH5S6utvHI0ZKsvIjNEZKtX3/ciMtSvp2+bGLI/NG5e8zgHCo2I/F1E/icie7ztCxG5LA/Zwd7+P8TN71gqIveJSHOf3KkiMs/7H1JF5GcRmSYiPQqhT5L/+H37V4nIO760UPmkMG0YCJFNBpZ4PyeEyCTnoU8973z80zuW90WkSUHH4eWd6OnfCGjk10lEuvrSeonIjSKyQtzcmay5ESLSUkQeFpFvRGSniOz1vl8jIuKrd3q44/KOJbS+YSJymYgsF3etJYtvLkABbflfX7u3EBeLn+JdD6+LSO082uY8EfnSu3b+EJF3vPwRzwsRkVri7Mk67zi2iMjMMOdljrLF2YzPvfN+t4jMFZGWedTR1jsPtnp1rBWRx0Qk7OioiLQWkVcl+zpfIyLzReQKEamUR55CnWsi0lDc9bTWa7+1IvKWiAwUEYuIMMoGVbXNNtsKuQGzAAUeLmL+gJf/Q+B9oDVQDZgJJHsyMcB84AAwAqgK1AOe8vKO8ZX5GJCOc5SrAzWBa4CDwMQQuX5e/ie88irj5gRsApJ8ZSYCqcBXQFsgFvgLsA34HqiSz3G9BjQBagOPe+m3hGmL6d6++EPVVl6eJG/fN8Bgrx1OAN7w0keHyAqwDtgP1ApT1kPAK4X87+O98qeH2TfV2zfe+/9qAnd6af/0yY700m/DhXpVA/4GpISWDXT22uVVnENbEegGLA+2XyF0viGPc66tl74HqOjb96r//wYmevKBPP7jifnokOydo//FzWmpBpwF7AR+jPD6S87v2EP0XAj8A/cQ3xD4Odi23rn1J9DfO9/qAFcBacAjkdQLDPPqWwRMAeoDx+OuIQUuykfHQJh9igsH/ABI8NpqCM4+zA8jPwTIxF1jzXHX+Tne8f5R2PPEK6sesArY7v0/sUA74EuvvU7K43pYBXwOnOTlCQC/Ab8DzXx5euHs0kdAK0++tye/Gqgbxo7t8eRb466Bk3GjqQoMKOq5hpvjsB74Aejkld0MeId87JpttpX2VuYK2GbbkbQBX3tG+4Yi5g94+f8Eqoakd8Jz4IBRnsyDYfJ/jnPYO4Sk/QEsCyM7g5yO/dteuVV9clcQ4th7N6iNQAbQ3Cd7uVfGA3kc13bgmJD08sBu4Lsw+k3P7wZYGm3lpSd5ee7xpcd6x50GNAxJH4/P4ffSKwBbgJ6F/O/jCePY4xxEBWaFyfOqt++vIWnfAL+Hkb2PnI598KGqnU+uD4V37E/wyvjYlz4e97Dj160CzgnynzcTKZ5jr8AFvvTgw1vHCK6/5PyOPUTPD3zpQ4Brve/jcGF4/rxP4BzouoWtl2zH/ntfel0vfU4+OgbC7FNvO9mX/h7Oga8Vklbd+692AzV98iO8cgp1nnh53vLyXO5Lb+bV/Vke10MGuR34v3r73gtJq4hzulOAY33yZ3nyb/rkN3rHV8snf7z3X4Vz7At1rpHdUXKDT7YyzobEF7btbLOtJDcLxTGMyKjufe4rZjnvq+qe4A9V/VZVR3o/r/E+Xw2T7zVcL/XVIWkKtBKRDj7ZUcCTPjlw4UShzMI5LkH64XoOP1LVVT7Z173PYWF0A/ivqh7IqtDNQViF6w0sKiXZVqG8HvpDVdOAOcAx5GyjF3APCFf58vcH/lTVjwtzEPmQ3zEE064LVRWoJSJ9fbL/wPXih8oBXOwLEfkI15NZIKq6Afcg0d0XytEfmBTyPUgA2BTmvCkumYSEtXn84n0W59zKi9mhP1R1pqpO9b4/rKrPhMnzI+5B9tQi1DfPV99W3AN7UY7tN1X9xpe2Ajf61DQkrT8QByxUVf/E3nDnYp6ISD3gfJxD+0roPlVdDSzDnUPhjudrTyaU93EO+V9E5LgQfY/39N3hk18I7AAu8HSBbDu2UH1zElR1My5UMjmMPoU914LX119FJGuFIlXdC7TAjSIYxiHHHHvDiIxd3mfY2MwI2BAuUUSq4YaYAVaGEQmmdQlJewI3LPy1iLwrIkNFpIaq/uG7of0LF5rxnLgY+JtFJF7dZLyNIXKneJ/f+StX1VScw1FfRI4Po9+mMGl7cL1YRaUk2yqUcHMkgjfwrDkHnhMwH/fwFOoQXwU8l0fZkRDUr7DHMMX7XODFU18jInVVNUVVt4XI/RvXu3kXsEJE7hSR1qp6UFUjWdZvLu4B6TwAcfM2muHCkH4HzpPsORT9PfmS5nfNPfk0+LBXnHMrL8Kec+Am0IvIDeLmNeyQ7PkH//ZEahahvpK8bvIqC195nbzPX3yyeA/SkUzQTcA9OCwPfbAPYUOInJ9c16GqZgBrvDLbe8l5XieqqsD/efKdffK5js/Lc4+q5rJxFP5cWwT8hBstWCciT4pIooiUU9X1msfCCoZR2phjbxiR8X/eZ8NilpNXj39wRCA9zM0FXHwphKz9rqr349aE/ww4G7dqzyZxL12pFiL3Ic5pfx0X+/oYsNabeNcipI7g5NjRvsl6QQcmOEmtbiGPS8OkRUKJtVUOpUJGAcLkifOlP+t9XgUgIo2B04GX8tAtEoJ1pYbZF+7/fhnXM/6+p8NU4Ddvsl+9ELnluAeU53A9l/cBy71JisGHt8Iwx/sM9sz3Axao6n5ciEddsnup++HrfS4h8juvJMy+0qgPb+RjHvBPXBx7e6CcujXQhxdDn7yOryTLwlde8PoJd96BeygsLMFzuFMeNuMCb384mxHuOgzVK873mZe+/mulhi+9sBSq/bzzvzsuNCoNN/clCVgteUx6N4xDgTn2hhEZ73ufBTpGIlJd3NtpI7k57/Q+K4hIhTD7g0O+OYbOVXWuqibiJknehot1vxo3kStU7ntVHYR7wc1luIltZwGfhqwqEdThAVWVfLZwvV2HkiK1VRARqZpPnl2+9AW4iXIXisixuBjkOWFCAopC8DjCvXAor//7Y1U9Fzdh8TrcA+dAYEloW6jqWlW9Cvd/X+gdRzfgIxFpVhjlVPUH3ATiM0WkMjl75YNOfH8RORkXxvRlYco9QumG9xI6Vb1dVTd6vcVHIsFzPK8XXVXLIz0cwXP4swJsxuQwecNdh6F6BfXM7zoJTQ9eKwXJFxtvlOwe4ESgB/A8rtPnJRG5tLTqNYz8MMfeMCLjdZyD11NEGuUl5MVcrsP1bBb6xu+Fuiz3frYOIxJM+yqkrgHBUAhV3aCqjwAdcGESfUSkhid3ejBeVVV3q+oMXI/TItzKHj29IoOOWXwex3aCuGUzi9tTWiyHqCht5ePEMGnB0J5vfXVl4kItYnFO/XCye/GLS1C/wv7fZwYfSlT1dy/2uxOuLVrhVqxBRE4WkXhPbr+qvq2qf/GOoyJugmJhmYsLP7sQN0oQfMBdgOut7I/rrf+P11aF5VA7xcWtL977DDeHoLjheYeaYBx+K/8O7/yK5OV6S3Gx6fHhdopIFRH5i/dQ7CfXdSgiMWRPuv3eS87zOvHsXwtPfplPPtfxeXmGSciSoZEiIieKSAK4UCBV/VRVR+AWGAC4qKhlG0ZxMMfeMCLAix+9FLeSw1TvBhSO+3GxtncVoZqp3ufgMPsG4W5eoU7lO0CONZ9VdScu1vYgbvWHoE4X+uQUN7EOsoeg/4Ob+NVPRMLFC/8LGFsCPZXBnrWKACIySES+iLCMSNvKvz8LcS8f649zVF8LI/9v3P8+AditqkkR6poXBR1DqAy448mxDr13XgYnIAb/xxuBa8OU+bNPrjAEw3EmAV+o6i6v3j24tehb4cKUIo2v958DFUXkJxHpE2E5kdRXMfhD3PrnT+Yj7ycYD94uzIPt6cVV7hAzD9er3TfMdR7uXMwTb27HW0ADETkjjMg1uE6RtDD7OocZPToHN2LwnqpuD9F3o6ev/wGhL3As8HbIPJNQ+RwPKV59L5AdjlQUegNPh0kvyvVlGCWGOfaGESGq+imud/JUYLGInOGF3VQTkVNE5FXcijTXqup7RajiX7ib0hgRGeH1dtUVkaeArjin+gdfnhdEpIuIVBKROiJyKy7+93mvZzvIBHEvpInz9O2HC8n5Ae9lQd7qMINx8aT/Fffynioi0lhEpuIcmNFFOC4/wZ61Pt5cgGGEv/HnR1HaKkgncS96qiQiDXGredT38mz0C6vqJuBdnGNYEpNmg+XOxy2nN0hExotITRGpISLjcY79U6r6ri/bZHEvLKrqyQ7DvWfgv6oaOlnwBhG5VNyLgyqLm/x7E+6h740I1PwUt+rI8eSOoQ/+ro6LO4+E1TjnsrvXS3wJ7iEhOcJyCssy4DgRaS8iJ+LO80gmiX6O6wluAzwpIsd7bTuG3KtNHdaoagoujKsq8IaINBM3MfgcXOfF1giLvAEXEjZDRC7wzuM6InID8AAwKo95LUuBZ0WknYgc452jU3Ejjlkv6fLs0iU4u/S2iLTy5HvjHrrXeDr45ct58q29B8euuIeQ93CT4ovDKSLykLgXVcWKSBvc6lTphHf6DaP00cNgzU3bbDsSN1wP0T24sI0U3IozybjJq13CyCeTvc50cJueR9kxuIeD73A9P7txjve5YWTPxq1Z/wtuotgOXDjNlUBMiFx73ITZ73HOzB5c+MZ9+Nax9uRb4pzdLTiHex1u7fkWhTiueLLX6A57vLilAZ/yys96iUxptpUnn+SVV82rf7N3fD8Alxbwn1/gydaO8FwJdzzDfDJDgS+8/zAV+B9wWZiyTgOewfUM7sbFIH8H3AJUCpFrCtyLc2a3A3txjtcUoH4Rzvfpnt6NfOkNvPR3wuQJhDlu9cn0887DfcBa4EovfWKYvBO9ffmWmc8x1Mc5cztx18lM7zyID1em/z/yyojDrUS1xjsXNuIe9Mb59Qlps1zncV7HkNdx59eWedQzLI/jSvYdzzk4e7HfO09m4Ca5/gb8X4TnSA3cqM5qr2024172dEYY2aBu03Fzlj7E2dHduJGfFnnU0QY3orYNZ3PX4d7ZkOsFciHyr+IeVPbjVtW5G6gcIhO2zQv4n2oA1wOLvbbajxvReRNIiPT6ss22ktpE9VCHOBqGYZQdIpIEJKpbySTSvBOBVuomIBtGVOKFGO4HPlHV3qVURzzOKX9JVYeVRh2GcTRioTiGYRh5ICLNRaS+9708rhd0WpkqZRglhBdGMiLMrrNwI2rFDVUxDOMQU76sFTAMwziMuRqoKyJX4eJ9t6vqkjLWyTBKiuOBq0RkCy5ErTxuYvbTwNfknLRtGMYRgPXYG4ZxVCAiE8W9LCfR+61eWE5+rMPFIP+JWzFnSKkqaRiHlqdxMeH/wMWJbwEewcXZB1S1VFZ2EZFk3LUF8HfvWhxWGnUZxtGGxdgbhmEYhmEYRhRgPfaGYRiGYRiGEQWYY28YhmEYhmEYUYA59oZhGIZhGIYRBZhjbxiGYRiGYRhRgDn2hmEYhmEYhhEFmGNvGIZhGIZhGFGAOfaGYRiGYRiGEQWYY28YhmEYhmEYUYA59oZhGIZhGIYRBZhjbxiGYRiGYRhRgDn2hmEYhmEYhhEFmGNvGIZhGIZhGFGAOfaGYRiGYRiGEQWYY28YhmEYhmEYUYA59oZhGIZhGIYRBZhjbxiGYRiGYRhRgDn2hmEYhmEYhhEFmGNvGIZhGIZhGFGAOfaGYRiGYRiGEQWYY28YhmEYhmEYUYA59oZhGIZhGIYRBZhjbxiGYRiGYRhRgDn2hmEYhmEYhhEFmGNvGIZhGIZhGFGAOfaGYRiGYRiGEQWYY28YhmEYhmEYUYA59oZhGIZhGIYRBZhjbxiGYRiGYRhRgDn2hmEYhmEYhhEFmGNvGIZhGIZhGFGAOfaGYRiGYRiGEQWYY28YhmEYhmEYUYA59oZhGIZhGIYRBZhjbxiGYRiGYRhRgDn2hmEYhmEYhhEFmGNvGIZhGIZhGFGAOfaGYRiGYRiGEQWYY28YhmEYhmEYUYA59oZhGIZhGIYRBZhjbxiGYRiGYRhRgDn2hmEYhmEYhhEFmGNvGIZhGIZhGFGAOfaGYRiGYRiGEQWYY28YhmEYhmEYUYA59oZhGIZhGIYRBZhjbxiGYRiGYRhRgDn2xiFFRKoXMV+1ktbFMAzDOPIpxn2lkoiUL2l9DKMsMcfeOCSISDkRuQ94tIhFLBGRCyKo724R2SIiGd62RUS2ish2EflBRJ4UkdZF1MUoA0TkOe//UxGZWNb6GIZRtvjvKyIyPMTuJxWiiPrA1yLSpoj1dxGRV0Qk2bu/7BSRZSIyRUT6ikg5Ty7e02uXZ79eyKO8KSH6/+F9jxGRS7zv+7z8l+WRf2mIjdwiInOLclzGkY059sah4p9AH2BMEfNfBjwjIhcVRlhV71XVesAGYIOq1lPVukBd4EqcQf9ZRO4RESmiTlGDiAS8m8GwstYlL1R1BNClrPUwDOOwIcd9RVVfDLH7BaKqa4AHgY9FpHkkFYvI3UAS8D+gnXd/OR54COgPLAQmefUke3qN8rIPF5ELw+gzKkT/C7z7VoaqzvLSXw8et4g0DpO/C56N9PL2j+SYjOjAHHuj1BGRc4BrgCtVNaUoZajqcuA+4HkROa6ouqhqpqp+paoXAQ8DdwN3FrU8wzAM49BTEvcVAFV9HfgImF7YTh4RuRq4Bxiuqk+p6h6vrH2q+hZwLrAfqBAm+yYgHXhWRBoUQeVkoDowQ0RiipDfiHLMsTcOBROA9zznvDg8632Oyleq8NwFLAfuFpEmJVSmYRiGUfqU1H0F4B9Ad+CMggRFJM6T/1ZVZ4eTUdWfgffyKGIVMB6oRQQPEyG8BLwLnAbcEWFe4yjAHHujVPEc5lOAD8PtE5HJIrLCiwf8Q0TeE5FO4cpS1TTgE2BwSeimqhnAi0B5YJhPtxYiMltEfvf0Wi4it4XrIfHiH5d5cn+IyEIR6RGy/wzv+A54sZg9ReRzL+13EXlaRKoWpK+I/BwSo/kXb57AehHZISJviEjtMHniRORxEdng6bbBq+/YEJnngLe9n8EYzy0icpmIzAiJ69wiImND8r0mIktDfp8cEh+6XURaeukiIteLm9uw1ZOZLSItQvK29MWQNhSRt0Vko/c7KZ92+UFE9orIfq+MvxbUloZhHLnkd1/xyfUWkS89u7NJRO6X8JNllwK7gUsKUf1FuB7z/xQgNwqYkse+R4FFuAeJ0YWo089wYAuuU+qUIuQ3ohlVtc22UttwsfEK/CXMvhtww5Ineb9rAK8CKUCTPMr7h1dew0LWnwwk57O/p1fehyFprYE/gXeAmoAAZ3t6veTLPw7IAP4OxACVgadwQ61n+mSTvDI+B+K9tB5e2oJCHs8wT9//AWd4ae08fef6ZCsB3wArgVZeWitgBW6kokqIbMArd1iYOu/w9rUPSTsG2AVkAvVD0msA24AKIWnPAHuD5wAQh3uQ2Am09dU13atrLtDGS3sQSPK+x3v7J4bk6QKsA04u6/PdNttsK/0tv/uKtz8ZWA/MA+p4aRcBB4Fn88jzFbC6EHW/4NV9cRH0HhZiy+p5tnJ/qG0N0T8QJv/0oO0D+nr2d5XPlscDWtb/kW1lt1mPvVHaBHtlt4TZtw24R1V/BFDVncAInEN6XR7lbfaVW1y2ep/Hh6T9E9eLf7mq/qmO94GpwGUicjK4lQ6A+4HXVPUldZOc9uJ6YLYSfgWgqsBtqpoMoKqfAM8BZ4rIeRHo/T9V/cAr4ydgPnC2iBwTIjMG6ASMVNWVnuxKL701cHUh65rnffYLSQsAqbiHntD0s3EPSekAInK6V88LqvpfT4dduP+3CvB0HnXO1Owh9mm4h6VciEhnYDbwN1X9ppDHYxjGkU1+95UgDXC2bzuAqr6Js2UjROSkMPKbgXgRCRcXH0rwXrEzAn1zoapbcD3vscBMEakYYf5FuHtMM/IeGTCOQsyxN0qbYMhHqn+Hqs5W1Wm+tD24Xvy2eZQXLCdX2EkRCV4DCuCFs/QGlqnqnz7ZYNjJX7zPC3G99AtDhTyn9nvgJBGp7yvjAPCZLy0YixmJY/+57/cG3EStOiFpA736knyy/uPIF+/BYR05Hfj+wETcaIM/PXSJtYHe53xfmVs8PRLzmAz9cYjseu+mnAMvZGshMFhVlxXmWAzDiAryvK+EsFZV1/vS8rO1qTh7XrOAutX3WWRU9V2cU94ObwWdCBkPLAOuEJHzi6uPER2YY2+UNsEe5IP+HSISKyI3eTGQm4Kx3bielkp5lBcs55g89kdKPe8zOBLQFNcL3TUk1jyo179wxj/oiDbzPp8II9vdk/WverBNVf03hGCvU67ly/Lhd9/vA95naG9TM9zIwwafbj96uh1L4fkPkCAiwd6qc3HhNAuA3iJS1evp6gO879MBsts3lE0+mVC2FaBPe6/uWsDpBatvGEYUked9JYStYdLys7WFvbcEyyjoAaCwjMV1BI0UkbMiyeh1Ig0G9gDPhdhn4yjGHHujtNnrfYYb3pwJPAI8gYs5r6cFr0EcNLp785GJhK7ep78XfUFQn5CtjqpWVdWbfLKXh5Gt6ckupXTILKRcShjd6nm6dY6gvnm4B57zvPCX31T1dy89Ftf7HwC+90JtioWqFnR8fYG/AV8D94VOxDUMI+rJ775SVAp7bwneK4r0Uis/6haFGAzsw62SE9FotKquBq7HddS8hLPTxlGMOfZGaRPslc3RuyEiNYELgEWq+pqqHsiVMzzBcjYWVzFvdYThuImuL3rJq3FDrGHXFxaRbiJyovfz/7zPXLLeajRnhFmBIVzYSXDUYF0E6heG/wPiRKRKGP1aiUiHCMr6GBdT2g8YQHa4zbu4ycP9yB2GA25iF7gXgvkJpq2OQI8gU1T1I9z/Vw54Uby3PBqGEfWEva/4qBsmLT9bWxPnXPtDMP286cnku/qWiPxHRKYWUBYAqroCuMnT7/nC5PHlfxmYhevw8Hc8GUcZdiM0SpufvM+GvvQDOAc6R1iKN/kznEEO0hDnSK4sAd0mAc2B+0Ims+4APgBOFpFGPt3q45bbDMaxv40bvr0gTNlXA0+oqn+o+BgR6e5LO9f7nEfJEnxLYQ79PAf4TXKu2RyMVS3vyZwmIuODO70h3//iQm0uDuqqqn8An+KO4bwwxxBc5/nc0EQRqYdbzSZJVQsKuwnHQa/+H3EvLutOyb3fwDCMw5u87iuhNAnphAkStEPhlqpsCPwcJlQyB96I5Bigs4R5eyyAl/5XXMdHoVDV53B2uT/g17swXAusBUYWIa8RRZhjb5Q2H+N6xHP0DqtqKi4W+0wRGQAgIpVxK9LktzpAR+CrooZ7iEg5EekqIu/gVq+5D7eyTSg34Hqnnw/GLHo3iNeA2ar6tXcM64HbcTHmN4lIBW/N9nNxk5rGkps/cGsPN/LK7QFcgZsEWuibQCF5HDex6gEvfAZx6+X/EzdJLLRnaA3uYSs4vHw5kOArbx7ef6Oqv/jSawE7/ZPVVPVT3Ko2lwfjR8W94CU4X+GG4h0i4N4g/A3uOMPF6xuGEV2Eva/4+BN4Jhja4jnb5wHPBVdiC+KNajbHrS1fIKr6Im4Z4Okicl1wVFREqojINcDLuBXf5udXThhGAL9ShHAaVQ2uw58RaV4jyijr9TZti/4NN0T4IyC+9Fo4p28jbrLkN8DNOMN2ADdJqW2I/Ak4Y355Ieq828uf4W1bcJOpfvd0+SfeOul55G/q6b0VN+y7HOfEx4aR/RtuXfkduPkBi4E+YeSScOsTtweWeOXuwDm5VQtxTEm4teMV94DwnJf+A27ylALbgXtD8lTDrf2f7B3LWty68seHKf8qr+234uJIW/r21/Da/5EwbaW4kY9wegvOgf/R+5+3Am+Elu+dC1twQ+HqfU/ylfOgd3zqHe8aL30u7uUyilul55OyPudts8220t3C3VfIfnFThmcvzwe+9ezOJlwnTvkwZQ328jSPUIcE3LtXNnj1JuM6Ovr45OK9/bvIvreNzaPM03EjkoGQtEtC7OMe73uPPPLfjq1jf1RvolrsFZsMI1+8twT+iHv50RvFKOcZ3GTXBM0d4nLY4709NV5V48tYFcMwjCOaEryvxOBWpUlS1ZIYQTSMMsVCcYxSR1XX4nocnirq669F5DpcfOQFR6JTbxiGYZQcJXRfiQFm4EYCx5SfTX4GAAAgAElEQVSgeoZRZphjbxwSVHUubuWUc4pYRGfgFM+YG4ZhGEc5JXBfaQGsB85St+ykYRzxWCiOYZQyInIG8AoujjwG1zt0s6rOKlPFDMMwDMOIKsyxNwzDMAzDMIwowP/yHKOQ1K5dW+Pj4yPOl5qaSpUqud4XZIRgbVQw1kYFY22UP19//fXvqlqnYMnooSh2286jgrE2Khhro4KxNsqfwtpsc+yLSHx8PMuWLYs4X1JSEoFAoOQViiKsjQrG2qhgrI3yR0TWFywVXRTFbtt5VDDWRgVjbVQw1kb5U1ibfdhMnhWRfiKyVEQ+FpHPRMT/cpxQ2boi8qCIfCoiSSLyrYjcLiLlfXLHi8hcEflCRL4RkVvClNVKRBaLyCci8rWIDC2N4zMMwzAMwzCM0uSw6LH33oo5C7fqyXIR+SuwQETaquqWMFn+BpyFe4FDioicgHu5USXci4kQkXK410a/r6p3eW+7/EZEdqvqs55MVdwbP+9R1X+LSEPgBxHZpqoLSvmwDcMwDMMwDKPEOFx67G8HFqjqcgB1r2HeClyfh/w23NsvUzz5DcBsYEiIzDlAR+AxT2YX7i2nd4pI8HXNw3APAy96Mr8BrwF3ltSBGYZhRCORjLKG5OkiIstFZHoe+3d6o7Ch20CfTIEjsYZhGEcrh0WPPXAGMMmXthToC9zlF1bV2WHK2AfE+spco6o7fWWeALQEVnoy36hqpk/mahGprKp7Iz0QwzCMaKcIo6yIyFicTc9vKbbvVDWQT70FjsQahmEczZR5j72I1ALigM2+XVuAJhEU1Q3Xax+kSR5lBvflJ1MOiI+gbsMwjKOJSEdZAVbgHPvtxai3MCOxhmEYRy2HQ499cG0j/1vf0oDKhSnAewHQicC5vnLDlUlIuYWRCa3nKuAqgLp165KUlFQY9XKwZ8+eIuU7mjga2igmJoYqVapQVF+kevXqfPvttyWsVXRxNLeRqpKamkpGRkZpVRHRKKun0zygyOd8SL0FjcQaRomze/dutm3bRnp6epHyx8XFsWLFihLWKro4mtuoQoUKHHfccVSvXr3YZR0Ojn2q9xnrS48FCgyFEZFGwFSgn8/YpwL+FgrWsTdEJly9oTJZeEO9zwIkJCRoUZZlsuWcCiba22j37t1s3bqVBg0aUKlSpSI5OikpKVSrVq0UtIsejtY2UlX27dvHxo0bqVu3boncKEIpYJT17GIWX09EXgeOBw4Ac4Cpqhp8QiloJNYce6PEMZt9aDha2yjUZgPFttllHoqjqn8AO4F6vl31gDX55RWRusBc4EpV9XfNrc2jTELKzUsmE0guSHfDKArbtm2jQYMGVK5cubi9l4aRCxGhcuXKNGjQgG3btpVGFcUeZc2H1cCdqtoTuBK4EXjSV3ehR1kNoyQwm22UJiVtsw+HHnuADwD/igoJwNt5ZRCRmsB84HZV/chLuypkAtUi4AYRqRHSk58AbFDVX0JkJohIuZAJtAnA5zZx1igt0tPTqVSpUlmrYUQ5lSpVKnLYQAEUa5Q1P1T1ryHfk0VkEvCciNzldQIVZiQ2B8UNoTwaQgOLS7S3UVxcHAcPHiQlJaXIZWRkZBQr/9HA0d5GqkpKSkqxr6XDxbF/GEgSkdaqukJEzsENxT4NICL3AwOABFXd760//z7ugWB7yDJrV+OFynj7vwNG45z36jjjfn9IvS8BY4G/Ay+KSANgEHBJ6R2qYRQ7ztgwCqS0zjFV/UNEijTKWgTWAIILs/kDN8r6lzD1BmVzUdwQymgPDSwJor2NVqxYUezwiKM1zCQSrI2gYsWKdOrUqVhlHBaOvap+LSJDgJdFZB8QA5wVsmxaRdwwa/BONQo41dvG5VFmpoj0A54RkS+8Mp4NXRJNVfeIyJnAVBG5HDfMO9peTmUYhpEvEY+yFoSI9AGqBCfZejTwPn/1PgszEmsYhnHUUuYx9kFUdZ6qdlHVnqp6mqouDdl3i6o2UdV93u8HVFXCbb4yN6lqP1XtpqqdVPWRMPWuVNVeqtpDVU9W1ZdL/2gN48giPj6eQCCQtYkIrVq1yvpdr169Yg8f7t+/nxNOOIGlS5cWLBzCE088wYABA4pVd2GYMmUKrVq1Ij4+vtTrOgJ4GDhLRFoDhBtlFZGfRKRiBGWeANwqIpW9MuJwI65vqWow8DR0JJY8RmIN46jHbPbRa7MPix77o4qDByEjA2JiyloTw4iI0JuAiDBu3DiGDRsGkPVZHCpUqEDLli0jHvKuV68eTZpE8sqLojFq1Cji4uKYOHFiqdd1uFOEUdZgrPsluHXoW4lIEvB4SA/9h8DJwBIR2Q9UAxYD94TUW+BIrGEYDrPZh4/NVoXMzOztmGOgtCJyzbEvC8yxN44wbrrppnz3DxgwoNi9IjExMXzwwQcR5xs8eDCDBw8uVt1G5HgO+bw89t0C3OJLy4p1zyPPBtwqOAXVuwnoF5GyhnGUYTa77FF1W0aG2w4Vh00ozlFD8LHNMI4gCnOTqFmzJoFAgIoVK/Loo49y2WWX0bVrV0SE5ORkkpKS6NWrF4FAgG7dujFs2DB27sx+9USfPn2oUaNGVu/K66+/TseOHRER5s+fT79+/WjevDkjR47MyjNjxowsmSBnn302NWrU4K677uLaa6/ltNNOo3379nzzzTc5dJ43bx4tW7bk1FNPZcCAAUyYMIGKFSsSCATYtWtXodtm6dKlJCYm0qVLF9q1a8ftt9/OwYMHs/bPmjWLLl260KtXL7p168btt9+etW/RokV07do1a9+NN95IampquGoMwzAKjdnsvClNmx108dLTIS0NDhxwTn25ctlbqaOqthVh69y5sxaFJQsXqqamFinv0cKSJUvKWoVSZfny5cUuY/fu3SWgSdEB9MUXXwy7r1GjRtq+fXvdsWOHqqr269dP169fr2PHjtUpU6aoqmpmZqZeeeWVOnz48Bx5ExMTdcKECVm/lyxZooBOmjRJVVW3bt2qsbGxunjx4lwy/nIaNWqkW7ZsUVXV0aNHa8+ePbP2Jycn6zHHHKNvvvmmqqpu375dmzRpoo0aNcr3uF988cUcMtu2bdO4uDh96aWXVNX9L+3bt9c77rhDVVU3btyoMTExumbNmiz5WrVqqapqenq6Vq9eXT/88ENVVd27d6+2bNlS161bl68OkZDfuQYs08PAlh7KrSh2O9rtUUkQ7W1kNttstmreNnvt2nWakaF64IDqvn3ZW1pa+G3fPtXMzPD6loTNtlCcQ41aj70Rhptugu++K7R4pZII5+rYESZPLl4ZeXD++edTq1YtAObOnQvA6NGjqVGjBuDiPS+66KJCx3kGh22PO+442rRpw3fffUevXr3yzdOzZ0/q1q0LQCAQ4N///nfWvmnTpnHcccdx4YUXAlC7dm0uueQSZsyYUfiDBJ566ikqV67M0KFDAahWrRrXXnsto0eP5s4772Tr1q1kZGSQnJxMkyZNqFOnDu+99x7glnbbvXs3ycnJgFt3fvbs2Vk6G4ZxGGM2O1+i2WavW5eMKsTGVmLmzNnUqFGXAwdc+YekR74AzLEvCw5lsJVhlAEnnHBCrrS0tDSuv/56li9fzjHHHMPOnTvZsmVLmNy5qV+/ftb3atWqsXv37gLz1KuXvcy6P8+KFSto3LhxDvkTTzyxULqE8tNPP9G0adMcw8rNmjVj//79rF69mo4dOzJ06FDOOOMMAoEAgwYNYsiQIQDUrFmT22+/nREjRvDMM88waNAghg0bZi8vMwzjkHO02WwQMjNdX2vjxs5mr1y5mnbtOjJkiLPZiYkB/va3QQwaNIS0NKhUqSa33no7V101gqlTn+FvfxvE0KHDqFLl8LLZ5tiXBebYG34i7IXZd5i/yCMmTM/U2WefTbNmzViyZAmxsbFZ8ZuRliciuFHJyPIURGm80ElEePnllxk7dizTp09n/PjxPPLIIyxdupQaNWrw4IMPctVVV/HSSy8xefJkJk2axBdffHFIVowwDKMYmM0udHmHg80OOvHBVWnS0rL3BV0yN8lVeP75lxkzZiwzZkxnwoTxPP74I3z+ubPZ99//IFdeeRWvvPISTz89mccfn8RHHx1eNvswGDQ4CjHH3jjK2LFjB8uXL2fAgAHExsYCcCA4dlkGtG7dmnXr1uVI+/XXX/OQzpt27dqxdu3aHDetNWvWULFiRZo1a8bGjRv54osvaNu2LY888gg///wzmzZt4sMPPyQlJYUFCxYQHx/PhAkTWLlyJZUqVeKdd94p9vEZhmFEQtDpzchwq3Jv2eJs9nnnDSAmJpaDB2HfPmezg6u8ZGTkXsYxGGlcCD8+Igpjs/3HcOCAm8Sqmv29TZt2JCevRUSzJrOuW+dsdvPmzdi8eSNffeVs9sMPP8K33/7M5s2bWLLE2eyFC53NvvPOCfzwg7PZc+ceXjbbHPuyIGT2tWEcDdSqVYu6deuyePHiLCd4zpw5ZabP1VdfzbZt23jzzTcB9+Dx1ltvRVzODTfcQGpqKjNnzgRgz549TJ06lZtvvplKlSqxatUqxo4dm7XiQmZmJqpK8+bN2bFjB9dff33WigqqSkZGBi1atCihozQMw8iN3wGGnI7wwYNQo0a2zU5PVw4ezLbZ6enZW7CsAwfcFiwvLQ3273efqtl1ZWTkdP4LegAIlj9ihLPZs2e/SUYGbN2abbMPHHD1BFehCR6DqlsrXiR7RZrrrnM2+9VXs232s89OZdQoZ7NXr17F+PG5bXazZs5mjxqV22Y3b36Y2ezCzLC1rWRWV1BVXbJggeqvvxYp79GCrbBQMGW1wsLnn3+uiYmJCmjLli11/PjxWfsOHjyoiYmJGhsbqy1bttShQ4fmyPvJJ59ox44d9aSTTtL+/fvryJEjFdDExETdvHmz9u7dW+Pi4rRRo0Y6fvx4nT9/vnbo0CFLZseOHTps2LAsmYceekhffvnlHDKrVq3Siy66SOPi4vTEE0/Uxx57TJOSknLIbN68WVVV586dqy1atNBTTz1VBw4cqA888IA2a9Ysz2OfPHmytmzZUmNjYzUxMVFTUlJUVfXLL7/UHj16aEJCgrZt21bHjh2r6enpqqq6efNmHTZsmCYkJGhiYqImJCToCy+8oKqqe/bs0ZEjR2rnzp01EAho586d9aGHHirR/8tWxSm+3Y52e1QSRHsbLV++XDMzVdPT3ZbXiib5UVY2+7PPctrscePGZ63asmfPQe3Rw9nsFi1a6pAhQ3Os3rJ48SfaoUNHbdfuJD3vvP563XXOZvfsmajr12/WQCDbZo8bN17feWe+tm/fIUtm8+Ydetllwzx73Ejvvfch/fe/X86S6dEjUX/6aZVecEG2zZ406TFduDAph8y6dZt13z7VN96Yq82bt9AuXU7Viy4aqPfc84A2bdpM9+8Pv/rMo49O1hYtnM3u2TNRd+xI0bQ01U8//VJPP72Hdu6coG3atNVbbhmrqanpmpamun79Zr3ssmHauXOC9uyZqJ07J+izz76gaWmqf/yxR6+7bqSefHJnTUwM6Mknd9b7738oz9VvympVHHGyRqQkJCTosmXLIs6XtHAhgebNwTcJxMgmKSmJQCBQ1mqUGitWrKB169bFKiPlMI/XPBzIr41UlR07dlC7du2stAcffJAlS5awaNGiQ6ViqZPfuSYiX6tqwiFWqUwpit2OdntUEkR7Gy1fvoJmzVrnWNCufHm3yE1hw7yLY7ODbprfXQv9HSoT7nuQYA/24YYq7N+fQsWK1cLqF85mT5r0IElJS3j//SPLZmdmQmxs+P+hJGy2heKUBRZjbxhlSmpqKqeddhp79+4FYOfOncycOZNLL720jDUzDONwYu9eF9aRmZnzJUMHD7rQj2CceUmjXvhKMMQkGGYSuoWGxBw8mB3qEurQh+pcrtzh6dRD9gNHXvqlpqYSCOS02a++OpNLLjGb7cdWxSkLglfe4XqFGUaUExsby+mnn87pp59O9erV2bdvH1deeSWXXXZZWatmGMZhgCrs2AG//54dox1KuXJOJj3d7S9fvmQc5+AE1GCseri6j0ZiY2M57bTT6dUr22YPH34ll15qNtuPOfZlQfDKLe7LKgzDKBIVKlTI8fITwzCMIOnpsHmzm/xZrRr8+Wd4uWAPs3qrrpQrBxUqRO6Ia8hk1mC4jznzOalQoQLTppnNLgzm2JcF4QLfDMMwDMMoU1JTYdMm51hXrVq4PCKun07VhczExGT34OdHMNwmdBDfHHqjuJhjX1aEzsIxDMMwDKPMyMx0oTc7dkDlys4xj5Sggx98AVJwgq3fWQ/2zgen25lDb5Qk5tiXFebYG4ZhGEaZc+CAC71JS3OhN8WNkw866UHnPdibH1zLPXRiq2GUNObYlxXm2BuGYRhGmZKS4pz68uULH3pTWEId/NCJtubQG6WJOfZlhTn2hmEYhlEmBENvfv/dOfSluZZFcLUcc+iNQ4E59mWFrWVvGIZhGIecAwfcBNn0dKhe3VaeNqILe34sC4JvtzCMI4SNGzdy+umnIyI0btyYKVOm5Ng/YcIEGjZsSPv27fn000/zLOePP/4gEAgQGxvLK6+8kpX+6KOPctFFF+WZb8qUKbRs2ZJmzZpFpPfbb7/NvHnzcqTt27ePhg0b8s0330RUVqQ8/vjjRdLZOMzIzHTrHhpHPPv3w7ZtsG6d+1urVIlep37jxo306nU6sbFCixaN+ec/c9rse++dQJMmDencuT2ffZa/ze7bN0C1arHMmpVtsx9//FEGDcrbZv/zn1No164lrVtHZv/mzHmb//wnt81u0qQh335bujZ78uTHi6Tz4YY59mVBuXLWY28cUTRo0IBPP/2Uli1b0qpVK0aNGpVj/z333MMJJ5zA4sWLOf300/Msp1atWiQlJVGnTp0c6XXr1qVx48Z55hs1ahS33nprxHqHc+zLly9PixYtivx698Jy8803F0ln4zAjGBxtHJFkZMDu3ZCcDOvXu5j6qlWhYsWy1qx0adCgAUuWfEqLFi1p2bIVI0fmtNl3330PDRuewIIFiznttPxt9qJF4W12fHzeNnvkyFHcfHPk9m/OnLd5993cNrt58xZUrVq6Nvumm24uks6HG4dNKI6I9APuAvYBMcAoVV1WQJ4uwEvAV6o6zLdvIjAA2BmaDPQETlbVb0UkHvgfsNJX9ARV/aiox1Ig1mNvHKEMHjyY+++/n23btnHcccdlpf/yyy8ce+yx1K5du0jlDh06tKRULJAKFSqwePHiQ1afEQWYvT6iCK4nv3Onc+oBYmPdijdHGwMHDuahh8Lb7Fq1im6zhww5tDZ7wQKz2YXlsOixF5HOwCzg76raE3gIWCAi9fLJM9aTy+9NTzepaiC4AROB/1PVb0Nk/hsq422l59SDG/uzHnvjCOSSSy7h4MGDvPbaaznSZ86cyZAhQwBYvHgxgUCAQCBAt27duPzyy9m1a1eeZU6fPp0OHTpQ3rdw9Jw5c2jRogVdu3Zl8ODBbNu2Lcf+P//8k2HDhnHKKaeQmJhIjx49+OKLL7L2jx07lkWLFvHuu+9m6XPgwAECgQBxcXHcf//9WbLp6emMHTuWdu3akZCQQCAQyBGqc+aZZxIXF8e4ceO4+uqr6d69Ox06dOC7776LuA2//PJLevbsSZcuXWjXrh3jx48nI8QevPLKK3Tp0oVevXrRrVs37rzzzqx9CxYsoGvXrvTq1YuuXbsyatQo9u7dG7EORoSYY39EcPAg7NrlQm3Wr3cvm6pSxfXQV6hQ1tqVDQMHOps9e3ZOm/3aazMZPNjZ7CVLFtO3b4C+fQP07NmNq67K32a//PJ0EhI6ULlyTps9d+4c2rZtQY8eXRk6dDDbt+e22VdeOYzTTjuFM85IpHfvHvzvf9k2e9y4sXz44SLef//dLH0OHDhA374B6tSJ46GHctrsO+4YS6dO7ejWLYG+fQM5QnXOOedM6tSJY/z4cVx33dUkJnYnIaED338fuc3+6qsv6dOnJ927d6FTp3bcfXdOmz1r1it0796FM8/sRc+e3ZgwIdtmL1y4gB49unLmmb3o0aMrN998CGy2qpb5BrwJvOVLWw7cl0+efrge+CRgepj9xwFVfGkvAWNDfseHy1uYrXPnzloUlixYoLp2rduMsCxZsqSsVShVli9fXuwydu/eXQKaFI0uXbroKaeckiOtY8eOmpqaqqqqY8aM0aefflpVVTMzM3XYsGE6YsSIHPINGjTQGTNmZP1etGiRxsTEZP1eu3atVqhQQefMmaOqqlu3btWWLVtq06ZNs2R+/PFH7d69u6anp6uq6uLFi7VOnTq6a9cuVXVtNGTIEL3iiityHcNpp52m9913X9bvW2+9VTt16qQpKSmqqvr8889rzZo19ffff8+Rp2nTprp161ZVVR05cqT27t0737Z67rnncui8ZcsWrVatms6cOVNVVXft2qVt27bVu+++W1VVf/31V42JidH169dnydeuXVtVVdPS0rRq1ar60UcfqapqamqqNmvWTDds2JBn/fmda8AyPQzs/6HcimK3l3zwgeqmTRHnO5ooS5udmam6d6/q5s2qv/zitvXrVTduLLntxx+Xa1qaFmvbtWt3scso6paQ0EW7dDklR1qHDh31zz9TNS1N9aabxuiUKU9rWprq/v2Zetllw/Tyy0fkkG/QoIG++OKMrN/vvedsdvD3ypXOZr/xxhxNS1PdsGGrtmjRUps0aZol8803P2q3bt01NTVd09JUFyxwNnv79l1ZbTR48BAdPvyKXMfQvftpOnHifVm/b775Vu3YsZPu2JGiaWmqzzzjbPamTb/nyNOkSVPdsGGrpqWpXnfdSA0EeufbVlOnPpdD519/dTb7pZdmalqa6vbtu7RNm7Y6fvzdmpamunq1s9mrVq3Pkq9du7ampammpDib/cEHH2lamuqff6Zq06bNdNWqDZqZGf58LgmbfbiE4pwBTPKlLQX64sJzcqGq8wAkj5kvqprjUVFEqgL9gXHF1LX4lCtnMZtGDm66CSLp/M3IqFTs5dk6doTJkyPPd8kllzB69GhWr15Ns2bN+PLLL2nXrh2VK1cG4JZbbqFWrVqAuz4vuugirrnmmojqmDp1Kg0aNKB///4AHHfccZx//vm88cYbWTLNmzfn7bffzurp79WrF6rK0qVL6dOnT6Hr2rNnD08++SRPP/00Vb2FrIcPH84dd9zB1KlTc/SY9+nTJ2s4OxAIMHPmzIiO68knn6RGjRoMHjwYgOrVq3PNNdcwduxYxo8fz5YtW8jIyCA5OZkTTzyRunXrMn/+fAB27drFnj17SE5OpmfPnlSuXJk333wzV+yrUQqYvS4VMjJyz0sO3tJDb+15fd+/3y1ZmZ7u1qE/lJNhx4yBH34ovHxmZqViL3fZvj089ljk+QYOvIRbb8222V999SVt22bb7NGjc9rs88+/iJEjI7PZzz47lfr1G9CvX7bN7t//fN56K9tmN2vWnNdfz7bZgYCz2cuWLaV378hs9tNPP8mUKdk2++9/H87dd9/Bs89O5fbbs212r17ZNjsxMcBrr0Vms59+2tnsgQOzbfaIEdcwfvxYxo0bz9atzmavX59ts995J6fNXr8+mR49nM1+7bXSt9ll7tiLSC0gDtjs27UFOLsEq7oY+ERV/fW0EpF5QE0gFXhZVWeVYL25EXFT8lWjd0q+EbUMGjSIMWPGMHPmTCZMmJAjDAdg//79XHvttaxYsYJjjjmGP//8ky1btkRUx4oVK3JNpj3xxBNz/C5fvjwzZszImhxbrlw5du/eHXFdq1atIi0tLcfqNeXKlaNx48b8+OOPOWTr16+f9b1atWrsDgbwFpKffvqJpk2b5uiQaNasGXv37mXNmjUkJCQwePBgAoEAvXr1YtCgQVltW6dOHW677TaGDx/Ov/71LwYOHMiwYcOIjY2NSAejCFgoTomSmelCZn7/3X0PXg5FuSVWrBj9E2GLy8UXD2Ls2DG89tpM7rxzAq++OpNBg3La7JEjr2XlyqLb7JUrc9vsE07IbbNnzpyRNTk2aLO3bo2srtWrnc1u2jSnzY6Pb8xPP+Vts6tWjdxm//zzTzRpktNmN22abbM7d05g4MDB9O0bIDGxFxdfPCgrxKlOnTqMGXMbI0YMZ9q0f3HRRQO57LLSt9ll7tgDVbzPNF96GlC5BOsZBjzuS9sPJONi8beISEdgkYg0UNVH/AWIyFXAVeBmhCclJUWsxJ79+0laudJZsE2bIs5/NLBnz54ite2RQlxcHCkpKTnS7rsvsjIyMjKIKYE3qvjUKBRVqlShZ8+ezJgxgxtvvJHFixdzzz33ZB3TmWeeSevWrZk3bx6xsbEsWbKECy64IMcxqyr79u3LSgvGHAZ/Hzx4kIyMjBx50tLSyMzMzEp77LHHmDx5MklJSTRt2hSAVq1asXfvXlJSUsjIyCA9PZ2YmJhc7Z2RkUFaWhopKSmkpqZm6RAql5GRwcGDB7PS/L/37duHquYqO5T9+/fn0DnccQWPPTU1lT179jBt2jRGjRrFzJkzGTduHP/4xz9ISkqievXq3HnnnVx66aXMmjWLxx57jIcffpjFixfneugJrT+ar6VDhjn2JUJmJuzZA9u3u976ypWP3Jc2Rdpzvn//PipWLJvZu/Xq1SMxsRevvjqTcePG8/HHSTzySLY7dN55f6FNm7YsXLiE2NhYPvzwA8477y/FrtcfUfHYY//g0Ucn8fnny7I6Upo0aRgMjS4VQu+TIlLidYkIL788i7Fj7+Dll6dz112388QTj/L550upXr06Dz44iREjruGVV17iyScf57HHJvHRR1/SokWjEtUjlMPBsU/1Pv2PMLFAicwwEJGmQAtgfmi6qm4BBoX8/k5EngHGA7kce1V9FngWICEhQQOBQMS6JC1cSKBVK9i3D5o0OXpn9ORDUlISRWnbI4UVK1YUe6nFlLqAIJgAACAASURBVJSUUl+uMT+GDh3KFVdcwVNPPUXv3r2pWbMmAFu3bmXVqlXcddddWastBIddQ/UVESpVqpSVFhwSDv4+6aSTmD17do4827Zto1y5cllpX375JZ07d6Zjx45ZMunp6VnlpqSkEBsbS4UKFahWrRr79+8nJiaGChUqEBMTQ2xsLNWqVaNjx47ExsayadOmrLIzMzP59ddf6d+/f1ZaaJ5wOoejYsWKOXTu2LEjM2bMyJFn8+bNVK5cmfbt27Nt2zY2btzIqaeeyqmnnsodd9xB48aNWbZsGYFAgK+++oq+ffvy0EMPceedd9KqVSs++OCDXMuPhtbfqVOnPPUzCklmptuOVC+0jFHNdujT051DX5pvejVyM2jQJVx99RX84x8P0bNnIMsub926lf/7v18YN258Vk/ygQMHIi6/VavWvPXW7BxpGzb8muP3J598TKdOnXOMjvrrKhdyjYXa7FCaNWtObGwsa9aspmfPRMDZ7OTkdZxzzl8j1j0/2rZtx6xZM3KkrV27hsqVK9O0aVN+++03Nm3ayCmnnMqkSY8yevQttGzZmKSkJSQmBli69CvOOKMvd901kZtvvpX27Vvxn//MYcyY8Da7JChzK6Wqf+CWpPSvgFMPWFNC1QwDXlHVwnS7rAHiRKRoa0BFQmZmqVdhGKXBhRdeSGxsLPfee2+OMJzatWtTp06dHMtJzpkzJ+Lyr7nmGjZt2pSVd/v27bz++us5ZNq0acMPP/zA9u3bAfjss8+yvgc57rjj+OOPPwC44YYbwi5zWbVqVW688Ub+9a9/ZfXev/TSS6Snp3PttddGrHt+3HjjjezcuTNrVaGUlBSeeeYZbrnlFo455hhWrlzJuHHjOOj1EGd6NqJZs2Zs376dG264IauHPzMzk4yMDFq0aFGiOhYWEeknIktF5GMR+UxEEgqRp4uILBeR6WH2NRGRp0TkE6/Mr71R0lCZeBHZIiJJvi2xBA8tNxkZtpJZEdm7161Qs3Gji4OvVs2c+rLg/POdzX7ggXuzQkUg22YnJWXbxnnzIrfZI0Y4mz13brbNfuONnDa7des2/PRTts3+/PPcNrtOnWybfdNNN7BkSXibff31NzJtWrbNnjHD2eyrripZm3399c5mB1cVSklJ4bnnnmH0aGezf/llJXfembfNvumm3Da7efPStdmHQ489wAeA/6aQALxd3IJFpBxwGZBrXElELgHWqOqXIckNcCMFO4pbdwGKuW4MwzgCiYuL49xzz+X777/n1FNPzUqPiYnhjTfeYNSoUXTo0IHGjRvTsGFDMjIyCAQCvP766wwcOJDt27fzwAMPkJKSQqVKlXjiiSeyZF588UWaNGnC7Nmzue2223j44YepX78+Q4YM4ZFHHiEQCDB//nzuuusufvvtNxISEjjppJNo2bIlderU4YEHHkBVGTBgAFdeeSUXX3wxiYmJ1KhRg969exMIBPjxxx/ZuHEj6enp3HPPPTzwwAMAnHrqqVSqVInKlSuzaNEijj32WAAuuOCCrDzVqlXjpJNOYsyYMVk6v/HGG7kmRD3++ONMmzaNjRs3EggEeP/996lbty4LFy7k1ltv5bHHHmPfvn3079+fu+++G4C2bdvSqFEjunfvTpUqVUhNTWXatGm0bduWPXv20LdvX3r27Jk1IjF69GjOPrskpyIVjpAlik9R1eUi8lfcEsVtvZHQcHnG4hZEyMvwXQc0Avqo6gER6QB8KSIHVfWFELn/qu+9JaWOqnXERMi+fa6Hft8+t4Z89eplrdHRTVxcHGeffS4//PA9p5yS02bPmvUGY8aMIiGhA/HxjWnQwNnsvn0DvPLK61x6qbPZDz+cbbOffPKJLJlnn3U2e+bM2dxxx208+ujDHH98fQYPHsLjjz9C374B3nlnPnfccRcbN/5G9+4JtG17Ei1aOJv98MPOZl944QCGD7+SIUMu5owzEomLq0GvXr3p2zfATz9l2+y7776He+99gLvvhtNPz7bZ772XbbMvvviCrDxVq1ajXbuTGDt2TJbOs2blttmTJz/O889PY9OmjfTtG2DePGez3313IbfffiuTJzubfd55/Rk/3tnsNm3acuKJjUhMzLbZTz89jTZtnM3u06cvffpk2+yRI0dz1lmla7OlNGObCq2Eu0kk4W4SK0TkHOAVoI0X+34/7mVTCaq635c3CUjOy9CLyBm4ZTO7hdk3EWgNDFHVgyJSH/gCeENVb8lP54SEBF22LN/3Z4UlKxRn/35o2NCNSRo5OBpCcVq3bl2sMso6FOdIwNoo/3NNRL5W1QJ72fPI+ybu/nFhSNpy3LLFYVcy815C+B9gCWFstoiMAr5V1Y9D0t4FKqpqH+93PDCxqI59Uex20ocf/j97dx4nWV3f+//1qaruru5ZerbeZnFgGGFwCJsDGOMyKkokBI1JLvzAwKBXkqtxDZooImq4EUM0GhcQxSDXcNWfRh2JLDNoIyAquzIDRGCA2bpnevbeu6u+94/vOV2nT1f13l2np9/Px6MeVX3O9yxVDKc+9T2f7+fL+ro6eOlLobp6PIc96kWv2T09flDskSM+oD8axnbv3/8kxx8/sWt2d/eRsuXYzxSz5TPK5/3/F8UGik/GNTsRPfbOuYfN7GLgFjMLZ549J9Lzk8UPpB34GIJbtBcBp+Ir2zQDnw/LYEZsAL5Jcd8DPgzcZ2a9+IG8N1Ikv35KqAdIRGamqShR/MUii7vwVdPKyzml4oygtxf27/fVbjIZ9dCLlEsiAnsYuOjHg/Jw3RXAFbFlAwNZR9jv24dZtxW4bGxnOkk0+6yIzEDTVaLY/C+Asxja0TL9JYpB1+sicjnfQ9/f72d7DXPoRaR8EhPYzzqplEqoichMNF0lit8J7AWujywbU4niSZNO63od6O31efOHD/vn8GbG3LmalkUkCRTYl4uZvihEZCaajhLFpwMfAc52zg1M+zrWEsXBviY0/0h7ZyfNO3ZAS4vvkp6FwuA9nFcR/FdYGMj39razdWtz2c5vqi1eXEt39zgm/YjI53MT3sfRbrZ8Rs6Vnsx6MuYemZ1XqSRQYC8iM5Bzbr+ZTVmJYjM7AbgFeKtz7sWR2hMpUeycaytyvhOaf6T57rtZv3Sp75JesWJM285UfX2+N/7IEV+uMp/3v2kqK4uXqtyypZm1a9dP+3lOl/37n5zwoM7ZMjB0ImbLZzTc4NnJmHtEgX25pFLK2ZzFnHMlBxGKTIYprng2JSWKzWwl8H3gkmAMFGZ2eRCcl69E8QxKnYz3rEefiy2Lruvt9YNf+/p80FFR4Qu36VKla7ZMvcm6ZiuwL5dUqvS9GDmqVVRU0NXVNTBzqchU6OrqGjJj4yS6Fmg2sxMjJYqbgK8ADFeiuBQza8L/YPgykIpMeLWBQqGE44G3mFm0RPHlwPVuauelnxEdMe3tsHt36SlSnBs+SE+lfE9iNjs15zdTpVIVdHd3UV2ta7ZMncm6ZiuwL5dUSuUuZ6n6+np27tzJsmXLqK6uVi+QTCrnHF1dXezcuZOGhoapOsZUlCj+NLAa+ELscC9EXpenRHFYxSyf99fuhHEODhyA1lafMaSZXSdXdXU9u3btZOnSZWSzumbL5Jrsa7YC+3IxK9wv1UViVpkfFHjetWsXfeO8a9Pd3U1W3WrDms2fUUVFBQ0NDQP/1qbCZJcods69C3jXCMcsX4nicPbZhAX2+Tzs2QMHD/ra8fo6mXxVVf7/o507d5HPj++a3dvbTWXl7LwejdZs+YzCMSvR/1cn85qtwL7c8nl1r8xC8+fPn9D/wM3NzRMeYHO002ckkyrsjEmQ/n7YudPXkteEUFOrqmr+QIA/Hn6Asa5Hw5ktn1F7O6xePXV9BArsy02BvYjIzJCgwL672wf14NNvRERAgX35JeiLQkRESgiLuSfAkSOwa5cf6FpZWe6zEZEkUWBfTmHOpoiIJFsCUnGcg/37Ye9emDNHN3tFZKhkjQKajRTYi4gkVj4HBw6l6M+Xt5Z9Pu8nv21rg3nzFNSLSHHqsS8ns9IFh0VEpOycg52taSor0izI9bNgzvSnv/T1+Xz6vj4f1IuIlKLAvpzC2sgiIpJY1VWObLVx+ECOA9v8YNVFi/xETlNdXrKrywf1Zj79RkRkOArsy2kGTVMuIjKbWSZNTbof5vmKNC+84AP7JUugpmZqStcdPuxnks1mYeomERaRo4kC+3IyU2AvIjITRK7X2ax/hCkymYwP8Cdr1td83g+SbWvz+0zYnFgikmAK7MtJPfYiIjNDeL2OzBZeUeEfuRy0tvoZYBcuhNra4XvYnfO7yuX8o7/fTzLV0+N/LISHmTdPM8mKyNgosC8nBfYiIjNLkUkF02nfs+4cHDgA+/b5mWBrawtBfDxwh8JvBDP/dZDJ+IG52WwZ3peIHBUU2JeTUnFERGaWYWYLjw5w7ez0OfLRwD2dVuAuIlNLgX05pVKqiiMiMpOMcu6R6uopPg8RkSI0JKecwjr2qmUvIpJ8mi1cRBJOgX0S6ItCRCT5zHS9FpFES0xgb2bnm9mDZvYLM7vfzNaNYpszzGyrmd1cYv1BM2uOPS6ItWkysx+b2QNm9oiZXTFJb2n09EUhIpJ8mlRQRBIuETn2ZvZy4FbgTOfcVjM7D7jTzNY651pKbPP3wBuB4fJYHnPOrR/muCngJ8DtzrmrzKwWeMTMDjvnbhzv+xkzBfYiIsmnSmYiknBJ6bH/KHCnc24rgHPuNqAVeM8w2zyJD+z3TuC45wKnAp8LjnsI+BrwcbNprB6swF5EJPlSKV+vUkQkoZIS2J8NPBRb9iA+cC/KObfRuQmPOj0beNY5dzB23BXACRPc9+gpsBcRST712ItIwpU9sDezRUAtsDu2qgVYNcHdN5rZd4O8/c1m9rdmFi1AvKrEccN100OBvYhI8inHXkQSLgk59sF0HvTElvcANRPc9zPAx51zvzezY4C7gBMppPjMKXFcih3bzC4HLgdoaGigubl5zCfU3t1N81NPFeYJz+dh+/aSE57MRu3t7eP6bGcTfUYj02ckky6Vgu7ucp+FiEhJSQjsO4LnqtjyKqBzIjt2zp0Xef28mX0W+LqZXeWc2x8ce36R41Ls2MGA2hsB1q1b59avXz/mc2q+6y7Wr1nj5w4H6OqCBQtg8eIx7+to1dzczHg+29lEn9HI9BnJpIt2yKTKfsNbRGSIsl+ZggD7INAYW9UIPDvJh3sWMAppNs+VOG7YduqZKWdTRGQmUfqkiCRU2QP7wGYgXrd+XbB8XMzsDWZ2fmzxsuD5xeB5E7DazBbEjrvdOff0eI89JhqMJSIysyjPXkQSKimB/bXAOWZ2IoCZnQs0AV8J/r7GzJ4ws+wY9rkC+LCZ1QT7qAU+CPzAObcnaHM78FiwHDObj8+hv2bib2mUFNiLiMwczqnHXkQSKwk59jjnHjazi4FbzKwLSAPnRCanyuIHsw7Ulg8Gsl6Er0O/xsyagc875zYGTe4GTgd+bmbdwDzgZ8CnIsfNB736N5jZA8FxbpzWyalSKejtnbbDiYjIBJj54F5EJIESEdiDr0sPbCyx7grgitiygYGsJbbZDrxvFMfdBcRTdqaPcuxFRGYW9diLSEIlJRVn9gp7f/RFISKSfJp9VkQSTIF9EujWrojMMGZ2vpk9GEwAeL+ZxQsgFNvmDDPbamY3l1jfZGY/NrMHzOwRM7uiSJs1ZvYzM7vXzB42s7+ahLczehoXJSIJlphUnFkvn9ckVSIyI5jZy4FbgTOdc1vN7DzgTjNbGxkbFd/m74E3AkV7McwsBfwEuN05d1VQ8OARMzscjnsys7n4iQY/5Zy7ycyWA781sz3OuTsn/Y0Wo8BeRBJMPfZJoVQcEZk5Pgrc6ZzbCuCcuw1opTCrdzFP4gP7vSXWn4svhvC5YJ+HgK8BHzcLZ4ZiA1AN/HvQZgfwHeDjE3gvY6PAXkQSTIF9UiiwF5GZ42zgodiyB/GBe1HOuY3ODZtzeDbwrHPuYGyfK4ATIm0ecc7lY21eGZY2nnIqeCAiCabAfjrt30/19u3F1ymwF5EZwMwWAbXA7tiqFgqzeo/HqhL7DNcN1yYFHDOBY49eKuWv1xoXJSIJpBz76fSRj3DqD38Ijz46dJ0CexGZGeYEzz2x5T34+UYmst9i+ySy39G0GSSY8+RygIaGBpqbm8d0Up09nTzT+zSp7kg/WD4HW0t00sxC3d3tbNnSXO7TSDR9RiObLZ9RPg+7dk3d/hXYT6elS6k8eNDfxs1EPnrd2hWRmaMjeK6KLa8COie43/lF9klkvx0ljhttM0h0zpN169a59evXj+mk7r7zbo6pWE31gshhOzpgxQqorBzTvo5WW7Y0s3bt+nKfRqLpMxrZbPmM2tth9Wp/828qKBVnOi1bhuXz0NY2eHkqBblcec5JRGQMnHP7gYNAY2xVI/DsBHb9XIl9EtlvqTZ54PkJHHvsdJdVRBJIgf10WrrUP7e2Dl6uHnsRmVk2A/G69euC5eO1CVhtZgti+9zunHs60ub0oDRmtM0vnXMTuVswdsqxF5EEUmA/nUoF9uqxF5GZ5VrgHDM7EcDMzgWagK8Ef19jZk+YWXYM+7wdeAz4YLCP+fjc+Gsibb4FdAOXBm2WARfG2kwP9diLSAIpx346DRfYq8deRGYI59zDZnYxcIuZdQFp4JzI5FRZ/GDWsP58OIj1Inyt+jVm1gx83jm3Mdhn3szOB24wsweCfdwYTk4VtGk3szcB15vZO/CDaT84bZNTFd4M9PVN6yFFREZDgf10qq/HpVJYS2xixlQKenvLc04iIuMQBOQbS6y7ArgitmxgEOsw+9wFnD9Cm6eA143pZCeb7rKKSEIpFWc6pdP0LlqkHnsRkZlM12wRSSgF9tOsZ9Ei2LOn+ErlbIqIJJ8CexFJKAX206x38eKhPfbgKywosBcRST4F9iKSUArsp1lPqcAeFNiLiMwECuxFJKEU2E+z3sWL4cAB6O4evMJMdZFFRGYSdcaISMIosJ9mPYsX+xfF8uz1JSEikhwvvkjj3Zuxnu6h65xTZRwRSRwF9tNsILAvlo6jwF5EJDnuu4+1111LZvf2oevMdM0WkcRRYD/NesPAPl7LHvQlISKSJMccA0BF647i63XNFpGESUxgb2bnm9mDZvYLM7vfzNaNYpszzGyrmd1cZN0qM/uymd0b7PPhYObDaJtjzKzFzJpjj9dO4lsbpGSPvQZjiYgky8qVAGT27Cy+XuOiRCRhEjHzrJm9HLgVONM5t9XMzgPuNLO1kSnK49v8PfBGoNSV9d3ASuANzrleMzsF+LWZ9Tvnvhlpd4dzbsOkvZkR9M+bB1VVQ3vszRTYi4gkSVMT+UyGTMsO+oqt1zVbRBImKT32HwXudM5tBXDO3Qa0Au8ZZpsn8YH93hLrtwPXOed6g30+DtwNXDxZJz0uZlBfP7THXoG9iEiypFJ019WRaS3SY59O65otIomTlMD+bOCh2LIH8YF7Uc65jc6Vvg/qnPuic+4XscVdQNW4z3KyNDQM7bFPpVRhQUQkYbobGqkoFtib6ZotIolT9sDezBYBtcDu2KoWYNUkHseAs4DvxVatMbONQS7+HWZ20WQds6SGBuXYi4jMAN319cV77FMp6CuaoCMiUjZJyLGfEzz3xJb3ADWTeJx34tN2ro8s6waeBz7gnGsxs1OBTWa2zDl33SQee7CGBrjnnsHLFNiLiCROd30DmX2t0NsDlZEbvrpmi0gCJSGw7wie4ykyVUDnZBzAzE4HPgKc7Zwb6GIJBuZeGPn7MTO7AbgSGBLYB1V1LgdoaGigubl5zOfS3t3Ns2Yc197OvQ8+SK4m8tsln4cXXxzzPo827e3t4/psZxN9RiPTZySToauhEYB06y5yK44trEiloLe3TGclIlJc2QN759x+MzsINMZWNQLPTnT/ZnYCcAvwVufcaKLmZ4FaM1vinGuLneuNwI0A69atc+vXrx/z+TTfdRfH/cEfAPDqhQth9erCyvZ2/3eq7BlSZdXc3Mx4PtvZRJ/RyPQZyWTorq8HIL17x+DAPpygyjn/WkQkAZISQW4G4nXr1wXLx83MVgLfBy4JK+5Ea9mb2UVmdlZss2X4OwX7JnLsYTU0+GfNPisikmjdwfU6vbvIJFXOaQCtiCRKUgL7a4FzzOxEADM7F2gCvhL8fY2ZPWFm2dHu0Mya8D8MvgGkzGxdMOnVhkiz44EPmVkm2GYpPtXm+uEq7kyYAnsRkRmhZ0kdLpUis2v70JVhr72ISEKUPRUHwDn3sJldDNxiZl1AGjgnMjlVFj+QduB+Z9DzfhFwKr6yTTPweefcxqDJp4HVwBdih3sh8vp7wIeB+8ysFz+Q90aK5NdPqlKBvXP6khARSRCXydC/pLF4jz3omi0iiZKIwB58XXpgY4l1VwBXxJYN5LuX2OZdwLtGOOZW4LIxn+xEzZ0Lc+bA7niFT/QlISKSMP31y0i3KLAXkeRLSirO7NPYWHz22SnMABIRkbHrb1hGulgqDiiwF5FEUWBfLsUmqQJ9SYiIJEx/wzLSe3YPrVuvWvYikjAK7MulWI+9viRERBKnr3E5lsuR3tsyeIWZquKISKIosC+XsMc+mnpjpsBeRCRh+huWAQzNs9ckVSKSMArsy6WhAXp64MCBwjL12IuIJM5AYB/Ps0+n1WMvIomiwL5cGoOJdqPpOArsRUQSp78+COzjJS+ViiMiCaPAvlyKBfZKxRERSRxXlSW3uG5oYB92xqiamYgkRGLq2M86xSapSqWgr6885yMiMgZmdj5wFRBOKvh+59xDw7SfD/wbsDZovwm40jnXH6z/JPBW4GB0M+A1wOnOuUfN7BjgV8BTsd1f7Zy7Z+LvqrRc4/Lik1SFEwum01N5eBGRUVFgXy719f65JVJlIZXyt3Wd8733IiIJZGYvB24FznTObTWz84A7zWxtZMbwuJuBDufcGWZWCTTjZwj/WKTNB5xzzZHjvA64wTn3aKTNHc65DZP2ZkYp17Sciv/eMnSFmQJ7EUkMpeJMs1zO6Oo2yGZhwYLBgX1It3VFJNk+CtwZzN6Nc+42oBV4T7HGZnYS8GfAPwfte4EvAB8ws7lBs68CD8Y23QB8c7JPfjxyS1eQbtlZfK4RzT8iIgmhwH6a5fLw/I40hw4bNDVpkioRmYnOBuJpNw8CbxymfTfwRKx9NfAqAOfcHudcR7gyCPjfAtwySec8If1Ny7HeHlL72wavCFNxREQSQIF9GVRnHbv3pOhZ2IBrUWAvIjOHmS0CaoHdsVUtwKoSm60CWp0bdDuyJbKumP8B3Oucix9njZltNLN7zewOM7toDKc/brnG5QCkd8dKXoapOCIiCaAc+zJIGcyf6+he0Ej6maehHzLR/xL6khCR5JoTPPfElvcANcNsU6w9w2yzAfh8bFk38Dw+F7/FzE4FNpnZMufcdcV2YmaXA5cDNDQ00NzcXOJwxXX2dPJM79PMr+zmD4HdTz5Aa11VoUE+Dx0vQHr29pN1d7ezZUtzuU8j0fQZjWy2fEb5POzaNXX7V2BfRqmmBtL79vDcC7B8OVRVodu6IpJ0YbpMVWx5FdA5zDbF2lNsGzM7DjgeuC26PBiYe2Hk78fM7AbgSqBoYO+cuxG4EWDdunVu/fr1JU6xuLvvvJtjKlZTc9KxABzTZSxpPKnQoLsb5s+HRYvGtN+jyZYtzaxdu77cp5Fo+oxGNls+o/Z2WL3a10uZCrO3iyEBcksasVyOysN7eWFHmiPtQSUcBfYiklDOuf34kpSNsVWNwLMlNnsOqDcbVO4r3L7YNhuAb4elMEfwLFBrZktG0Xbc3Nx55OcvKD5JlcoUi0hCKLAvo3y9/17LHmyhOuvY2ZJi38E0LqfAXkQSbTOwLrZsXbC8mE34gbJrY+27gPujDc0sBVwC3BTfiZldZGZnxRYvw/f67xvtyY9Xrmk56V2xHPt0WhMLikhiKLAvo1ydD+xTe1tJp2HeHEfboQpaduU1S7mIJNm1wDlmdiKAmZ0LNAFfCf6+xsyeMLMsgHNuC/BD4MPB+grg/cAXnHPtsX2/HtjlnHuyyHGPBz5kZplgP0vx+fPXxwbmTon+puWkW4r02OuCLSIJocC+jHJ1fvbZ9F5fHMIM5s11dBzJsX079PaW8+xERIpzzj0MXAzcYma/wOe4nxOZnCqLHxQbTb3ZAGBmDwK/Bn4JfKLI7jdQunb99/C98/cFx/0JPn/+YyXaT6pcUzD7bPQ3RDixoIhIAox78GwwtfdrgK3OuYeC6cK/DJwM3A18NJiERErIL6rDmZHeGyl5mUpRU9FPdx5eCAbVVleX7xxFwvHc+bz/8Rl/yPDyeR/3hZ9hLucf/f0+Nbuvz7+OTjgd/WyjA6zC19Fl1dV+rrvp5pzbCGwsse4K4IrYssPApaPY79uHWbcVuGxsZzp5ck3LSXV2YIcP4moX+oVhuct8fupGw4mIjNJEquL8Az6w//vg788DFwH/BZyPL2U2Lb0oM1YmQ35RHak9kdlnUyno7yeb9V/2L7zg57GqrS3facrRJ4xD4kFnf7+/U9TfXwg8w7Hc0cAz7LA08ynGqdTIDygemEaD2fiykHOFR3iu4evosuijtxe2bx/5vOLBdPTY4TGj7zn6HH/k84VAPXwu9tlFj51O+3K3ZkOPEf63CpeFHcPh+vB9liOwn41yTb6WfWbXdvrCwD6kwF5EEmAigf0rgFc75/aZ2Tz8bdnrnHMfDSYw+QUK7EeUq28k3RYJ7CP5mpkMzJ0Lu3f7imp1dfreOBpFg8JiwWKx4DGXg337Bi+DQlAbvo6vd27oOL9o0BkPerPZ4f/NlTq36LJou+h2o/1s4kF+NPguFpRH1490PsXOaSx3IYqdR/jZVVT4z28qhT39Mj1yTSsASO/eQd+JJw9eqWpmIpIAEwnsNNOwugAAIABJREFUc865sArBnwIVwPXgy6GZmdJwRiFf10i6ZWdhQSo1KLk+lYJ58+DQIThyxNe6z2b9c0VFobdvsgL+ME0gmi4Q9jDGFVsWDYpSKX9+0R7dmaxUkF3s73jaRfzvaJvo/mHkwNLM/3c5eHDwsvhz9HU4AZqZ/7czWSk0SU7HMfP/j4hMlv6gx37IANro7RQRkTKaSGCfMbMFzrmDwP8C7nHOvQhgZpX4QH/UzOx84Cp8+bM08H7n3EMjbHMG8C3gN865DUXWNwE3APX4yVBudc79S6zNGuCrwfnW4Ks0/J+xnPtE5OoaqPjdw9ETKkR+QcRk5nvuw8Dw8OHB3yHO+QAmGvRnMv6RTg9OAYgH7b29/tHTU7z3b7igbaw9hem0P8+KCqis9I8w8A8fkxkkxnusSwXkYQpKNI0j+ne0J7pYikixcy7Wgxw+wrSLiQTFqZTGXohMN1e7kHx1zdCSl9E8KhGRMppIYP9tYKuZHQROwPfaY2ZnAh8Cnh7tjszs5cCtwJnOua1mdh5wp5mtjVRZiG/z98AbgaJX06AW8k+A251zV5lZLfCImR0OZiLEzOYCdwGfcs7dZGbLgd+a2R7n3J2jPf+JyC1pJH1gH/T1QkVlePJFI8boLf4h+8n5nN7u7sFBfxhIFkvBgEJvejrtA+2p7H0Ng+OuLujoKATN0WNmMoXc6HiqRFSpdcV6wsPlpd5bmD4Rvg4fqdTkBOEicpQwK1TGiVMqjogkwLgDe+fcdWa2GzgLuNo599Ng1R/ie91LlSsr5qPAnUHFA5xzt5lZK/AefC9+MU8C/wz8vMT6c4FTgbODfR4ys68BHzezrwc1jzfgJ03596DNDjP7DvBxYFoC+3xY8rKtdSB/068Y20CssMe7mP7+Qr50OQ33wyQUzQ+H4YPxkXrKRUQmW65pxdDAPih6ICJSbhPKenbOfds5917n3P8fWfZF59xlzrl7x7Crs4F42s2D+B75UsfeOMKEJGcDzwapQtF9rsDfYQjbPOKcy8favNLMakZ78hORqy9MUjXIJPb+TGYO/lQLK4WEKTthSlGxRzyNJ7z7oKBeRKZKrmk5mei4KPAXnr6+8pyQiEjEuMM9M8ua2UvMbEFk2TvM7AtBvvxo97MIqAV2x1a1AKvGe37BtsX2Ga4brk0KOGYCxx61cPbZcJKqAbqtKyKSOLmm5aQOHcA6IhPmqsdeRBJiIjn2HwP+Dp+28q9BzvtngIPAu83scufczaPYz5zguSe2vAc/mHW85pTYJ5H9jqbNADO7HD99OQ0NDTQ3N4/5pLr7u3lq/1Ys6FaucAepB/Y8+xjb1x7jG+Vz0PkipGZn13N3dztbtjSX+zQSTZ/RyGbDZxTes9y2rbznMZv0Ly2UvOxfvcYv1OyzIpIQEwnsz8XXsX/EzNL4AbM/Av4COAW4Cbh5FPvpCJ6rYsur8FOHj1cHML/IPonst6PEcaNtBgSDbm8EWLdunVu/fv2YT+qu/9rEmkUvI1MVJMTX53GZCpb1GPMbTwrOqgMaG2HOnNI7Oopt2dLM2rXry30aiabPaGSz4TMKK1mtXFnuM5k9wkmqBgX2ZkrFEZFEmEjmtTnnHglevw5YAvyTcy7vnHsUGFV3s3NuP76XvzG2qhF4dgLn91yJfRLZb6k2eeD5CRx79FIpckvqScdz7NX7IyKSOLnGQmA/IOyxV8lLESmziQT2FWYDwxQvA56K1Z0fy743A+tiy9YFy8drE7A6OgYg2Od259zTkTanB6Uxo21+6ZybyN2CMcnXNw3OsddtXRGRRMovrsNVVJLZvb3ISo2NEpHymkhg/wBwm5ndAFyAnwgqHFT7fuDAGPZ1LXCOmZ0Y7ONcoAn4SvD3NWb2hJmNpWDj7cBjwAeDfczH58dfE2nzLaAbuDRoswy4MNZmyuXqGkhFA/twkioREUmWVEq17EUksSYS2F+BryjzR8DXCIJw4MvABxhdfj0AzrmHgYuBW8zsF8CVwDmRyamy+MGsA+k9Zna5mTXja9X/sZk1R6vxBCUszwdOM7MHgHuAG8PJqYI27cCbgEvM7F78hFYfnK7JqUK5JY2DU3HUYy8iklhFA/twam8RkRKcg/b2kdtNxEQmqDoC/M8iy4csG+X+NgIbS6y7Av9DIrpsYCDrMPvchQ/uh2vzFH6MQNnk6xpItR/Gujpx1TUqnSYikmD9jcvJ3rdp8MJwxnCRaRTO6B7OuB6+Dod8ROd5MRs858t4hb9ho8cKH2a+7kdl5eS9x1AuB4cOwYEDhcfBg3DkSGFiyvC9xR/h+w9fh8vnzoX6emho8K8nax6cI0d8tbLnnis8h4+lS2HLlsk5TjETqYoDgJnVA6/FD55tA+5xzu2Z6H5nk1ww+2yqrZXcimOViiMikmC5pmWk9+2Fnm6oimSIKhXnqNLXB48+Cvfe6x+/+x0sWgRNTT44K/ZcX196Fvg453yguns3tLT4R/g6fN6zx59HGDjHg+qJCAPc6HMYADs3OGiP/mgYze/XykqoqfHB8pw5/hF9Hf4dbfP880u5667BQXv09aFDU/vbuaamEOQ3NBR/XV8PtbX+M+rpgRdfHBy0h489kSjYDJYtg1Wr4G1vg2OPnbr3ABMM7M3sk8A/ABUU0mR6zewzzrlPTfDcZo1cfRMA6T27fWCfSkFvb5nPSkREismFtexbdpJbeZxfqA6ZGc85ePrpQiD/q1/56tNmcMopcNFFcPiwD7qfeAI2bYLu7sH7SKd9ABgP+Ftbl/GjHxWC9jBwj28PsGSJr3i9dCmcdhpUVQ0OvKO90PHX0WXhP8lob348SI/3uIc/HKK939HjFuv9j67L56Gz039uHR0+7aSz0z93dPiAN7q8Z9BMQscDMG8eLFwICxb455UrB/8dfz0/KGwefU/RR/QHSbzN4cPQ2urPK/r8u98VzjUum/XH37Nn8I+rJUt88P761/vnY4/1zytXQnV1oV1iU3HM7D3A+/G59b8B9gOLgDOB95nZXufcVyflLI9y+aDHfiDP3qzwr3Cy7guJiMikCGvZZ3bvKAT2qZRq2c9Au3b5IP6++/wj7Gk99lj48z+HV78a/vAPfQAZ55zvTd692+8n/jw4+H8plZU+6G9qgpNPhje9yb9ubCw819f7QH626O0t/BDYtu1+zjrrj6ioKPdZFbS3FwL+PXsKd1EOHPA/vFatKgTxtbXlPltvIj327wZe55x7LLb8u2Z2C3AroMB+FHJLfCn9VHQAbXgfbLT39EREZFoMTFK1K1LyUmOjZoTDh+GBB3ww/4tfwLPBrDaLF/sg/tWvhle9CpYvH3lfZj41Z9EiWLu2eJsw+H/yyft55Sv/SH11MZWV/rFgARw82JeooB58mtDcuXDcceU+k9GbSGCfKhLUA+CcezxWG16G4ebOI5+tHlzLHhTYi4gkUK6uCZdOk26JTVKlwD6Rtm3zPeebN8Ovf+3/M1VX+574iy/2wfyaNRMbUFpKGPwvWNCnoF6mxUQC+0ozW+Kca4uvCAbUzqKbSRNkRr6ukVRb66BlqrAgIpJAmQy5+qbBJS/NFNgnRH8/PPRQIZh/5hm//IQT4K//Gl73Onj5y6emcotIuU0ksP8+0Gxm1wAP4SekWgScAXwM+N7ET2/2yNU3kt6ze/BCVVgQEUmkIbXs1WNfVocOQXOzD+Z//nNfRaWiwvfKX3IJnH22H8QocrSbSGD/CeAkfC59tGvZgP8K1sso5ZY0Urnl0cEL1WMvIpJIuablVD70y8KCMM8in5+anA4Z4rnnCr3yv/mN/121aBG88Y0+kH/ta32FFZHZZCITVPUAf2JmZwNvwNex3w/cBfQBrwB+MRknORvk6xpI7W0ZXAlHPfYiIomUa1rhx0X19TFoxJ8C+wnr6YF9+2D/fmhr86+jj7Y2P+j1ued8+zVr4G/+xgf0p52moWkyu014girn3GZgM4CZVeADe4CzgJqJ7n+2yNU1kOrpxtoP4+bVqiayiEiC5ZqWY/k86b0tA3Xt/YocZCb81XpUa22F3/7W1wrfvbsQrIeB+5EjxbfLZHz1msWLfYnBd7zD98yvWFG8vchsNKlXH+dcH/A6ADPbNpn7Ptrl6nzJy/TeFvrn1SpfU0SkzFpb4eZbVvF3FxrVCwav64+UvBwU2OtO6yBtbT6If/xx//zb3/pa4OD7r+rqCsH6Kaf4SX4WLfLPixcP/nv+fE3tIjKSqexWUIL4GOTrg8B+Twv9q07wC9VjLyJSNj/9KXz71mP56U9zXPE37Vz01q6BrJuBWvbRAbQwq8dG7d/ve+HDIP7xx/1ETeAD8uOOg1e+0k/OdMopvvb7nDnlPWeRo43uFybEkEmqUikF9iKSWGZ2PnAV0AWkgfc75x4apv184N+AtUH7TcCVzrn+SJuDQHx+lOudc9+NtGkCbgDCssq3Ouf+ZVLeVMxll0FX+2+4+Rsn87Fra/nmd+Zw5fuO8MbX9JBrXAYUCexnwZ3WfB62b4ennvKPBx54Gc8/75eFjj0WzjzTB/EnnwwnnaSBrCLTYUyBvZld6pz71lSdzGyWX1IPUJikSoG9iCSUmb0cXxHtTOfcVjM7D7jTzNY651pKbHYz0OGcO8PMKoFm4NP48sihx5xz64c5bgr4CXC7c+4qM6sFHjGzw865Gyf8xoo44fgj3Pr5Vu777Xyu+eI8LvvQQv7w5b1c9YHDNCxpGDxJVTp91AX2+/fDk08Wgvgnn4T//m/o6Ci0aWqax7p1cOmlhSC+trZ85ywym421x/79gAL7KeCqa8jPqy1MUqXBsyKSXB8F7nTObQVwzt1mZq3Ae/C9+IOY2UnAnwEnB+17zewLwM1m9k/OufZRHvdc4FTg7GA/h8zsa8DHzezrzk1NHowZvOm1PbzulT3c+qNqPve1uZz7V0u4sPbf+dS2m5gbbTgDr9vOQWenn8gpDN7DQH7v3kK7RYt8BZoLLvDPa9b4SZ9eeOHXrF27vmznLyIFYw3sTzWzmXfVSpJwdsKqofW4cnUNg3vse3un+eREREblbOCzsWUPAm+kSGAftO8Gnoi1rwZeBdwxhuM+65w7GNvPCuAE4KlR7mdcKirg0r/s4m1v7uYr35rD129+PT/87et557/18beXdVCbLW/Rg+3bfVDe3u4ry3R0+NfDPTo6fNvo75FsFo4/3s/QumYNnHiif66r0+BVkaQba2B/ANg4inYGvG3spzMLDJNik6trJL0nUi4gnx9c115EpMzMbBFQC8SmyqYFeHOJzVYBrbEe9ZbIulCjmX0XaAJ6gR/hc+xzkbbFjhuum9LAPjRvruMf3tPO/zr8Fa79wfFcf8vb+b8/quFD//Mwb3/LYSqn4yQCLS3wk5/Aj38Mjz46dH0qBXPn+kGq8+YVnhsahi479ljfA3/MMaoFLzJTjTWwf9E5d9loGprZa8dxPrNDibvF+bpGMs/fF1uY1xVWRJIkrGPSE1veQ+m5S+aUaE9sm2eAjzvnfm9mx+DnRTkRn+Izlv1Mi6bVc/mWu4SLv3Qmn77lGK763AJu+u4crrwa3vzmqeuT2bcP/uu/YONG+NWv/FfK2rXwsY/5qjPz5/tAfe5cqK5W35DIbDLWwP5NY2j7ijHue3YwKxnY5+oaSLftKcxc6JwCexFJmnDYZFVseRXQOcw2xdoT3cY5d17k9fNm9lng62Z2lXNuf7Cf+SPtJ8rMLgcuB2hoaKC5ubnEKRbX2dPJM71Pk+oeOpvskmw/pwELuu/gE1ev5cGHFvP1m17Ku95Vwdq1hzj//J285CWdLF3aRXX1xLJYOzrS3H9/Hc3N9TzyyELyeWP58k7e/vZWXvvavbzkJYW3393tH9H8+KnU3d3Oli3N03OwGUqf0chmy2eUzxfKwE6FMQX2zrlRXyacc61jP51ZwKwQtMe6UXJ1jViun9TB/eQXLfELNdmJiCSIc25/UJayMbaqEXi2xGbPAfVmZpF0nHD7UtuE6wyfZrM/2M8fFzluyf0E1XJuBFi3bp1bv379MIcb6u477+aYitVUL4j/LoHMWl/U/qW9lXQ1ncRJfwp/9ZpWvvPrGv7l87V85jOF0jCNjT7VZdWqwc8rV0LV0F0DfkDrpk2+Z/5nP/PDrlasgHe/G84/H172shrMjgWOHdN7mmxbtjRr8OwI9BmNbLZ8Ru3tsHq1DwWngurYl0NVVdFpx/N1DQCk9rYosBeRJNsMrIstWwf8Z4n2m4B/xdewfyLSvgu4H8DM3gDMcc5Fx3EtC55fjOznb81sQWQA7Tpgu3Pu6XG+l+EZJa/DuSY/42y0ln0mA2+/sJ+/vKCSZ56B556DbdsKz7ff7ktIhlIpWLZscMC/YAHcfTfcdRd0dfl8+Esugbe8BU47Tak1IlKaAvtyyGah68iQwD5X1wQEs8+ecJKu3iKSVNcCzWZ2onPuSTM7Fz/g9SsAZnYN8FZgnXOu2zm3xcx+CHwYuNTMKvDlk78QKXW5AninmW12znUGNeo/CPzAObcnaHM7fgKrDwJXB5NeXQ5cM2XvdJj0SVddQ652Iend2wevyOepyvq897Vrh2538KAP8qMB/3PPwSOP+Ao1AAsXwp//uQ/mzzpLGZkiMjqJCewnexZDM/sk/oslWhbNgNcApzvnHg0GZ/2KoZUUrnbO3TPxd1VCVRW0HxyyOBf02A+UvAT12ItI4jjnHjazi4FbzCy8Zp8TmZwqix/MGu2d2AB8ycweDNpvBj4RWX83cDrwczPrBuYBPwM+FTluPviuuMHMHgiOc+NUTU4FgKVgmOr4uablQ2efHaGc/oIFvuf9tNOGbtbWBq2tvjpNRcU4z1lEZq1EBPZTOIvhB5xzzZHjvA64wTkXLQp2h3Nuw6S9mdHIZIpe+POL/eyzmqRKRJIuSJkpWv7YOXcFcEVs2WHg0mH2tx143yiOuws4f0wnOxGGD+7DogYxuaUryGz7fWzh+K7bZr5WfF3duDYXEWGKUvfHbMgshkA4i+EQkVkM/zlo3wt8AfiAmYWTAH4VP3FJ1Abgm5N98mNWUVE8zaaigtyiJYMnqTrKpicXEZlxslUlr8UDPfZhZ42u2yJSRkkJ7M8G4mk34SyGpdoPN4shzrk9zrmwLBtBwP8W4JZJOufxS6f9xb9Imk2+rpH0XvXYi4gkRra6dGDfuJxUdxepg/v8Al23RaSMyh7YjzCL4aqhWwCjn8Uw6n8A9zrn4sdZY2YbzexeM7vDzC4aw+mPXzZb9OKfq2sktSc4RfX8iIiUX1VV6flHlsYq4+i6LSJllIQc+6mcxTBqA/D52LJu4Hl8Ln6LmZ0KbDKzZc656+I7mOhEJ+AnYHjqqWYsn/OBvQ3+bXXinErqntjJlpYnGBixtX9qqrgl1WyZpGIi9BmNbDZ8RmGsuW1bec/jqDfMKNb+puWAD+z7XnaqvyPb1zddZyYiMkgSAvspm8UwZGbHAccDt0WXBwNzL4z8/ZiZ3QBcCQwJ7Cc60QnAXXc1s2bNejK9nX7qsblzB62ft/JEKu+6nbWLTyj0/KxcOebjzGSzZZKKidBnNLLZ8Bn19/vgfpZdIqZfJlNIn4wNoM1FAnvAp+Kox15EyqTsqTjBNOHjnsUw1p4S22wAvh2WwhzBs0CtmS0ZRdvxy2SKDqDN1TVgzpHav7dkHr6IiEyz6uJ59m5eLfk5c0nvUiqOiJRf2QP7QKlZDDeXaL8JP1A2OvXHoFkMQ2aWAi4BborvxMwuMrOzYouX4Xv994325MelRMnL3BL/+yS9t9UH/vn8iDWRRURkitXUFA/Yzcg1rSDdEqtlrwG0IlIGSQnsrwXOMbMTAYrNYmhmT5hZFsA5twUIZzGkxCyGodcDu5xzTxY57vHAh8wsE+xnKT6H/vrYwNzJl0pBZeWQi3+uPgjs90TG+KrXXkSkvCoqSg+gbVpOJj5Jla7bIlIGScixn6pZDKPtStWu/x7+x8F9ZtaLH5R7I0Xy66dENgtdXYPmCs/X+cB+YJIq8F8Qmk9cRKR8RgjsKx/99eCFCuxFpAwSEdjD5M9iGGn39mHWbQUuG9uZTqJsFo4c8aXUAvmFi3HpdGGSKtAXhIhIuWUyvoOlyADa/qYVpNoPY0cO4+bN9wt13RaRMkhKKs7sVKyEWipFfklDYZIq5/QFISKSBCUG0A5Uxonm2eu6LSJloMC+nEoOoG0gFe2x1+BZEZHyKzGAtmjJSw2eFZEyUGBfTmFt5FjgnqtvLKTihJVxRESkvCoqil6Pw8A+s2u7X6CSlyJSJgrsy8nM59fHenbydY2FVBwF9iIiyVBiBtr8oiW4qqwmqRKRslNgP42eego2bWoYvDCbHfIFkKtrIHX4IHR3qedHRCQpMpnivfZm9DcuKwT26TT09U3/+YnIrKfAfhp95jPw+c+v4Wc/iyzMZofWsg8nqWrbo1xNEZEkKdIZAz4dZ2DwrK7bIlImCuyn0Ve/CqtWtfPe98KT4XRZ6fSQHPt8ne/VT+9tUY+9iEiSVFcX7Y3PNS0nHc2xV2AvImWgwH4azZkDn/zkE9TUwIYN0NaGv61rNqhdrr4JwFfG0ReEiEhylJioKrd0BekD+7CuzkKPvcZHicg0U2A/zerqerjpJh/Uv+Md0N2XLkx6EshFe+x1S1dEJDkqK4d0xgDkGsNa9jv9AhU+EJEyUGBfBiefDF/8Ijz8MFxxBbjKwZVx3LxaX2Fhb6uqK4iIJEk67QfRxoL2Qi377YWFCuxFZJopsC+T886Dj3wEfvhD+OItCwYH72aFSarCniFNUiUikgzZ7JA8+/6lK4DIJFWgwF5Epp0C+zJ63/vgbW+D675UzcZN1YPW5eoaCrXsQV8QIiJJUV095E5qfkkDLp1RYC8iZaXAvozM4LrrYN3L83zwM/U8tiUzsC5f31SYfRb0BSEikhTFJqpKp8k1LlVgLyJlpcC+zLJZuOkbULcox2UfXMjOFv+fJFcXpOKEKTj6ghARSYbKyqKLc43LyYSBvUoVi0gZKLBPgCX1Kb71uTY6u43LPrSQjk4jt6SRVFcn1tHuGymwFxFJhnAAbXxywaUrCj32KnwgImWgwD4hTnhZmus/vZcnf5/hvR+vpX9xpOQlaPCsiEiSFJmBNte03N9p7ev1wX+RiaxERKaSAvukyGZ5/RntfPJDR7jzniyfuu8NAKT2tvqgXj32IiLJUV09pMe+v2k55hzp1t2aXFBEykKBfVIEg7HecWEnl/xFJ1+66wT+nQ2k9+oLQkSSx8zON7MHzewXZna/ma0bof18M7s52OYRM/usmWUi61eZ2ZfN7N5gnw+b2eWxfRxjZi1m1hx7vHaq3mdJlZVD7qQOTFK1a7tPxenr091WEZlWmZGbyLTI+P8UZvDpKw6z7Xn464e+RsNjt3DqGxTYi0hymNnLgVuBM51zW83sPOBOM1vrnGspsdnNQIdz7gwzqwSagU8DHwvWvxtYCbzBOddrZqcAvzazfufcNyP7ucM5t2Hy39UYVVQMDezDWvYtOwodMu3tMG9eOc5QRGYh9dgnRSbjo3rnqKiAr/3LEY6zbbz9tgvZtrNCgb2IJMlHgTudc1sBnHO3Aa3Ae4o1NrOTgD8D/jlo3wt8AfiAmc0Nmm0HrgvW4Zx7HLgbuHgK38f4pdM+uI9cm3MNTTizQmWc6mpoa9P1W0SmjQL7pDCDqqqBL4DaeY7/XPpuLJ/n0g/Xc3C/vhhEJDHOBh6KLXsQeOMw7buBJ2Ltq4FXATjnvuic+0Vsuy6gasJnO1XiE1VVVJKva/SpOOCDf+fg4MHynJ+IzDqJCewnO18zaHOwSC7mBbE2TWb2YzN7INjPFVPx/kYlVmVh1dJevrvyw7y4M8Nf//0CenvLdmYiIgCY2SKgFtgdW9UCrCqx2Sqg1blBuSstkXXFjmPAWcD3YqvWmNnGIBf/DjO7aExvYDKVGEA7aJKq6mo4cAB6eqb55ERkNkpEjv0U5WsCPOacWz/McVPAT4DbnXNXmVkt8IiZHXbO3TjhNzZW2eygnp1cfSPrd/yUz370IB/6x4WceCKcdBKccgqceiqcfDKsWuVTOUVEpsmc4DkeqfYANcNsU6w9w2zzTmAvcH1kWTfwPPAB51yLmZ0KbDKzZc6560Zx7pOromJIxbJc03Iqf/dwYYGZb9fWBkuX+r9FRKZIIgJ7iuRrmlmYr3lVvHEkX/PkoH2vmX0BuNnM/sk51z7K454LnIq/TYxz7pCZfQ34uJl9Pda7NPXS6UF/5pY0kt7bygXnd7Fkbjf3/HcTv/0t/Md/wE03+Tbz5sEf/IEP9E85xT+WL9d3h4hMmY7gOZ4iUwV0DrNNsfYU28bMTgc+ApztnBsoBh909FwY+fsxM7sBuBIoGtgHlXUuB2hoaKC5ubnEKRbX2dnOM880l+5A6emB9sK1e/X8Kla27GTLzscHX9PzOdj/9FHZE9Pd3c6WLc3lPo1E02c0stnyGeXzsGvX1O0/KYH92cBnY8vCfM0hgT0j52veMYbjPuuciyZAPgisAE4AnhrlfiZHUPIylK9rwPr7SB06wBteUcUbLspDKkV/P/z+9/D444XH179emAtl0aJCj/4pp8Bxx/l13d3Q1eUf4ev4c3xZJgM1NTBnTuER/Tu+LlxWVaUfFzNFPu//e7e3+0dHh3/EX5sV/vtGH9Flc+b4G0/T+d8+n/exVVeXf+7u9s/bts2hosLHUfGHmX9Op4cuS6X8v/twfTo99vfjXOH/o44O6OwsPEcf4bLxZmnk8/4u3uWXj9x2sjjn9pvZQaAxtqoReLbEZs8B9WZmkQ6TcPtB25jZCcAtwFudcy+O4pSeBWrNbIlzrq3I+d4I3Aiwbt06t379+lHssuDuu5s55pj1VFeXaPDCC/4fTBDE16w+jVTuO/xBegn5xmWFdrmcvxCvWDGkE2em27KlmbVr15f7NBJNn9HIZstn1N6xmOpyAAAgAElEQVQOq1dP3W/8sgf2I+RrvrnEZqPN12w0s+8CTUAv8CPgeudcLtK22HHDddMb2IdRRN4H8Lk6/72Xamsl3/SSgeWZDJx4on9cGPRd9fTAU08NDvabm8c+r1V1tQ/Mwkc+XwjuurpGv59MBubP948FC6C21r+urR38KLa+uztFV5cPpsJgK3wdfRTjXOH7s6fHP/f2+udSr3t7/fuM7jd+zPBvGLrMucIcYuHr6N/hMwxeFj76+/05R1/HH/39fn34es+eVSxYUGgf3S6+LLqur29owN7ZObmlts38v6Mw4K+uLgTQYZAc/lOPBtvF/s7lfIAcfYTBe/Tv4s6YtPcUD/ZLve7pKQTtY/l/b7h/0yO54ILpDewDm4H4OKh1wH+WaL8J+FdgLYUOmXX4wbH3h43MbCXwfeCS8A6umV0epkYG+fTPOud+Hdn3Mnyv/76JvKFxq6nx/8GDYD3X5EteZnbvoDca2If/QA4d8r0vIiJToOyBPVObr/kM8HHn3O/N7BjgLuBECiXZxpP3ObWqqnz0VVlJrq4BgPTeFvqXrhw2+qqqKqTihLq64IknfIdSGKiHgXux55F62XO5Qg9ktBcy3iPZ0QFHjsDhw/5x6JAfOrBjh3996NBIM62/ZlQfVbHAfzbMB+MD4OVUVBQ6CsMAs9hz9HVFBdTVwbHHwty5hbss4etiy8IHDN/rHO2dDpeHd4HCHxbhD6/wh0w+7/+bRf8Of8A45/+bhv92lywZ/KMz/qiqGvx6x44tLF26dsgPqfDv6DGjbUb6kVXsB1fYNvx/KXo3q9jdjTlzBrerrBzfv4X+/rL9e78WaDazE51zT5rZufgOlK8AmNk1wFuBdc65bufcFjP7IfBh4FIzqwDeD3whTJ00syb8D4YvA6lIAYUNBD3uwPHAW8zsYudcv5ktxafZXD/tqZOhbNZf8AK5pmCSqt074LSzBretrob9+/1/+KrkFvsRkZkrCYH9lOVrOufOi7x+3sw+C3zdzK5yzu0P9jN/pP2EJpqrCT6H7KmnmksH0GHEYCmydpg6oOX3D7PrmMXw9Itj7tarqfE9+3HOFYKu8TLzwd/cuSO3jR+7pydFe3uGI0cq6OjIcORIhvZ2/+js7CedrhoIWHzQZQOvnbNIz7hf7ntHjUwmTybjqKjwz5lMnoqK8O/B66JtUqlCTzvYQKAXvi70uFvkvGygpz+V8gv9jwwX6e0v9rqwLJ12pNOOVCr+zMDf0XXhj5ju7nay2TF+8OPQ2+sfBw4MXp5O+/EdSZ53Z+nSdrLZveU+jaJ6evxjolUQw3+L27ZN/JzGdlz3sJldDNxiZl1AGjgnUuwgi+8ciV6wNgBfMrMHg/abgU9E1n8aWI2vbx/1QuT19/A/Du4zs15858yNlMivnxaxAbS5oJc+3bJjaFsNpBWRKVb2wH6q8zVjnsV/0awC9gf7+eMixy26n4nmagLcdVcza9asDyeaHaqz04+qmDsXFr0UgBW9aRbWrvZfBCUTPY8esyXPbiL0GY1sNnxGYY/9ypXTf2zn3EZgY4l1VwBXxJYdBi4dZn/vAt41wjG3ApeN+WSnUkXFoADdVdeQW7i4UMs+rqqqkAMX3goTEZkkSRmeXypfc3OJ9pvwA2XXxtoP5Gua2RvM7PzYdmHCYzggaxOw2swWxPaz3Tn39JjewWQJZ6AFqKwit2AR6b2t/u+jPcdERGSmKTYD7dIVg2vZx1VXw969Yx8EJSIygqQE9tcC55jZiQDF8jXN7AkzywI457YAYb4mxfI18ZVtPmxmNUGbWuCDwA+cc3uCNrcDjwXLMbP5+FSba6b27Q4j1pWfr2sk1RYE9voSEBFJntgMtLnG5cMH9uHIcM1IKyKTrOypODBl+Zp3A6cDPzezbmAe8DPgU5Hj5oNe/RvM7IHgODeWZXKqUCpV6P1Jp8nVNZDe2+KXR6cuFxGRZKiu9pUCggGxuablZO/bXBgBXkxNjR9IO3fu+EdPi4jEJCKwhynJ19wOvG8Ux90FxFN2yqu6eqB8Wq6uiYr/3uq/HGJTl4uISALE7rT2L12B9XST2t9GfnFd8W3M/Hb79kFT0zScpIjMBklJxZGoqqqB3vl8XQOp/UEuZne30nFERJIm1uM+qOTlcLLZQo1YEZFJoMA+iSIz0ObqGrB8nlTHYR/Y796tnnsRkSSJplAyhsAefHCvgbQiMkkU2CdR5LZuOPtsem+LL43W1+dneurtLdfZiYhIXHX1wMx7ucYwsC9R8jIqk/F3aA8dmsqzE5FZQoF9EoUlL50jH8w+mwpLXmaz/nnHjonNLiUiIpOnunqgx97Nm09+Xi2Z0fTYh9vu3z/SlNwiIiNSYJ9EZj7PPpcjV+cHVaX3tBTWV1X5nM6dO/1EJyIiUl6RFEqA/hXHUHXf5tITVUX5qab9QFoRkQlQYJ9U2Sz095NftASXSvlUnKhMxvfytLTAgQOavEpEpJxigf2hK/6R1JHDLNlwHpmnnxh5+2zWd9ToTqyITIAC+6TKZgdq2ecX1xcmqYpKp33e/b590NamwVciIuUSG0Dbd8oZtH3zx7hMhiXv+jMqf3PvyPvIZmHPHl3LRWTcFNgnVTo98HJgkqpizPwEJ0eO+Io5msRKRKQ8amoG5cn3rzqBtptvI9e0gsXvvZjqn/5g+O3DgbSHD0/xiYrI0UqBfVJVVAyk1+TqGknvLdJjH1VT4yvl7NypijkiIuUQGUAbytc30faNH9F7yhksvOpvmXPLV4dPnayu9ndhNZBWRMZBgX1SpdM+uM/nydc1ktqze+Rtqqt9D74q5oiITL9M8cnc3bz57PvyrXS96S3UfvEfmf+5T5ROtwkH0u7Y4e/EavyUiIxB8auQJENlJfT1+VScQwegtwcqq0beJpXyPfcNDTBv3vScq4jIbBe50zpEZRUH/vdXydU1MPc/biS9t5UDn/43qMoObRuOsWpthYMHYckS33EjIjIC9dgnWXBbd2CSqrY9o9surJjT2qqKOSIi0yWVGihVXGr94Q99ikMfuJrqzT9h8Xsvwo6UmJgqnfbjp8B31LS0KM1SREakwD7JKiuDVJxwkqoSA2iLiVbM2btX+ZoiItMhMgNtKR1/9Tcc+N9fpfLxh1jyzreSat1VunFFhQ/wu7vhxRf9RFalfjiIyKynwD7JgnzNgR77kQbQxoUVc9rb/RfCCy/4L4WuLpVTExGZCkUG0BbT9cd/xr4v3Uq6ZQd1l/0pmWefHn6DbNZ31hw86K/nyr8XkSIU2CdZLLCvevC+8QXkNTX+CyGTgUOHYNcu2LbNl8c8ckS3d0VEJksmM+qAu/fMV9H2jR9BLseSd76Fykd/NfwGZv56XlnpUy1VKEFEYhTYJ1kw4YmbO5/Oc/+cOd//Fov+9v8jNdae+1A67XuT5swp1Fves0e9+SIik6Wiwgfgo9R//Frabv4JucV1LH73hWQ33zbyRvH8+9ZWpVuKCKDAPvmC27oHP/0lDl55HZWPP0jdBa+j6p47J7ZfM9/rM2eO/4LIZPykKDt3wvPP+179I0egp0eBvojIaKVS/to6hjz4XNMK2r65kb4TT2bhP1zOnP/7jdH1+of5911dyr8XEUCBffJVVfmZCM3ofNvbafv2neQal7H4Qxuo/cw/YF2dk3OcdNrncM6dW8gR3bPH3+rdts0/du6Etjb/A6Crywf9+hIRERksNgPtaLjahbR99bt0v/Ycav/lKhrefDq1//h3ZH9+O9bZMfzG2aw/5oEDPsDfswc6OpRmKTILqY590sXqIvcf+1Labr6N+V/9LHP/z/VUPvxLDvzT9fQfv3byjmnmj1tRUViWz/tHe7t/ds4/zAZShqiq8j1VFRX+h0I67del9PtRRGaRbNYH2WPerpoD//wNuu/4T7L33EX1pp8w50e34ioq6Tn9FfS86my6X/UGci9ZNXRbM38HNp/3HS9HjvjlqZRfPmeOvzZXVk7svYlIoimwT7pi+ZqVVRz+wCfoecVrWXD1+6m75FwOv+9KOi78n1MXRIcBerGZFZ3zXyadncUrNZj57dJp/1xRUfg73G8426J+BIjITFdiBtpRSafp+pO/pOtP/hL6+qh87Ddk79tM1f13U/u5T1D7uU/Q/5JVdL/qDXS/6mx6Tztr8MSFYS39qmBZNNB3rpCfHw7CjXbgiMiMp8A+6dJpHxiHveMRPa94LXu/cze1//h31H7uaqp++XMOfvKL5JfUT+85mhV66IsJA3/nfC3mcIBuPl94T9H319vrU4DCHwJhwJ/J+OfwLkH4rLsCIpIkYxxAO9x+es/4I3rP+CP44NWkd7xA1f13k71vM3O+fwtzb/06+Zo59Jz56oHe/HxQRW1AsUC/s9OnVDrnz7Wmxj+id1tFZEZSYJ90ZoWZDIv0AuUXLubA5/6dnh/cQu3nP0ndha/n4NVfoOfVZ5fhZEsIA38YXU/WEfPb9Pf7ID/6w2A40TsA8aC/2DKzwiM8z/jrYg8RkeFEZ6CdxCA5t3wlnRe8g84L3oF1dVL54H1k79tM9r67qW6+A4D+lcfRv+JY+lccQ/+KY8mtONY/Ny0vdI7EA/2ODh/oQ6FXP0zHrKryz+Fd1XAfIpJIiQnszex84CqgC0gD73fOPTRM+/nAvwFrg/abgCudc/3B+lXAh4BTAAfMAb7mnLsxso9jgF8BT8V2f7Vz7p5JeWOTobraX3RLBcVmdP7FpfSe/goWXvkeFn/gr2i/4B0cft/HIVs9vec6KUa4A1BKNPh3zv8wCMcCRJdH/y6myN2RQcIvteHuHsTXxV9Hf0CEz6N5HX0WkeSqrvbpL1PU++2qa+h5zZvoec2bOOQcmWeeInvfZiqe/H/snXmcHFW1+L+nZ59kMknIBgmQhGxAZDEDsoRkAgQFFFDwQcDEqBhEdsQXkE19yPJABTcEH8pieMjjsSNLgAyKID8W0QcB2RKC2fdMJrN2n98ft2q6ptI9vUzPdM/M+X4+9ant3lunqqtPnXvvuef+neIVyyh97S9EmuIx7rWomOhuu9O2xzjaxowj6hn+bXuMI7rr7m5cQHtirzGludm17ocjowXHVZWUxN19EulAwzB6lIIw7EVkGnAvcLCqLhWRzwNPi8i+qromSbY7gQZVPUhESoE64IfA97zz3wb2BI5S1RYR2R94RUTaVPW3gXKeUtX5ub+rHOK3/KSgbfxk1t/1BIN+cS0DF91O2WvewNoJU3pAyAKgp1qRwhUFf51tRSLTa4u4noxly+L37H9Ak+2H1+HtYJ7gfvBYuIISTpOstyNR2ZmSbf5kz90MDqO7KS93s8T2BCK0Tdyb7RP3jh9TJbJhHcX/WkbRJ8spXvERxZ8sp+iTZVT+7RUigUg7WlREdNRoYruMIFY9JL4M9reHdtwfNNhl9I3+1lYXIjlw7Q5jq8Ljq9LpQTUMIysKwrAHLgOeVtWlAKr6uIisBc7BteJ3QESmAl8E9vPSt4jIzcCdInKtqm4HPgEeVdUWL83fReQ54Azgt+EyC5pMWnxKy9h28Q/cwNrvX8jwuZ+j/lvfpXH2CUR32737ZOxPFMLHp16c4RCuYPj4+21tHfeD6VJVNpKVmUlvh5+2K4Z5tnmbm+GjjzIrM1e/baJKUaJz4Wslq3gl68Vpwxs4ObDrMmdIrntZvTS7Ar8GRgBlwL2qelOonCnAr4ASoBK4WVXvyeGt5YauDKDNBSLEho+kZfhIOPCQjudUiWzeSPGKj5zR/8kyiv71MUWbN1C0bjXF771NZOvmDi3+YWLlFcSqh6CDh/Lp8mIqB49EB1ahA6qIVQ7w1gPRygFo5QBiFQPQigq39o+XV3R8n303oHDLf7AyENxO9j/LpPcz37rcMHJMoRj2RwM3hI69CswmgWHvpW8C3gqlrwCm41rhb0mQrxGo7rK0PU0o5GU6NB92JOvve57BP7iIQT+7hkE/u4a2XcfQMu0wmqcdRkvNYWbo92qsdSsl9UUuxF8m5LJnJZ0yw+mCLg+dleHvt8S88IU9a9h3Ry+riESAx4AnVfVKEakG3hCRbb4LpYgMBJ4BfqCqd4jIGOAfIrJOVbs4a1+OKS11S4PXMh6sUAYjgQXHIPUUIsSGDqNl6DA44ODk6ZqbnIG/dTORLd56W2DbXzaspHjVJ0hDPdKwncj2eiTalrxcD41E0LJytKwcysrR0jK3X1rmbbs1/n77UuqOFxejxW7ArxaXQHEJWlzsjhcVQ0lpYN9LV1ICRcVoURFEiqAo4s4VF8XLi0Q6lNW+XVKaOKJbZ2OywhWXwG9gGN1B3g17ERmKM7ZXh06tAY5Nkm08sFa1w9duTeBcousI8BngxtCpKSLyKDAEaADuVtV707+DHsAfyBSLZeRuEhs6jE03303xh/+k9PWXKHv9Jcr+vJjKx+8HoG233QOG/qHOz9Iw+jO5+tj21EdbormrjGRGd/SyHgccgGu4QVW3ishtwBUi8htP38/HNeD8zkvzLxG5D7gCKCzDXgR2393p7WjULapu3dISX7e1ud6lRJW3znp9wtdKdP1kA//TdXspKyc2YldiI3btNNnba95i31FTO8re0kykYTvSsB1pqCfSUI80NHjreu9cPdLUhLQ0I81N0NyMNDd6+17+zRuhuQlpbmo/Ls1NSFtmE4DlChVxlYqSUlfBKCl12/6+f87b97f3ie2guvzXIHE3JI1E3H6gkqDtFT3fVUlcJcWvnHgVCy0pgUhRx8pHkXN30qIi8Csood9ZO+3FCGwXFTn5AnPSqETi5UYiXuXIl92l0+C7tVPPiltr+HjEVXCLduxANm3sIJf65TjBkrt8dkgHO73byf4jiUhHfyfqmU4XhfZn3Q3k3bDHDWoFaA4db8Z1sybLkyg9neT5BrAeuDVwrAlYDlyoqmtE5ABgsYiMVtVwBSC/lJY6P8ZMJxcRoW3CFNomTGHHqV+HWIzij96LG/p/eobKx/4AmKFvGEba5LyX1UvzoapuCaXZHZiMC3JwNPCGqsZCac4SkUpVzdFU3DnEN3w6ixfv99ZEo/FQwOEBq8H9cM9OuHfHX4JlBY8HzyVynxNJzw3OTxOLxnsmgiKXV0LFABg2MrXLTPhceDuIiPe82pC2NmhrRaJRt/b3W1s77re1QlubW0ejLn0smuZ2zPVARNuQ1lakpRlampHWFqSlxW23NCMtLUir24/Ub+mwv0tLIyVSDBr/TaQ94luSY6pI+D3ow3RefUyPeGVJQCI77bdXnvzj7RUDAOlYMfErEpHAtnhpkKxt80Gj9oQXF3fbuMBCMOx9bVAWOl4GJFPSDUnSkyiPiHwa+HfgaFVtr+Z7XcanBfbfFJFfA5ezc8s+IrIAWAAwcuRI6urqkoiXnKam7bz7bl3mDXp+i4/k4EUYCMw82C2x8xm44mOG/OPvDPm/vzPkhSfbDf3GkaOoH78XjaNG0ThyFI2jdnXrkaOIlYUff+5oamvk7TVvpU7Yj7FnlJr+8Iz8TstldR/02DW7sZd1fJIy/XPveus3EqSJAGOBpanvoADxW2nzET8+PNA/0XZna4AdH8Ouu3Y85xuk4XVn58LbnckDEFM0UgSlRWgsBmUVHfOGP7RdGbPTxXLe3voB+1ZP6LxMSCxzLOYqJ+29P22u0hFYE/MrH16FxK+UeOVK+zX850jiZ0q88iexKMS0veIh7ZXBmKvsaMd91EvTXgbtFZT2Mn0Z/Ov7+7EYaxvXM7JiuJcmeJ54HkL5IF4han+3tF1uaa84afu6XW7/+agrX4LlJpAvLn/4mWVG66DhWedNh7wb9qq6SUS2AKFZNRgFfJgk20fACBGRwIfCz98hj4hMBu4GTlLVFWmI9CFQLSLDVHVDSNbbgdsBampqtLa2No3iOvLMM3VMmVKb+biqHTtc1IGB3eBLu9t+cMgXiAIbYjGKP/wnZa+/ROnrLzFk2fsMf+N1100aIDpsJG2j9yA6eg+io/ekbbc9iI7Zg7bRe7oJUrpQE92pW9fYCXtGqekPz6itOYqqsudhY3ryst3Vy5qrNB3oaoPMjh3b+eCDOgvd3glNLTt4e9n/y7cYqcmZ11rmBTXFWnh7RzomSIprRrxlpw6gCFDaIelOebtKWsVkf62m1kY+LunGEN097baoO20AEFOh7MU/ddtl827YezwL1ISO1QAPJkm/GPgpLrrCW4H0jcBf/EQisifwADDP9wUVkQWBgVin47p+XwmUPRrX6r+xKzeUc8rKXBSU7dtdfOTuatmJRGibuDdtE/em4bRvuGNe2LSiVSsoXvkxRStXULzqE4pWfkzpG3+l6MkH47VYQEtKiY4aTXTEKKLDRhEbPpLo8JHEhrl1dPgoYsNHoRXJbADDMAqY7uplbQAGpZEm7d5a6HqDzHPP1TF2bC0VvXFKkB7i7bfr2Hff2nyLUdDYM0pNf3lG27fDhAndF6G7UAz764E6EdlbVd8RkeNw7la/BBCRa4CTgBpVbVLVt0XkIeC7wFdFpAS4ABf2bLuXZ1dcheEXQERE/IrDfDwlD0wCThSRM1S1TUR2w7Xs3BrqMs4/RUUwerR7IzZuhKYmNwV4TwzS88KmxYaPpHX/g3Y+39pC0ZqVFK9cQdHKjyla+QnFqz8hsn4NpW//jcj6NURCLf4AsQFVRIeNIDZ8lDP8h48iOmwEo4qaKdtjnYudPGgwserB6MBBNtuhYRQA3djL+hHwuQRlhtMkum4MN17KMAyjX1MQhr2qvi4iZwB3i4gfE/mzgbBp5bhu1qAVOx/4uYi86qV/FrgqcP6HwATg5tDlPg5s34+rHLwoIi24bt7bSeBfXxCIQFWVM+i3boXNm53BH5wxMB+UlBL1pi5PiCqyfRtFG9YSWb+WovVrKFq/loi/3rCW0n+8RtH6tUhLM59KVEQkQqyqGq2OT5ASqx7sbbuJU7SqGi2vcOHSysvRsor2UGpu3wurVlpmocYMo2t0Ry/rYuBcERkcGEBbA3yiqv8MpLlaRCKBAbQ1wEsFOXDWMAyjhykIwx5AVR8FHk1y7hLgktCxbcBXOynvm8A3U1xzKfC1jIXNN0VFMHSo87fftMm14vtTexciImhVNW1V1TBuUvJ0qsjWzXz0/l+ZVDqcyNYt8bjJ7dveeuM6ipe957YbtmckTnu4svKA4R+sAPixlMsqoKwscD6wXRqvLFBW7ioU5RXEyis67PsVDettMPoYOe9lBZ4E3gQuwhnvg3A9qNcErnsXsBCn+38nIqNxARBO7+b7NQzD6BUUjGFvZEFpKYwaBY2NsGFD9/vfdzci6OCh7Nh9D1ozGfTY2kqkfiuRrZuRpkYvHrIX97jJWzc3euvgsaZ42qbG9ljKkW1bkea17XGTaQrkzdJDS4PGvr/dPiFLaBKWsvhELB2Olbg1pWWM2L6a8mGfdJycpaQ4Hu+42JuEpT2+sRfXuKjIbUt8chz1YxAHJ1sxjE7ojl5WVY15s9n+WkRe9sq43R8T5aXZLiLHALeKyNdxvawXFdzkVIZhGHnCDPu+QEUFjBnjDPsNG9zI74qK/mOglZQQGzqM2NBh3XsdVRdyLDChijQ3uv2mxvZKRft2gn0C+5GmRhfveOsWLwZyszvvx0P2jyVgSHfeZjDGrz/hSCQSryi0z+ZY4iZJaZ+hsQQNbgfP+ZUJf5KTovjELBopcnGCvWuqPxvnTnGGQ/GDO0xOEtkpzR4Naxkw6C8dYxe3xzOWTo7Hy4tP5hKIZxzcb08TCZwP3lconnLgmLZPTFMUTxN4Tu0T2AQqXRqcDCYSgVZ123kg172sXppVwAkp0rwLzMpIWMMwjH6CGfZ9hbD//aZNbja6fPvf9yVE4jMK9tQ1YzHwJkFxhr6bnfHDNe8wYfBYN/lKtC0++Uq0LT4JS1t05+NevGO8+MSiXlzkhHGKo/EJUmLRQHkdJ3vpMBFMawuRHc0d9qWtbefyA9foMCFLcN+7bra9JNU5/ikKlfoTTocZi/IthmEYhlEAmGHfw0QiLqBNd4SjB+L+9wMGxP3vy8vJPHC+URBEIs5nv6y8Q2WiobyJtj4eo30nwjNntk8kovEKSCDdO2vfZu/hU9onLRGNuXDCgVkdkx5vLy840Yq/HUgTlCHmr6MdJ0XxtqW9AhWYOMWfAMbPE57sxc8TnPzFr5TFosRa2miesA9V+fpNDMMwjILCrL0epti5QNPa2s1jXcvK3EyAjY2wbp2rTfizG5aU9F4/fKP/0u4Wk5hwu360cgBaVZ30fF/An6DKMAzDMMAM+7wwahSsWNFDQWwqKmCPPVxNorXVGfgNDW7tU1LiahsWucUwDMMwDKPXYoZ9HqishCFDoL7ebXc7Ii6CTmmpc9HZZRfnP93aCi0tsGOHa9mPRuOt+n7XgmEYhmEYhtErMMstT+yyizPso9E8ecUUFcUntxrkzeIebNXfscO17IPzG/YN/kgkvu4vUXcMwzAMwzB6AWbY54niYhg5ElaujNvVeaekxC2VlW4AbizmDP2YFyGlpSXeyt/c7I4HjXs/FJ/v1mOGv2EYhmEYRo9hhn0eqapyS2Ojc4UvOCIRNwg3GdFofInFnMHvG/9NTe6Yj7X6G4ZhGIZhdCtm2OeZESNg2TJnA/e6sau+O4/PgAEdz/st/b7h3+ZiqdPS4tZh4x+coa8x1yMQnAm11z0cwzAMwzCMnsUM+zxTUuJcctasca33fQrfMO8s/E8i479+mfP9Dx9PRvsspbLzEkyTIlyiYRhGIqLRfEtgGIaRHmbYFwCDBrnJYpua+uFEsYmM/+IiV9sJ4k8O1GHmUo1XDNra4pWA4Png4h/vDN9lqDPClYRkFQqrTBhGrycSca6S27a5iQWt89AwjELGDPsCQMTZscuXO5d2swMT4BvIufiqts9ays7Gf/hcOI1fMQhXLhJVOFRdZcPPm+4P66fttKKgrjKTqMxg+vAxwzAyQq5hnisAACAASURBVATGjHGG/dq1zvuwIMdEGYZhYIZ9wVBWBsOHw4YNrlXI6EZ6uhU9WeUhUUUiWS9DuALh30c4r78NHSsh6coZfC6p9tMpJ1GeVOWkUyFJS45YfCK2TMsJH0+1n0nZXTln5AURqK52AcPWrHFG/oABNoG3YRiFhxn2BcTgwc4lp6XFzSVl9BG6oyKx6Z8wenTm+XyjP7yd6X6658Lp0kkbrIgkqpR0VlEJlre1yA1cCVZ60iknfDxRurDcqZ5dOtdNdS6RDG1YS0APUlLiWu/r652Bb633hmEUGmbYFxCRCOy6q3PJKSmxhjujG+hP7jlritxMcL2dZJUE37Cnj/+OBYaIGxdVUQHr1lnrvWEYhYUNAyowysudLbJjR74lMQyjIEg0ONsfb2JzQeSNkhLYbTe3NDW5+UgMwzDyjRn2BcjQoe573dqab0kMwzCMZPit9+PGuUaZbdssNKZhGPnFDPsCpKjIueT44/4MwzCMwqW42A15GT3a6W3rcTUMI1+YYV+gVFa6liDr3jUMw+gdVFW51vsBA1zrfWfz6hmGYXQHZtgXMMOHx0OhG4ZhGIVPcbHrcR092rlT1te7SGdG/yZZcC7DyDUFY9iLyAki8qqI/ElE/iIiNSnSDxKRO708b4jIDSJSHEqzq4g8IiIve2kuSVDOFBF5XkT+LCKvi8jcXN9bthQXu4mrGhryLYlhGIaRCX7rvR+Vtr7e9cCacdc/UHVuWfX1bgH3+/v7O3a4Cp+9D0auKYhwlyIyDbgXOFhVl4rI54GnRWRfVV2TJNudQIOqHiQipUAd8EPge16ZEeAx4ElVvVJEqoE3RGSbqt7upRkIPAP8QFXvEJExwD9EZJ2qPt19d5w+Awe6D0Rjo8VLNgzD6E1EIk6HDxzojLytW90CTp9biMyeo63N9aD4PeAi7vmXluZmQnNw01A0N8evMXCga5wrL4fVq2GvveJyNDe7RrsdO+LGfSTiGvQs3LXRFQrCsAcuA55W1aUAqvq4iKwFzgGuDCcWkanAF4H9vPQtInIzcKeIXKuq24HjgAOAo700W0XkNuAKEfmNqiowH6gAfuel+ZeI3AdcARSEYS8CI0bAsmVOaeRKARmGYRg9R3l5PJxxQwNs3OiMutJSN/O4kTuCRrw/0XVZWXz+gaIid37HDre0tsajyJaUZGZYR6NxYz4ScTMUDxzofuvw9zpYfmUlDBniTUfR5lrv/YHXvrGv6mQtKto52q1fXk9PpG4UPoVi2B8N3BA69iowmwSGvZe+CXgrlL4CmA485aX5UFW3hNLsDkwG3vXSvKGqsVCas0SkUlULIrZBSYmr9a9a5bZLS12t3jAMw+hdFBc7488PjrBpk3PNiESc0WmNN5kRjTqjODgWraTE9XRXVsYN6fBzrahwvwHEKwKJDGu/BT34zW1rc8a8f37wYDdgurw8cyM7aOwPGOAqfqpOHl+mlhbXsOcv/r2qxo/5++Hr+5UD/x6sEtD3ybt5KCJDgWpgdejUGuDYJNnGA2u9Vvdgev+cv05Upn/uXW/9RoI0EWAssDT1HfQMgwY5g37HDvcR2L49rlRKS61L1zAMozch4gzPykpnuG3bBps3OyOtvNwZYkYcv2W7rW1nI37gQPccS0sTG/GpKC52S0VFvBXdN6wbG10Py/btcTlKS2HYsPg1c20si7hyS0udsZ8OwcG5/rZ/H/49NDTEjX+/wtJbbIdgJSYWi9+fvx28p/5eOc67YQ/4r21z6HgzUNlJnkTpCeTJVZp2RGQBsABg5MiR1NXVJREvOdu3b88qXyLCL7mTsffXyJuatvP223X5FqOgsWeUmv7wjPz//bJl+ZXD6Bq+oTh0qDMg/Vb8oMtFUZEzXHy3jFwTNJLCxlOqiC6xWEd5Ie5C4i+ZEIs5g7StzW3737XS0rg7TXcapmHDetiwuEz+uUIj2bffd/vZZZf4PbS0uEZC38c/GzekRMZ1uHIRJtk75B+PxeIVqDD+RNt+Y6ZfGfP/E9Gou5/GxniY2eA99SdjvxAMez/mS9jLsAxI5grTkCQ9gTwNwKA00qQqpx1v0O3tADU1NVpbW5tEvOTU1dWRTb5U+INxtm93SzQaf6m7o0WhO3n77Tr23bc232IUNPaMUtMfnlFbm/so7rlnviUxckEk4gzXQYM6tk63tDj93tzccbClqsvjG89BVwvf4IpGOxrsQeMq6LrhlxOJxA1mv0z/nIjb9tf+9qpVbmBoNOoW31WlpSXuO+4b6D5B3/FgK7yqu35Fheu5KCsrDDeSSKT3j4Xw76GszLkqQdy/37cfgm5IwXcp/OzD70vQ8PbPJ5Mh2bF//ctFkfLLCi7p/PbV1fF7ClZggsY+9L7eikzJu2GvqptEZAswKnRqFPBhkmwfASNERALuOH7+DwNpPpegzHCaRNeNAcvTuoECwa+VDhwY735ranJ/VL/7LUiiPyrEFba/7bcU+X8uwzAMEfkecArQAqwEzlbVdSnyTAF+BZTgekRvVtV7AuenAxcCw7w0UeAKVf1TIM184FLibpU+J6rq1i7eVkHht0bCzu4YvvHsL01NzjBrbIz7W/uGV3GxM5CDxkzYaMpFL0BQ3jD+fCz+4htdvm98T7TCG4nxf7fgYF6/t8Q3qMMVuu6qYEUi6bsedUbQtco39v33zv+f+GMpsh00Xcjk3bD3eBYIx62vAR5Mkn4x8FNgX+IDaGuARuAvgTTnisjgwADaGuATVf1nIM3VIhIJDKCtAV4qlIGz2RDsRhw0KHFXWaJuVt+HMTxIx1fCfo03UaUg2JqTqw+FYRiFh4icD8wFDlLV7SJyE/AQcHgnedIJLXwz8KCqXuvl+RYu7PE0P2Kax/Wqemfu76z34Ld2+y3IvvECHV1XCgXf/9mCPhQ+QfuhL+H/Z8rLdzb2Gxs7NoL6vRC91dAvlL/Z9UCdiOytqu+IyHHArsAvAUTkGuAkoEZVm1T1bRF5CPgu8FURKQEuwLUA+R5aTwJvAhfhjPdBOP/4awLXvQtYCHwV+J2IjAZOA07v5vvtUfxW91wQ7Nr1l2DLUbALzG858knWS5DoGon87FJ1DaZbfrJyw0u4haLQPpaG0dN484NcDlwT0LU3AmtE5ChVfS5J1vmkDi28FPhZIM9twE3AyRRQIINCx3pWDSM9gsb+kCHO9mhp6f2GfkEY9qr6uoicAdwtIo1AEfDZwORU5biu2+AjnQ/8XERe9dI/C1wVKDMmIicAvxaRl70ybvcnp/LSbBeRY4BbReTruMG0FxXK5FSFSDYuOeHBNGEfz/B65cqOPsOdpU92LFPZoGNFJbj2KzJ+TOR0CccbDh5LFI84mC+8nW2FJdXxTLfDlZ5CV3LJ3r1w9IjgMZ9wha433G8PsB8wAnjNP6Cqa0VkBS48cTLDPmVoYVWdF8ygqioiTew8DsowDCPnRCLx+SaChr4/g3DY0PfHfRTad6EgDHsAVX0UeDTJuUuAS0LHtuFa2jsrcxVwQoo07wKzMhLWyIhMjVN/MpFCJOzKlMylKRyay0/nVw6C29AxfFswQoBPuPcj2KvRWU9FokpYWBGFKx2dbfsVnKDLVioZ0iGd/MHIT+kQi7mWF+g4biS4n2wddkfz3dSykTsTUpUX7rWC3PikZoAfTjhRKOHxJCfj0MIiMhEYCvxP6NTnRWQeUOqVcYOqvpqO8IZhGOkSNPQHD97Z0PcnJsv0O5BNI2QmFIxhbxi9gWCLdb5QdVEoJk7sKFc+5UlUwUkUAi1Z/s7orLejsx6QVatgwoTc3GNQ1lRjVbpKur04/nYPv4vZhCf286UdWtjjauCXqvr3wLG1wAfA91W1yevpfVlEpqvqXxMV0tUwxbkMUdxXsWeUGntGqekrzyidUJ+rw00jOcQMe8PoZXTFPac7yOUYjkKnELtdc4E3junyFMlmkV14YsgwtLCInAXsBnwteFxVn8SNn/L3F3mDbC/FjcPaia6GKe6uEMV9CXtGqbFnlBp7RrnBDHvDMAzjP4Ffp0izHtjb2x5Fx5DAo4DnO8mbdmhhETkFmAd8TlVbU8gELnxxOKqaYRhGv8TGzxuGYfRzVHWbqv4rxdIM/APnDtNuSIvICGAPXACDZCwGPu1F1fHZKbSwiByLi1T2eVWtF5EhIvLlwPnrRCTsujMaWJHlrRuGYfQpzLA3DMMw0sKLanMt8G0R8f3tLwFeItBiLyIviMidgax3AU14AQ8CoYWvCeSZCdyB863fS0RqgOnA8YFyDgW+EcpzJG7iK8MwjH6PueIYhmEYaaOqPxORKuBFEWkGVgFfDMwCDm5AbEUgTzqhhf8LN3/JE6FL3hXYvh44z2vFj+C+Yaeq6uM5uj3DMIxejRn2hmEYRkao6o+AH3Vy/qAExzoNLayqE5OdC6R5CngqTTENwzD6HeaKYxiGYRiGYRh9ADPsDcMwDMMwDKMPYIa9YRiGYRiGYfQBzLA3DMMwDMMwjD6AGfaGYRiGYRiG0Qcww94wDMMwDMMw+gDSMfSwkS4ish74OIusw4ANORanr2HPKDX2jFJjz6hz9lTV4fkWoifJUm/be5Qae0apsWeUGntGnZOWzjbDvocRkddUtSZ1yv6LPaPU2DNKjT0jIxfYe5Qae0apsWeUGntGucFccQzDMAzDMAyjD2CGvWEYhmEYhmH0Acyw73luz7cAvQB7RqmxZ5Qae0ZGLrD3KDX2jFJjzyg19oxygPnYG4ZhGIZhGEYfwFrsDcMwDMMwDKMPYIZ9DyIiJ4jIqyLyJxH5i4jY6G8PEZkvIu+KSF1oqc63bPlEREpF5HoRaRORsQnOnykir4vIiyKyWET26nkp80dnz0dEvi8ib4bepyfzI6nRGzGdnRzT2YkxnZ0a09vdS3G+BegviMg04F7gYFVdKiKfB54WkX1VdU2exSsUrlfVO/MtRKHgKbz/Bt4DihKcPxG4FthPVdeIyLnAM9471dSTsuaDVM/H40JVreshkYw+hOnstDCdHcB0dmpMb3c/1mLfc1wGPK2qSwFU9XFgLXBOXqUyCpmBwFzgd0nOXwncEzAybsNN8HFGD8hWCKR6PobRFUxnG5liOjs1pre7GTPse46jgddCx14FZudBFqMXoKpvqeoHic6JyBBgGoF3SlVbgTfpJ+9UZ8/HMHKA6WwjI0xnp8b0dvdjhn0PICJDgWpgdejUGmB8z0tUsHxeRJ73fA8fEJGD8i1QATPOW9s71Tlf93w0/yIi94jIpHwLZBQ+prPTxnR2+pjOTh/T213ADPueYYC3bg4dbwYqe1iWQmUt8AFwnKpOBx4CXhaRQ/IrVsFi71RqVgB/x7W8TgeWAq+LyLhOcxmG/b/SwXR2Ztg7lR6mt7uIGfY9Q4O3LgsdLwN29LAsBYmqPqmql/oDiFR1EfAycGl+JStY7J1Kgar+VlV/rKpt6ibsuB7YBFyQZ9GMwsf+XykwnZ0x9k6lgentrmOGfQ+gqpuALcCo0KlRwIc9L1Gv4UNgQr6FKFCWeWt7p9LE+0gsw94pIwWms7PGdHZyTGdngentzDHDvud4FgjHQK7xjvd7ROQ6EQl3R47GdcsZIVR1M24QVvs7JSIlwP7YOwWAiNyS4LC9U0a6mM7uBNPZmWE6Oz1Mb3cdM+x7juuBz4rI3gAichywK/DLvEpVOBwKfMPfEZGZwJHAr/ImUeFzDTBXREZ6+98ENgKL8idSQXGCiJzg74jIV4CxwG/yJpHRmzCd3TmmszPHdHZqTG93EXG9HEZP4L2sVwKNuIkZLlTVV/MrVWEgIp8DzgOqcBXOYuAmVX0gr4LlEREpBZ4BBuNadV4BVqnqlwJpzgS+jfPRbAK+1V9CiaV6PiJyOnAm7n0qBdqAq1V1SX4kNnobprOTYzp7Z0xnp8b0dvdjhr1hGIZhGIZh9AHMFccwDMMwDMMw+gBm2BuGYRiGYRhGH8AMe8MwDMMwDMPoA5hhbxiGYRiGYRh9ADPsDcMwDMMwDKMPYIa9YRiGYRiGYfQBzLA3DMMwDMMwjD6AGfaGYRiGYRiG0Qcww94wDMMwDMMw+gBm2BuGYRiGYRhGH8AMe8MwDMMwDMPoA5hhbxiGYRiGYRh9ADPsDcMwDMMwDKMPYIa9YRiGYRiGYfQBzLA3DMMwDMMwjD6AGfaGYRiGYRiG0Qcww94wDMMwDMMw+gBm2BuGYRiGYRhGH8AMe8MwDMMwDMPoA5hhbxgJEJFBWeSp6g5ZDMPo3WSjT7x8FSJSnGt5DMPou5hhbxgBRCQiIv8B3JRF9otE5DYRKU3zWpNFZI2IbBcRFZFN3v4aEWkUkfdE5GYRGRLK94iXRr318ARlHxYou9HbPl1EirztTV7+Z0VEEuS/xEvXIiJbve2xWTwTw+i3pKtPvP+0/5+cHzi1G/C6iOyTwTWfEpH1Xln+f3+NiGzz1k+JyMGhPKcH9I6KyLwkZb8aKHuNiDziHf+Ftx8VkR0iMiVB3t29NFs9vbJGRBame1/ZICJ3isg7IlKWZvqnkvwOBYmIjBKRVSLygy6U8bb3m6iI1OZQvGxkSfY/SJTW/342ioj2kIi9A1W1xRZbvAX4JfASUJVF3hLgEeBhIJJBvu8DCtQGjpUC53rH/w8oSZBPveXRFGXfmeB4bSD/dzrJXwfMz/fvYostvXHJRJ8E/pPzQ8dPBTYAEzO47livrDtDxz8NLAPagCMS5LvTy7cVGNdZ2UnOLffyv55IZ3lp5gN1PfT8HwfWAgNCx+uA5Zn8DoW4AHsCDcAvuljO/PA3KEX65d31G2b6/P13Nt+/RSEt1mJvGB4ichzwLeBMVa3PNL+qtgILgNnAmV2RRVVbVPUXuA/QVODzSZIuB74gIt/K4jJbvOVaEdk/GzkNw0hMV/WJj6r+AXgBuDNR71qGZb2Bq+wXAZckSbYcGATcIyJFWVxmOa4C8R9Z5M01JwB7qmpDvgXpDlT1Y2A4cF6+ZTEKBzPsDSPO1cAfVXVptgWo6lrgbuDyLD+KYf7mrScnOX8mUA/8WESSpUnGVlxFpBRYJCLl2YloGEYCuqxPAvwncBhwdA7KSqVT7gKeAA4HvpdF+d8B/gV8V0RmZpE/Z6hqTFWb8ilDd6OqO9RrujYMMMPeMAAQkfHAwcBzSc6P8vzn/yUia0XkAxH5XxE5MUHyZ4E9gOk5EM3/j25Icv5D4NtAJc44L8mkcFX9H+AOYF+c8WAYRhdJQ59ME5EXRKReRJaJyM+Aik6KfBXYBpyeA/FS6RSArwFrgKvC/vhpsAn4ird9t4gMzjA/ACJyT8Dnv4M/vojcJyKvBvY/HfDxX+/5Xy8P+477ftm4SpLv879GRP6RQISIiFzt6fotIvK0iIzrbrm94yIi54nIW57P+XoReUhEPhXIe6LEx0EtTyDHbBF5XdzYimUi8hMR+ZbEx3M9lUD8chH5mYh8LCIbReR/RGRYoMyjvee3O+CP41ojIk8E0qSUPZA20/9B2ojIIBG5yXsP1nr39FMRqQ6lGyYit3rXXy0iH4rI70XkyECaShG5TkTe99IsF5EHReRLuZA115hhbxgO3wh/N3xCREYArwD7A59R1ZE4d5s9ca1bYd7x1kfkQK4DcT6Uf0yWQFV/D/wemAb8MItrXAD8EzhXRD6XjZCGYXSgM30yGVgCRHH+6nsBfwauS1aYqsZw/9Fc6RSA+zu53npgHs5lZ5GIDMjkAqr6AnAtroHj1myEVNW5xN15jlHVGwDEBSc4FpgmIrt5ad8ApgAbgd1U9Z+qOhan24Jl/lNVR+HGPXyiqqO8Zb8EIpwPvAdMwrlDTsCNn+pWub18t+Leh4XALp4MCrzsG8iq+kjgXjogrqfkj7h3Zlcv/0c4NyyAL6lqIl3/fdyYrT2BGcBRuIYf/96e9a75CfBS4PkdHygjpeyejBn/D9JFRCpwbqxfAGZ73+yjgeOAF0SkMpD8AWA88GlV3RXn4z8JuCqQ5lde3plemmm4nu6fdFXW7sAMe8NwTPLWaxKc8z9Q31DVlQCqugyn+BOxOlRmxohIlYhcAlQDx6rqqhRZvo1rvf93EZmRybU8/9M5QCvwu2ALjWEYWdGZPrkGqAIuUtWNnrvI/wCvpShzNTBWMuyV8xGRYhGZjhuU/33cwN6kqOpiXDSfCcAtWVzyB8DLwGki8pVUiZPwqLc+IXCsFtfYIaHjxwLPeWOdcsHHqvrf3u/zL2ARsF86rfZ0QW7vNzoLuEVVn1DHZuCbuIrWj9K4/k04Y/p8VW1Q1VZvzNZbKfK9oqrPAqjq27jBx8dK+pHeMpE92/9BOnwHV4G9XFXf9+7nfeByXAPdv3vyDgZmAo97cqKqnwBXAisC5Z0IPOt/h1V1I3Ap7ptbcJhhbxiOXbx1h0FWIhIBTgH+5Sm6IH8FTk5Qll9Gpgbyg1635mZct/slwPdU9c+pMnqD8+bgWj/uCXc3ppH/b7gWllHAf2Uot2EYHUmmT4pwhtwaVf17KM+SFGU24IyjISnSBTnV0ynrgEbgT8CLwDWqGk0j/+U4Q+sbIvLFDK6LqrbhXIe2Ar+ULMLlqupbuCg+QUP4RFzFpD7B8UcyvUYn/CW0/y9vvVuqjF2U+1Rv/UyozI24VvejpZO5DURkJFADvK6qYXerVO9YonsuwQ3QTYe0ZO/i/yATOZ4IHX8MV+H5N29/B+73uEhEjvG+96jq06oaDPm6DviqiHzZr1ir6luqelQOZM05ZtgbhsNvkWgLHR+OazXfqcXca2FI5EPrl5FWK0eAL3ndnLvgKgxDgP9Ns4UIVX0V19KQbff3LcCTwIkisiCL/IZhODrTJwNI3JKf6FiQbPTKHzxXiRG4lvc3cT2N/55OZq8VeQ6wHfiNiOyawbVR1eW4Flw/yk42NsdjQE3g2scDDwJPA0eKyEDP2DoKp79yRdgobvHW6faYZCv3BG/9QMCHfY3n2z4GiAFDO7mu/73I5h3r6j2nK3tX/gfpyrFFVRuDB1W1GTcGZIK334JzOavG/S6fiJuTIeya9TVcxfh+YI2I/E5EDs+BnN2CGfaG4djhrZMpsEw+pn7aHZ2mSoJXYXgQ151ajmtJT5cbcQP25mTa/e1FVpiPi/v8UxHJ2pXIMPo5qfRJNnRVr3yMG9TaBlySrt+8qn4AnINrcLgL50qSyXX/APwON+4gmyg7j3rX/IKITMP1nm7wjpcBn8O5ufxdVbdmUX4yYl3M31W5Zwd82P2lWlUHquq6LsqWjK7es08+ZM8KVX0YNxh4HvB34GzgTRG5OJDmJZwf/sm47+vpwIsicnPPS5waM+wNw+G3yIe7udfjupJ3aqkSN6vkmAT+h34ZK7so03/i4sx/1RvAmxJvkN1cXMvLL3GDktLGU7rzcJEJ7iW3holh9Bc60ycNOJe3MImOBRmCazXcnK1Q6kJv/h7Xavr1DPLdjdMHs4ELs7j0ebiBqFfjogVlwp9wevAE4CTibitP4FwPTyD3bji5IFu53/PWo8MFishIST077DJvnc071lXSlb0r/4N0eB8Y7A2iDcpQhnv33w8cK1IXMvQeVT0ON5j5Q+B68UJAi0ixN07hQVX9N9x39a/ABSKyVw7kzSlm2BuGwx9UNCZ40DOUHwBGikhNKM9ROEUWjv/ul5FqoFKneK04N3vln5tBvtW4rsNBOCM90+s+A/wYN/L/0EzzG4aRVJ9EcdFKRsnOk8LVpihzDPC217PWFa7BGZYXSWZzbZyN85POeDKkwAD9GG7SrkzytgJP4fTtv+ENTFXVTbjxAsfjop88mqyMBDQA7X7qIvIjETmwk/QZ0wW5/+CtE4VSvBo3MLSz667FhUedliAQQm36d9Ap7c/P85n/hYjsQZqyd/F/kA5+xKfjQ8e/gOtFuR/AG/exVSQ+8Zs3yPYRXKOW36vVKiLDA2lW4wZTA2QVzrU7McPeMBx/wkWFSTQD6/dwI+Rv8cOUichEnNH9Y1XdFkp/gLdenAO5bsH1GHw7FKKrU1T1ceDnZNhtHuBy3LTwXZrp0jD6KZ3pkytxPus/EZFdvJ6/k4FjkhXmuc1MJAc6RVU/xLXajyPx4P9k+fw4+ukMuk2U/w3gMrLTKY/iNaBoPCSkf3wozp/64wzKewcY4cUwH4cbc5ArN5QgGcvtuX38EpgrIqd570eRiHwNOIOOYRiT8V3cc75FRAaISImIfJsELelZ8g4w3mvRPhQ30WFjhrJn/D/IgB/jJmK7xvtWIyITcJXav+NcVn0GAP/hteb7c1D4UXA2BtLdICJVXpqRuIrqu155hYWq2mKLLargupr/D5AE50YBt+Pca9bgFNuFSdI+DfwpjetN9srajhupv8nb3z2U7vve+Y24OL+PeOkU16X5RpLyy3BK587AsSIv7ybcB3oN8Isk+SfiIgbMz/dvY4stvW1JoU+mAS94/68VwG+BL3r/6a24lvlgej/i1cQ0rvuUpxcU57qzBrgklGYCztd+h3f+e9660dNHa4AjkpR/Gd6QnMCxX3h5ogE9VpQgr+AGitZl+CwH4ypKN4aO7+Xd538kyLPce5a+bn0icG5XXOSW9biY7Fd4x+/x0vq/w1Pe8SdCZf2uu+QOPKdvefp7I/AxbjDutECaE73n3BLQ5fMC52fjIhptAz7AtZif6V13RiBdXejefuMd/wfxb9N64IeBPFNw8fPX41x/zsxE9mz/B6G8/vez0Uu/Bhfe0j8/CGfgL8eNG1sB/BSoDqQpxYWKXuK9B6txbjrXAYMC6ebhehhWeGmW4WLbj8qXfulsEU9ow+j3eDX1/8MZsv+TZRmH4LpZp6vqX3Mpn2EYvYdc6BOvnCKckVSnqmm75BlGGHGz4F4PTNWdwzcbfQRzxTEMD1X9CNfV/AvJfBp1v6vvfuBcM+oNo3/TVX0C7Ub9PbiW0U59qw3DR0Q+KyI/SHDqUFxM9p1mRDb6DmbYG0YAVX0EF63gPVYY5QAAIABJREFUuCyyHwucpaq/zq1UhmH0RrqoT8DNYPsx8Fl1MbgNIx2GAN8RkVkAIlIqImfiBo9erulNTmb0UswVxzAMwzAMo48gInviBtAejZt8aQCulf7GrriFGb0DM+wNwzAMwzAMow9grjiGYRiGYRiG0QcoTp3ESMSwYcN07NixGedraGhgwIC0ZvLut9gzSo09o9TYM+qc119/fYOqDk+dsu+Qjd629yg19oxSY88oNfaMOiddnW2GfZaMHTuW1157LeN8dXV11NbW5l6gPoQ9o9TYM0qNPaPOEZFMJvTpE2Sjt+09So09o9TYM0qNPaPOSVdnmyuOYRiGYRiGYfQBzLA3DMMwDMMwjD6AGfaGYRiGYRiG0Qcww94wDMMwDMMw+gBm2BuGYRiGYRhGH8Ci4hhGHti2bRvr1q2jtbU1q/zV1dW88847OZaqb9Gfn1FJSQkjRoxg0KBB+RbFMPoEprO7n/78jHKps82wN4weZtu2baxdu5bRo0dTUVGBiGRcRn19PVVVVd0gXd+hvz4jVaWxsZGVK1cCmHFvGF3EdHbP0F+fUa51trniGEYPs27dOkaPHk1lZWVWHwjD6AwRobKyktGjR7Nu3bp8i2MYvR7T2UZ3kmudbYa9YfQwra2tVFRU5FsMo49TUVGRtduAYRhxTGcbPUGudLYZ9oaRB6zVx+hu7B0zjNxh/yeju8nVO9arDHsROUFEXhWRP4nIX0SkJo08B4nIUhG5M8n5LSJSF1pOzbnwhmEYhmEYhtGN9BrDXkSmAfcCX1XVGcB1wNMiMqqTPAu9dNpJ0W+qam1o+UNOhTeMXs7YsWOpra1tX0SEKVOmtO+PGjWKurq6Ll2jqamJ3XffnVdffTWjfD/96U856aSTunTtIJpEW9xyyy1MmTKFsWPH5uxaRi8h2UthGAVKf9LZyeivOrs3RcW5DHhaVZcCqOrjIrIWOAe4Mkmed4D/BJb0jIiG0XcJfgREhEsvvZT58+cDtK+7QklJCZMnT844IsCoUaMYP358l68PEItBSwuIQHExFBXFz11wwQVUV1fz/e9/PyfXMnoJ0Sg0NkJlZb4lMYyM6A86uzP6q87uTYb90cANoWOvArNJYtir6qNgvnGG0VUuvPDCTs+fdNJJXW4VKSoq4tlnn80435w5c5gzZ06Xrg0djXpw25HIzga+0Q+JRvMtgWFkRH/Q2UZieoUrjogMBaqB1aFTa4CuVvtGicgfPL/9Z0XkXBGxz7hhBEjnIzFkyBBqa2spLy/npptuYt68eRxyyCGICMuXL6euro5Zs2ZRW1vLoYceyvz589myZUt7GUcddRSDBw9ub135wx/+wAEHHICI8Pjjj3PCCScwceJEzjvvvPY899xzT3san2OPPZbBgwdz5ZVXcvbZZ3P44Yez33778cYbb3SQ+dFHH2Xy5Ml85jOf4cQTT+LKK69m8OByjjmmlm3btrYb8y0t0Nyc3LZ79dVXmTlzJgcddBBTp07lsssuo62trf38vffey0EHHcSsWbM49NBDueyyy9rPLV68mEMOOaT93Pnnn09DQ0Onz9rIA4Hf0zB6A31dZ5900klcffXVlJeXU1tby9atW9N+Nn1dZ/eWFvsB3ro5dLwZ6Gr/6AfAFar6voiMBZ4B9sa5+HRARBYACwBGjhyZlX/a9u3bu+zX1tfp68+ourqa+vr6LpURjUa7XEZXaWpq6iBDJBLhscceY+rUqdx11108/vjjDB06lNNOO40dO3bw6KOPcuyxx3L22Wejqpx//vmcd955/OpXvwLg4Ycf5rjjjqO5uZn6+nqOO+44qqqqOP744/nb3/7GokWLWL9+Pfvssw+f+9znmDFjBieddBK77LILxx9/fLss999/P8cddxwPPfQQzz//PCNGjOCyyy7j/PPP58knnwRgxYoVfPnLX+aOO+7gxBNPZP36jRx11CxGjhzJY4895t1f/N58F+sdO5pQ1fZrbdiwgdmzZ3PDDTdw+umnU19fz2c/+1na2tq46qqrWL16NfPmzeONN95g3LhxbNiwgWnTpvG9732PtrY2TjnlFBYtWsTMmTNpbGxk+vTpLFiwgD333DNnv1Ff/i/1GGbYG32Q6upq6urqGDt2LPfccw9Llixh6NChnHjiiUQiEZ566im++MUvcv7556OqLFiwgIsvvpjf/va3ADz33HPU1ta2l3fqqacycuRIZs2axdKlS3n00UdZt24de+yxB1/60peYNWsWc+fOZffdd2fWrFnt+Z588klqa2t5+OGHeeWVVxg5ciQXX3wxF110ES+88AIAH3/8MV/+8pe59957Ofnkk9mwYQOf+cxnMh4rsH79embPns3PfvYz5s2bR319PdOnTycSifCjH/2IVatWMW/ePN577z3Gjx/P+vXrmTJlCtddd127zn7ooYc48sgjaWxs5MADD+Tiiy9mwIABqS/eQ/QWw96vDpWFjpcBO7pSsKp+PrC9XERuAH4jIleq6qZQ2tuB2wFqamo0+EKnS11dHdnk60/09Wf0zjvv7Dy73oUXwptvpl1GWzRKcVf9Qw44AG6+Oevs5eXlCWcJFBFOPvnkduP0iSeeAGDhwoUMHjyYsjL3N54zZw7z58/vUEZRURFlZWXtxyo9v2Y/XVVVFfvssw/vvfcexx9/fIc04XJmzpzJXnvtBcAxxxzDPffc055m0aJFjBgxgjPO+AotLbDbblXMmfMV7r33HsrLk898WFJSDgilpVWUlMBNN91EZWUlCxYsQESoqqrinHPO4aKLLuKHP/whDQ0NRKNRNmzYwH777UdVVRVPPvkkVVVVbN68uX2aev/eHnjgAfbaa6+cxcwuLy/nwAMPzElZ/Roz7I0wGersimi06z59XdTZnfHFL36RoUOHAvDII48AcNFFFzF48GDA6fVTTjklbd9839VmxIgR7LPPPrz55psdjPlEzJgxg5EjRwJQW1vLHXfc0X7utttuY8SIEZx88skADBs2jNNPP5177rkn/ZsEfvGLX1BZWcncuXMB9904++yzueiii7jiiitYu3Yt0WiU5cuXM378eIYPH84f//hHwM2Mu23bNpYvXw64uPP3339/u8yFQq8w7FV1k4hsAcIRcEYBH+b4ch8CgnPx2ZQirWEYCdh99913Otbc3Mw555zD0qVLKS0tZcuWLaxZsyat8nbbbbf27aqqKrZt25Yyz6hRcXURzvPOO+8wbtw4Wltda3wkArvvvkfKMkXiPvjNzfCPf7zFXnvt1aFbecKECTQ1NfHBBx9wwAEHMHfuXI4++mhqa2s57bTTOOOMMwAYMmQIl112Gd/85jf59a9/zWmnncb8+fNtIpxCxHzsjT5Ob9HZQfbYI7XODvPWW31fZ/cKw97jWSAct74GeDDbAkXkKGCAP8jWY7S3XpFtuYaRMRm2wjTW1ydsLS8UihK0TB177LFMmDCBJUuWUFZW1u6/mWl5IoKmEX4wnCeMqhswG4kkT5MMkXjjWyzmjPySknhZwevefffdLFy4kDvvvJPLL7+cG2+8kVdffZXBgwdz7bXXsmDBAu666y5uvvlmbrjhBl5++eUeiRhhZIC12BthTGenXV6udHaY7giM0hd0dq8YPOtxPfBZEdkbQESOA3YFfuntXyMib4lIeQZl7g58V0QqvTKqgYuA/1XVdTmV3jD6MRs3bmTp0qWcdNJJ7a44LS0teZFFFSZN2ptly5Z1MMQ/+STzuvy++05l+fKPUFWam52B/957H1JeXs6ECRNYuXIlL7/8Mvvuuy833ngjb7/9NqtWreK5556jvr6ep59+mrFjx3L11Vfz7rvvUlFRwUMPPZTDuzVygrXYG/2MQtLZAHvv7XR2kBUrMtfZU6dO5aOPPupQ0fjww76ls3uNYa+qrwNnAHeLyJ+Ay4HPqqrfL1SOG0jbXoUTkQUiUgccAHzOm1X2hECxzwF/A5aIyAu4ePd1wNe6+XYMo18xdOhQRo4cyfPPP9+uUB9++OEel0PVNb5+/etnsX79Oh588AHAfcQeeuh/My7v7LPPpaGhgfvuW0RRkRv4fdttt3L++RcTiVTw7rvvs3DhQlpbXYtvLBZDVZk4cSIbN27knHPOaY+ooKpEo1EmTZqUuxs2ckM0apNUGf2KQtHZPmeddRbr1q3jgQfiOvt//zdznX3uuU5nL1q0CHA6+9Zbb+Xiiy+moqKC9993OtuPktMrdbaq2pLFMm3aNM2GJUuWZJWvP9HXn9HSpUu7XMa2bdtyIEnmvPTSSzpz5kwFdPLkyXr55Ze3n2tra9OZM2dqWVmZTp48WefOndsh75///Gc94IAD9FOf+pSeeOKJet555ymgM2fO1NWrV+uRRx6p1dXVuueee+rll1+ujz/+uO6///7taTZu3Kjz589vT3Pdddfp3Xff3SHN+++/r6eccopWV1frHnvsoT/+8Y+1rq6uPc2MGTN12bLV2tys+sADj+jEiZP04IM/o1/+8qn6wx/+SPfaa4I2N2vC5aabbtZJkyZrWVmZzpgxUzdurNfmZtUXX3xFp08/QqdNq9F99tlXL7lkoTY0tGpzs+qyZat17tz5+ulP1+iMGTO1pqZG77jjt6qqun37dj3vvPN02rRpWltbq9OmTdPrrrsup79XZ+8a8JoWgC7tySUbvb3k2WdV33lHNRrNOG9/wXR2akxnZ6ez/Wupqj7yyCM6adIk/cxnPqOnnnqq/uhHP9IJEyYkvfebb75ZJ092OnvmzJlaX1+vqqqvvPKKHnHEEVpTU6P77ruvLly4UFtbW1VVdfXq1Tp//nytqanRmTOdzv7tb3uXzhaX1siUmpoafe211zLO19cjvuSCvv6M3nnnHfbee29U4wMxM6W+wP01g/gqpqfniQs/o9ZW1/AaibgGjY0bNzJs2LD28zfccC11dUt48snF3SJPLBbfjkScj34k0r3PxX/XEiEir6tqeNxSnyYbvV333HPU7rorTJrkZiszdqK/6Oyu0Jt0dr7o7Bkl0tnXXnstS5YsYfHi7tHZ+SAXOrvXuOIYRl9BPXcQ3yfbNzhjsb7T2x+LuXvyJ3dqaXH3nK/7a2tzi+9T39DQQG3t4ezY4aLlbtmyhf/+70WcfvpXuk2GSCS+qLrf3X82/u9vFCixmP1AhpFHGhoaOPzwjjp70aJFfOUr3aezeyvW/GAYPURrK2zdurOR6RvBPn7EFT+0YjjSSiGiGo8yE3RH9uX3KzNtbe7e/NbqnqCtzT37YNCHsrIyDj98OrNmTWfQoEE0Njbyta+dyVe+Mq9HZAqGzfSNfP94sCW/p3s5jCT4L7dhGHmhrKyM6dOnM316XGefeeaZzJvXMzq7N2GGvWF0My0tsHmzM+p9gy1o1IYNON8IDhJs7S0UY8/vYQi3NieqjATvMRqNu8R0tztKNLqzUQ9QUlLCbbfdkThTDxM28oO/vf98Cul375dYi71h5JWSkpIOE1YZyTHD3jC6iaYm2LQJ6uuda+6AAc44a2rqPF+iltqwwReLuQqDnza4+GXkGr/R0l/CrfLp4qf1W6r9Vmq/lyKX8iYy6guZ8G/vV4IgXhHqLb04fQ4z7A3D6AWYYW/0aqLRuIuHb+iWlUFpaX4MOlVobIQNG2DHDidHLsZLJTP2k9kaiQz+REazb5wnWoePBclFC3JQpq646YRlDS693QAOym8uO3lExGLZG4bRKzDDvpfgD0QsKnKtv73dYMmEWCxu+PmDTpua3DocaSRo1JWWulbyykq3XVLSfQaQKjQ0wPr1Tq6yMhg0qHuuBZ0b60GZgkZvJmWHr9Pd+O+z30It0vE9T2a4J7u/vmjsJnPZiUTc+210I5GIzT5rGEavwAz7AicWc64c69fHjVhVZ6SWlUF5uVsXF8eX3kxrq7vPjRvjxnv4e+pXbioqOjfeolH37LZsibfeVlY6Yz/bVv3gIFHfHaWpycnb2up+j+406DOhO91yuouwm04ygvfWm+4vV/j3nU3FzcgCETPsDcPoFfRyM7DvoupcOdaudQZOZWVHI9T3sW5s7NhD7LfelZe7paTEGcHpGD/JWj7TzZ8N0agz3hsanBHe2uqWzZvd/ZaUuPvIhqIiZ/z7+Mbi+vWJW/V9eYI9BP62fzzYQxCMQ19Rkb2cxs70V4PdKFCsxd4wjF6CGfYFSFMTrFvnDPtkBmMk4lqdw/hd9Nu3uygsvvGZ7mRI4XR+S3dZmTN+/cpCSUl27kCqzpBvbHSGfFOTO1ZcHK+Q+C3ruUbEXSPottDWFm/V99MEw0z6a/9+zdg0jH6IGfaGYfQS+pGnduHT0gKrV8Py5a6FeNAgZ1BmgojLU1EBAwe6gZvBdaolnK6qyhnZqq6isGqVk+/992HZMtejsG2bM9CTffdaWpzxvGoVfPABrFjhBpeqxq9RUZGfwa6+S49/v37rfUVF3F2nuDj3EVt6GytXrmTWrOmUlQmTJo3j5z+/pcP5H/7wasaPH8O0afvxl7+8mLScTZs2MXt2LVVVZdx77+/bj//kJzdx2mmnJM3385/fwtSpk9l77wkZyf3www/y2GOPdjjW2NjI+PFj+Nvf3siorEy5+eafZCWzASKyp4j8QUSeF5H/E5HXRWRW4PyZ3rEXRWSxiOzVzQLZ4FmjV7Fy5UqmT5+OiDBu3DhuuaWjzr766qsZM2YM++23Hy++2LnOrq2tpaysjN//Pq6zb7rpJk45JbnOvuWWW5g8eTITJmSm/x588EEefXRnnT1mzBjeeKN7dfZPfvKTrGQuNKzFvgBoa3Mtxhs3OiOyUHy0ffzKQriSEY06F5pt2+JuPEVFrtW9sjLeGu77SpeWuuP92UDurYwePZolS17kU5+awtix4zjvvAs6nL/qqh/w7LPP8OCDj3WY8jvM0KFDWby4jvHjx3Q4PnLkSMaOHZc033nnXcCAAQO48cbrM5L74YcfpLy8nC984YT2Y8XFxUycOImBA7t3evcLL7yYQYMGZSxzf0dEhgHPA99Q1ToREeB+YF9giYicCFwL7Keqa0TkXOAZEdlXVVMEk80Sa7E3ehmjR4/mxRdfZMqUKYwbN44LLuios3/wgx/wzDPP8NhjqXV2XV0dY8bsrLPHjUuusy+4wOns66/PTP89+KDT2Sec0FFnT5o0iapchJjrhIsvdjo7U5kLDTPs80gs5lrBN2xwxu7Agb3L6PVDEwbxff937Ojo72/0DU49dQ7XXXcN69atY8SIEe3H//nPfzJ06C6dfiA644wz5uZKxJSUlJTw9NPP99j1jIz5d+AVVa0DUFUVke8Q72G+ErhHVdd4+7cBPwLOALpnBhtfMcdi/SskmdHrmTNnDtdck1hn77JL9jp77tye1dnPP286O11MQ+UBVdeSvXy5G8hZUdF3WrJ9f/wBA/LnXmN0H6eeejptbW3cf/99HY7fd98i5sw5A4AlS55n9uxaZs+uZcaMQ1mw4Ots3bo1aZl3330nNTX7U1nZsZ3hkUceZt99J3HEEYcwd+4c1q9f1+H85s2bOfPM+Rx++MEcffRMjjzyCP7615fbz1966UKee24xTz75RLs8LS0tzJ5dy/Dh1Vx33TXtaVtbW/ne9xZy4IFTOfTQGmbPru3gqnPccccwfHg1l19+Kd/+9lnMnHkYNTX78/e/v5nxM/x//+8VjjpqBocddhAHHjiVq666nGjAzePee3/PYYcdxDHHzGLGjEO5+uor2s8988zTHHHEIRxzzCyOOOIQvvOdC9ixY0fGMhQ4JwN/Ch5Q1RWqulxEhgDTgNcC51qBN4HZ3S6ZTVJl9DJOP93p7Pvu66izFy1axBlnOJ39/PPPU1tbS21tLYceeihf/3rnOvvOO+9k//33pzgUhu/hhx9m0qRJHHLIIcyZM4d163bW2fPnz+fggw9m5syZHHHEEbz8clxnL1y4kMWLF/PEE0+0y9PS0kJtbS3V1dVcc01Hnb1w4UKmTp1KTU0NtbW1HVx1jjnmGKqrq7n00ks566yzOOyww9h///15883MdfYrr7zCjBkzOOigg5g6dSqXX95RZ//+97/noIMOYtasWRx66KFccUVcZz/99NMccsghzJo1i0MOOYQLLuh+nW0t9j2MKnz8sRtAapFUjN7GxIkTqak5iPvuW8S5557ffvyJJx7ju9+9FICnnvojJ5/8b3zrW99GVVmw4Otceul3ufXW2xOWOW/efEaPHsMXvvC59mPLli3jjDP+jXvv/R9OOOFE1q1bx1FHzeiQb9WqlXzwwfu88MJLFBcXU1e3hFNOOZGlSz/wulNvYMuWbZSXl/PrX/9Xe77Fi+uYNWt6h7Kuuupynn/+2f/P3n3Ht1Wdjx//HMmSLNmOM7wSAhmE7BCGQygF4hDyZZawGkZ+gdAWSoFCKXuPAiXsUmhJWgoEwmjYqyWEYmYLpBRCFpCEkYQ4sZM43prn98eRLFuesiXryn7er5dekq6k62NZPvfRuc95Du+99x+ys7N55JGHOeqow1m16msGDRrE668vZfr0g3n++Wd5550PKSgo4OKLL+Tyyy/hjTfe6vT7t3XrVo4+eiYPPPAQp556OlVVVUybdhAZGRlcf/1NbNy4kV/8Yh5r125gjz32YOvWrey330RuuukWfD4fp512Mi+++BqHHHIodXV1FBdP5uKLL2PAgCTMNk8BpVQWMBKwK6UWA8OBOmCh1noJEDn3vyXmpWXh1yWXBPYizey1115MmTKFxYsXc+GF0T77lVde4corTZ/9+uuvM3v2bM47z/TZP/vZz7jssstYuLD1PnvevHkMHTqUI49s3mfPnj2bJUuWMGuW6bMPPbR5n71582a+/vprPvzQ9Nlvv/02s2bNYt0602fPnz+fqirTZ//1r9E+u7S0lIMPbt5nX3PNNSxbtoz//Mf02Q8//DCHH344X39t+uylS5dy8MEH8+yzz/Lhh6bPvvDCC7nkkkt46634+uyZM2fy0EMPcfrpps8+6CDTZ990k+mz582bx4YN0T574sSJ3HKL6bNPPvlkXnvtNQ491PTZkydP5rLLLsOTjAohYRLY9zC/3+SmJzlVTKSZSy6BFSs6//xQyN3tjIC994a7747/daeccjqXXXYx69atY9SoUXz88UdMmDCxsaO6+OJLGThwIABKKU444WR+/etz4/oZCxf+mSFDduO442YBUFBQwKxZJ/Dcc0sanzNq1F4888zzjaNGJSXT0VqzfPknHHbYjE7/rJqaGh588H7+8IcHyc7OBuDMM8/i+uuvZuHCP3PVVdHRl+nTZzSezp42rYSnn14c1+/14IP3079/f0455TQA+vXrx9lnn8s111zBlVdew9atZQSDQb777lv22GMPCgsLeeGFVwHYtWsXNTU1fPfdtxxyyKF4PB6eeupZ8vPz42qDxfUPX98CzNBaf6qUOgB4RynlADaGH/fGvM4LtHqkVEqdA5wDJi+4tLQ0rgbV1NVRum6dubN5c+84tZpgNTU1cb+v6SQ3N5fq6upm2664wsUXX3S+E9bajVLdm6cxaVKI+fNjP/odO/HEE7nqqqv47LPP2HPPPfnkk08YM2YMwWCQ6upqzj33XAYMGND4Ox599NFcfPHFzX5nrTX19fWN2yKjzpH7f/jDHxgyZAiHHXYY1dXVuN1ujjnmGF544YXG5xQVFbFo0SLq6+sBKC4uJhQK8c4771BSUkIwGMTv92O321u838FgEK/XS3V1NTU1Ndx///3cfffdaK2prq7m5JNP5qqrruK+++7j8ssvb3zNoYceitvtprq6mqlTp/LEE0+02HdTDQ0NhEKhxufcdddd5Obmcuyxx1JdXY1Sinnz5nHDDTdw4YUXsn79eoLBIKtXr2bAgAF4PB6eeeYZqqurqaiooKamhjVr1rDvvvsC8Nhjj5GZmdlmGxoaGrr9vySBfQrEW+lGCCuZPftUrrjiEp5+ejHXXnsDTz21mFNPndP4eENDA7/+9a9Yu3YNTqeTnTt3UlZW1s4eW1q7dk2LiVm7775Hs/sZGRksXvw4r71mKijYbDaqqqrYujW+n7Vu3dd4vV723DNaCcFmszF8+AhWrvyi2XOHDBnSeDs7O4eqqqq4ftaqVSsZOXJPVJPgcM89R1FXV8f69evZf/9iTjnlNGbOLGHatOnMnn1qY4pTfn4+l1xyOWeffRYLFvyJk08+hblz5+Fqre5t+oqc335Va/0pgNb6Y6XUC8BvCQfoQOwv7cKM7LegtV4ILAQoLi7WJSUlcTWo9K23KBk+3Eye3X335NTiTXOlpaXE+76mkzVr1rSYuBnvAofBYAC7vXshl9MJOTnxLzM9b948rrnmGl566SVuuOEGXnzxRebNm9f4O23fvp3LL7+cNWuiffbWrVub/c5KKdxud+O2yEBO5P769esZOXJks9eMGjUKm83W7DWPPvpoY9Ubm81GdXU1VVVV5OTkUF1djcPhwOFwtHi/7XY7LpeLnJwc1q1bh9frZeLEic2eN3LkSL766qvGbXa7nWHDhjXeLygooLq6ut1JuJmZmc3a/NVXXzFq1Cj6NalqMnHiROrq6ti2bRvTpk3jtNNO4+ijj2b69OmceuqpzJkzB4/HQ05ODpdffjnnnXcejzzyCKeccgrz5s1jwIAB7f78yJeArpLAXggLiHfkvKGhnszM1Jz2KSoqYtq06Tz11GKuvPIa3n23lDvvvKfx8Z/85EjGj5/A0qVv43K5eOutZc3SbLpKxYyU3n33Hdx113w+/HB5Y3mykSOHopO4FKu9yZFcKZXwn6WUYtGiJ7niiqtZtOhRrrvuKu699y4+/PAT+vXrx223zefss8/liSce4/777+Huu+fz7rsfMXr0sIS2I4XKMaPvm2K2fwccAXwTvl8U83gRsD6pLVNKUnFEo/vui+/51dX1Sa/q0paioiKmT5/O4sWLueaaaygtLeWee6J99pFHHsmECRN4+209J7VFAAAgAElEQVTTZy9btqxZmk1XxfbZd9xxB/Pnz2f58mifPXRo+vfZTz75JFdffTWPPvooV111FXfddReffPJJY3rRueeey2OPPcY999zD/Pnz+eijjxg2LHl9tkyeFULE7dRTT2fduq+5447fc+ihJY3pMFu3buWrr77kuOOObxxJ9vl8ce9/7NhxfPPNhmbbNm78vtn99957l3333b9ZzeHYn2Vrkq/U0NCAP1J7tYlRo/bC5XKxfv26xm2hUIhvv/2GiRMnxd329kyYMJENG5rHnxs2rMfj8bDnnnuyadOmxtSm+fPv4tNPV7Jx4/eUlr7Nrl27WLbsTUaMGMF1193IihVrychw8MorLya0jamktQ4CHwCDYx4qBL7XWu/ETJwtjjwQTtGZDCxLegOllr1IU6effjpff/01v//97ykpad5nf/nllxx/fPf67HHjxrFhQ/M++/vvm/fZ7777Lvvv3/0+e6+9TJ+9bl3zPvubb75h0qTE9tkTJ05k/frmffb69c377I8++oiJEydy1113sXLlSr7//nveftv02W++afrsG2+8kbVr1+JwOHjxxeT22RLYCyHidsIJJ+Fyubj11psbU0UA8vLyyM/Pp7Q0Wprs5Zfj78TOPvtcfvjhB156yby2vLycJUueafaccePGs3LlCsrLywH48MMPGm9H5OcXsGPHDgB+85sLePvtliXTsrOzOf/8C1mw4E/U1tYC8Pjjj+H3+znnnF/F3fb2nH/+hVRWVjZWFaquruYvf3mIiy++FKfTyZdfruXaa68kEK6ZHgqPEI8aNYry8nJ+85sLGnNbQ6EQoVCQvfYandA2WsB8YJZSagSYxaqAE4D7w4/fAsxVShWG758NbAfim/AQL5tNAnuRtk46yfTZN998c2M1HIj22U3LSXYl8Dz3XNNnR15bXl7OM88077PHjx/PihXRPvuDD1r22QUF0T77ggsuaLXMZXZ2NhdeeCF/+lO0z37sMdNn/+pXie2zL7zQ9NmRqkLV1dU89NBDXHqp6bPXrl3LlVe23WdfcEHzPjsYDDJ6dHL7bEnFEULELTc3l6OOOoYVKz7ngAOmNm632+08+eQSLrnkIoqLJzN8+Ah2220owWCQmTNLeOKJZ/h//+8UysvLuf32WxsnWd1//72Nz1m48BFGjhzJ4sV/5+qrL+euu25n8OAhnHbaHO65505mzizhhRde5eqrr2Pz5k0cdFAxEyZMYvToMeTn53P77beiteakk47nrLN+wZw5szn88Gnk5vZn+vTDmDmzhJUrv2Dz5s34/X6uv/4mbr75Vq6/Hg4+eCputxuPx8Prr7/JoEGDAJg9+8TG12Rn5zBx4iSuuOKSxjY/+eSSFpNY77vvHv761wX88MNmZs4s4eWX/0FhYSGvvbaUq666jPvuu5v6+np+8pNZXHPN9QCMHz+BPfYYxrRpB5GVlUVtbS0PPriA8eMnUFNTw4wZM5kx49DGfNRf//pijjjiqJ77w/cArfVSpdT5wHNKqTrMceoyrfUj4cdfUkrlA/8IP94AHJG0xakilJJFqkTays3N5ZhjjuHzzz9n6tTmffaSJUu46KKLmDx5MiNGjGDoUNNnl5SU8Mwzz3DKKabPvvXWaJ997733Nj7nkUdMn/33v/+dyy+/nNtvv50hQ4YwZ84c7rzzTkpKSnj11Ve57rrr2LRpE8XFxUyaNIkxY0yffeutps8+/vjj+cUvfsHs2bOZNm0a/fv357DDDqOkpIQvvoj22TfddBO33norAFOnRvvsN9+M9tknnnhi42tycnKYNGkSl1xySWOblyxp2Wffc889LFiwgM2bN1NSUsI//mH67KVLl3LZZZdx992mz541axbXX2/67AkTJjBs2DAOOijaZy9YsIAJE0yfPXPmTA49NNpnX3zxxRx1VHL7bJXM3KberLi4WC9fvrzjJ8ZYurSUsWNLyJCvVG1ataqUCRNKUt2MpNmxYw2jR4/r1j4aGqpTlmOfLvrCexTpvtuaP7tmzRrGjWv9s6aU+q/WurjVB3uprvTbjZNnI4t0NJlALYy+MHm2rf+jzupo0qaQ9wgS02dLKo4QQgjREZtNRuyFEJYngb0QQgjREQnshRBpQAJ7IYQQoiM2m5S7FEJYngT2QgghREcidexlXpoQwsIksBdCCCE6S0bthRAWJoG9ECkQkuBAJJl8xpJE3tc+Sf6fRLIl6jMmgb0QPSwjI4uyss34/b6kLqUt0ogOAYn5LGit8fl8bN68maysrITsUzQhAV6fk5WVxebNm/H5pM8WiZfoPluqqQvRw3JyhlJfX8F3331HKNS1Khs+XwNOZ2aCW9a7pNV7FAiYHG67Pa6XRWKM2HUxMjIyyM3NJS8vL0ENFI0ksO9zhg4dSkWF6bMDXayM1NDQQGZmmvRHKdKX36NE9tkS2AvRw5Sy4fEU4PEUdHkfZhGvfRPYqt4nbd6jUAi++cZE6YMHQxwjNoGAedmwYUlsn2hOAvs+x2azUVBQQEFB1/vs0tJS9t03DfqjFJL3KDEkFUcIIVLJ5zPRudsN27ZJrXSrk8BeCGFhEtgLIUQq+XzN03DKy6WkolXJIlVCCIuTwF4IIVKpthacTnPb7Tb3a2pS2ybROqUksBdCWJoE9kIIkSpaQ31989mvkZQcny917RKtkxF7IYTFSWAvhBCpEsmvVyq6zW43F0nJsR4J7IUQFieBvRBCpIrf3/r2zEwzkr9rV8+2R7RPAnshhMVJYC+EEKlSV9eyCH2ExwMVFeD19mybRNtsNggGU90KIYRokwT2QgiRKnV14HC0/pjNZibVbtsmJRatQinzt5AUKSGERUlgL4QQqeD3m7QOWzvdsNNp8vArK3uuXaJj8kVLCGFREtgLIUQqtJVfH8vjgR07TM69sAYJ7IUQFiWBvRBCpEJsmcu2KGUm027bJvndViGBvRDCoiSwF0KIVKitbTu/PlZGhgnqd+xIbptEx7SWwF4IYVkS2AshRE8LBk0qjt3e+de43ab8ZV1d8tolOhaZQCuEEBYkgb0QQvS0rqwqq5QJ7rdulVrqqSaBvRDCoiSwF0KIntbQ0H41nLZERvi3b09se0TnKSVzHUSvFgiYTEGRniSwF0KIntZe/fqOuN1QXW0uoufJ6rOil/P7pXtJZxLYCyFETwqFzIh9ZyritMXtNlVyOlsyU3TNm2+yz29/2/wMiVIS2IteLRg0XZRITxLYCyFET+pKfn0su91ctm2TVVCTqa6O/itWwA8/RLfJiL3o5fz+xHRTIjUksBdCiJ7k85lR3+7KzDS18Kurur8v0brddjPXZWXRbRLYi17O7zcnFmWOeHqSwF4IIXpSbW330nCaiuTbi+QYOtRcxwb2EvGIXszvN+k4Mkc8PaVVYK+UOk4p9YlS6l2l1AdKqeJOvGaKUmq1UurRNh4frJR6SSn1b6XUp0qpSxPecCGEAJM2U1/f9YmzomcVFBCy202J0YjIiL2kQIleKnJSUQL79JSgYaPkU0rtDzwJHKC1Xq2UOhZ4Qyk1QWtd1sZrrgBmAq32wEopG/AK8A+t9XVKqVzgU6VUldZ6YXJ+EyFEnxU5x52IVByRfDYbvkGDyCxr5RCjtfwdRa8UDJopPHJiKj2l04j9VcAbWuvVAFrrV4GtwPntvGYNJrAvb+Pxo4F9gLvD+9wFLACuVUp6bCFEgvn9EgymGW9eXvMR+wiJekQvFMmtlxH79JVOgf3hwPKYbZ9gAvdWaa1f1rrd86WHA+u11pUx+9wdGNPVhgohRKsSmV8veoQ3L695jn2EBPaiFwoGzckom00q46SrtAjslVIDgVxgS8xDZcDIbux6ZBv7jDwmhBCJI/n1aadxxD52jEgCe9ELRUbrpfhT+kqLwB7ICl97Y7Z7AU8399vaPunmfoUQojm/3xwpbenS7QoAb36+WSk4tvqQBPaiF4qk39jtMmKfrtLlnHBt+NoVs90F1HVzv/1a2Set7VcpdQ5wDkBhYSGlpaVx/8CGhhrWri2VNNt2NDTUsGpVaaqbYWnyHnXMcu9RKBReq92esF1GMg2/KV2XsH2K5nx5eebGli3Qr8nhQgJ70QtJYJ/+0iKw11rvUEpVAkUxDxUB67ux6w3Aka3sk9b2G66UsxCguLhYl5SUxP0Dly4tZezYEkmzbceqVaVMmFCS6mZYmrxHHbPce7RjB1RVmYWlEiTgDaK1ZthBQxO2T9GcNxLYl5XBmPDUK5lZKHqpyElFmy2aby8Dkeklnc4JLwNi69YXh7d31ZvAKKVU/5h9btRaf9mN/QohRHM1NZJfn4a8TUfsIyQBWfRSPl80W1BrOTGVjtIpsL8dOEIpNQ5AKXU0MBh4MHz/FqXUSqVUPMNh/wA+Ay4O76MfJtXmlkQ2XAjRxwWD5ohpT1wajugZ3kGDzI2mgb1SEtiLXik2sJcTU+knbRJCtNb/VUrNARYppeoBO3BEk8WpMjETXhtPGoVz4k/H1Kofq5QqBe7RWr8c3mdIKXUc8JBS6t/hfSyUxamEEAklyappSzudMHCgjNiLPiEQiFbkVUpG7NNR2gT2YOrSAy+38dilwKUx2xpz4tvZ5w/AcYlqoxBCtOD1SjWcdFZY2LyWvQT2opfy+8HpjN6XEfv0I0caIYRIttra5kdLkV6KilqO2EvEI3qZyEe66WRZ+f6afiSwF0KIZAqFoKFB8uvTWVGRjNiLXi827cZul495OpLAXgghkimSXy8149JXUZEpV9rQ0Hy7JCCLXiT2JJTNJtOD0pEE9kIIkUw+nwT16a6w0Fxv3dp8uwT2oheJ1K2PkMA+PUlgL4QQyVRXh6xIl+aKwusWNs2zBwnsRa8SCjUfg7DbZSpJOpLAXgghkkVrE9jLwlRxU0pdoJTSSqmSmO2/UEr9Vyn1vlLqTaXUnklvTGTEvmmevazeI3qZ2KU2IlNJmo7iC+uTwF4IIZLF7285DCY6pJQaAlzWyvZZwG3AMVrrg4GXgKVxLkwYv8iIfdPAHiSwF72K39+yq5Lvr+lHAnshhEiW1o6UojP+iAngY10HPN5kYcIFQB4wJ6mtycmBrCz44Yfm2yXiEb2I39+yeJdSko6TbiSwF0KIZKmrkzKXcVJK/QTwA2/EbB8A7A8sj2zTWvuBz4CZSW/Y4MHNR+wl4hG9TGuBPcjHPN3IjC4hhEgWya+Pi1IqC7gVOAJwxTw8InwdM4OVMmBkkpsmi1SJXk1r83FubYFs+ZinFwnshRAiGQIBc3HFxqeiHb8DHtJab1FKDY95LCt87Y3Z7gU8be1QKXUOcA5AYWEhpaWlcTWopq6O0nXrGOt20//LL/nPqlXmgVAIvv1WKh4BNTU1cb+vfU06vEdeb8vAPhSCjRt75sRjOrxH6UB6JCGESAYpAB0XpdR+wFTg0jaeUhu+jv2m5ALq2tqv1nohsBCguLhYl5SUxNWu0rfeomT4cBg7Fv71L0rGjjVRjtcLmZkmRaePKy0tJd73ta+x+nvk85nvqdnZzbfX10O/fpCfn/w2WP09ShcS2AshRDI0NEh+fXyOAdzAv5SZcBypdHOfUqoSuCJ8vyjmdUXA+qS3bvBgk5NQUWHKX9psJilZiF6grXSbSMlLkT5k8qwQQiRDba3k18dBa/07rfV+WusSrXUJcGr4od+Et32EmThbHHmNUsoBTAaWJb2BkZH5SJ695NiLXqStAk92u5x8TDcS2AshRKIFgy1XexGJcAswVykVXjGKs4HtwOKk/+RIYB+pjCOBvehFAoHWK/Pa7XJiKt1IKo4QQiSazyfLNXaDUuo+4MDw3fuUUl9rrX+qtX5JKZUP/EMpVQc0AEdorRuS3qjIIlWREXulzDCn1rJWgUh7fn/rFXHkY55+JLAXQohEa628hOg0rfVv2nnsr8Bfe7A5xqBBJrWqtdVn5cyMSHNtBfYRwaAUgEoXcuQRQohEk/z63sdmM5NmZfVZ0Qt1lDkoWWfpQwJ7IYRIpFDIVMSR4a3ep6io9RF7IdJcIND+iL18zNOHBPZCCJFIkZlmkpDa+wwe3Hz1WZCIR6S99ladjZAR+/Qhgb0QQiSSzydBfW8VGbFvOjFaAnuR5oLB9uf6KyWVcdKJBPZCCJFItbWShtNbDR5sluKsqopuk8BepLlQqP2xCFmkKr1IYC+EEImitQn8ZOJs7xRb8lIiHtELdJRmI4tUpRcJ7IUQIlH8/o6Hv0T6GjLEXEcm0Colgb1Iex2l4khgn14ksBdCiESRRNTeTUbsRS/U0cRZWWQ5vUgiaE8LhcI5mfKdSghLqq8313a7yZWPZ6GpujpZrKg3Kyw015ERewnsRS/g87XfzUVWnw2FZN29dCCBfU8LhcyontOV6pYIIWJpbYK2YDCaTmOzgdMJLpe5djjMtoyMlkF8XZ3k1/dmTifk5cmIvehVOgrsoXMlMYU1SGDf0yL/HUII6/F6zf9ndnZ0W2Soqqam5f+uzWYCeZfLXPv95rbovZrWspccBdELBAIdn2iMjNoL65PAPhV8PsCT6lYIIWI1NLQckrLZoiP0sSJf1OvqzLWUuez9iopg0yZzOxLtaC0TpkXa8vvB7e74efIdNj3ISZVUaGhIdQuEEK2pqopvxF0pE8y7XODxQGZm8tomrGHw4GiOfYQMZYo0FQo1zzxsjwT26UEC+1TwelPdAiFELL/fXGTyq2hPURHs3BmdZK21BPYibXW2Oq9MJ0kfEtinQqTWtRDCOuRMmuiMwYPN9dat0W3Sn4s01dlReJtNatmnCwnsUyEUlK++QlhNTY1UtBEdi61lDxLYi7TV0eJUERLYpw8J7FNFktWEsI5QyKRWSGAvOhIZsW+aZy+BvUhTnU3FsdtlPDJdSGCfCsomK1QKYSVeb+ePcKJviwT2kRF7qQMo0pjf37na9JJjnz4ksE8Fu10m0AphJXV1UqpSdE52trlERuyVkjOwIm35/Z0bz1BKluFJFxLYp4LdLhP1hLAKraG62qwqKkRnxC5SJUOZIk3FWwhMTk5ZnwT2qWC3m/+mzsxYEUIkl88na6WL+BQVNU/FkWFMkaZ8vvgCe/moW58cyVIhkpMpozxCpJ7XK7n1Ij5NF6mSEXuRxgKBzo9pSCpOepDAPpXkYCBE6lVVSRqOiE9REWzbFj3TI325SEOhkAnWOzuuIfPE04ME9qlis8lXXyFSLRAwI/YycVbEY/Bg03+Xl0tfLtJWvB9bu11q2acDCexTxWaTyjhCpJrXK3NdRPyaLlIlI/YiTcUb2CslH/V0IMNUqZKRIZVxhEi1OFeb1dqcig6GIBiAYEgRCJrFpENaMWhASNL1+4IhQ8x17CJVMgFbpJF402pkxD49SGCfKlLyUojUCoWgthbcbsAsPHvL/Tn88+1M/OGg3QTvEAwqgkEIBNuP2gcXBjmypIEjSrwcuK9PFrLtLWLP6jQdsY+QwF6kGUnF6Z0ksE+VppVxJL9XiJ7XZLXZlWszOO/q/qz/LoNjD69nQK4mI0Njs0GGHex2jd0Odhtk2DU2e3i7TWPPMNuDIfjPf5089aKHR57JIjcnxIxDvBxZ0kDJj3xkeSTlJy21NmNw4EAz4Tp2xF6INNLZVWcjItNJ4plwK3qeRJQ96c032eOl5+Gs8dFtEtgLkRr19YSUnYWLPNz+YA6DBoR4+s87OOSArg9JnX16HfX18M5/XPyzNJM333Px/OtuXE7NIVO9HFniZeahXvIGShCYNlqLYGw2KCxsOWIvRBqJN7CHaDpiPLXvRc+KK6JUSg0HDgVWa62XK6X6AQ8AewNvAVdpreVETVtee429Fj3C5rlXgssuRWGFSKGyDXX85tbBvPdxJkdNb+COa3cxsH/3R9Xdbjhyupcjp3sJBODjz5z8s9TFG6WZLHsvE6U0Uyb7OXJ6A0dM8zJ8d+kDLE2p1idYN119FiSwF2kn3sWpIoJBCeytLN6EwCvDl8Hh+/cApwPfAccBNyasZb1RcTF2rxfHd1+b+3a7VMYRIgX++aqfGXMHs3yFkzuu2cVf7qxMSFAfKyMDDir2cfOl1fznlXLeeLKCi8+upaZOcfO9/fjx8fkcfsog7l6QzeYtkp9tWQ5Hy0GYpqvPggT2Iu10ZcQe5KNudfHmgBwIHKK13q6UygHmAHdqra9SSg0E3gWuTnQje43iYgCca1bgHT/RHPUlsO9TamrglVfgqadg5UoYMADy8yEvDwYNMtf5+S1vDxqUfmsoVVbCmjWwaRPstx/suWeqWwR1dXDjjbB4sYNJo7088PsqRg3vmRFzpWDimAATx9RwyS9r+H6znTfeMSP59/4li/v+msXhh3g58+Q6Dj3QJ/MwrcTtNsUOmg5TDh4MS5dGE47l7KtIM4EAZGbG/zr5qFtbvIF9UGu9PXz7J4AD+DOA1nqHUkrScNozejQBtwfnms/xcrpMMe8jtIbly00w/8orJrjcay844wyz6GlFBWzfDl99ZW639V0vN9cE+3l5kJMztjFY3nNPGD68sbhLjwuF4LvvYPVqWLXKXK9eDZs3N3/e8OEwYwYcfjhMnQouV8+284sv4PzzYcMGOG9uNZedU4nTk7qyNXvsFuTs0+s4+/Q6Nv5g54nn3Tz9kpul7wxk+NAAc0+qY/Zx9Uk5kyDi5PGYb+VNP7RFRSbYr6w00ZEU+BZppDvBuXzUrS3ewD5DKdVfa10J/Ap4R2v9PYBSyokJ9EVbbDaqRu1F1trPG+8TCEiZtF5q2zZ47jl4+mlYtw6ysmDWLDj1VNh//9bn5Glt4oeKirYv5eXw2WcDWLYs+jqlYLfdooH+nnvCyJHmevDgxH28amvNKHwkeF+9GtauNdvB/JxRo2DKFDjzTBg/3sQ///kPvPUWPPEEPPywiZMOOcQE+ocdZtqYLKEQLFgA8+ebMx9PPxnk4N22gScreT80TrsPCXLVBWYk/x//yuSxJR5+94d+3PHnHH4ys4EzflrHfhP9UokiVZzOlnn2kQ9tWRmMGCHRjkgrXQ3s7Xb5qFtdvIH9E8BqpVQlMAYzao9S6gDgt8CXiW1e71O1114MeOVl8PvAEc6t8Pt7fvhSJEUgAP/6lwnmly0zneeUKXDPPXDssSa4b49SkJNjLiNGtP28Vav+zfDhJWzYYEag16+PXpYvjwbaYEbyR4wwQf7QoWZbMGgugUDbtyPVWCP3N26Eb7+Nxjf9+pnA/ZRTzPX48TB6dOtnDsaNg7POMrXi33/fBPlvvQVvvGEenzDBBPkzZsC++yZuYtaWLXDRRfDBB3D00Sa4H5jphR+sOQrudMCsIxqYdUQDa9dlsOhZN8+97ubZ19xMHOPnjJPrOOGoBjxua7a/12qtclmkln1ZmfnnkmhHpJGu5snbbJJoYHVxBfZa6zuVUluAqcANWuvXww/9CKgH/pbg9jWjlDoOuC78s+zARVrr5e08vx9wPzAh/Pw3gWu01oEmz6kEPot56Z+11s8kuPkA7Bo1GuX34Vi3Fv+4vc1GSVjrkoYGE2hGAtsffoDddzdB5Nix5rjbUyOc69fD3/8OS5bA1q0mXeacc8zo/KhRyfmZWVkwaZK5NKW1aUPTYH/DBpOK8sYbpmO2202sYrdHLxkZ5mKzNX8ssm3cODjpJBOEjx9vzhDE+/663TBzprlobUb7//UvE+Q/+CDcf78pEV5SYoL8yZMhO9uM8Lvd8Z15eP/9PO6/36Q23XWX+VsoBZTXpkWJ2bGjAtx2ZTVX/7qG5/+RyaJnPVx+ay6/uy+Hnx5bzxk/rWPEEOk7ekRGRrQ6TuRDHxmx37IlevZViDTRnRF7CeytLe6jm9b6CczIfdNtf0hYi9qglNofeBI4QGu9Wil1LPCGUmqC1rqsjZc9CtRqraeEU4VKgZtpPsH3M611SfJa3lzV6DEAOFZ/ZgJ7pcx/icfTU01IK6GQOW5GgtNIEL9hgxlBbnp2PDcXdu2K3u/f3wSjkcvYsebSnbc6GIQdO0w6THm5yS1/8UX46CPT4R12GJx2mrlO1aqjSpkvNUVF8OMfp6YNnaFU9G9z/vkmVfmdd8yZjrffhuefb/kat9v8/bKyzHXkEnt/61Z4+eWJ7L03PPBAk4m7WkN1dddmjKVIdpbmjJPrmXtSPcs/d7DoWQ9PPO/hb89kceB+Xn5xSjU/PyjVrezllDKfGb8/Oou9oMBsLyuTYUyRdmTEvveKt459JlAAVIXz7FFK/QxTx/5fWuuXE9/ERlcBb2itVwNorV9VSm0FzseM4se2dSJwQrhtaK19Sqn7gEeVUrdprWuS2NY21RcWEczJxbH6cziJDktehkLwv/9F0zr69TNpGrm5LW/n5ppjT7rl4dbXm9H2H34wQfzy5cOpqooG8vX10edmZZnc8f32g5/+NJpHPmKEGdmtrDSjwGvXmvzvNWvgmWeiqSlKwbBh0UA/cj1woMlf37YtGrSXl7e8X1HRskMcMQKuugpOPjl6dl7Er39/Mwdh1izzWf/sM/P3r6szn4HaWnM7ch251NaaL1tNtwUCcMop33P77Xs0rybk9ZrgPg3ntCgFU/bxM2WfXdx4SRVPv+Rh0bNuPvrMxc9T3bi+wOMxHUyE02lOzW3ZYv44MmIv0khXa9hHTk7J6rPWFe+I/dXAJcC1wL1KqSuA3wOVwHlKqXO01o8mtomNDgfmx2z7BJhJK4F9+PkNwMqY57uBg4F/JqGNHVMK39jJONesMPdbKXkZDMLHH8Prr5tLWZn5B7TZzIBRezIyTJDf9JKbGy2ZOGiQCWJj7ycrM6GuLhqwR65jbzc9VgLYbMPYYw8TtB90UPOJoIWF7Xcm/fvDgQeaS0QoZEb316yJXtauNWkp7Y1aOBym3GRBgTnrPnly9H5enrkuKDBfFKSDSyy73Uww3n//ru9j1aoNOJ17NN/Y0NAr/liDBmjOn1fLL2ZXUd8AkJPqJvV+mZkt8xcGDzYddOQzJbyszScAACAASURBVIUQRJrw+breFUbW1kyDjMY+Kd4/y9GYOvafKqXsmAmzLwInA5OBhzHpLwkVrpGfC2yJeagMOKqNl40EtmrdrJRBWZPHIoqUUs9gFt3yYX6fP2utk5a86hs3mczFf4KGesg09ZH9Ps2//6N49VUTcFZUmOPItGlmNHjmTBOkNzSYEonV1SbtpKqq40tZmSmnWFnZ+gKKYALi1oJ/h8N0AH5/fJf6evNzY4N2MPsdMsTkwx9wgLk9eHD0eufOd9l332kJe79tNhN8DxsGRx4Z3V5fb0pMrllj3qeCguaBe//+vSIGFE1VVfWqiep2O2R5ZCJtj2gtt66oyIwagOlcJbAXaSIQ6HqRAqVkkSorizewV1rrT8O3pwN5wG1a6xDwP6WSFgZFaonE5qx4gbYyprPaeD4xr1kHXKu1/lopNRxYCozDpPg0o5Q6BzgHoLCwkNLS0s61vomGQAPfDB3APsEgG95/nbfrfsz77+fz748CVNc4yMwMMnXqdg4+uJwDDtiB222+X2za1HJfmZnmUlDQuZ8dDCqqqjLYtcvBrl1OKisd7NrloLLSGd5mLqtXm8eqqx2EQgq7PURGhg5fQo3XDofGbtc4HKEWjw0cGGL0aB95eV7y8xvIz/eSl+clL8+H09l2j1BbC6FQDatWxf/edkVGRsvJpz5fNDXIqhoaeu49Slct3iOtzR/X1nvWQo+MW3xTui7FLekDWhueHDzYnF6NkGhHpImm00W6Qmp+WFe8gb1DKaXCo+BnAWtjqtIka6giUrwvdqjNBdS185rWnk/T12itj21y+1ul1HzgL0qp67TWO5q+WGu9EFgIUFxcrEtKSuL5HQB4+bm3+CQwlzsZzSvXnUS1L5N+2UFmztAccxxMm2bH7S7ATGVIrcgxytbDI1CrVpUyYUJJj/7MdCPvUcdavEfV1WbSREc1R9NIwBtEa82wg4amuim9n81mRu0DgWiQX1RkTktGJgJJYC/SgNZdX3U28noJ7K0r3sD+38CrSqmNwCnAxdA4qfaXwM7ENs8Ir2pbCcROTSwC1rfxsg1AQZMvIpHn085rIo8pTLrOjnaeF7cbb4Tbby/B67UzSA3gxMIPOfyyfTh4wk6cQ/JNro2FyBll0avU1KSuVJHoHSIr0EYC+6aLVOXlSWAv0kJ3P6Y2mwT2VhZv6HYpJs/9x8AC4MHw9geA35CE/PomlgHFMduKw9tb8yZmouyEmOfXAx8AKKVmhGvjN7Vb+Pr7brW2FcOGwcwZP7D4/gq+Peh0/uL4FYf92IczUwrDCpFUoZAZVZXAXnSH2908KoqUwYpUxpHAXqSB7gblUvLS2uJdoKoa+EUr21tsS4LbgVKl1Dit9Rql1NGYCa8PAiilbgGOB4q11g1a61VKqReAy4AzlVIO4CLgvialLncHfq6UWqa1rlNK5WLOQjyntd6W6F/grLNgt4K1jB04Hr1yEhkfvomqq0U7XWZWrBAiObxeE3TJbGjRHU5n8woETUfs995bAnuRFoLBtgtpdIYE9tbWpWJFSqkCYBpm8mwF8E4yAuGmtNb/VUrNARYppSIrzx7RZHGqTMyk2KZH7nnAH5VSn4Sfvwy4vsnjbwH7AW8rpRowNeP+BdyUzN8FwDd+H5TWOL78At8+U81oohSGFSI56uqkNlsaCC88eB5mPlQWJr3zCq31ipjn/QL4FeYMbD1wrta6vRTLxIg94xO7+qzkJ4g00N0xDrtdlm2wsriPdEqpG4ErAQfRINqnlPq91jqpAXF4AaxWF8HSWl+KSRVquq0KOLOd/W0ELkxkGzvLP25vAByrPsO374FSGFaIZImsNtudEhCipzwKXKi1fhJAKXU78JZSaqLWemt42yzgNmBvrXWZUuoCYGl4FfLknvq0280lUtYyK8vMjYrUspdoR6SBQKD7gX3ThSOFtcSVY6+UOh+TzvIgcDpwBHBa+P6FSqnzEt7CXiqUV0CwcAiO1U0GouSgIETi+XzmS7PMBk8H70aC+rC7MWeG/6/JtuuAx5ucrV0Qfs6cHmlhZmbzlQKLikxgH1mSUwiL8/m61x1GppNI5pk1xTs8fB4wXWv9Wcz2Z5RSi4AngT8lpGV9gG/c3jjXfB7dIKdxhUg8r1dS3NKE1vrEmE2RcUEXgFJqALA/JuCPvMavlPoMswr5w0lvpMdjUrsiC50NHhxNxZHAXqSBQCAx4xyyHps1xfsnsbUS1AOgtf68C/vr0/wT9iHj+w2o6l3m3JY3dj0tIUS3VVVJGk76+hHQQDQFc0T4urVVyEfSE1yu5jMPi4oksBdpxefr+qqzTclYpDXFG4g7lVJ5rT0QnlDbe9ZqT6bwQcE/bjIAjjUrzH+ZVMYRIrECAfOFWeaupJ3wSubXYVYGjxRn6Moq5InV2gTabdvM8KVEOiIN+P3dH2nXWlJxrCreo92zmJKTtwDLMRULBgJTgKuBvye2eb1Q46hOBr7wBFrn6s/xFf9YRuyFSDSvt3t13UQq3QZ8p7W+u8m2uFchV0qdA5wDUFhYSGlpaVyNqKmpafkar7cxMhocCjEmFOLDDz/EN3AgbNoU1/57g1bfI9GMld6jJh/fLguFYPPmxKbiWOk9SmfxBvbXAxMxufRNj5YKeI3mpSRFa5qcrtX9BxLYbRiO1Z9HS6UFg4k5RyaEkNVm05RS6jfAeOCkmIe+CV93ehVyrfVCYCFAcXGxLikpiastpaWltHjN99+bL4wOh0nDAQ7KyYERI2DPPftcH97qeySascp7FAjAhg2Qnd29/dTVwaBBMGBAYtoF1nmP0l28C1R5gWOUUocDMzCVCHYASwE/cCDwbqIb2asoZS7hmvX+8ZNxrPw0+lgg0OcOCkIkTW2tWS1UpI1wjfqjgZ9orQNKqZHASK31Mq31TqXUcswq4k+Hn+8AJgOLeqyRbreZu+FwRFefLSuD0aPNUKb04cKiurs4VYRSzYtDCevoUuKp1noZZrGnSKe6NPzQVHoqzzGdeTzmP8LpxDd+Mu43X8a2s4KQ0y05mkIkSkjLarNpRil1KnANZnHBSSbNnv0xq4wvCz/tFmChUurOcG37s4HtwOIea6jbDTt2mNtNF6kCSTwWlpaoLtFul8Deqro9o0xr7QemAyilvung6QLMObAd28DpxD9+H8BMoPXu+yMzXd0j342E6DYtI6dp6HHMcak0Znvj4oda65eUUvnAP5RSdZiqOUckfXGqphyOaHQ0cKCpulQWLqsvgb2wsESNHdrtJlwR1pPoUhEyS60zmpRL84+dBJgVaL3FB8sEWiESJRiUMpdpRmvdqQkRWuu/An9NcnPa1nTehlLRkpcggb2wtO6uOhsRmRYorEfqzqeC02kODMEgOjsH/7A9peSlEInk85kvzzJiL5LBZmvswwGTjiMj9iINJKLUJcjqs1bW4Z9XKXVmTzSkz8nJaUxQ80/YB+fqz6NJa/KfIkT3yBdkkWxudzTJWBapEmkiUYtTgRk7kVF76+nM97aLkt6KvsjtbjwA+MdNxl5ehq08POIjBwYhumfXLlnrXCRXkz682Yi99N/CwhI1Yg/RUXthLZ358+6jlAp25gIMS3aDew2Xq7HspX98eAXa1Z+bbfIVWIiu8/vDc1WkGo5IIqczWjewqMicJaqqksBeWFqiK2pLuGI9nZk8uxN4uRPPU8CJ3WtOH2KzNZ7K9Y+ZiLbZcK7+HO+UQ0xgIrW3heia+nopcSmSr2llnEjJy23bID8/dW0Soh2RnPhEdo8S2FtPZwL777XWZ3VmZ0qpad1sT9+SkwPbtqGzsgiMHINjTTjPXirjCNF1u3aZM2LVqW6I6NUyMswAjdbRRaq2bYMxY1LbLiHakOi0GZlSYk2dCez/L479HdjVhvRJTctejp+M692lEtgL0R2RNJzurpfeU7TGs+RRsl5YjHa60FnZhDxZaE+2ue3OQmeZ+6GsbLPdkxW9nZFJsF//VP8WfVdkAm1kxL6sTIYwhWUl+qNps0kteyvqMLDXWpd3dmfhVQBFZzUpe+kbNxnPy09j37aFYP9BJuCXdAIh4pNGaTiqvo7c2y7H8/pz+CbsQyg7B1tdLRkV21B1NdjqalG1NahA+8s71hx7Csx8uodaLZpxu81nrqDAfO62bjXDotJ/CwuSwL5vSPQCVSJeOTlQVYV/QmQF2s8JTi0x57ccnVqrRQgREUnDsTj7pu8YeNnPyfh6NVXnXkbNz3/TdqkKnxdbbQ2qrhZVZ64j9/WuKvy77UGanJ/ofVwuEy15PCa437LFBPUhWfVYWE+iA3u7XVJxrEgC+1Rzu2HHDvx7jUNnOHCs/pwGCeyFiF+apOG4PniLAddeAFqz4w+P4/3xjPZf4HQRcrpgwKAWDwW8QbSWBb9TpmkfXVTUfJEqCeyFxQQCia0CLDn21iSFnlPN5QqvYujEP2qsWahK1moWIn5WT8MJhcj+670MvGguwcIhlD/+z46DemFtsZVxtmyR4t7Csny+xAb2kY+6hCvWIoF9qtlskJlpyl5O2Cday14m0AoRHwun4ajqKgZechb9/nwH9UeeQMUjrxDcfXiqmyW6SynzmQsEoiP2kVQcISwm0SP2IN9jrUgCeyvIyTGB/bjJ2GqqsJdtMoudCCE6J5KGk2G97MKMdWvJP+MoXB/8i12X3ULl7x5Auz2pbpZIFI8nWhmnstL03RLpCAvy+ZKTISYj9tYigb0VhMte+sIr0DrXfiFTzYWIR319YoaifF5s27Z0fz9hmUtfJm/eMajaGrYveJbaU39u7XQhEb/MTBPZRGrZb90aXZFWCAtJxoi91hLYW40E9lYQLnsZGD4K7crEsWaFJK4JEY9du8z/UXeEQgy89GcUHbUfBccdSO4tl5K59CVsOyvi31cgQL97b2LgVb8kMHoC5YvfwLfv1O61T1iTw2Gim0gt+61bpe8WlhNPFdZly2DHjs7tV1JxrMd65637qkjZy9ETzAq0YE7vSmUFIdqXoGo4WU8sIPODf1F7/OnYdm7HvfRlsl5YbH7EXuPxHnAw3gMOxbffgWhPVpv7se2oYMCVv8T13w+pnX0Wu357Izi6+aVDWFekMk7T1WelVIiwmM5+11yzBs48E+bMgTvu6Pj5drskGFiNBPZWES576Rs/Gc8rz5gDg4z6CKsIhaCqCvpbcJXTBKThOFb+j34P3Eb9jGPYde1dZhgqEMCxZgWuT97D9fH7ZC15jOzFC9H2DHwT98V3wCF4DzgY36T9GwN3xxefMvCKs7FV7mDnTX+g/tjZifgNhZXZ7Sa4Lyw097dulcDe6vrgAmLBYOcyxBYtMtcvvADXXWfGHNujlAT2ViOBvVWEy176x03G9szfyNj8HYH8fMhqe2RQiB5TXW0qfrhc5kuolXQzDUdVVzHg6nMJ5hdSGQnqATIy8E/aD/+k/aj52UXQUI9zxXJcH7+H6+P3yH74PnL+cg+hTDe+facSGLEXWUseI5hfSPnfXiYwdlKCfkFheW63mTSbmyuBvdX5fOZvtNtuiU84t7BQqOPvMjU18NxzMGkSfPGFuT1vXvuvkUWqrEcCe6sIl730jx4PgOPrVQTGSWAgLCAYNAmXmZmwfbs5IFpltKu7aTha0/+2y7GXbabiLy+g+7VzRiLTje+AQ/AdcAjVgKrehWv5hzg/eR/Xx++R+e9SGn5Uws5bHkT3H9i19oj05PGYqKioSAJ7q6usNJf+/Tseju5FOpMA8MILUFsLt94K11wDTzxh0nLa6+4lFcd6JLC3kpwcAoP3IOT24PhyJfXy3yKsoLraDPdkZZngpb7eBDJW0M00HM9LT+Fe+hJV51+Jf/KUuF6rc3JpmH4UDdOPAkDV1pjce6t86RE9x+mMTqAtK5M0SqsKBExQn5MDFRVmQKCP/L92tDiV1iYNZ8IE2G8/mDsXLr8cli+HKe10jZHVZ/tgdpNl9Z3zUOkgko4zdpJZgTYQkOnmIrUio/WR9BuXy4zaW6WcXzfScDI2fEm/O67Be8Ah1Jx5QbeborP6TpAgYmRkmP8JGbG3tupq8z/qdJozffX1qW5Rj+mo1OWnn8Lq1SagVwpOOMF8/4nk3HdEQhXrkMDeSsJlL/3jJuP4ahUE/HKAEKm1a5e5jhwRHA7rHBC7syhVQz0DrvoV2pPFzpv/KNWnRPdkZJj/kaKiaFUciXSsJRQygxJNBykqulDKNk11tDjVokXmBMaJJ5r7Hg+cfDK8+mrnSl/KSSrrkMDeanJy8I+egPI2kPHtOgnsReoEArBzZ8vJspmZUF6e+lH7bqTh5N57E451a6i8+X5C+YUJbpjoc5Qy/xcFBSaArKiQwN5qamrM3yTSZ7hcUFfXZ1Z59/vb7i537IBXXoGTTmper2PuXPOF4O9/b3/fWsvH3UoksLcatxvfXmYCrXPtF+a/UYhU2LXLHAli00syMsznsrY2Ne2K6GIaTuZbr5L17GPUzP0V3oMOS0LDRJ/k8ZjAHkyevUQ61qG1+bKVmdl8u8PR+ZWY0pjWZpymrRH7JUvMyc+5c5tvHzMGpk6Fxx9v/+OslIzYW4kE9lbjchHcfQSh7H44vlrZZ0YThMX4/WaSWeyBMMLtNqe1UxW8dDENx75lI/1/dym+CftQdf6VSWqc6JMyMyE/39zeulUCeyupqzNDz7H9hdtt8u57eaGK9j6KoZAJ3KdMgXHjWj4+dy58+y28/37b+wgv+yEsQgJ7q7HZwO3GP3YSjrUrTfAiRE+rrGx9tD7Cbk/tqH1X0nD8fgZcfR6Eguy87SFZDVYkVkZGdJEqGbG3lvLytgcp7HbT3/Vi7S1O9f778M03LUfrI44+GgYObH8Src0myQVWIoG9FeXk4Bs9Ace6NVBbk/pcZtG3+HwmzaWtA2FEKkftu5CGk7PwLpwrllN5zZ0Ehw5LUsNEn+VwmAWqXC4ZsbeS+npz5rut/sLtNnOJevGQc3uLUz3+OAwYAMcc0/rjLheceiosXQpbtrT+HAnsrUUCeytyufCPnYQK+HGs/7JXdzjCgnbuNKOPHZVujCw5WFPTM+2K6EIajvPj98h+5I/UzjqNhiOOT2LjRJ9ls5koKFLyUpKOrWH79vYHAZQyf7tIBbBeqK2PYlkZvPGGCdzbG8f5f//P7OOpp1p/XBapshYJ7K3I6cQ/YV8AHF9+IYG96Dler8k57Wi0PsLtNpPPenJ0Ms40HNuOCgZcewGBYXtSddktSWyY6PM8HpOOI7XsrcHrNQMPnTn7uGNHr/0y1tZH8amnzK88Z077rx82DEpKYPHi1vdls/Xaty4tSWBvUcG9xhLsPxCHVMYRPWnHjvgmpNrtpkevrk5em2LFk4YTCtH/hguxVe9i5+0L0G6LrJgreie3WwJ7K9m506RIdcRmMymvPX32sYe0VhEnEDCB+rRpMGJEx/s44wwzwr9sWcvHmq4+K1JPAnur8njwj5mE88sv5ByX6BkNDWYybGdH6yMyM3tutCvONJysxQvJ/PBtdl18I4FwGVkhksbpNCUvy8pkQCbV/H6oqorv7GMvXX/A52t5kvOtt0zO/BlndG4fM2bA4MEmJ781WsuovVVIYG9V4Tz7jG++RlXuTHVrRF+wfXvnRrdi2e3mYNgTo/ZxpOH0++pL+v3xVuqnH0XdT89McsOEwPz/FBWZSKq8PNWt6dvaWoejLZE5Q6lenyMJWgvsH3/cfFQPP7xz+8jIMCk7paWm/GUspXrld6K0JIG9Vdls+CbtjwqFyFj1mZzjEslVX28uLlfXXt9TOaqdTMNRNdVMmn8rwfxCKq+/p/MHdyG6w2430RLADz+kti19WTBo0nC6cvaxoqLXHW+DweapON99ZwL0OXPiy7w89VSzn8WL2/45IvUksLcw/5SDgPAKtPIfI5JFaxOUd2EV10aR4aCqqsS0qTWdTcPRmtzbriBz21Yqb/0Tul//5LVJiFjDwqVUN29ObTv6sqoq06+1cXavzcOpw2H6mPr65LWth0VWnW36VixebO6fdlp8+xo8GI44Ap5+uuUSO5KKYx0S2FtYaI/hBPMKcaxdIROxRPI0NJgDWXcCe4jm2ifrs9qJNBxVW8OAK87B88YLbJhzBr59DkhOW4RoS2QmoixSlRqhkOmH3O5WH66uUXzzvb3ttR9dLjNq30vELk7l9ZpqOP/3fyZQj9fcuebtff315tulMo51SGBvZU4nvrGTTGUc+Y8RyaC1OYh1NQWnqUg+a7JG7TtIw8n45ivyzjiKzLdfp+rCa/nmlNOT0w4h2rPHHuZ/QRapSo3a2pa5J2H19bB5iw2lNJu22Fuf3+xyQV2dGfDoBWIXp3r9dROYd3bSbKyDD4bhw1uuRGuzSZ0Pq5DA3uL8k6eQsfEb1HaZiCWSoL7eDOF0ZdJsayK59omuCOLztZuGk/nmK+SdcTS2XTvZ/qe/U3Pm+ZJXL1LD7Ya8PAnsU0FrM2m5ldx6nw82bbHjztS4MwE0P2y1tT5m5nCYfqwXiP39Hn/cBOYHH9y1/dlsZtT+449hzZrm2yWwtwYJ7C3Ov99UlNY4Pl+e6qaI3qadg2CXJWsVx4aG1tNw/H763XMjA688h8CeYylfvBTflB8n9mcLEY+MjGgtewnse1Z9vRlUiBkACARMUJ+RoRvHMNyZ4PMpyrbZWs6VdbtNla8ERaqhkAmwU3HivWkqztq18NFHJjCPY42/FmbPNic2nngiui1SVEikngT2Fuff/0AAHCs+TXFLRK9TW9vqQbApVb2L7Ifvo3DmJApO+DGeF58EfwcHO7fbBPaJHLVvJQ3HVrGNQb/6KdmLF1Bzys+o+MvzhAqHJO5nCtEVSsGQISbHvpdVV7G8iooW/UQoBD+U2dAhjSsmky/Lo6mpU1TsaOXsnt0OlZXdblIwaOZR+/2waVPPB7/BYDSIf/xxE5DPnt29fQ4cCMccA88+G60OarfL0g1WIYG9xYXyCwkMHopzzeeSZy8SJxQydevbmGBmq9hGzv23UHhMMf3+NB//mImE3B76/+4SCmb9iKynH4aGNipHREbtE3BQBFpNw3H+7yPyT5+JY80Kdv7uAaouvxUc3Zz8K0SiDB0qI/Y9raHB5MY3mS+kNWwtt9HgVW11dWR7NNt32qjcFRPcu92mZGY3IvFAADZuNN1XJPDdtKlnA+BIDfvaWhOIH3OMCcy764wzzEK9L75o7itlQhT5yKeeBPZpwL93MY4vV8p5LpE4kdH6mAlm9k3fkXvbFRT+5ACyH/8z3h/PYNuTb7LjgaeoWLyU7fc/QbBoN3LvvNY857EHUbWtLMOemWlG2RNxKrtpGo7WZD35Fwb98mS0J4uKR1+j/uiTuv8zhEikPfYwqRw9sWibMHbsaDFXaPsORVWNIjur7TMnSpngvmybjdo61fwBm63LxQD8fvj+exPsejxmm8dj7m/c2HP56H6/+TVefNEE4l2dNBuruBjGjTOTaCMnpmSRKmtIq8BeKXWcUuoTpdS7SqkPlFLFHTy/n1Lq0fBrPlVKzVdKZcQ8Z7BS6iWl1L/Dz7k0ub9F/Pz7TCHjh+9lAq1IjFZG6zO+Xk3/q8+j4ISD8Lz8NHXHnMy2599n5+8fIjBmonmSUnh/PIPtD79ExcLn8O81nn7330LhsVPIWXAXaleTFZKVMiPsiRi1D6fhqLpaBlz9K3Lvvp6Gg2dQ/vg/Cew1rvv7FyLRdt/dXG/cmNp29BU+nwnAm/Rpu6oUFTttZHuaBPU+L+5X/o7r3aXN0qRsNvC4NZt+sDUvg+l2m74yzrPlXq8J6iO7aMrtNt3j99+3rAWfDJHAftEiE4gXtxs1dZ5SJld/5Ur47LPodkksSL20CeyVUvsDTwJnaq0PBX4PvKGUKmrnZY8Cdq31FOBA4BDg5ib7tAGvACu01j8CpgO/Ukqdk5zfomt8+04FIPOt183oqORtiu6orm4sB+f87GMGXjSXglNnkPneUmrn/JKtr3zErmvvIrj7iNZfrxS+/Q9ix5+eoXzRP/DuO5WchXdTeOwU+v3hd9gqtpnnuVzmYNudo1c4DSdj4zfknXk0mcteoeqCq9l519/QOf26vl8hkimySJUE9j2jsrJZql5tnWLLVhPUKwWEQrj/8TwFJx/KgBsvYtDFZ5L3s+Nw/u+jxtdkZIDLFVMG02Yzx9uaVs5KtqGhwQTtdnvbdQlcLvPzvvuug7WwIqtLdSNa9vvhiy9MAD53bmKLhZ14ojkLESl9KYtUWUMciwmn3FXAG1rr1QBa61eVUluB84HrYp+slJoInADsHX6+Tyl1H/CoUuo2rXUNcDSwD3B4+Dm7lFILgGuVUn/R2hoRtH/v/dEZGQy48pdw5S8JuTIJDcwjNCCP0KB8QvkFBAcVEMorIJRXSKigkGB+EaFBBYQG5SemRrnoHYJB2L4d16cfkv3Yg7j+9xHB3AFUnXsZtbPPQucOiGt3/gn7sPOeR6n+eg3Zj/yRrCceIuuZv1E36zRqzjiP4IA8c9AtLOxaexsayHx3Kf1/fznalcn2B5/Gd8AhXduXED1FRux7TiBgcuGzswEzjrDpBxset8amNK4P36bfA7/H8eVK/GMmsv2Pi7Fv3ULOgrvI+8Xx1E87gupfX01gxGicDqgPmjKYQweHTKai220m5ebkdFhKpq7O5NC7XB1XEHY6oyP3Q4dClitgfhe/P7pooNdromWlTAnV3Ny4ytlobU7QPv44ZGXBSQnOWszJMcH9s8/CDTeYLyuSipN66RTYHw7Mj9n2CTCTVgL78PMbgJUxz3cDBwP/DD9nvda6MuY5uwNjgLUJaXk36dz+VCx5m4yPP8S2czv2ndux7azAtnMHtrLNONZ+ga1yO6qNGTkhTxba5UZnZqJdmZDpRme60a5Mc914yQxv84A7vM3hRDsc5j/W4URnmNva4TD3HQ7IcJjtDgfanhG9Vqrdi6aV7TYbmVu2YM/eStPAZAAAIABJREFUEO2VdMhchy8qclvr8GPhYYLIbYh2hlpHb4N5DqrJc8I3bXZwZaI9HnSmG9we8145nWboxWZrdcGTzv0BdfR3CYXA60X5fRAKoTMywJ5h3t/IAk9tXdoSeS8iNdX8fpTPC94GlNeLaqiHhnpUQwOONSvIXvQgjq/XECwcwq5LbqbuhDlot6drv1tYYK9xVN72J6rPvZTsRx/E8/wTeJ57nPpjTqbmpDMI+sab908pUGYUTDf+vrbo8u+R3zU8UtXvruvJfnIhvon7sWP+QkJFu3WrnULE4+uv4emnd8fvh6lTTSDTqRHP3cKf002bkto+gTkrGO47/H5T1tLl0ri//Ix+99+Ca/kHBHbbg523/on6/5vVGBjXH3kCWU/9hexHHyBz9nTqZp1G9S8vxZ1fRG2dKYM5pCiEitRxrK01H4A2VFeb6jceT7uFxhr7aIJBHF4vqrqejd8G2C3PG9293W524vFEE9fLy808gvz8Tn8Qg0GTyfjyy3DyyY3ffRJq7lxT9nLJEpgzRyrjWEFaBPZKqYFALrAl5qEy4Kg2XjYS2Boz6l7W5LHIdWv7jDxmicAewH/Awfj3OaBlEBc5Tef3o6oqsW0vx1a+DXvldmw7KsylaifK2xC+eFE+L8rbANXV2LaXo3w+s83X5PGOShomURfHdpNCK2W+qGQ40A6n+TLjdKGdTnC6zLZQEBU0Iy3K74dgABXwQyCACphRGBU0Hblq5zylttvBbjdfippct9yWwY/89WQGQQV84POhAn7zN/P7UR2caPIP25OdN9xL/VEnJrySTHCPkey6/m6qz/kt2Yv+TNaL/7+9e4+T7arrvP/57bp1dfX9XPrccpJAAoQwEOAkJCFghCDgAzg8vHQcMaKIDC/GMYKB4REVnIlOvDwKzyiSBIWRARFRHAZBIMaDSQiQAEkgMRlyIRdy7re+1XXv9fyx9j5VXae7qy/VXZf+vl+velV11a6qVfvUWfXba//Wb32Cwc99asWv4+IA36KI2Z/8eU698/2Q1Zkn2Vi33QY33PB0brjBj8BecAFcfDFcfjm8+MVw/vmLDKAODsLYmC95KesnDH2wm8/7spIHAzKPP8S2j1xP/p8+Tzi+hVPvuo7ZN1x9uq87eCRgIOcYGxlk5s3XMPf6NzL0kQ9Q+Mxfkv/i3zH7xv+A/dzbmZob4ehxY9sW53Nqjh71kfECAfWpU/DUU/7heeM/YViv6lWtwqOP1n/DzSCVIp1OUxjP8uRMnp2DIWOjC/TfQeBfPAzhwAHflsnJeuC/xO757Gf9CYB2TZpt9pznwAte4M8KvPEny1SPFCGb8Wc61lIsX1atJwJ7oBBfNyfrloHFhhoLi2xPw3OWs033yC4dhLlduwiBEKhG80e5T+flN143jiLD/IOGWs0H/5UyVqn4YLVahVrVB4+1GlQrPlCtVU8/Ni+gxdXfxyXv7f821/hY/X4ixw/LR9id3w4YBMlodUPnFQQ+8EtGeOP76iPb5l8P/O15ge7CQa+Fof88VX+Qk4x6W7Xq90H8WDLa3rgNQer0yHtydsOfuYjPaKTS/vHkbEd821mARWEc+McHaGHNt6Xh2j8e3xcfKMxEcwSDW/wBRiaLy8ZnU7K5hrMp8SWb9QcnmRzR6LhfwGm1Zx+WKdqxm6l3X8fML17DwC3/gJVK/myJA3MN3zdcw9mX+HvRcDam+uyLKP3oYsfuspmZ2evwZ2uLQAq4xjnX1pX8fuEXYGjoaxw6dDn33gv33AOf/CT8+Z/7x7dtgxe+EC67zAf6l17qUx4An1/x6U/DXXfBuefC058Oz3iGPxo4/3y//Oc6/z/sezMz/synBRy+7wjjH/4jRv73J3DZHNNv/TVmfvZtVLJD3HlPlltuz3LL7TkefDhDKuW4+HlVrnpJiateMsl5117H7L//JYY/dD3Df/4BBv/2L8m/5Z0cfNXPkUmnGRvN+DMDxWK9xE3s+HE4fBiGhxxBWIVS1efkzM1BrUYUOh5+MscPpgpccPEAQerMQDwFDBciDh4JiKKIifFFBmdSKT9aX636NK98HrZvX7RscRjCpz7lv6MXXrjWnb2ISoWr31DlHe8tcOcXj/LSS0rgav43eXTUt3dgQCuBb6BeCezjJRBoHrLLAXNLPGeh7Wl4zizQPAOveZvT4km1bwWYnJxk//79SzZ6IaXSDA88sL+3vuOG/6akG+/IxJf2KxVnODBQmH+na7rhFrjt5m24wPNXMGWi8R/o9G1rOL6weccaS75Xc9thFROg579fqVpkIJNf2esk2x76XjySshFfQgcvfv6ZnfpK2n3wu6ymraVakfsOfq/1hj0sOSH56P6HOtySjdVQTOES59z9ZvYafDGFC51zbR0m37atwmte4wde5+Z8ysV99/lKIMnlH//Rb5tOw7Of7dN2Ln/1p3jO3k+z5fj3mfjX+xn5ys1+4CORzfqymEnQf/759cD/aU9rnaS92TkHx47hKlVm/+D3mfyfN2LVKnNv+Dm+//p38U/37+KW9+f4l29kmZkNyKQdL3pBhZ96zRRTMwE335bjug+OcN0HYe/uGlddMcxVr/1zXvLv3sa2P7uOsT/8DYY+9REOvfk9ZH72tRRyOT9Svnevf/tqjaMHqhw7UGE4mMWOlsA5SiW496FB7rxvjG/em+Oue7OcPBUAZzE2ErHveRUuuajKJRdVeO6zq6cXzQoCGC44Dh8LCKOIrRNu8Tgh41NfqVR8kn6h4I8ym+bT7d/vTxJcc02b93216g9yTp2CcpnXvijFb4+czSf/cYJLr5iC4Xi52+lpP/8hnYbxcd9Ozflbdz0R2DvnjpvZSaC5As4O4OFFnvYIsN3MrCEdJ3n+ww3bvGqB12zcprEdNwI3Auzbt89deeWVy/4MiS9/eT/PetaVS+fgbXL33befCy+8stPN6Gqr3kfO+SGmEyd8J7ueR5hR5COhbdv8yM1i7Wm+brw9N+dzS1eRHHrfwe9x4Y7nrKLhvaNWDnHOcfblezrdlI22omIKa5XP+8voKOzc6ePwV7+6Huw/8YQfmL/nHvjOd3zO8U3FC4HfPv0aqcAxNlJlYqDIRGaKCU4wMXOYLXf+kIl/fpwttUeY4C4mOM44JxkchPxwmvxQivxolvxoloHxPDY2CiMjvjGNl7Gx+SOkAwM+iEque2o0aRFJCmoU+aDypptwH76BgZNT3HLJu/n83rdz8z2T3Pdpf1C0czLkJ15Z4mWXl7niksq8evbvfvsMPzwYcMvtOW6+Nccn/36Qv/jrAoP5V/Ajl/4Ir/qZu3n9Hf+Zs/7L2yj+9Z9R+a33kn3Bv4EDB3BzRQ4fijh5KqBaC/jKAwW+ee8wd96d5t4Hc1SqPgXlvMkpXvPMx3nRrseZnjrIA4cv4Ovf3cPNt/qE01xQYd/o97ls+Ltckf82l2bu4mnVI7hiiagyR1Au+jPmO3b4MzznnOMPBJPbe/b4f+9SyUfwo6OwZcvps/s33ui/Fq99bRv2fa3mg/nkzIWZ/14NDZF3jp961RR/8bcjHP3Gw5ybH/KrYCVnEuKiDRw54p8zPu7PfOjgdV30Unh5M9BcgXUf8HeLbP8V4I+BC6lPoN2HP217e8M2v2xmYw0TaPcBTzjnHmxXw0W6hll92cH1DO6ToH77dh+ELNWexutmIyP+dUqlxWvHyWa00mIKbRVPfWFgwH9Fd+zwecbVqg/2p6d9kP/YY74o1IkTcPKkcepkhpMnUpw6NcSjp3ZzzxRMVWGmtkAu8lx8OTT/7gGKDFAiT3GByzEG+CFZKmdeghrZdEg2FZHNROTSjmzGkc06spm4TkDa/CUFqUxAKg2pTMrflwlIpY0gHfjb2fj+bIrpIwe49389SpDyjwfpoH47kyKVCer3Z1L12+kAC2tYaY6gVPTzwBqug9IcVpw7fV9QKcXzwcocue8wXzr0PD43/hluHnwJp76ZIfUtxyUXVfn1/zTNy15c5lnn1Zbs3nbviLj6DUWufkORYgm+dleWm28d4OZbc3zxny/lGr7K83cd4rVPfpzXvfF6nndxlkcyz2L/U8/gayeexdfnnsuD1XMAyFJmH3dxDbdzBbdxOV9j66FjZ/z7ARxO7eS2zI9yq72E22cv5QMn3sAf8tMYEc8pPMrlEw9wyY6HuWLPY5w/OYUdeAp+8AO44w7fHzZ+EffsqQf6u3f7v5/7XA7uuIh/+IcCb3rTKrvOcpng8AFSTz1J8MQPCA4eIDh5nGD6JKlTJ/z8vRN+Hl/qxDHeWd7LjTzIV675PBfz33zbtm71Azvbt/vb27f7A4+xMX+9dy+cd56fL7DRo53NqchQnxOw0Bn7Hjow7qXA/npgv5ld4Jz7VzP7cWAn8KcAZnYd8G+Bfc65knPuPjP7LPAu4E1mlgGuAT4Ql7oE+CJwN/AO4H1mNoJPtbluQz+ZyEZKgnszP3rf7uA+CeonJ5esIrEsZv6HIVnCUTnJm94qiymsu+Zgf/fuM6c5RZERRanT9b7j6UwUiz74P3ok4viRkBPHI4pz4AtaRZTLLr4NpbKjXMpSmktTns1TLYaUiyHlEsxUoFwxaqFRrQVUwoBqlKIapqhEKaq1FJVKxg9v9YltQcirX1HmRy+f4SUvqjA6vLoq1fkBePkVFV5+RYXffQ/860Npbr41xz/dNs5/PfBr/BeuJXdnmXKcrTuRPsWLxh7kZ7Z9k0t3P8Hz9xwlOzqAKwzhBl9FVPhJjhYKuMEhoqFhHph+nGfsfYGvtpbJcCl+cZ13AXPF43z7uxnuvDvDN+/ew8fvPZcbngjgbtg1GTI2GgefezhdqIFKhaBageMVOFTBbi37qnFxyucpDlPjXK7964vZ8bcPN6SsusVvxzdxEUFp4S+Jy2QJJ7YSjW8hmthK7dxnEE1sZcfEVl76uSf4vafexxcn3+YLO1Sr8GQVHo2LO1SqNKak+rZ+H+xhyGSILEcq+MaC79uKuWQu4cLz+s74e14bVitJkW1xPe/gwNg7PsVHD6xfV9Uzgb1z7ltm9kbgL80smSz1yoZ8ygH8hNfGCOXngf9uZnfG298M/FbDa0bxBKwPm9kd8WvcGKfciPSvxpH7dgb3YeijlHYE9Yl02r/egQPrU69Nes1qiil0RBAsvzCIT90OaFw3sjkzbcnbzuEihwt9EOgi/0DjYxAS1mpUyo5yBcolR7kMpTJUylCtQBQ6aiGEVecLr4UQ1uLbVXc6GyYMHWHNEVVq/PD4Y+wo7MHVQsJahAt9O6JaRBQ6otBfu5rz15EjiiKimiOyABekiSyFC1JEliYK0rgghQsCImf1eIz4IAkYHHC84KKQfRdFbU/bNoNnn1/j2efX+JU3z3LshPGVf8nxre9mecY5J3nRC6pc+MyQVGov4HPuq/FlMZWDs7ihhfvEwbzjiksqXHFJBZilVoP7v5/m9juzfPt72fqgsgMf4mRxrl5MI4nNreZzw2xult3FaX4m/zfsuuCZzAXPSj5Zw9UCI9ENAWg0POLXydmyrb5OzsQ2XGHhykAA73xuht/7kBGZTzVqnkrlHA0V5OKKbtWq/+JVq4RRjcgWGLxpjr0XmrI1ryx0Y2Bdv+0at2ksuT3vhVqYd1DQ+HfjQVJDoxtfM749N5DGhRGWWp+qQT0T2AM45z4HfG6Rx64Frm26bwp4U4vXfAp4XbvaKNJT2hncJ0H9jh3tD8ALBZ8/OjOzaAUI2TRWVExhrUUPZmZmVlUooeek8Ku80FQrYRl2zswwNLT81VmXbaFAq+G+qFzl+8cDnLN1rawYRvCcSxzPvzQECwhDx/0HfF8ZBHF7zkjZmN+XrmQyf+TARuGlPwYve7XDWn22JPJPAtyUP6KshVu5I3oLwRnd+jJHqeNKdX6NmBmYmoap+LF5Vei8wR3wvvdDLuvmf/x5o+UN91tc+S6uajczO8vQan87lvxIzUcYK3jdZf8kruC30+Crt/7LChqxMj0V2IvIOkjSco4dW31wv55BfWJiwi8SU6ttfD6mdI2VFlNYa9GD/fv3s5pCCZtJx/bR9DTR408ybSMcPp7GDPIDS1STWQHnYHbOzzfYviVkKJrCdu08XQigWgo5dTzk+NEQwoh8ukoqiidZxGWJG9136iEuHH16/TROcokbG0VQKhthCGOjEWMjbuEzEVFUfw/n/ATUQqFecaZhQurMjF80qy0nT5P8saovaU2p5Ovzl8unHw9dQI0U5+6Jyzcnkhy1fL7exmRRxgb6v9Ye+nUUEV+lwMyXcxscXNnCIklQv3NnQxHvdZBK+ZScH/5w/Sv6SLdbaTEF6UfDwwS7djB66BCFs4Y5firgxMmATMYxsIb0nGIRwsjYMh4xNhKRmpuGye3zqntlBlJs3ZVifNIXijl2zHeF+fF43CEJhJPJFHOP+ecnC0vGefJhNaJYMiwwJkZDRsYiH5uHAZTi4D+ZjAH1xaqGhvyM5yXWt2lr0Rkz/8GSQZXkaCFeJZxajcp0laFUEUbjQD7tV6LX3KiNpcBeRLyxMX995IgPnJcT3CdB/a5dZyzcsi7yeT9yf/LkxryfdKsliynIJjI+DmFI+uhRtm8dYXQ45PDRgKkZY3DArejkXqXqR81Hhx1bJ0IfGE/P+AouSdpik1TKNyHJFDx61HeJuZyRzTYEwkEw7zWqVT/onU45JsdDhgYjUhbNn1WdjMwHgQ+k48UGlzuosYJNVy9enZ1MhjDMM7hzBNo0vUpWR4G9iNSNjfmO+siR1iP3SVC/e/fG5r2PjfmUnEql5WrM0p+WUUxBNpMtW3x/dPIkueFh9uyKmCsah44ElMp+cmqrrmyuZOSyjrN3h/XubHra9zdbt7ZsQhD4akjDw74o2LFj/umZzPxyk6WSD+pzOd91FgqG2fqEYkHg32cjsxfVJXeeAnsRmW901Af3hw8vHtyHof+F2uigHnx7tm/3qwItkKcpm8NSxRRkkzHzfUKtBrOzWKFAYdBxzlkhp6aMI8cCgsAH+I2cg7miYQY7t0cMDzXk58/M+Ch9+/YVDXub1VPeSyVfl2B62g/CT035DJqdO32wvxHZhIOD/n03IrBPUv6lsxTYi8iZRkb8r87Bg2em5SQTpzoR1CdyOT+KdvSoSmCKiO+vdu70c3CKRcjnCQIYH3MMFUKOHg84Ne1H5XNZKJagVvN59ONjbn4a+Nyc79t27FhT9D0w4LMUKxV48km/aGy7S3O2ks/7NRLWW63mP5vGWTpP/wQisrDhYf/DNjdXr3BQq/kqCJ0M6hOjo74NpVJn2yEi3SEIfCSdSvngPpbJwM7JiLN3h5jB1LQxkINz94Zs3dIU1BeL/gm7drUtSs1mfZM2OqhP3nsjVKvrWztBlk8j9iKyuOHh+sh9JuMD+927V7lGeZslq9I+8YRWpRURL5XyfdTjj/tBiIZoOp+Hs/dEVKuLBLylku9Xdu/um/4kSY1xbn1Tf2q1zo/1iKcRexFZ2tCQH7l3rnuC+kQ263Ngiwsvfy4im1AmA3v21MtKNjBbJKgvl30fd9ZZfbVOhpnvspvK6q8L5dd3BwX2ItLa0BCcfXZ3BfWJoSF/DljBvYgkcjkfpJdK8xdLWkiy6NKePX0ZnRYK6x/YJ1UvpfMU2IvI8nTrglBJSg60/gEXkc1jYMAH67OzvizNQpJiAGed1Zkk+A2w3iP2mjjbXfTPICK9L532q9LOzfnT6SIi4Ierd+3y5Sub+4Yw9H3GWWd159nINlnvhaqqVa0X2E0U2ItIfxgc9IvJKCVHRBqNjPi5ONPT9eA+ivxI/u7dfR+VJoH9eo15hKEmznYTBfYi0j8mJnw1i6YJcyKyyU1M+BVqZ2Z8UD8z4+veDw93umXrLplAu57dolac7R4K7EWkf6RSfmSuXAaUkiMiDbZu9etfnDrlU/dGRzvdog2zXhNok7MAmjjbPfqnppOICPhzwhMTMPWwH5nTjC4RAT90vX27H6XfZKsp5XKLzx9ei1rNnw3o1toKm5F+8USk/4yPQzrj8+21Mq2IJIJg0wX14FNl1iPHvlbblLuzqymwF5H+YwapAPbu9UNVMzMqhSkim1Y67Y9p2h3cJyP20j0U2ItI/8pk/Kq5k5M+714Vc0RkEzLzWYrtnkCrham6jwJ7EelvZj6ndu9eX9ZOo/cisgkVCu0N7J1TYN+NFNiLyOaQLGK1a5f/dSsWtZiViGwa7Z5AW61q4mw3UmAvIpvL4KBfaXJoyC9Qs55rrYuIdIl2r0CribPdSYG9iGw+qRRs2+ZXnQxDH+Br9F5E+lgm4yfQtmvUPoo0cbYbKbAXkc0rn/ej9+PjPrivVDrdIhGRddPOCbTOKb++GymwF5HNLQj8glZ79vjz1JpcKyJ9ql0r0DrnT3ymtcxp11FgLyIC/pzy7t0+RadW8wF+qaQUHRHpG7lce7q0atWP/mvibPfRsZaISCIIYHQURkZ8UD897S/gfxEXGZ5yDoolI3KQMkcu519KRKSbZDLtC+xHR9f+OtJ+CuxFRJolq7nk87BlC8zNwcmTfhQ/laIxci8WoRYa42MRQwWYnYNTUwFhBIHBQM6RSnX484iI4Mcm0mk/8XUtgw9R5LtB6T4K7EVElpJK+QWuhof96rWzs3DqFKW5iIplGd2SYct4SDbrNx/Mw9aJkHIZ5orGyemAYskfK2QzTpPNRKSjBgf9Ccm1BOZmnO7zpLsosBcRWa5cjjI5ysEYw9uL7A5OkKudgmoAqQGSoXkzn7I/MOCYGA+pVHyqzskpY3rG4tUaHdk215UWEWllcNBnGK42sE9G+zVxtjvpn0VEZBkqFT9gn8/D2ecG5PMFIF6jfWYGTpzweTlDQ2c8N5uFbNYxOuKo1fxI/tS0MTtnOCCTduSyCvJFZP1ls2vLs08mzkp3UmAv0mNUpGVj1Wo+xX5gwJe8P6MSRCbj6+CPjsIjj7RMXk2nYWTYMTLsCEMolX2QPzVtpFNOP5gisq6yaxxEqNV8hWDpTgrsRTogivzobxStPFBPVg6cmfF/m9UnRGmSZvuEoQ/oMxlfBXNoqMWPYRDA2JifZDs4uKz3SKWgMOgoDDq2jMOxEwGnpoxs1jGgiWkisg6S+vNhuLrfDOeUX9/NFNiLbJBarR7Mp1K+omI262+bnXkJgoXvN4Mnn4SnPc2fEq1UfABaLPpLIpXyQWkn8yCjyF/MeuegI4r8/kylYOdOH9Avu3rE8DAcO7aq981mYedkxMQYHD0eMDVj5LI+RUdEpJ3yef97sdrAXkUAupcCe5F1VKn4S9IRbtniB3NzubXnUyej9Pl8vZ5wGPpgv1bznfbcnB/Zd27pgwVY/L5mUeTfJwnalzrrEAT+cyftSbYLgvqoUXJg00nO+YOuatW3Z9s2v09XXA4ul/OXWm3VR1S5HOzeGVEswpFjAdOzPsDP6odURNpkcLB+1ncloqjzA0ayNP3TiLRRY4AIPuienPTXG3HqMpWqj8Akczid8+1JRverVX9fc2DunA/Yk8egft0oOaAYGKjfzmR8EJxcUqn6QUQiiny8W6v5NpRK/jI3N//AIAn40+n1D/iTAy/w+2vHDv+51rS41Pg4HDq04CTalcjnYe+eiLmicfioMT1rDGRVLlNE1i6XW7h/b0UTZ7ufAnvpG0lwuNGjv0m+fK3m33toCLZvrwe+nZbUG85moVBY+fOToB/WFvAGQb0dUD/LkBxQJGcakoC/WKwfdCSl1dY66Qv8e5VK/rXzeR/MFwptTBUqFNo6w3kw7zh7j2OuaBw6GlCahXzOdcV3S0R602oHCKpVTZztdvppkJ4Thj4ADEN/SSQjxM2jEMkoduNo9mres/HSKAh8vvzQUBtGe7tQY2rOer1+MkIPPk09EYb1MpOzsz7YT/Z/49mCVhoPvjIZ2LrVx9/rchYlnfYfolTyX4g2MPOTbM89K2R6xjhyLKBUhkzgV7cVEVmJZA7WaibQauJsd1NgL20VRT4Qq9Xqed1Qz+9uvL3QJNGEc/W0jeZAOkkDGRjwHUxjRRizevCdPL9crgeHSZ63mb9OUkZSqXpaSvJ+jaPUyWhxEgxmMvMPFjqdI96vUik/qp7P+4IzyfeiUvFx88zM/DkESaCf/FCVSn6EKQj8GYKRkfbMb2hpdNSvANOmwD5h5ktlDhV8gH/4EOQyqn8qIitXKPgBEwX2/UWBfQ9YKBc6CTobrxtvLxS4JAFqOt2+UeUkXzoJhlMp31kUCv49GnO3kwmXjbeTA4HGzxdFPgDP5Xwg1pjLnQTiS0mC7YU6nyQwTAL/JNe7UvHbJwcLzaP8Cty7g1+x1V8KBT8ZOYrmVwdKRvajyP97JnMcNvRMSj5fP1pchzcOAhgdcQzlQmpVBfYisnKDg3Dq1PK3D0OVVe4FCuw7qDHQTYLfhST/kZonKCbxQuPfi1U4CcP6iHWpVM8Hh3rw2irgb5yEmaS7ZLN+cDKZHLrWiX1RBAcOwHnnre11FtMYGEp/CIJ6MZokjScM4amnYNeuDjZqhTXtVyOVglSfpX6JyMZY6e9gtbqu3Zm0iQL7DWbmA+ukrncm4wOSJNhMguzFKousRePEycYR63J5/mTFRGNqS1KLPCmt2Diy3U79lp8undEVI0pDQ6uuaS8ist5WmlIThgrse4EC+w2WycDTn975wCM5gMjl5lfla6xOkpRtTOquJ2cMRGQZBgbqRfxVwkZEukzjOiPL6aKiSPn1vUC/Nh3Q6aB+KQvVQReRVdqypS017UVE1kOh4Of5LyewT1JZpbtp/FVEZL20uaa9iEg7DQ4uPr+vURjOrzgm3UuBvYjIekmnfXBfLne6JSIiZ8hkljf2UKkov75XKLAXEVlP4+P+V1FEpMtkMssr0KGJs71Dgb2IyHpKiugrJUdEukwQ+AmxtVrrbTVxtjcosBcRWU/JsrelUqdbIiJyhkLBV8BrRRNne4MCexGZYW/QAAAPoUlEQVSR9TYysrwhMRGRDZbPLz2BtlZTueteon8mEZH1liwEsZzyEytRLvtfZRGRVWo1El+tzl/gUrqbAnsRkfVm5ifRtjMdp1z2tee2bGnfa3aQmeXM7O1m9lUzu8XMvmVmN5nZ1qbtMmb2R/Hjd8XbKOwQWaUkd36xaUCaONtbeiawN7NfN7Nvm9nXzexvzWz7Mp7zrPgH4tb4R+DqpsevNLMfmNn+pssz1++TiMimNDTkl25shyjylXZ27+6nwtLnA9cDb3XOvQx4MXAe8HdN2/0e8HzgRcDFwBhw0wa2U6SvmPmTiotlCzqn/Ppe0hOBvZn9CnA18FLn3KXAo8BnWzxnCPgy8Ann3EuAnwA+aGavbNr0Y865K5suD67DxxCRzSyT8eez21H6cmYGduzwv8b9owjckPS/zrkS8CHgJWZ2FoCZjQO/DPyRc67mnHPAHwD/3szO61C7RXpeobB4YK8VZ3tL1wf2ZhYA7wU+5Jybie/+A+ByM3v5Ek/9eSAPfBTAOfck8CngN9avtSIiSxgbW3tgPzfnq+yMjLSnTV3COfewc+5dTXcX4+vkCOZHgAxwV8M23wFC4Kr1baFI/1psAm2t5scPNHG2d/TCP9Vzge00dOTOuUPA48ArlnjeVcC3nXON577vxB8QKFtMRDbe4KAf/lptTftKxf/Cbt++vFVlet9l+H78ofjvpwEOOJhs4JyrAsfix0RkFRZbgbZaVX59r0l3ugHLkHTWB5ruP8jSHfnTgG8v8JwAOAe4P77vMjP7ElAATgB/4pz70loaLCKyoKSm/fT0yqvZRJGffHvOOf2UV7+oeB7VW/BplIkCUI1TcBqVgQXDDzN7K/BWgMnJSfbv37+idszMzKz4OZuN9lFrvbCPyuUzR+ajaONKXfbCPuoFvRDYJ9UOyk33L9qRNzxvoefQ8LxTwGPAtc65KTN7GfAFM7vaOfc3zS+41h8I0Bd3ObSPWtM+aq1r95Fz9ZH3lQhD/wt78GDrbbuImV2HT6dcyo865/Y3PCcLfBp4r3Pu6w3bzQIZM7Om4D4HzC30ws65G4EbAfbt2+euvPLKFbV///79rPQ5m432UWu9sI+eeKIeyCdmZvxYwkasOtsL+6gXdCywX25nj+/IoZ5jScPfC3bksdlFnkPyPOfcd4gD9fjvW8zsb+J2nRHYr/UHAvTFXQ7to9a0j1rr2n3kHDz6qP/1XO7Ie7EIAwOwa1cvpuD8PvDhFtscSW6YWQr4K+AfnHMfadruEcCASeJ0HDNLA1uAh9vVYJHNaHAQTpyoB/bJobMmzvaWTo7YL7ezvyC+vQP4QcNjO4BblnjuI/E2jXYAUdPrNHsYeH2LdomIrE5S0/7o0eWt+pKs9T452YtBPc65KWBqOduamQF/AdznnPuD+L6rgEecc48AXwUqwD7g8/HTng+kgJvb3HSRTWVgYH5F3lrN39eD3c6m1rHJs865Kefcky0uZeBe4BC+IwdO517uZemO/CvAC+KqOol9wNecc3Px6/yqmZ3b9Lzd+Im5IiLro1BYXk37JK9+1y5I90Lm5Jr9CbAT+JyZ7TOzfcBP4ft7nHMngD8F3mFm6fhA4Frgr5xzGrEXWYPmdJtaTSvO9qKur4oTV7X5XeDtDasLXgt8jYYR+3i1wo81PPV/ACXgTfHju4GfBq5r2OYi4D/GPw6Y2QXAv8PXThYRWR/ZrJ8826r05eysr4Cz0om2PcjMXgy8HV/t7M6Gyy81bfoe/IDPN+LHpxfYRkRWKJ2eX7QrGbGX3tITQ0DOuf/PzIaB28ysDDwFvL5p8tQgvm598pwZM/sx4M/M7M34ybTvaKp482HgncDtZhbGz383cMP6fiIR2fTGx+GppxaflVYs+tVqx8Y2tl0d4py7HZ8/32q7CvCO9W+RyOZi5scQqtV6t6T8+t7TE4E9gHPud4DfWeLxixe47wH8BNzFnvN1/GleEZGN1VjTvjmJtVr19/doXr2I9KZCAY4dq5e4VGDfe7o+FUdEpC+lUn712FJp/v3O+dH63bs3S169iHSJXM5X1q1WNXG2VymwFxHplNFRn8jaaGZm0+TVi0h3SUboazWtONurFNiLiHTKwIAflQ9D/3ex6H9Nx8c72y4R2ZTSaX8yURNne5cCexGRTklq2pdK/pfUOdixQ+e/RaQjkgm0Ybgxq81K+ymwFxHppKEhX69+bs7Xq9dsNRHpoMFBn2uvKT69Sf9sIiKdlM36X9J8XkmtItJxAwO+Oo5OHPYmBfYiIp22c6dPbBUR6bCBAdi2rdOtkNVSYC8i0mk65y0iXcJMXVIvU469iIiIiEgfUGAvIiIiItIHFNiLiIiIiPQBBfYiIiIiIn1Agb2IiIiISB9QYC8iIiIi0gcU2IuIiIiI9AEF9iIiIiIifUCBvYiIiIhIH1BgLyIiIiLSBxTYi4iIiIj0AXPOdboNPcnMjgCPreKpW4GjbW5Ov9E+ak37qDXto6Wd7Zzb1ulGbKRV9tv6HrWmfdSa9lFr2kdLW1afrcB+g5nZXc65fZ1uRzfTPmpN+6g17SNpB32PWtM+ak37qDXto/ZQKo6IiIiISB9QYC8iIiIi0gcU2G+8GzvdgB6gfdSa9lFr2kfSDvoetaZ91Jr2UWvaR22gHHsRERERkT6gEXsRERERkT6gwH4DmdnrzOxOM/sXM7vdzDT7O2ZmP29mD5jZ/qbLaKfb1klmljWz682sZmbnLPD4W8zsW2Z2m5l9xcyevvGt7Jyl9o+Zvd/M7m76Pn2xMy2VXqQ+e3HqsxemPrs19dvrK93pBmwWZvZC4JPAJc65+83sNcCXzOxC59zBDjevW1zvnPtYpxvRLeIO76+A/wOkFnj8J4DfBZ7rnDtoZr8MfDn+TpU2sq2d0Gr/xH7VObd/g5okfUR99rKoz26gPrs19dvrTyP2G+f/Ab7knLsfwDn3eeAQ8B872irpZkPA1cBHF3n8N4GPNwQZN+AX+HjjBrStG7TaPyJroT5bVkp9dmvqt9eZAvuNcxVwV9N9dwKv6EBbpAc4577nnHtoocfMbBx4IQ3fKedcFbibTfKdWmr/iLSB+mxZEfXZranfXn8K7DeAmU0Ao8CBpocOAk/b+BZ1rdeY2S1x7uFnzOziTjeoi50bX+s7tbQ3xzmat5vZx83sGZ1ukHQ/9dnLpj57+dRnL5/67TVQYL8xCvF1uen+MjC4wW3pVoeAh4Afd85dAXwWuMPMLu1ss7qWvlOtPQ7cgx95vQK4H/iWmZ275LNE9P9rOdRnr4y+U8ujfnuNFNhvjNn4Otd0fw6Y2+C2dCXn3Bedc+9JJhA55z4B3AG8p7Mt61r6TrXgnPsL59z/65yrOb9gx/XAceCaDjdNup/+f7WgPnvF9J1aBvXba6fAfgM4544DJ4EdTQ/tAB7e+Bb1jIeB8zrdiC71aHyt79QyxT8Sj6LvlLSgPnvV1GcvTn32KqjfXjkF9hvnZqC5BvK++P5Nz8z+m5k1n47cjT8tJ02ccyfwk7BOf6fMLAM8D32nADCzDy5wt75Tslzqs5egPntl1Gcvj/rttVNgv3GuB15pZhcAmNmPAzuBP+1oq7rHZcAvJn+Y2Y8ALwM+1LEWdb/rgKvNbDL++5eAY8AnOtekrvI6M3td8oeZ/SxwDnBTx1okvUR99tLUZ6+c+uzW1G+vkfmzHLIR4i/rbwJF/MIMv+qcu7OzreoOZvYq4D8Bw/gDzjTwh865z3S0YR1kZlngy8AYflTnG8BTzrn/u2GbtwBvx+doloC3bZZSYq32j5n9DPAW/PcpC9SA9znn/rkzLZZeoz57ceqzz6Q+uzX12+tPgb2IiIiISB9QKo6IiIiISB9QYC8iIiIi0gcU2IuIiIiI9AEF9iIiIiIifUCBvYiIiIhIH1BgLyIiIiLSBxTYi/QBM/uCmR00M9WvFRHpcuqzZb0osBdZBjPbbmZ3m9lxM3Px7ebLjJld2Yn2Oed+HPhwJ95bRKTbqM+WzSrd6QaI9ALn3GHgIjP7GPAm59xFzduY2f6NbpeIiJxJfbZsVgrsRdrnN4AHOt0IERFZFvXZ0neUiiOyRmZ2pZntd87d5pw72pg7aWYvN7PbzOwhM3vYzH5ugef/opl9z8weNLNHzewDZlZo2mbMzP7MzB4zs3vjyx+b2bkLvN7FZvYlM/uBmX3dzC5sevwyM/uqmX3HzO4xs380s9e3f8+IiHQf9dnSzxTYi7RZU+7krwCvcM6dB1wH/A8ze0WyrZm9G/gg8EvOuWcCLwReCnzezIJ4myxwM3AhcKFz7rnAG4A3Aj+xQBN+Fng1cB5QBm5qeL9h4AvATc655wMXAfcC17Tn04uI9Bb12dJPFNiLrELjBCzgI0tser1zrgjgnPsocD/wvvg1RuPbf+WcuyPe5jjwfuBK4N/Gr3E1/sfj151zM/F23wduBGoLvOdHnXORc64G/G/gsviHBuCZwBjwSPw6Dvhj4DMr3QciIr1CfbZsFgrsRVbBOXdRcgHessSm9zX9/S3gknhk5zJgELizaZtvxtevaLqet51z7jecc3+ywHv+n4bbx+Pryfj6QeAQ8Pdm9ptm9gzn3IFFXkdEpC+oz5bNQoG9yBo55/Y7565c5LGpprtOABlgG7C14b5GSce+teF6zjlXXmZ75hr+jOLrVPzYNPAi4LPAtcCDZvZNM3vxcl5bRKTXqc+WfqbAXmQdmdlI010TQBU4AhxtuK95GxoePwoMmlmuHW1yzj3mnPsPwA78KeNJ4Itm1twOEZFNRX229DoF9iJtYmb/3cx+uunuC5v+fiHwTedcBNwBzAEXN22T/P2VpusXNr3ffzazX1thG/+Nmf06gHOu6Jz7n8A7gGHgnJW8lohIL1OfLf1Igb1I+wwDA033/bKZ5QHM7BeAC4DfBnDOnYpv/7SZXRZvM46fiLUf+Pv4NT6Oz/P8naSkmpk9B/hV4MsrbOMW4NfM7Pz4dQx4MXAQ+NcVvpaISC9Tny19RwtUiSyDme0Avk6cQ2lmP1hgs634zr3RB/GnTPcAhl8BMRnNwTn3+2Z2HLgproKQBf4X8N54hAjnXMXMrgKuB+43sxPADPBG59x34/Z8Anh5fPtu/Ona/wt4e/xWXzCz34rb9zHg78wsxOeOPgr8WFIJQkSk16nPls3KfOUkEWknM3s/8D7nnHW6LSIisjT12dIvlIojIiIiItIHFNiLiIiIiPQBBfYibWZmXwDeFt++28xe2eEmiYjIItRnSz9Rjr2IiIiISB/QiL2IiIiISB9QYC8iIiIi0gcU2IuIiIiI9AEF9iIiIiIifUCBvYiIiIhIH1BgLyIiIiLSB/5/JY6OTUpUnsQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "def plot_loss(ax, x_val1, loss_tr_y1, loss_tr_y2, x_val2, loss_te_y1, loss_te_y2, title, xlabel, ylabel, leg):\n", - " x_pos = np.arange(len(x_val1))\n", - " ax.plot(x_pos, x_val1, 'r')\n", - " ax.plot(x_pos, x_val2, 'b')\n", - " ax.set_title(title, size=size_title)\n", - " ax.fill_between(x_pos, loss_tr_y1, loss_tr_y2, color = 'r', alpha = alpha_fade)\n", - " ax.fill_between(x_pos, loss_te_y1, loss_te_y2, color = 'b', alpha = alpha_fade)\n", - " ax.legend(leg)\n", - " ax.grid(True)\n", - "\n", - "\n", - "def assemble_loss():\n", - " fig = plt.figure(figsize=fig_size)\n", - " fig.suptitle('Crossentropy loss with training epochs', size=size_title + 2)\n", - " gs = gridspec.GridSpec(2,2)\n", - " for idx, approach in enumerate(all_approaches_path):\n", - " if idx == 0:\n", - " ax = plt.subplot(gs[0,0])\n", - " ax.set_ylabel(\"Loss\", size=size_label)\n", - " elif idx == 1:\n", - " ax = plt.subplot(gs[0,1])\n", - " elif idx == 2:\n", - " ax = plt.subplot(gs[1,0])\n", - " ax.set_xlabel(\"Epochs\", size=size_label)\n", - " ax.set_ylabel(\"Loss\", size=size_label)\n", - " else:\n", - " ax = plt.subplot(gs[1,1])\n", - " ax.set_xlabel(\"Epochs\", size=size_label)\n", - " \n", - " train_loss = list()\n", - " test_loss = list()\n", - "\n", - " for i in range(1, runs+1):\n", - " path = base_path + approach + 'run' + str(i) + '/'\n", - " tr_loss_path = path + 'train_loss.txt'\n", - " val_loss_path = path + 'validation_loss.txt'\n", - " try:\n", - " tr_loss = read_file(tr_loss_path)\n", - " train_loss.append(tr_loss)\n", - " te_loss = read_file(val_loss_path)\n", - " test_loss.append(te_loss)\n", - " except Exception:\n", - " continue\n", - " loss_tr_y1, loss_tr_y2 = compute_fill_between(train_loss)\n", - " loss_te_y1, loss_te_y2 = compute_fill_between(test_loss)\n", - "\n", - " mean_tr_loss = np.mean(train_loss, axis=0)\n", - " mean_te_loss = np.mean(test_loss, axis=0)\n", - " plt_title = titles[idx]\n", - " plot_loss(ax, mean_tr_loss, mean_tr_loss - loss_tr_y1, mean_tr_loss + loss_tr_y2, \\\n", - " mean_te_loss, mean_te_loss - loss_te_y1, mean_te_loss + loss_te_y2, \\\n", - " plt_title + \"\", \"Epochs\", \"Loss\", ['Training loss', 'Validation loss'])\n", - "assemble_loss()" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtQAAAMbCAYAAABt5AIlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xl8FPX9+PHXe3NAEi6tAgoIAp6AVUQRpBat9ShVsNp6VQWt1WoRrIpaqbUVK0ZbLa2tX+2vahGKV1W8qm1trFdV8EA8y6EiV+TMfe1+fn98PpNMJrNJNrvJJpv308e65DOfmfnMzuxn3/vZz3w+YoxBKaWUUkop1TaRdBdAKaWUUkqprkwDaqWUUkoppZKgAbVSSimllFJJ0IBaKaWUUkqpJGhArZRSSimlVBI0oFZKKaWUUioJGlBnMBFZJiJGRManuyyZQEQ+da+nEZH70l0eFU5E+ojIHSKyVkSqRGSjiPxNRPqlu2wqs4nIZBG5QUSGdfB+n3H10+4p2Nb3RaRURL6firIpEJEjfJ8dRkQmp7tMKvU0oM5QIjIaONT9eW46y5IpjDHDgL3TXQ7Vot8DlwI/BPoB3wW+7f6tVHuaDPwcGNbB+90b6A8UpGBbg4Be7lmlgDHmv8YYAX6R7rKo9qMBdeaaDmxz/z5DRHLTWBalOtIU4F1jzD+MMVXGmJeBA4D1aS6XUu1lLDDYGPNpshsyxtzitnVL0qVSqhvRgDoDiUgWcDZwFTao3hXbQqdUd7ArUOZPMMasNsbUpqk8SrUrY0ylMWZbyzlbvT398qlUgjSgzkwnAL2BB4GHXdp5/gyun58J69clIsMC6UW+9bJFZJaIvCMilSKyQ0T+ISLHBrZ/TWAbvURkgYisF5GoS5vu8h4tIn8WkY9EpMK3zWPiHaCInCQir7sybBORx0Rk3+b6OYvIBBF5yuWvEpH3ReSnItKjrS90SLnOE5H/ikiZe7wmIqFdbkSkp4j8SkQ+F5FqEVkjIr8UkeNb29/O9dn05x3mW/ZUc32+3X7+JSLFrs/kuyLyGxE5OJCvS5wfESkSEeP+/Lp/PyF9GI8WkctE5EMRqQmWR0R2da/FWnduNonIIhHZJ86+J4rIv0WkXER2utfncK9M7lEkTd9bk33b+L2EvOcSfY1EZGBgH9NF5FwR+cAdy6ciMruZ1/Ecd92WuXO9QkTuFpEj/a+z/+Fbd3pg2Q2tPHctvm+C+5TG9dJ9zbyuB4rIEnedV4vIKhG5RUT6BrZf5S+3iBwnIq+6c2pE5NNmyj/MvQ4/d0n/Dl7nYt8//mtynLtOSvyvo4jki8jFIvK8iHzhrs/PReQuEekf2G/w/e8/7r8Hrr19xfa1LnXX6IMisltge6HvTxE5I7CffcTWXevd6/a2BD4DfOsOFpEHRGSr2PrgLXeNNfoMivfahmzvXN+1Uioir4jI6YE8wc+3PUVkoYhsduV9V0TOibP9AhH5uTtfVWLfa0+KyIQ4+fNF5Gdi65Iqt4//utdnePzDkCvE1vnVbl9nhmTKEpFL3OtbIiJfuuO9RkS0S05nY4zRR4Y9sEH0QvfvSYABaoDdAvlGumX/jbOdV4CLfH9HgCeAKDAT289uT+D/ATHg3JBtFLl9PIEN6vsBRwCVwHSXZyXwNnAY0BMYCvzO7eekkG2e7fb3L2AfoAfwLeB9bIv8pyHrnAHUAc9g+zfmAWcCFcDzQKSVr+0wdzz3hSz7o1t2HbCLe8x1ab8L5BXg727ZVUAfYHdgPvChS78hgXN+n1tnWGvKC5zs0m8HBgL5wHHABqAokLfLnB+3LRM8Bt+yG9zy54FCbD/Rwa5s97k8A4H/AV8Cx7vyjwZeB7YDYwLbPBqoBt4BDnb5jwRWAJ8DpplyTG5t+RN9jbDdvgzwD+C32PfqHsASl35ayD5+T8M1vCv2/XomUArs8OWb4fLdGrKNfkA5sE8rz1ci75uFLv2EkO18E/jC/zoAX3dleQMY5c7NCUAx8C5QENjGZLf9fwHPYrsK9QYWhV23iZzXwPvxVeA/2PtcegG3eNcJMI6G9+ae2Pfmke76WgX0acP19B7wT7ft3tj3aC3wVIJ13H1u2VPAD9y5HoWtIyqAIYH8A7Dvge3ASdj6YyS27vPqudDXKs7r512fN7nr5CvAPJc2NyR/kVv2lruO84Eh2M9IA1weyF8AvAnsBL6DfY8NAx5xr9fpgfz52HphB3Cqy78HcKPb/uNxztNzwLXAbm77/8LWmYcF8v/a7fc87GfELsDF2Hrghta+bvromEfaC6CPFJ9Q+4arAo5zfwuwxr2JLwvJ/x+37MBA+r7YD6K+vrSZLu9fAnmzgLVACbBrYJlXoc0NpN8EfN39+xFgXEjZ3gLeC6T1cZVXCbBLYNmFbl+fBtIHYrsAlAD9Ast+6da5sJWv7zDCA9SpLn1xyDp/dcu+7Us7z6U9EJL/Fdo/oP6bS+8VSL+ApgF1lzk/bp3WBNT/DKSfDfzI/ftRl+f8QJ6R2A+9V3xpEWyQEwX2DeT/ptuOaaYck1tT/ra8RjQE1O8G0gcQ/mF/kktfFFKmK2kcUOe781wM5AbyXga80Mpzlej75hiX9lBI/sXATb6/e2L7zUcJBPfA+W47NwXSJ7v07f73BnAIgeC+heuryXkNvB/rgKG+9MHAEvfvA4FnQtb9qlv3ijZcTwYYG0h/xl3PwTrbK+N9Idu6zy1bEEj/nkufHUi/16X/IJC+i7ueWx1Q+67P/4Qs+497TfcPpBe5dX4RSO/hro1qbH9xL/12l/+Hgfy5wGeuzAN86b8mTv2E/dIRL6BeGkj3vkTdEUjfBiwL2fZCNKDudA/t8pF5zsS+Cf8F9U0ei9yy80Ly3+uezw+knw88ZozZ6Uv7kXv+kz+jMSaK/cbfG/stPcxDgXWuM8a86P59mjFmWcg6K4HRItLHlzYV6As8b4zZHsj/1zj7Phfb8vCIMWZHYNkS9zw9zrqtdXEzZfDSLgmUyb9/v8VJlqU1jHs+I2TfZzfKmBnnJyh4PS4yxvxRRAYCp2A/aB8I5FkFLAMmSkPXjyOBEcDbxphPAvn/gW3lToVkXqOlgXJtxtYRwe4r3vs77Dw9BPzFt40KbL2yO7Ylz+9C4O44ZQlK9H3zb+BT4GQR2dVLFDsk4jRswOc5GdvC+6Ix5n+BbT/onqfHKdezxpj6fvjGmLeNMTPjHkXi3jDGfObb/hfGmDPcvz8wxnwrZJ333PORbdjfF8aYtwJpH2IbXEa0YXtPhGwLfNeU2BvhT8d9AfJndnXDswnuM/Tzx1mCbdgJ7cZBw/n29l8NPI4NlM9w5c3GNiiYkPw12C/aBbjPUZf/wrD8zm+xvw6FCb5+H7vn4HvSAPuLyFcD6bOABXG2rdJEA+rMMx3b0hH1pXmBwVgRGRXI/zC2Jfr7roLwbmo8h4ZgGxHpjf35E+xPpUHr3PO4OOVaFycdEekvIreK7Q9a5utT51WOu/iyH+KePybAfQCG3ZhzuHt+p5lyjRWRZN4Ph7nnj0KWfRTIA80cB/Yn0vb2B2w3oHvEjlf+ExEZZuzNTY1uSMqQ8xNvu0HjsEHGB+5DNN563nXe3Hlsbj+JSuY12hCSVoZtZfbzrs+wc/e5MeayQLIXNF/kJYjIRGxr+t9C9hkmofeNayC4H9vC6B8n+UxgeSBwjvuaGWPKsdfiniKyR8i+U3Xe4ml2+yIySUSWishnIlLn3m9enb5Lc+vGEe8agKbXQVu2F7at/bFdIDYaY0pCtpFoPdea90C8z5+wfXnXuXfPyP7YRqGNgYYkT/B63M+Xv8nxGTvK0J1xytOa1w9si3kBsFxEnnZ9z/sZY7aZFN6EqlJDA+oMIiIHYt/swZa1j7H9wiDQSu2CnIexPwN7I4Ecj+239YIvq78Vckfghg9Dw7flAWFlM8ZUxinz7tiuA5cCvwL2MsaIsWN23u9lCylHedj2sH09g7ybj34bUm6vIuwZOMZEefsIK5eX5h8HubnjCDuGlDLG/Av7AfUgtn/wr4E1Ym9k2tfLl0HnJyj0evSV5ZBgWVx5vNZY7zpvy/G2RTKvUdixGhqfN2i4PuMdS+MNGPMutm/yZN8180Pg/jhfRsIk+r6Bhm4HM3xpM/A1AAS2fXmcc+m1cIfVWfGuj1SJu30RORvbhaE/9nor8L3noOl5a+v+vF+pUrG9sG2l+r3hnc93Q86l9ytMvM+fspBkr1x9A8/xyhu8HhN6vwQ0ev3cF0UInAtjzDzsLy+vACdifyXaIPYG1d5t2K9qRxpQZxYvWF4eUuF436rPdi3Qfn92z+f7nu/3vcnB9pcEW3H28Cr4kMe0BMt8IfbGsLvcz+4tfev2Wg7iTWAQVsl4Zb+wmXJLyE/pifDWDSuXl+bvAtHccbSlojRx0uO2Phlj3nU/M/fHdil4Hftl6mXfz+mZcn5ay9vHKy2U5Q6Xry3HC3HOl4jEO1/pvobj8Vqpf+i6XXyX1nf3aGmfYe8bjB1r+d/AwSLi/ep2IIFuBb5t39TCaxbW4plOP8cGVj80xix33RO6ora+N+Lxzuc+zZzLg8NWFJFeIcleubxytnT9B6/HtrxfEmaMecIY83XszeBzsN3ILgIea8/9qsRpQJ0hXJD8feDHYRUNtjWmEtunsNHwRsaYl7A3Vp3oPpy+TeO+iN5PpO9jK/q94pThaIkzrFgzhrnnYB9HsD8XBnn9APcP2X8vGlqd/F4P7Cu43r6S/FSwb7jnA0KWHRDIA80cB3Fe3xZ4LR7Byj10aCX3k3J/AGNMiTFmITAR2+dvd+Aol3WYe+7q56e13sTeqBWvLAUicoKIfMUlNXcewY4oECah80XHXsNh525PEZktgWHbsH1XS7BdzX4AvGkCfclbuc/Wvm88/ns/zgceDmmFbOk1GyJ26Mi2tNDGE++LbSKGuedG7zkRCXu/dWYfYUf+2EMCQxQ6idZzLZ3PI0TkoDjrhu3Lu87fds8fYa/leOUNXo/N5hc7bOYlwfREiMg0rxuXMWadMeZW7M2pW4BvuC+xqpPQgDpzHIf9ie0vYQvdTSBeC07YuMj3AdnYER1eNcasDcnzB/c8PbhARMZhu4iE9Udsjte3rVFFKCI5NPSZ81uKbRn4pogE+xI2GcfT+Qu2j9rZXj9x336ysK9LstOz/7GZMpwRyAMN3SVOp6mz2rB/78N3v0D6KXHyzyNwA6n7RcK7ucgL+DLl/LSKMaYYe/PRIAkfV/dibDcZr9XwVexrf4i/qwyAiHwT++UkTKLnqyOv4eCNqmCP+1oCfeDdF+3F2OHLbiSx1mn/Plv7vvH8DRvMnIVtSAh29wB4EjuM3skh1yLY+uzqwC9xyfJaL3sCiMjXRGSlNL5xtyWh7znsEKhdhrETKf0V2wjzXf8yFwiemOAmm/v8GYQd0SO0hZrANS123Pap2PfxElfeKHCPK28wfy62+005doSNYP7vhezzNgKNV23wGIE6wv0KtQE7qolOVtWZmE4w1Ig+kn9gK4W7WshzBLYFpYLAWKbYlrSoW35OnPUj2GCjGjuM1mDsz3bfxn4I3BuyThEhw4b5lg/GfgjVYO+w7ottTXgA21JoaDoU3Jlu2T+xQ5l54xy/CGwifJzj07CVzzPYb/j52J+JH8UOhzQkXhkD2xlG/CGlfueWeePp9nP/NoSPQ/20W3Yl9svQV7DjUP+LxIfN2wsbBL+NbUnph+2u8WRYed152YQdiqqvO48nu3PxLm4otK52fty2DC0Pmze5mfX7Y29Y2oj9EN0FGxj/GDsk5fRA/qNc+juu7LnYkRhewf6q0+T6x7ZMF7tjO9y9/t+hYXzcJuVP9DWiYdi86SHb+jTOeQi7hn+Afc+fEef1OsStswXbHSzRuqvV75vAene7PKsAiZNnErav7uvY+q8A2BsbpG8HvhrIP5kE33uB9Se69W9x+/p//teZZuoPX55LXZ4V7trIx46nvbqZayPudZ3oOs2VkcSH5+zvrrVt2M+JHthRRZ6iYUi7uO/FkP3fjq1bbgGG+16bFdixnXMC+b19PImtl/KwdZr3PpsVyO+NK+2NQ90TW989jA1gWzMO9WDsNb2dpsP4JXSeXNpr2C6bedh66CqX/se2XKP6aL9H2gugjyRPYENFVv+Ik+++YL6Qyu85bKtPfjP7y8IOY7UcG5hvx/4EdiGNJ1SYHrK/JhWxy7sPtmV8I/aD+yPgZ9iWL2+9osA633IVWRW2T9lC7A0pXwCfxCn7YdihkrZig8//YW+mHNTK1/rTkOOZHshzjqsAy93jv4RMeOPy9sS2FH/ujvtj7HBI3vjFP03wWjgOG1BXY8dYvZGGyXu8x2ku70HYGxHfxX7YlQEfuHWC40d3lfNTFO+aI+R9Enb+fNvqh/3QXuWOeSN2Mopj4+Q/AvsLjfeeeMK99kXEf0+OA172vUZ/wAZh/vJd2ZbXKOxYXfoNIctuaOYa3ob9ItRkIpXAOiuA3yRRj7X6feNbZ4Irf5MJPQL59sN+AdzkzuVabH0YHDf805DX5r42HMvPsKNOVGCHWTyymeuzKM42zsB2PyrF1skv4BvX3Lt2afgCEHau7wtZNp3w98KnzdVxcfZT1MxxTfYdyyD3+m9zr8lr2Hs1vAlZJib4+p6Jfd9447K/i22UyGumTuiNnRTGq8NWAN+Ps/184HpsPVftyv0UMKGF/B9i38sbsAH4Ab48zb3moefJLTsRW3d+jH1fbMXWqz8Astr6ftNH+zzEnTSlujz303cV8JIxJu602J2diJyHrWTPM8aEduHpijLl/CRC7PTYXzcNIzRkHNc3fiN2lrew4e+UakJE7sUG60ONMe0yVGh3eP+pzkP7UKsuR0RuFpELQxYdj+0H/lQHF6lNROQDNyxd0BRsF4t4kwJ0aplyflQ4EckSEX9/3jOBtzSYVkHuxrxnQtJ7AN/AzrTaEePuK9XuNKBWXdEewHwROUlEeovILiJyMvB/2K4oYTcxdUYHAAtFZJSI9BCRYSLyS2xf2Z8ZYzamuXxtlSnnR4XLA/4tImNEZAi2v3NhmsukOqd87OhRhSIySER6isho7I29/bH3JSiVEbTLh+pyROQwbB+yo7DDAPbE9v17FPiVCR/Ev9NxrbinAKOw/YtrsH2gf2uMae1Mc51OppyfZIjIDdjxhP1eNMZM7vjSpJaI9MR+MRqJ7cO6wBhzY3pLpTojN7rKj7A3JA7HDpu5AztxzU3GmLebWT2Z/d5Ahr7/VOelAbVSSimllFJJ0C4fSimllFJKJUEDaqWUUkoppZKgAbVSSimllFJJ0IBaKaWUUkqpJGhArZRSSimlVBI0oFZKKaWUUioJGlArpZRSSimVBA2olVJKKaWUSoIG1EoppZRSSiVBA2qllFJKKaWSoAG1UkoppZRSSdCAWimllFJKqSRoQK2UUkoppVQSNKBWSimllFIqCRpQK6WUUkoplQQNqJVSSimllEqCBtRKKaWUUkolQQNqpZRSSimlkqABtVJKKaWUUknQgFoppZRSSqkkaECtlFJKKaVUEjSgVkoppZRSKgkaUCullFJKKZUEDaiVUkoppZRKggbUSimllFJKJUEDaqWUUkoppZKgAbVSSimllFJJ0IBaKaWUUkqpJGhArZRSSimlVBI0oFZKKaWUUioJGlArpZRSSimVBA2olVJKKaWUSoIG1EoppZRSSiVBA2qllFJKKaWSoAG1UkoppZRSSdCAWimllFJKqSRoQK2UUkoppVQSNKBWSimllFIqCRpQK6WUUkoplQQNqJVSSimllEqCBtRKKaWUUkolQQNqpZRSSimlkqABtVJKKaWUUknQgFoppZRSSqkkaECtlFJKKaVUEjSgVkoppZRSKgkaUHcTItKnjev1TnVZlFJKdX1JfK7kiUh2qsujVDppQJ3hRCQiIjcCt7VxE/8Wke8ksL/rRWSTiETdY5OIbBaRL0VkhYgsEJED2lgWlQYico87f0ZEbkh3eZRS6RX8XBGRGb56v6gVm9gTWC4iB7Zx/4eJyAMi8qn7fNkhIstE5Lci8k0Ribh8w1y5drr6689xtvdbX/m3uX9nichZ7t+Vbv1z46z/pq+O3CQiT7TluFTXpgF15vsd8A3gijaufy5wl4ic1prMxphfGmMGAuuAdcaYgcaYAcAA4AfYivR9EfmFiEgby5QxRGSyq4Snp7ss8RhjLgQOS3c5lFKdRqPPFWPMvb56v0XGmNXAr4D/iMg+iexYRK4HioD/AqPd58sewM3AVOB54Ba3n09duWa51WeIyKkh5ZnlK/933OdW1Biz2KU/6B23iOwdsv5huDrSrTs1kWNSmUED6gwmIt8CLgZ+YIwpbcs2jDEfADcCfxKR/m0tizEmZox5wxhzGjAfuB6Y29btKaWU6nip+FwBMMY8CLwI3NfaxhURuQj4BTDDGPN7Y0yZ21alMeZRYApQBeSErL4BqAXuFpFBbSjyp0AfYKGIZLVhfZXhNKDObD8HnnFBcTLuds+zms3Vej8DPgCuF5HhKdqmUkqp9peqzxWAQmAicGxLGUWkr8v/tjHmobA8xpj3gWfibOJ/wHXAriQQxPvcDzwNHAn8NMF1VTegAXWGcoHq4cC/wpaJyB0i8qHr77VNRJ4RkUPCtmWMqQZeAs5MRdmMMVHgXiAbmB4o274i8pCIbHHl+kBE5oS1CLj+bctcvm0i8ryIfM23/Fh3fDWur91RIvKqS9siIneKSK+Wyisi7/v64J3g+oF/JiJbReRhEdktZJ2+IvIbEVnnyrbO7e8rvjz3AH9zf3p9+DaJyLkistDXb2+TiFztW2+JiLzp+3usr//flyKyn0sXEblUbN/1zS7PQyKyr2/d/QJ9BAeLyN9EZL37u6iZ12WFiFSISJXbxrdbei2VUl1Xc58rgXzHiMjrrt7ZICLzJPwmxDeBEuCsVuz+NGwL8ZMt5JsF/DbOstuAf2AD+Mtbsc+gGcAmbGPQ4W1YX2UyY4w+MvCB7ftsgBNClv0Y+/PXGPd3P+CvQCkwPM72Ct32Brdy/58Cnzaz/Ci3vX/50g4AtgOPAbsAApzoynV/YP1rgChwHpAF5AO/x/6kd1wgb5HbxqvAMJf2NZf2XCuPZ7or73+BY13aaFfeJwJ584C3gI+A/V3a/sCH2Jb5Al/eyW6700P2+VO37CBfWi6wE4gBe/rS+wHFQI4v7S6gwrsGgL7YAH4HMCqwr/vcvp4ADnRpvwKK3L+HueU3+NY5DFgLjE339a4Pfeij/R/Nfa645Z8CnwFLgd1d2mlAHXB3nHXeAFa1Yt9/dvv+XhvKPd1Xlw10dWWVv271lX9yyPr3eXUf8E1X//4vUJcPA0y6z5E+0vfQFurM5bVCbgpZVgz8whjzHoAxZgdwITYQvCTO9jYGtpusze55D1/a77Ct1ucbY7Yb61ngj8C5IjIW7J3bwDxgiTHmfmNvHqnAtjhsJnxEk17AHGPMpwDGmJeAe4DjROSkBMr9X2PMP902VgJPASeKSK4vzxXAIcBMY8xHLu9HLv0A4KJW7mupez7ZlzYZKMd+2fCnn4j9clILICKT3H7+bIz5uyvDTuz5LQDujLPPRabhp9z/w35JaUJEDgUeAr5rjHmrlcejlOramvtc8QzC1n1fAhhjHsHWZReKyJiQ/BuBYSIS1u/Zz/us2JFAeZswxmzCtjT3ABaJSM8E1/8H9jNmJPFbwlU3pAF15vK6FpQHFxhjHjLG/F8grQzbaj0qzva87TTp3tBG3rVnAFy3iWOAZcaY7YG8XveGE9zzqdhW6ef9mVww+S4wRkT2DGyjBnglkOb1tUskoH418Pc67A0wu/vSTnf7KwrkDR5Hs1zAvpbGgfNU4AZs63ow3T9U0+nu+anANje5cnw9zk2m//Hl/cx9GDbiugY9D5xpjFnWmmNRSmWEuJ8rPmuMMZ8F0pqra8ux9fkuLezbBJ7bzBjzNDYYHo0bESRB1wHLgAtE5JRky6MygwbUmctrMa0LLhCRHiIy2/Vx2+D13cW2LOTF2Z63ndw4yxM10D17Ld8jsK2uR/j6Envl+gO20vUCwJHu+faQvBNd3uBd3MXGmGBF7LWyNBkGqRlbAn/XuGd/68pIbEv7ukDZ3nNl+wqt9yQwTkS81pkp2G4bzwHHiEgv17LzDeDZQBmg4fX12xDI41fcQnkOcvveFZjUcvGVUhkk7ueKz+aQtObq2tZ+tnjbaCnwbq2rsQ0wM0Xk+ERWdI03ZwJlwD2++ll1YxpQZ64K9xz2M9oi4Fbgdmyf4oGm5TFEvcquopk8iTjCPQdbjZ/zyuN77G6M6WWMmR3Ie35I3l1c3jdpH7FW5isNKdtAV7ZDE9jfUuwXjZNcN4svjDFbXHoPbGv3ZOBd16UjKcaYlo7vm8B3geXAjf4bHJVSGa+5z5W2au1ni/dZ0abJYIKMvdn+TKASO+pHQr++GmNWAZdiG0jux9bTqhvTgDpzea2Qjb7Ni8guwHeAfxhjlhhjapqsGc7bzvpkC+bu9p6BvYHwXpe8CvtTXuj4oCIyQUT2cn9+4p6b5HWjaxwbckd5WPcGr5V8bQLFb41PgL4iUhBSvv1F5KsJbOs/2D6DJwPTaOjW8TT2psyTadrdA+wNM2An0gny0lYlUA7Pb40xL2LPXwS4V9ysZEqpjBf6uRIwICStubp2F2xQG+zqF/SIy9PsaEIi8qSI/LGFbQFgjPkQmO3K96fWrBNY/y/AYmxDQ7DBR3Uz+kGYuVa658GB9Bps4Nqo+4O7qS6sIvQMxgZwH6WgbLcA+wA3+m4S3Ar8ExgrIkMDZdsTO2yf10/5b9ifCcOmRL8IuN0YE/xJMldEJgbSprjnpaSWN6tWo/K5wPMRGo+56vVFzHZ5jhSR67yF7qfFv2O7dHzPK6sxZhvwMvYYTgo5Bm+c1in+RBEZiB2do8gY01L3jjB1bv/vYSf8mUjqxidXSnVu8T5X/Ib7Gj88Xj0UNuTdYOD9kC55jbhf4K4ADpWQ2Q4BXPq3sQ0OrWKMuQdbL08FguVujR8Ba4CZbVhXZRANqDPXf7AtwI1aQ40x5di+tseJyDQAEcnHjrDR3N3OBwNvtLVbgYhEROQIEXkMOxqXiLL5AAAgAElEQVTHjdiROvx+jG2N/ZPXJ81VzEuAh4wxy90xfAZci+1DPFtEctyYy1OwN4tcTVPbsGOHDnXb/RpwAfbmulZXvq30G+wNKze5bhqIHe/6d9ibb/wtIauxX3K8nzHPB8YFtrcUd26MMR8H0ncFdgRvAjLGvIwdpeN8r3+g2IkRvP7oP07uEAE74+Vb2OMM64+tlMosoZ8rAduBu7wuFC7IPQm4xxtZyuN+xdsHOzZ0i4wx92KHE71PRC7xfgUUkQIRuRj4C3YEq6ea206IC4HPaUO3DWOMN452NNF1VYZJ97h9+mi/B/anqPcACaTvig221mNvQnsL+Am2QqnB3vwxypd/CLYSPb8V+7zerR91j03Ym1S2uLL8DjfOcZz1R7hyb8b+vPgBNnjuEZL3u9hxobdi+3+/AHwjJF8RdnzRg4B/u+1uxQaXvVpxTEXYsZ8NNjC/x6WvwN6UYoAvgV/61umNHbv7U3csa7DjQu8Rsv0futd+M7af4H6B5f3c639ryGtlsC39YeUWbOD8njvPm4GH/dt318Im7E+uxv27KLCdX7njM+54V7v0J7CTMhjsqCMvpfua14c+9NG+j7DPFRomPIm6+vIU4G1X72zANp5kh2zrTLfOPgmWYRx27oR1br+fYhsYvhHIN8wt30nDZ9vVcbY5CfsL3GRf2lm++rHM/ftrcda/Fh2Huls/xJikR6BJmIh8RNNxLPcAqowxifQvVc1ws1q9h5005OEktnMX9ibCcaZpV4pOz832N8wYMyzNRVGqy9J6W0FKP1eysKNsFBljUvGLmVJpFTYVaEfYZIyZ7E8QkfuBj8Ozq7YwxqwRkbOAu0XkM2PMG4luQ0QuwfZ/+3pXDKaVUimj9bZK1edKFrAQ+8vXFakuo1LpkK6Aeob/D9e/dBp2FjmVQsaYJ9wYyN/CTvGaqEOBw40xYeMZK6W6D623FZCSz5V9sVOUTzetH2lKqU4tLV0+mhRCZAZwmjFmSouZlWolETkWeADbTzgL2xryE2PM4rQWTKkMoPW2Uko1SFcLddAM7DSgSqWMMeafNIx/qpRKLa23lVLKSXsLtYiMAF4FBhs75m5Ynh9iR0IgLy/v0CFDhiS8n1gsRiTS/UYJ7I7HrcfcfXTF4/7kk0+2GGN2bzln59VSva11dtt1x+PujscM3fO4u+Ixt7bO7gwB9Y1AgTHmJ63JP27cOLNs2bKE91NUVMTkyZMTXq+r647HrcfcfXTF4xaR5caY4FjjXUoi9bbW2YnpjsfdHY8Zuudxd8Vjbm2dndYuHyIiwDm0MJWoUkqpzkHrbaWUaird7e7HAJuNMStbzKmUUqoz0HpbKaUC0h1QzwD+nOYyKKWUaj2tt5VSKiBtAbWI9AFOwE4fqpRSqpPTelsppcKlrQ+1MaYE2C1d+1dKKZUYrbeVUipcZxmHWimVBiUlJRQXF1NbGzpiZafXt29fPvzww3QXo15OTg79+/enT58+6S6KUioDxWIxvvjiC8rLy9NdlDbJ5DpbA2qluqmSkhI2b97MoEGDyMvLww7e0LWUlpbSu3fvdBcDAGMMlZWVrF+/HkCDaqVUym3ZsgURYb/99uty4zlDZtfZXe9sKKVSori4mEGDBpGfn98lg+nORkTIz89n0KBBFBcXp7s4SqkMtGPHDgYMGNAlg+nOJtV1tp4Rpbqp2tpa8vLy0l2MjJOXl9dlu9AopTq3aDRKTk5OuouRUVJVZ2tArVQ3pi3TqaevqVKqPWkdk1qpej01oFZKKaWUUioJelOiUqrLGDZsGMOGDav/+8UXX2S//fZj4MCBAHz00UcsWbKEyZMnp2R/O3fuZNasWSxatEi7cSilVIK6U52tAbVSqkspKiqq/7eIcM011zB9+nSA+udUWLZsGRdddBHDhw/HGJOy7SqlVHfSXeps7fKhlOoyZs+e3ezyadOmNWoNSUZNTQ3PPvssxx9/fEq2p5RS3U13qrM1oFZKdRmtrZyfeeYZDjvsMMaPH8+YMWO444476vPMmTOHoUOHcswxxzBnzhyOPvpo9tprL2bPnk00Gq3PN3HiRPr3799ux6KUUpmuO9XZ2uVDKZVR3nvvPaZNm8YLL7zApEmTWL9+PePGjaNv377MmDGDwsJCcnNzmT9/PjNnzqSwsJDi4mLGjh3L4MGDufLKK9N9CEop1W1kSp2tAbVSqsHs2fDOOx27z4MPBl9rRLLmz5/P+PHjmTRpEgCDBg3i7LPP5qabbmLGjBn1+YYMGcIpp5wCQP/+/TnrrLNYsGBBp6mclVKqRVpnd5o6W7t8KKUyysqVKxk5cmSjtJEjR7JmzRoqKirq04YOHdooz4gRI1i3bh3l5eUdUk6llFKZU2drC7VSqkEKWx2UUkq1M62zOw1toVZKZZTRo0ezatWqRmmrV69m+PDh5Ofn16d9/vnnTfIMGTKEgoKCDimnUkqpzKmzNaBWSmWUa665htdff51XX30VgA0bNrBo0SKuu+66Rvk2b97M0qVLASguLmbx4sVcdtllHV5epZTqzjKlztYuH0qpLue1117j2muvBewNLatWrWLevHkAjBkzhscee4xZs2YRiUSoqKjgqquuanRzC8CECRNYsWIFCxYs4JNPPuHUU0/l8ssvr1++du1aZsyYwcaNG4lGo0yePJkxY8bwu9/9ruMOVCmlMkB3qLM1oFZKdTkTJkygqKiI0tJSevfu3WT5lClTmDJlSovbmTt3LnPnzg1dtvfeezea4UsppVTbdIc6W7t8KKWUUkoplQQNqJVS3cqcOXNYuHAhy5cvZ+rUqekujlJKqWZ0lTpbu3wopbqVwsJCCgsL010MpZRSrdBV6mxtoVZKKaWUUioJGlArpZRSSimVBA2olVJKKaWUSoIG1EoppZRSSiVBA2qllFJKKaWSoAG1UkoppZRSSdBh85RSXcawYcMYNmxY/d8vvvgi++23HwMHDgTgo48+YsmSJUyePDmp/cRiMR544AHuv/9+jDGUlpYyYsQICgsL2WuvvZLatlJKdRfdqc7WgFop1aX4p5YVEa655hqmT58OUP+crJKSEi644AJefPFFJk6cSDQa5eyzz+aEE07g7bffpkePHinZj1JKZbruUmdrlw+lVJcxe/bsZpdPmzatUWtIW2VnZ3PWWWcxceJEALKyspg1axYffvghb731VtLbV0qp7qA71dkaUCuluozWVs7PPPMMhx12GOPHj2fMmDHccccd9XnmzJnD0KFDOeaYY5gzZw5HH300e+21F7NnzyYajQLQq1cv7r///kbbzsvLA6C6ujrFR6WUUpmpO9XZ2uVDKZVR3nvvPaZNm8YLL7zApEmTWL9+PePGjaNv377MmDGDwsJCcnNzmT9/PjNnzqSwsJDi4mLGjh3L4MGDufLKK0O3+9prrzFo0CCOPPLIDj4ipZTKXJlSZ2tArZSqN3s2vPNOx+7z4IPB1xiRtPnz5zN+/HgmTZoEwKBBgzj77LO56aabmDFjRn2+IUOGcMoppwDQv39/zjrrLBYsWBBaOVdWVnLbbbfx+9//npzsbHCtImRlpa7gSimVIK2zW1Fn5+SkrrDN0C4fSqmMsnLlSkaOHNkobeTIkaxZs4aKior6tKFDhzbKM2LECNatW0d5eXmjdBOLMf288zjn7LOZduKJUF0NNTUNQbVSSqk2S3mdbQzTp0/nnHPOYdq0ae1X8ABtoVZK1Utlq0OXZgzEYhCLMXPmTAbuvjs3/PSndlkkYpcrpVSaaZ3d1MyZMxk4cCA33HBDh+5XA2qlVEYZPXo0q1atapS2evVqhg8fTn5+fn3a559/3pDBGFavWsWQIUMoyM62rdDAtT/7GZXV1fzprrtAhDeXLSMnJ4eDDzqoQ45FKaUyXZvqbJdnyJAhFBQU1Kdde+21VFZW8qc//QmAN99809bZBx/cjkdgaZcPpVRGueaaa3j99dd59dVXAdiwYQOLFi3iuuuua5Rv8+bNLH38caitpXjdOhYvXsxlP/qRXRiJ8Ktbb+W5f/6Ti37wA5a/9RbLli9n6VNPsfL99zv6kJRSKmMlVGcvXQpAcXGxrbMvu6x++a9+9Suee+45LrroIpYvX86yZctYunQpK1eu7JDj0BZqpbq62lqoq4N166CgAHr0gNxcyM4GkXSXrl289tprXHvttYC9oWXVqlXMmzcPgDFjxvDYY48xa9YsIpEIFRUVXHXVVfbmlljMdteIRpkwfjwr3nmHBQsW8MmqVZx6yilcPns2iPDZZ59x3fXXAzDe3SjjWXjvvR17sEop1cW1uc72mTBhAitWrLB19iefcOqpp3L55ZcD2DrbBeDjx49vtN7ChQvb+/CANAfUIjIUKAR2d48a4EpjzL/TWS6luoTaWtixA7ZtszfIRaP237GYXS4CeXkNQXZOTsYE2RMmTKCoqIjS0lJ69+7dZPmUKVOYMmWKDZ5dAE11dUPfZ/c896c/Za7XN9pn6NChmObGLu2mfai1zlZKtUWr6+wWzJ07l7lz5zZJHzp0KCbN9XLaAmoR2Q14AbjAGFMkIgI8BIwCtHJWKp66OhtIb91qb5Dr1cs+5+bah8cYG3Rv3dp4mLe8PMjPb2itzYAAuxFfK3T9lwuwr5F3rJl2zB1A62yllIovnS3Uc4DXjTFFAMYYIyJXoP26lQoXjTYNpJsLDEXiB9lbtjS02oLdnvcQ6VoBp9cKHYvZY/JaKUTs8QTMufZaHnzkEUpKSph66qk88eijHVzgLkvrbKVUh5szZw4PPvigrbOnTuWJJ55Id5FCpTOgPhW41Z9gjPk8Tl6luq9oFHbutIE02NblkECxVfxBdnV1w3aMsS3ffukMsgNdM0L/7T38XTPiBNF+hTffTOHNN6ewsN2G1tlKqQ5XWFhIYWFhuovRorQE1CJSAAwHskRkETAMqADuNsY8nI4yKdXpRKNQUmJbk41JLpBuSVjAHAyyvTytDbITCYrj5W+JMe33mqh6WmcrpVTzJB2duEVkEPAFsAP4hjHmLRE5HHgR2z9vcSD/D4EfAgwYMODQJUuWJLzPsrIyevXqlXTZu5rueNwZcczRaEMw24qAsayqil49eya0i75f+UqT2alaFFZf+IPqZOuTBFvBo7EYWekIqL2+53HKu2rVKnbu3Bm67Oijj15ujBnXnsVLNa2zO053PO7ueMzQtuPu27dv4vV2JxKNRsnKykp3MZpIRZ2droB6ILAReMAYc44vfTGwb3MFHzdunFm2bFnC+ywqKmLy5MltKG3XlvHH7W/ldNdy0csvd81jjsWgrAy+/NIG1Hl59ibCVih6/30mjxqV0O4+3LaNA/bdty0lbSxYh3Rg15DSqip6J/hFIsi4/3lHEdZgbozYZ28FY8jKFnLyc0K3+eGHH3LAAQeELhORrhhQa53dQbrjcXfHY4a2HXdzdUtXEG+Uj3RLRZ2drj7UXwLV2BYPv8+A4zu+OF2Ed+NVS891dQ3PtbWwcWNDa5q/Vc1r2Yv3DE1HRYj3HC8tJOBt9Leb3hlo+Lf/EUz31vHSg6+PiO1Tu3q1vWmvVy87ZFx2Jx5y3RgoLbVdO2prbdeOTvgNPq5OdANjMCgOBsoNQXEgQI5HQHz/jrhnEzMYOs9xdwCts5VSqhlpiTKMMVEReQXYI7BoAJB5N7n4A954QXAwEPZGLPBGLQjeMObftkjjn6D9gbExUFXVfP/UeH1Y2zKkWnPrhC3zB+HN/Vuk8RjKzfXfjURsEF1WZkfFAHsTXu/eNljt0aNzBKzGNLRI19baFukkW1s7g9D41DSzzC1oLq4NXrb+S7SmVhpamVsIjn1P9hLyJ6i4ul2drZRSCUpns90twIMisrcxZq2bMOAU4CdpLFPqVVTA+vU2QPYHvkH+QNj7tz+IbGugJWIDyO4mErEBqscbKWPbNvt3jx7Qp4/Nk5vbsTe2GWOvi+JiqKlJayBtfP8wgQX+v5t+15LGfzfZYDsIedvU//AhzX/HUinRPepspZRqg7QF1MaY50XkUuBREalwZbnKGJM58/rW1MAXX9hgqTN3OegOvAlNPN5YzN4Xnfx824Lds6cNsNsjMjMGKittIF1dbfeVor5k3qZjXlcG0/BDR6z+32J/9DCCiUFtT6iuTuA4Ay283h/iT2vngHbfA/dh6F5D6//+z8v/Yd999mXggIEAfPzJxyy87wG+ftTXk97XE0sf554//4na2lqqq6uorKzkysuv5LunfS/pbXdF3aLOVkql1LBhwxg2bFj93y+++CL77bcfAwfaOvujjz5iyZIlKelD/9hjj/F///d/1NbWUlVl6+yrr76a008/Peltt0Zaozx3Z/jiFjN2RdGobZn2pntWnUtOjn1Aw2QnxcU2AvUmTendu+nEKG1VUWG7dlRWpiSQrq2F6hqhvALKyiPU1AjrNmbZH0BcHhGIiE2oH+UOyI4YJAsk0jVHnPvH3/9Z/+8evXK56oo5nPv9cwH4wUUXpGw/f7z7Lqafex5nfO9MwAbYZ3z/DEYdOIoD9u+6NwUlI6PrbKVUuygqKqr/t4hwzTXXMH36dID651S48847Of/88znrrLMAG2CfdtppjB49mlEJ3rTfFhrptQdjYNMmG1Tn56e7NKolwRkFvebekhL7d06ODbALChK/wbGy0gbSFRU2kO7Tp01FrKuzAXRFJZSWReq71GdlGXrkGvsdID+x/hZdsXfEjy+d2ezyk759MkOHDm02T2vd9MubOOTgQ+r/PuprXycWi7H2s0+7bUCtlFKJmD17drPLp02b1qgFOxnz589n7Nix9X9PnjzZ1tlr12pA3WVt3WpvNuuEQ8OoVvD6rHv9mmMxOwrHjh022G7NDY5VVQ2BdG5uwoF0NOoC6AoorYhQU22LlZVlyM0x9OyG3eIBLrv0smaXTz1pKgDPPvcsN970SyKRCBUVFUw/b0b9utfOvYZHHn2E4XsPZ+zYsSxfvpw1a9cw9eRpFN5cWD9G6qFjD63fbk1NDbf/9jeMHjWayUdNbp+DU0qpDNOagBrgmWee4ec//3l9nX3BBRfUr+tNPT5ixAjGjRvHm2++yerVq/nOd77Dr3/96/o6e9y4hpHtampquO222xgzZgxHH310Ox1dYxpQp5o3/JkG05kjeINjXZ0Nrr0bHL0uHF6erVvtdeAF3q0Qjdou95VVQkmZ2L7NYrtn5OQYene/OQ/abOXK9/juGafx3NPPc+TEI1m/YT0TvzaBvn36ct4553HzvPnk5uRy629u5ZKLL+HmefMpLi7miEnjGTRoED+Z1fgeu0svu5SHH32IUQeO4vFHn6CgoAATHLJRKaVUm7z33ntMmzaNF154gUmTJrF+/XrGjRtH3759mTFjBoWFheTm5jJ//nxmzpxJYWEhxcXFjB07lsGDB3PllVc22t7FF1/MkiVLGD16NE8//TQFBQUdchwaUKdSdbUd87mgQIcbyGTZ2Y27ffhvcPRasFtokY7FGgLo0jKhqtoO/ZYVgdwcQ+9eHT/hEsAVL1zBiuJ3O3SfB/X/Kr8+5tcp296tv7mVw8cdzpETjwRg0J6DOOP0M5l/63zOO+e8+nyDBw9h6sm2daR///6c/r3T+cMf72wSUN+54E4W3L6AW39dyNcmT+Jfz7/A8GF7p6y8SinVVrP/Ppt3Nr3Tofs8eODB3HHCHSnb3vz58xk/fjyTJk0CYNCgQZx99tncdNNNzJgxoz7fkCFDOOWUUwBbZ5911lksWLCgSUB91113ceedd9Zv96WXXmLEiBEpK288XfCWpE6qrs6O6JGb2znGOFYdJyfHfonq3dsG0iFD4HnDge8sEdatj7BqbRafrc9iy7YIxkCvAkPvAkN+ntF7WJP0/gfvN6k8Rwwfwdq1a6ioqKhPGzpkr0Z5hu89gnVfrKO8vLzJNrOysrhmzrX07duXW26d3z4FV0qpbmjlypVNplMfOXIka9YE6uzA/TEjRoxg3br4dfZ1111Hv379uOmmm9qn4AH60Z0KsZhtmYbUjAihujxjbAt0dY1tga6obJh8JDfXUJBvUvwjhqEuVoeIIAgRadt35VS2FHd1tbW15OQ0nlp8//3254MPP0hTiZRSqrFUthR3dWF19gEHHMD777/fIfvXgDoVtmyxozn00o6u3UVw5nSvt0ddVCgrt0PZGTfjSE6ObXlOdS+gmIlRHa2itK6M6lgNn5V/ZofucBOdRIgQkQgRxAXaEbIj2S5diOXFiJo6QFzZGgrYuKjS5O/ObNSBo1i9enWjtDVr17D33sPJz88DDAb4/IvPMdi+0AZYvXY1gwcPJq+gJ9W11Rx51ET+++rr9fkxhg0bNzBwj4FUx2rIkWygceWtlFIqMaNHj2bVqlWN0lavXs3w4cPJ942U9vnnnzfJM2TIEAoKCqirq+Owww7jnXcad3/ZsGEDgwYNar/C+7Q6oBaRE4wxf2/PwnRJ3ux7ehNilxM2+7s3MYo3A3w0CtEY1NU1TIoSdekNAbJv9ksD2dn+ADq1faGjJkp1tJqSuhIq6iowGLIki4hEKMhpfOOFMYb6/4whRozqWHV9er7pSdRE61vOE+EPvRsmdYkXkDe3diuWx92Ym62RGFETxTuIy39yOZO+NomXXnuJI8aPZ8PGjfz1wcVcf/31VMdqAIiaOoqLi3n8qcf51re+xZdfbuHBh5ZwySWXUBuro87UsXLlSp559mlOOOEEQHjyqSd5c9mbPPzQw+57S3r6uSulVCa55pprOPTQQ3n11VeZOHEiGzZsYNGiRU26amzevJmlS5dy8sknU1xczOLFixuNIrJixQqefvpppkyZAsDjjz/O66+/zpNPPtkhx5FIC/VdLqj+qN1K09VUVtquHr166U2IjtfVobxCqK1rOnFIJPAy+ZcHp44O+9sv3t+xGJSVS/1sgXVRL0AW6qIQjUqjVuX6wFckdGIUbwIUb1KU3J5hp7v9gqu6WB2V0UpKa0upjFWCMWRHcsjLykOaue687h/2jzjLJZJEe7NpPEW5Mf4ljfMlttUWEuD11//LL37xCwBu/fWtfLLqf/z8+usBOPDAA1m86K/MmXOVHYKpsoLZs2Zzru+GRJEIhx9+OO+//wF33XUXq1atYurUqcz88WVEJEJuTi7z59/Crbfeym9+8xuMMUSjUf7yl4WccMKJxKI6yodSSrXWa6+9xrXXXgvYmxBXrVrFvHnzABgzZgyPPfYYs2bNqh8276qrrmp0QyLAhAkTWLFiBQsWLOCTTz7h1FNP5fLLLwcgOzub22+/nXnz5nHzzTfX19kPPfRQfYDd3hIJqPOAu0WkJ7AQWGyM2do+xeoCamvtTIh5eV1zurkUq662QfSOkgi1dXa0ikjE+GMsy/j/2TiUC+Ztsm4r1dYK6zdGbEAcARFT/++IQE62qZ85MG7h0qw2VktlXSUldSVURasQhJysHAqyO2b4n9aR+qnHW8yX2FZbNOGIifz92eeoq6slO7tpt4sTTzyRE088scXtXD3naq6ec3XosksvuZRLL7m0FaVRSinVnAkTJlBUVERpaSm9Q37RnzJlSqsC37lz5zJ37tzQZbNmzWLWrFlJl7WtEgmonzbGnC8iw4FzgVdE5GPgL8BSY0xtu5SwM4rFbDAt0jB9dTfktURvL4lQW2MD1p49Epl0pH0C2EgpaRt2Lhk1sRoq6ioorSuhOlqDiJAbyaVXjvbNV0oppTqzVjetGmPOd89rjDE3GGP2B24DTgTWi8gfRGRCO5Wz8zAGNm+2LdT+yT66iZoa2L5DWLsui7WfZ7F1e4TsiB03uSDf6IiBCTDGUBWtYnvNdj4r/4zPKz5nW802hAi9cnpRkF1ATqT7fmFrL3PnXseSJX/lnXfe4fTTv5fu4iillGrGnDlzWLhwIcuXL2fq1KnpLk5cidyUOMgYs973977AccCxwG7AqcB+IjIQuBf4nTGmOsXlTb8dO+yNiAlOJd2V1dZCRaWwfaedwS8SgR65OntfWxhjqIpVuZboUqKxOkQi9MjqQQ/ppvOJd7B5825i3ryOGZdUKaVUcgoLCyksLEx3MVqUSJePJ0XkWOBMbJePcUA1sBS4FPi7MSYqIrsBFwMPAZ33q0RblJfb1uluMKKHF0TvKBGqqmwQnc4Z/Loyb3i78rpySupKMSZGJJJFj0gPIllNJ4FRSimlVNeSSEB9ALABO/DqS8APgYeNMSX+TMaYLcA8EXkvZaXsDGpqbL/p/PyMHdGjrs4F0TuFyio7NrFtidYgOlHe8HZldWWU1paCQJZk0TOrZ5snXVFKKaVU55RIQF0N3Ao8YIz5rLmMIvIQ0C+ZgnUq0aidVjwnh0ybF9oLoneW2CAa7Ex+GkS3jje+c9REiRn7XFJbQkXUTpeaLdnkZ+c3O7xdOhljOm3ZuirT1uFplFKqFbTeTq1U1dmJRId/Nsa0tuPhT4C6NpSn8zEGNm2yI3v4ZuzpyqJRqKyyLdHlFbYlOjfX0KtAA4GYidmHC5K9gLkuVkfU1FFnotTF6oiZKHUuiEbsJB9iADe8XX5W5w2i6xmorq6mZ0/tdpJKlZWVTaa/VUqpVMjKyqK2tpbc3Nx0FyVjpKrOTiSgvllETgaixpinvUQROQP4tzFms5dmjPki6ZJ1Flu3QllZl+83HY1CVbVtiS4rFwyZ3yfaC4b9QXLMxIjGotRRZ5+NDZSjJkadcd8B3dTdbiMgQkQiCL7nSBY9yen8QXMz6qpibNiwgT333JMePXp06WPpDIwxVFZWsn79egYMGJDu4iilMlC/fv3YvHkzgwYNIqJzYCQl1XV2IgH1ZcAVwMPA0770I4DbRORbxpgVSZeoMykthS1bukwwbUzTRywGGzZFKCu3wVJOjh3err1jJ68LBDRM0exNee1PwzRM4OxNkw0Qi9l1XRjssro0Fyjbfzc8G5dWE6thbdna+tZjwLYei5ssRiAiEe2bZIYAACAASURBVCJE6gPknEhOtxtlQ4xQU17LF+vWJTr3SqcRjUXJinT8WI2xmCESEXJ7NG4lysnJYcCAAfTpRqMAKaU6zm677cYXX3zBxx9/nO6itElVVVWn+lU0lXV2IgH1FOBoY8zr/kRjzGwRWYodk/q4pEvUWVRVwYYNUFCQkpsQw4LdJg+kSTAcjULUTZNtH27abAMxIxjfsjC1tUJVNe0eRMdMjJpYDVXRKsrqyqiOVTfp5yX+ll/8U1Z7GVzXCRqmzG60vpeG1KcLIcsFemb11BbXVhAjRCu77q8Um7ZvZuAue3T4fstKy+nTtxcHHHxAh+9bKdV9RSIR9tprr3QXo82Kioo45JBD0l2MdpFIQC3BYNpjjHlBRG5LUZnSr67OjujRowfJzlRSWiZs/jISJ+A1jYP1QFwj4h4YJOL/2z5nRwyS1ZAeJlJKAjMXtp4xhppYTf1IFpXRSsAgEiEnku4pskWDaaWUUkp1mEQC6l1EJGK83919RCQL2DV1xUqjWAw2brT/TrLT/46dwqbiSAszCHaN1kFjDLWmlppYDWV1ZVTUVWBMrD6A7swjWSillFJKtadEAupXgAdE5KrAjIl7AoXAy6kuXFp8+SVUVkKvtk8DaAxs3SZs2R6hV4Ghq943UBuzAXRFXQVldWX1/ZZzIjnkZeVpAK2UUkopRWIB9Rxs0PyZiGwGtgG7AAOAdcCk1Bevg+3YAdu3JzWtuDFQvEXYvjNC74L2v/kvlaImSk20mopoBeV15dTG7KgXWZEsemT10AlJlFJKKaVCtDqgNsasF5Gx2DGmjwV2wwbSfwZuN8Zsb58idpDKSjuteBIt07EYbNwcoaxC6NMFhqOLmRjVsWp3I2Ep1bGa+qHhciO55GZ1r1EvlFJKKaXaIqFp/1zQ/DP3yBw1NXYmxLw82to/Ixq1w9NVVQu9O+kEKcYYqmPVVEerKa0rpTpWDdgh5HIkh17Zbf8yoZRSSinVXaVsHm0Red4Y0/WGzYtG7fB4WVltnla8thbWb4pQVycU5PuC6WiUfr+YDUD1uCOpOexIonsMSUWpW8WO+xyjtLa0YSQON1FJ+kfiUEoppZTKDAlFkCJyLDAZ2286OG7F2BSVqeMYA8XFNiIuaFtwWV0NX2zMAgz5eY1bpvMfXUj+048Q692X/KcfAaBu0ND64Lp63JHEdk/djGreWNA10RrKo+VURiupidVSXF2sNxJmqEh5GV955kkGvfoiFSdOZfuxx7f5VxallFJKtU2rA2oRmQf8FCgDtgPB4fO6Xn+B7dth584234RYWWmD6exsQ2DCNGTHNvr88Raqxx3J1j8+RPaaT+jx5svkvvkyeS88TcETiwGoHTaSmsMmUX3YkVQfOhHTr/WjD9bGaqmN1VIZraQyWkF1rKZRC3ReVh4lslNbojNQj88+ZfdHl/CVZ54kq7KC6r59GfDG6wxYfD8bLp5JyfiJKZmQSCmllFItS6SF+jzgeGPMP8IWisjbqSlSBykrs63TbZxWvKxcWL8xQs8ehpycpsv7/OEWpLyUnVfNg0iEupH7Uzdyf8rP/AFEo+R8spLcN1+hx7JXyHvqIQoevg+A2n1H2eB63CRqDhmP6W2DfW8ilVpTS0VdBZXRSupidfXTaOeIduHIeLEYfV57mf6PLKHPG68Ry8lh+zeO48vTzmRN/34csHwFe95zJyOv+DGlh4xj/Y8uo2LUmHSXWimllMp4iQTUm+MF087kJMvScaqr7UyIbZxWfGeJsHFz/Albsj96j/y/LaT89POpG7l/0wxZWdQe8FVqD/gq5edeArW15HzwDj3efJkey16l4OH76bXobkwkQtX+o9lxyFi2HXIQO0ePIZaXR7ZkkxPJoYeOwmHFYhS8v4K+L71Iv5dfZN9oHaXfOJ4dx3yTyhH7dPmW2qzSUr7y9BPs9reH6Ll+HTW77c6GCy9hy9RTqdvF/aKxfSPbjzuRHUcfy25PPMrA++5h/x+ey46jjmH9xT+meuje6T0IpZRSKoMlElD/U0QOMcbEa4meB8xMQZnaVzRqg+nc3DZNK75tu1C8tZkJW4yh761zifXdhdKLr2rdRnNyqBhzMDtHjaLynHOoLN9Oj5Vvs8vbb9P37bcYsGQheyyKEsvOpnzUGMrGHkbpoYdRPuogTJKzOXZVUl1N7+Vv0O+lIvq+/CI527ZisrIpHTuOmupKBi78M3vc/yeq9hrG9mO+yfZjvknV8JFdKrjuuXY1uz+yhF3//hRZVVWUHXQIay76MTu+fjRkh/wsApicHL487Qy2nngS/R98gAGL/8KBLxex9Vsns/GCi6ntn7o++0oppZSyEgmoa4BHXdeO/wEVgeWn0tkDamPstOLGQM+eCa+6ZZuwdXvzE7bk/f0xerzzBjvm3obp3Tc0T8zEGmYhjFZQUVdB1EQRIBLJIqdnHtHDj2LL4UexBYhUVNBrxdv0emsZvZe/wcD7/8Qe995NLLcHZQcdTKkLsCv2P7DNI5V0BVklJfR57WX6vfRv+vz3VbIqK4jmF1ByxJHsOGoyJUdMItq7N5u2b2QwPehX9C92eeEfDPzL/2OP++6haujeLrg+jqrhI9J9OOGiUfq++h92f3gJfZa/QSw3l23fPJEvTzuDyn1Dfu2II1ZQwKbzL2LLKd9l4P3/j90ef5hdn3+WL087g03nzCDaJ/zaVEoppVTiEom+5rrnYXGWd87Bl/22bIHy8oT7TcdisPnLCCVl0mwwLRXl9PntjdQc+FUqpp5Zn14Xq6M2VkNVrJryunKqo9UIgAjZkewWZyGM5efz/9k77zDJqjL/f869t3JVV+jqPIlhAkmYQDKQXXHFsKiAgrq67mLG+ENdA2JazAGRJMZVURFl0WUNKAgqkmZYcYWZASZ37q7uqq50w/n9cao6TPfMdE1Xp5nzeZ56quqmOrer+t7vfe/3fd/h05/L8OnPBZQFILr5EWKPPETs0YfouOlrALjhCLmT1pPdeArZjadSWLWmpv1ciPi6u1QU+r57iG16BOE62I1pBl7wjwydeQ7ZDadMGaV3kin6LryIvgsvwhroJ3Hv3STv/g2t376Ztm/dRGHFSjLVyPVR8y+uzeEhGu/8OU0/+zGBzr2UW1rZ8+Z30PeSC3ETyUPerpNMsftd/4+eSy6j7Rtfp/mH36Xxztvpvuz19Fz0amQwVMe90Gg0Go3myKQWQf2YlHL9/mYu+KREz4P+/prFdLVhS6F48IYt0Vu+jNnbxcDnvgGGgZSSIXuIvnIfBgIhDCxhEbbCMypf58ZiDJ1xNkNnnA2ANThAdNMjxB55kNgjDxH/8/0AOLEYy446Cm/tCRRWraZw9GoKR61c2CJKSoJPb1Mi+g+/J/Lk3wEoLj+K7le/lsyZ55A/9viaSsM5qUb6LryYvgsvxurvU5Hr3/+G1m/dRNs3b6Rw1NEMnvsPZM79B4orVs7Wnk1JaNsWZev49V0YpSLZ9RvZ87Z3kznj7LrebSi3tbPjI5+k59Wvo/2m6+i44VqabruVzn95E/0XvHS/FhKNRqPRaDQHp5Yz9kcPMn9h2z2qtaZrELLVhi2uK4geREybO58m+p83kn/xxdjP2ognPXpLvWSdLBEzMqv1n51kikxFEAL4enuIPfoQ0c2PYj3xOLE7b8csFgGQhkFpyTIKR69SAnvVagpHr6Hc2jZ/9Ytdl8hfHyNx3+9J/OEeAnt3A5A74UT2vOUKMmecXbekOqcxTd8rLqHvFZdg9fWSvOduEr//DW3fvJH2W26gsHIVg+c8n8HzXjB7iXyOQ+K+39N0263ENj+KFwgycP6L6H3FJbN+V6Gwag1PffYrRDY/SscNX2X5Zz9Jyw+/x943vY3M2c9fVB5zjUaj0WgWCtMW1FLKO6uvhRAmkJRS9o2bf3+dx1Z/ahCM5bKqMS2lJBQ8uJsl/oWrkIEAw+/4ELZn013souzZ89LO225qZuD8Cxg4/wK6BjtpbWgmsHc3oW1bCT29TT1veZLk7387uo4bjkwS2YWjV+FFZmf8olSk4cEHiN93D/E/3osvk8Hz+chuPJWu17yeoeeeiZNumpXPruKkm+h95avofeWr8PX2jHquR8X10auV5/qcf6C0fMWMP8/MDJL+r9tp+vlt+Lu7KLW1s/tt76b/xS+bc0/zyLoNbLn+W8Tvv5f2G7/Gyg9fycgxx7H3LVeQPfm0OR2LRqPRaDSLnVo7JZ4FXAU8B+gHOoQQNwB/l1J+pYbtvB74ANC1z6yXSSmHahnTbFAswq69qmFLcBqV6QL3/Zbg/b9l6F1XMZKM0VXYjUAQtsKzP9jpYJqUli6ntHQ5mXOePzrZyOcJPr2N0FNblch+agvJu39F089vG12m1NauRHb1sWo1pSXLDqlCijmUIf7HP5C47x5iD/4Zs1jEiUYZfvYZZM48h+HTnoN3iB0rZ4rd1EzvRa+m96JXV8T1b0n+7je03/x12m/+OvlVq8mc+wIlrpctr2nboSf/TvNtt5L87f9glMsMn3wqu959JUPPOfOQ/o51QwhlHXrOGaT+55e033I9q9/5ZoZPOZ09b7mCwtpj529sCxxRLiGKh28C8FQs9OO2RqPRzCe1dEp8IXAn8DDwn8BZlVk3Al8VQhSllDfW8NnXSCm/XcPyc8JIXjVsCfinbtgyiXKJ+Bc+ir38aDpf/kq687sJmkF8xsL3pHrhMPkTTiR/woljE6XE19NdEdlbRsV2/M/3I1xXrecPUDhqJYVVa8ZFtFdPmTzn37uH+H33kLjvHqL/uwnhupSbmul/0csYOvNscus2Iqf1h547lLi+lN6LLsXX012JXP+a9puuo/2m68ivWsPguS8gc+7zKS3dj7h2bJL3/I6m235I9K+P4YZC9F/wMnpfccmCSIKcgGkycMFLGXz++TT97Me0fucWjv2XSxk47wV0Xv42dQGlAcDX003657fR+PPb6Hnjm+DsIy6avyCP2xqNRjPf1BJi+RjwainlbQBCiEcBpJSbhBAvA/4HJa4XLcNZwd4ug3BITjsfLPr9m7B2PcNTX7yBHi9DxIocsGLHgkcI7JZW7JZWhp9zxtjkUongjmeUyK7YRuJ/vp/0L+8YXabcmKawag3Flavw/H7if/wD4W1bACisXEXXa97A0Blnq/J+i8Sraze30HvxpfRefKmqOFIR1x03fY2Om75GfvXa0YTG0pJlWAP9pO/4Kemf34a/r5dix1J2v+O99F/wMtxD7Mo5V8hAgJ5XvZa+F/8TLT/4Ls0/+k+S9/yOvpdeSOcbLsdpTM/3EOcHKYn872aab/shiXt/B55H/2nPJa8j+BqNRqOpUIugTlTF9L5IKQeEEAsrzFgjgxlBd98BGrZMgdHTSfSWLzP4vLPYu+EEIlNU7xgYtBgaNkmnHKJRd7HoyEnIQIDCmmMm1UK2BvpVFHvUNrKV2G0/RDgOI89ax+63v5uhM84+LKKcdksrvZdcRu8ll+Hr6iR5z29J/O43dNz4NTpu/BqFFSsJ7NmFYdsMnfYcdr7/I6rU4Xwlex4iXjRG5+Vvo/cVl9D27ZtJ33E7qbvupOeS19B96evwogv7wqBeiFKR5G9/RfNPfkh465M4sRg9F19G78svZiCWoCE+9/kRGo1Go1mY1CKog0KIiJRyZN8ZQogoUGux3BcLIV4H+FGevM9IKR+qcRszZroNW6Yi8uWrwXV46u1vJ+Kb7P19ZnuA17xxDcWi8sn6/R6NKYfGlE1jo0O68rzv+1TKJhhY+GW9QZWky6YayZ5y+riJDkapOGsJjQsBu7WNnle9lp5XvRZ/114Sv/8tDX/+I9mTT6X35ZfUJYlxvnEa0+x67wdVDeubv07bd75B089+Qtfr/oXel1+CDEwjwWAR4uvuoun2H5O+82dYQxkKK1ex48oPM/iCF+GFKiUns5MOg0cKC+K4rdFoNAsNIeX0hJsQ4mbgeOBDwJ+BP0kpNwghjge+ADwtpXzrNLf1jygP9seklEUhxGXAd4DnSSkfmGL5y4HLAVpaWjbeeuut0xrzeHLDw0RDk+sv247Ac2sPIjY8/hinvf99bL3kVWx97esmb9c2eM97n01fX5A3vvEJssM+BgcD6pEJMDjoZ3AwwNDQ1KIkErFJJkskEyUSyTLJREm9H32USSZLxONlTHP/36Hj2FhHWI1hvc+zQ8O2baz9zrdp2vQohaYmtl56GbvPPW9eEyvrtt9Skvzb46z4r/+i5YE/I4Du005n+0tewsCzTpxkUfJcD9M0CEVqr+l+zjnnPCKlPHnmg55bajlu1+WYncsRjR6+F+X740jc7yNxn+HI3O/FuM/TPWbXIqiTwN3ASaiuiBLwUFHuR4DnSymHD3XAQoj7gH4p5T8daLmTTz5ZPvzwwzVv/55f/YqzTzhh9MToutDZbZAvHLzG9HiklAwUelnxhlfgH87yfz/82ZSNUr5yXRvf/UELX7zmac46Y/9/FtuBzKBF34CP/n6L/spz34CP/gGL/v6x55H8ZOEihCSZcMYi3SmHdGPlOW0TiO5l3bEx4g2L125SK12DnbQm2+Z7GLNKX7/FE0+GeHJrmCeeDPHMToMTj7c57ZQsp27Mkky6s/bZ0UcepOP6rxL5+98orFhJ1xv+jeFTnz0v7cxn+l2LYoHUr++i6ae3Et62FachTt9LLqTv5RdRbm3f73q57AgN8SjrTj+p9s8UYlEK6qmYznH7kI/Z99zD2WefPYPRLU6OxP0+EvcZjsz9Xoz7PN1jdi11qAeFEKcDrwPOA9JAH/Ab4HtSSvtQB1vhKWBOTjKOoxq22HZtYtqVLj3FHhpu/z6xbdt4+uOfmVJMP/hIlO/9sJlXvKzvgGIawGdBU5NDU5Nz0M8vFAz6BywGBi36+icL7r4Bi+07gvQPWNh2NeS+AoBYzGFpR5mlS0os6SixdEmJpUvU+1TSOWLE9mJDSujs8vPElhBPPBniiS0hntwSpq9/LCq7bGmRdDrL7+5NcscvGgFYuzrPaadkOe2ULOtOGqmrhSi38VSevPl7JO65m/Ybv8ZRV30QKQSFo1eRO2kDufUbyZ20ASfVWLfPrDf+rr2kb/+JsnUMD5FftZod7/8IAy/4x4XdSXThMWfHbY1Go1nI1FRIVUpZBr5ReRwyQoj/AD4hpcyPm9wB7JzJdqfDaMMWTxIOTV9klNwS3cUujKEMR93yDbLrTx7tTDieoWGTqz6xjGVLSrz7HXvrOXRCIY8lHWWWdJQPuJyUkM2a9PT5eHzLCLlMK7t2B9i9x8/j/xfmN79L4HljCjoUcsfE9pISSzvGxHZT2l5QOXVSQi5n0j9gMTioLi76By0GB30MDFoMDFjYXgsrlxm0tZVpby3T3lamtbU8rQY984nnwc5dgYp4DvPkViWih7Pq39Q0JUetKHL6qVnWrslz7JoCq1cXiEY8ugY7aWpo4+9PhvnLQzH+8lCUH/y4ie/+oAW/32PdiSOjAnvt6sLMv1MhyJzzfDJnnE308ceIbnqE6OZHafzlHTT/9EeAahefXbeB3LqN5NZtwG5umeGHzhApiT76MM233Ur8/nvUPpxxNr0XvZrcSRsWTeWZ+WI+j9sajUaz0KlbZwIhxM8PZtcYx7OBNwLXVtY9CzgXeFm9xjMVxSLs7jIxDMkUdur9knfydBY78Rk+jvrWNzFHcux695WTTsBSwqc+u5T+AR/fuWkLoZBX5z2YHkJAQ4NLQ4NLNNlDa3KiVcS2BZ1dPnbtDqjHngC7dvvZ9nSQe+9vwHHG1FbA77Gko6SE/JJKZLsiuFuay9MuL3ggbIcxQVwRxQODSjD3D/gYzEycPn5844nHHVJJh1LJxwMPhMZF6RXJhE17W3lUaI8X3G2t9px+X7YDzzwT5IktYSWgt4TYsjVEoTCWwLpqZZHnn5vhmDUFjlmb5+iVxQNGmk0TTjguzwnH5XnjP3dTKBg8ujnCXx6K8cBDMa69vp1rr4dEwuHUjdlRgd3WOoObS5ZVEcwbARC2TejJvxPbrAR26re/oumOnwJQal9Cbt0GshWBXW7vmBMRaxQKJH/93zTfdiuhp7fhxBN0X/Z6ei+8CLulddY//zBiXo7bGo1GsxiopbHLRw+yyKk1fO41wDuEEBcBRmUcl0gpf1HDNmrC82DnHhN/QOKfZg6TlJKMnaGv2EvIChN76inSP7+N3pdfTPHo1ZOWv/O/U9z9+wRvf/Nejj2mUOc9qB8+n2TZ0jLLlpaB7IR5rgvdPX527faPE9squv3AgzFK5TGRalkeHW1VoV1WVpKK2E4mHDJDJgODvlEhPPbwVcSyEs3VCOy++P0eqaQSyY0pmzWrCiQr79XDJpV0SCYdEgkHX2UzXYOdNMfb6O+32NvlZ2+nn85OP3u7/HR2+dm6NcQf7o9TLk8U3ImEM1loV8V3a5lw+NAEd7Ek2PbURMvG1qeCo4I/FHJZu7rAy148wNrVBY5dm2fFiuLo/hwqoZDHc5+d5bnPVt9xb5/FQ4/EeODBGH95KMav71aFeZYtLVbEdY6TN2SJRQ/9wkL6fKPNgrpf8wZwXULbthDd/CixzY8Qv/9eGv/7vwAoN7eQO2kD2fVKYJeWrairwPbv3UPT7T+m8Rc/w8pmya9ey/Z//xiDzz8fGQjW7XOOIOb8uK3RaDSLhVobuxyIad9Pl1L+D6oRzJxhO4JgQGL5pnfC9qRHb6mXrJMl6oshgCVf+gxOQwOdb3zLpOV37fbzuS91sHF9jtdd2lPn0c8dpgntbUpMnnZKbsI8z4O+ft+Y2K4I7t27/WzaHCVfOHi1h3iDEsCNKYfVqwqkEg6plDMqjKviOZl0iIS9Q9ZXhjHmTT/pWflJ8z0P+gcsOquCu2tMdG97Ksh9f2yYJLjjcWey0G5TYru9tUwk4pEbMdiyVVk2qpHn7TuCuK4Y3f+1awq8+qJejllb4Jg1BZYuKc2JraYp7fCi8wd50fmDSAlPPxNU9pCHo/zirhQ/ub0Jw5Acf6zyX59+SpYTThiZmbA3TQprj6Ww9lh6L7kMPI/g9qeVwN70CLFHHiT1m7sAsJMpcuMsIoWVq2ovvyMlsUcepOm2W4nffy8YBpmzzqPnla9i5MR1hyTYC0XBrl0Btu8Isn1ngB07Azyz3c8lrxxk3ekHX/9wYT6O2xqNRrNYqOVU+ZiUcv34CUKIMHAM8AbgW/Uc2Gww3epetmfTVezE9hyilirvkvzNXcQe28SO938Et6FhwvKOAx/5+HIME67+8I75rCI2qxgGNDfZNDfZbFw/sQ6vlDCYsUbFdmbIIpmYGE1OJJ0ZR13rhWEogdmUdjjxhKkF98CgNUFoV4X3U88Euf/PDZRKE8VeNOqSy419+elGm2PW5jnnzCHWrlGR59YWe0FYdYWAo1cWOXplkUsv6cW2BX/9W5gHHozx4MMxvvndFr7x7VbCIZcN63OjAvuoFaWZjd8wKK5cRXHlKvpefjFISWDXTqIVi0hs8yMkf/9bAJxYA7mT1o8mOeZXr2V/HiOjUCD1P7+g6bZbCW1/GjuRpOt1b6Tvn145Le+2lNDd42PHzgA7dgbZviNQEc9Burr9E5Ztay2zpH2EaHT2KqloNBqNZnFRi7y5dN8JleSUR4UQm4C7gBfWa2DzRcEt0FnoxBQmYSsMgJHP03Hdl8mvPZb+CybbBW/5Tit//VuE/7h6+8z8qIsYIRgVz1NFhBcbhgHpRod0o8Ozjp+8P9ULiL2dY0K7u9tHY6PDMWvyrF1TIN148MotCwWfT7Jh3Qgb1o3w1su7yGZNHno0WklwjHH/n1RJvKa0unNx2ilZTj05O/N9FILSsuWUli2n/6UvB8DfubcisJXITtx/LwBuOELuxJNUBHv9RvJrjyPc2UnH975P4y/vwMrlGFl7LNs/dDWD550/ZeOZfN5gx67AqHDesTMwGnWuNmACCIdcli8rsf6kHMuXlVi+rMSKZUWWLi0RCsrRsnkajUaj0UBtZfP+foDZBrBm5sOZX4bLw3SXugmZISxj7E/T+t1b8Pf28MwnPjMpzP3YX8N849stXPDCAV7w/MxcD1kzT4y/gDjhuMV/AbEvsZjLuWcNce5ZQwDs7fTzl4eUwL7vTw384q4UAKuOLnDiCSPEoi7hsEc45BEKuUTCHqGwRzg0Nr36OhTyDujkKLe1M9DWzsA/vgQAX28P0cceHa0k0nHDtQB4gSCiXALDZPCc8+i96NWMHH8inhR09/gmWDSq4rm7ZyzaLISkva3M8mUlNpw0worlxVHhnE7rUpIajUajmT61JCVObgcIAtVy/CVAd70GNdd40qO/1M+QPUTEimCIcVUudu+k+dbv0f/CCxh51roJ6+VGDD7y8eW0tZa58j2753rYGs2c0d5W5sKXDnDhSwfwPHhyS4i/PKyi17+7N0E+b0zynB+IYLAiukMVsR0eE9uRsDtxeihNOHwM4ZMvIXyGR9TJ0LTrb6Sf3sxuN8LW4y7iqcFmdvwowPadQXbuCkyw40SjLsuXFTl5QzXaXGTFcpVAG6hjfW6NRqPRHLnUYvn49gHm/QX4t5kNZX5wPIfuYjclr0TUN/kW7pKvfgFp+djzlndOmvfZLy6hs8vPzddtIxqZnxJ5Gk3BLTBoD9IiWxFzUYbOgGOPKXDsMQVe/5qxBFzbgWLBZCRvUCgY5AsGI3mTQl69zudN8gU1b6rpQ8MmnV1+tUxeLVNN5pzMRlSPKeBXYBiSjvYyy5cVOfXkLCvGCWfduEij0Wg0s00tgvrvwIv2meYCPZWGL4uOolukq9iFRI76pcfT8Kf7iP/xD+x+67tw0k0T5v36twl++T8p/u0NXaw7cWTSugdDSokjHUpeCdsrU/LKlN0SJa889t6b/L7s2ZXnMiW3hC1tSm7l/fhteWVc6RCUQZbElpIOpEn70zQG0qOv4774nAgwTW04nkPGzjBYV8r1mAAAIABJREFUHmCgPMBAeXDc6wH12h6bVnBVicZGf5p1iXWsT65nfWIDq2OrMcXcZcj6LPDFXGKx+iTrSalqpk8lwkfypoqKe/2sOy7Eko4yfr+ONms0Go1mfqhFUF8tpdwxayOZY7J2lu5iNwEzgM+YXJhalMss+ernKS5dTu/FE/Mxu7p9fPrzSzjhuBH+9fVd+/2MvJPnY3/7KE+NPD0qlseLYjn9SoP7JWAE8Bt+/EYAv+HDbwQIGH78ZgATg93F3Tw8/DB5d7LP1yd8NAYaSQeaSPsrQrsittOBptH3KX9qToXZ4YaUkpyTmyiIq6/twX2mDTJkT+3FN4VJ0pck5U+R9KdYGl9Kyp8k6U9RKpXYbe9mU+ZR7u5RVTIiVpST4ieyPrmBdYl1HN9wAgFzcqLeQkUI8Pslfr9LIu4CkxN+uwa7aU22zf3gNBqNRqMZRy2C+rhaNiyE+JiU8mO1DWf2kVIyUO5nsDxIyArvVyg2/+QHBHftZNsXvob0jQlu14WPfmI5riP45FU79tsp0PEcPvDX9/Pnvj9xTvM5BM0QAUOJ96oIDpgBfMJHwNyPKB4Vy/5RkTz2PoAlrINGmLsGO2lNtpF38vSVeukr99FXqjzKfWpaqY9d+Z1syjzKkD00aRsGBkl/ah/BPSa6myrvGwNp/IZ/ilFM/Ps70qHoFil6RfXsFil5pcrrwthrr0jJLU1Ybt9patnChG3Yno3f8GMIA1NYmMLAFCaGMDGFOfp+ynkYmIaFgYE1YZ2xhyGmnicQ5JzcOJE8FkV25NTVMBqsBpL+FCl/kpWRlWxMpkYFc8qfHPc6RcyKTfD3T/U9A3QWOtmU2cTmwUfZlNnEddu+BqgLqOPix7M+sZ71ifWclFhHzBc74Pel0Wg0Go3m4NRUNk8IcTcqEXFay3PwZjBziitdeku95J0RIlZ0v2LU19tD67duJvO8sxg+/bkT5n3vh808sinKVf++k6VLpna6SCm55on/4I999/Oh1R/g5ekLVHWQYHBOWi1PRdgKs8xazrLI8gMuV/bK9Jf6xwnv3nHiWz2eHH6CgfIAHpN94w1WA+lAmpivgfIk4ateT7XewTAwCJpBAkaAoBmsvFbPYTNCyt+ophsBiuUSQX8AR7p40sOVDq70cKWLJ11c6eIy9r7klSfOq6zjSa+yjYnT3cp2x8+r7lPACNLoT5H0J2kKNLE2tpZkRRiPF8cpX5KEPznl3ZGZ0hZqoy3UxovalEMrU87wWGYzmzKb2JTZxPd2fI9vb/8WAsHq6GrWJdePiuymYHPdx6PRaDQazeFOLYJ6FXDPAeYLxroljn+9IJBSsju/GwyITJF8OJ7267+KcB12v+O9E6b//YkQ19/cynnnZHjJiwb2u/43n7mFn+25nX856o28vOnF0NQMxSJkh8HyQeDAUdz5xG/4RwXZgXCly2B5cEx07xP5zjk5YlZsogg2AgTN0D7TggTMAEEjqKL4o68nTvMJ37T93uOjtXOFlBJXuhPKLS4UEv4EZzWfzVnNZwMqifGvQ39l8+AmNmc2cefe/+LHu34EQEdoiRLXFR/2svAy7bPXaDQajeYg1HL2fwPwIVS1j8eBISABnAC8EvgU0FtZVgA3122UdcCWNkKIg3pII/+7mcZf/ZLOf/5XykuWjk4vFAUfuno5qaTDh67ctd9A8393/pKvP3UdL2q7gLcuu1xFpCMR9YhFYWAARkYgENhv17fFgCnMUQuIapZ5ZCOEwBKL4/sMmSFOTZ3KqalTAdUZdEt2C5syj7JpcBP3993HLzrvBCDlT6lEx8QG1ifXszq6ZkFeNMwWUkqKXpFMeZCMPcSQPUSmPEhPrpeT5QbWcdJ8D1Gj0Wg0C4BazowXAi+QUm7fZ/odQogfANdIKS+pThRCLLhW5D5xkNvrrsvSL32GcnML3a/9lwmzvnRtBzt3Bfj6V54i3jB1FYMHBx7k6r99jFNSp/LR465CFMrQ0jq2gD+g3heL0N8P5byygRyoy4VGM8v4DB/Hx4/n+PjxvGb5a5FSsj2/nU2Dm9hcEdm/6/kdAGEzzImJk0YtIsfHTyBoBud5D6ZHNTk0Y2fI2BmGyhklkO2x50xl2lB1GXuIsje1tevN5pt5Da+Z473QaDQazUKkFkG9cgoxDYCU8hkhxDH7TPv0TAY2H6Tv/BnhLU/wzNXX4IVCo9Pvva+Bn/48zWtf3cOpG3NTrrs1u5X3PfZelkdW8LkTP49PGsreEdxHbAgBoRC0t0MuC5mMmhYIzJu/WqMZjxCCoyJHcVTkKF6+RLUD7y52szmziU2Dyod9w1PXI5FYwmJF5KjRhFuf4cMnLCxh4TN8WIYPn1DTq9MmvBY+LMMaW2bCtLFlqutYo5+hnvcUdtNJF0P2PuK4PCaIh0afh3Dl1BfDBgYNvgYS/iRxX5z2UDvHNRxH3Jcg7ouT8CeI+xIkfHESvgRW2U9HSlcX0Wg0Go2iFkHdIoR4lpTyr/vOEEKcCLTUb1hzjzk8RPtN15Fdv5HB814wOr2v3+Lj1yxj7eo8b728c8p1u4vdvHPTO4iYYb66/lpVOWFkBJqa9i+SDQMa4soKMjQMw0ML3l+tOXJpCbZwfusLOb/1hQAM28Nszmxmc2YT20eewfZsbOlgezZ5L48jHRzPxpa2mleZ73g2jnQoe+W6lI2cCp/wEffFifsTJHwJVkZWKjHsV+I47ouT8CVJVF/7k0St6H4rqExFLjtyRFlfNBqNRnNgajkjfBf4gxDi+8AmIINqO74BeDVwY/2HN3e03Xw9ZnaY3e+6clQESwlXf3oZhbzBpz62Y8rGETknxzs3vYOck+Mbp9xCa7AVPE9V9QiFKZehXFabFAJ8PmWdHtXZpgWpFEQjh42/WnP40+Br4MymMzmz6cxD3oYr3VGx7Ugb23NwKqK8KsTHi/KxeZVnr0yhkGdZYgXJSgQ57osTNsM6kVKj0Wg0c0otqu0DqM6IbwfeiqriIYAR4CvAVXUf3RwR2raFpp//hN4LL6Kwas3o9B/dluZPDzTw/vfu4qgVpUnr2Z7NlY+9j6dHnuGr669lTWytmlEsQjIJhkHZVu4OIZSwHhmBQkGJdVC62+cH0x+A1jY1s78fSiPKGqL91ZrDFFOYmKY5Iw/2fFR00Wg0Go1mX6YtqKWULvABIcQ1wEkoi0cn8L9SysndQBYLUrLkS5/BjTXQ+a9vGZ287ekgX/l6O897zhAXXdg/xWqST/zfx/nLwF+46virOb3x9NHtARCNUipBOAThSlfzUAji8WpLZfXI59WjUOn7YRohfM3tWOURFbHW/mqNRqPRaDSaBU3NvgIpZQa4dxbGMi8k7/41sc2PsuPKD+M2xAEolQQfvno50YjLRz84dYm8G566nl92/oI3rXwzL21/6diMYlGpZsPEtqFlCme5aqmsHpGImuY4SmAXClAoGIyIGCRCiNwwVmYIK2hhhBZP2+h5RS6oEugajUaj0WgOc2oS1EKINSjrx9kAUsqVQoiPA5ullLfXf3izi1Eo0HHdl8ivPZb+F//T6PTrbmxj67YQX/ncUzSmJreM/vmen/GNZ27mZe3/xL+tvHxshpTKPx2NUixCNDq5yMf+sCz1qBYX8Twoly3K5RT5oQiFziHcnjwE/FgBC5+l7NeacbiuuqCRKG+NaaqrFm2b0Wg0Go1GM4tMW5IJIU4Bfg8MAk8AR1dm/RH4shBCSCl/Wv8hzh4t3/sm/p5unrn6GiW+gAcejPL9HzVz8ct7ed5zspPW+VPfH/n03z/FsxufwweP/feJyU+lMkRjSNOHU1I26kPFMJQYDwahoSGAXNKMky1g7+2lkC0y4oQplEwQYAjwWXJisuORhJQqtG+Y0NwCXXlYskSJ6uEsuI4yqvvr3+Z7QSHlEfoD0Gg0Go1mfqklxnkNKvHwS1JKTwjxKICU8ldCiBcAtwKLRlD7d++i5Qffof/8Cxg5cR0AmSGTqz65nKNWFHnn2/dOWueJ4Sd4//9eyaroaj5z4mfxGfsINNeBhhilEjTElPW5XggBvoYQvthSwtksjX19uB6UzRAl2yBfEBSKAilVrqhlSnyHuX4EoFgCz4VEAmINY9FoywfxyrRSCYYySmAbhvpiDoeotZTqIs511C2NfKVRUOXiUKPRaDQazdxQi6BeJqX8wlQzpJS7hBCLo11ahSXXfgFp+dj7lisApU0+ec1SMkMmX/380wQDE324nYW9XLHpHTT4GvjK+q8SsSITN1i2IRRC+gI4eaXvZgUhoKEBIhHMoSFCgwOE/BaJhiBSqmHYtqBQhHzBwPOU3jrs7CGOo4RyOKxuBfj2U7/bMJSPJhQCu1JmJZtVAtTnY9FddYwX0YYB0ZjKfN2bV9H53h5lc9FlFzUajUajmTNqOev6hBCGlNLbd4YQwgek6zes2aXhgT+SuP9e9rz1ndhNzQDc8YsUv/9Dgne+bQ9r1xQmLD9sD/OOTW+n7JW4YeMNNAWaJm/ULkNjK8UiJOJK08wqplmpXx1VZfZyOUQgQMDvI+CXRCMALsPbwHYEJRtCQbn4HQGep3zSpgWtrRAMHXydKj4/JPyqoU6xqJrpVL3WC7mSSvVKybHVGCNRVbfcv0+kPRxWf5OeHnA93SRIo9FoNJo5ohZB/RfgNiHEe6WUz1QnCiESwJeB++s9uNlA2DZLvvw5ikuX03PxZQDs3OXnc1/u4JSNWV7zqt4Jy5e9Mu977D3szu/mug1fZ2X06MkbdRzw+5H+IG5BFfmYM/x+aKvUr+7thZFcpX61uu1vGJKlHS6ZIcHgkIHfJ2df7M8WxaIS1Mmkisweqm3DMJT4DIehXILciGoD73kLp6nOeBFtGBCOQLRxsojel0BQ/R66e5QdJqgrw2g0Go1GM9vUohzeh0pA3CaE6AEahBDbgCXAXuB5szC+utP04x8Q3LWDbZ+/FunzYTvw4auX4/dJrv7wzglaxZMeH3v8ozwy+AifOuHTbEydPPVGSyVoaaVYEqSS8+QiCIVg6VLI5aCvTwmySskQ04DGpCQSdukbMMjlBeGgXDw2YttWXXGiUeWlser4B/YHIBVQtxUKBRiqRq0tFeGdy6h1VUS7lcoy4TA0Ntbu+bZ80FaJVOfzY4XQNRqNRqPRzAq1NHbZJYRYB7wHOA9l8egDfoBKVBycnSHWD19fL23fuonMc89k+NlK/9/8zVb+9vcIn/3kM7Q02xOW/9q2a/lV9694x6oreGHbP069UdcFy4cXCOIVlL153hACYjEloIaGYHAAvEopP8MgGICOVo/siKC331D24uACrtlcLYPn99du76gVw1RWikgUSkUYyUN2WM0LBGY30a9sK8uQEOq7izYqMW/M4DOrFU8GB9V+hMML19Ki0Wg0Gs0ip5ayedXuJf8hpfzwLI1nVum48VqEY7PnivcCsGlzhG99r4WXXtDPeedMbPb4410/5jvbv80rl1zEP694/f43WipBOk2hIEilFoZbYIK/uucJFd2tZCYKv5+GqEEo6DKQMcjmBEG/rGvQd8ZIqf6uUkI6rUTuXIrBQFA9qlHrwcyYb7teUeuqnQPUnYRkUtkzZiKi98Uw1O/AMlXXzXD48KhuotFoNBrNAqMW+fdz4A7gT8DI7Axn9kg+8XfSv/olXa97I6Uly8jmDD7yieW0t5V53zv3TFj23p57+NwTn+HM9Jn8v7VXTqw1PZ5K5NcLhhGleY5OT4Xfr8TU8uVKoObzKnLtufhMi5aUn4aoSU+fQSkP4dACSFqsRmtjDUrQzmd5kmrUOhxRUeuq17raDr7WqHW133zVjjMbInpfhFDlAy1Leex1WT2NRqPRaOpOLWrlCSnlhbM2ktnEdTnhphspNzXT9dp/AeAzX1hCT6+PW67fSiQyVrjk8aHH+eBfP8ixDcfy6ROvwTIO8CcqlSCRoFA0aGxcwDpFiLEuMcmkiraOjMDwMCHpsTRlkSkFGRgy8VmyrvWzp03V3hEIqKS6wAKqwiiEspsEQ5BMqKh1ZkiN1/KphjH7uxKp+r+rIjydrojaOb5QiETVD7S7e2zMGo1Go9Fo6kItZ/VtQoiYlHJy+0BACHGLlPKNdRpXffnmN0k8/RRPXfVpvHCYu36d4K5fp3jzv3byrOPzo4vtyu/iXZuuIB1I8+X1XyVkHsCzKyVIiRuMYLj7j04X7AKOp5LMBEp0mYaJZVhYhrX/6PdsIcRYXeZUCkoljFyOFFkicUnfsJ9cLkAoNEcXCFIqYSoENDWpaPC8h8kPgGmpCiNVr3U2qyL/Qqg7Aqapqr6Uy2rfgkG1X/MhovclGFIXKz29ugKIRqPRaDR1pJYz/JeA7wshvo1qPZ7bZ/5p9RpU3fnpT+k//ngGz30BXZ1+/uPzSznpWTne8Nru0UUGy4NcsenteEiuXf81Uv7UgbdZKkGsgYJt0dw0tTXV9Vw86bEyuRIhBI7nYLs2RadIwSmQt/OVzoYghMAQxtwK7fFNTxobCZRKtA9nyfWM0NtvICyLUMMs9jMvlZWPOJFQVySzaX2oN+Oj1o5dsdMMq4uDYFBFogOB+lYkqQf+wFgFkEJhtBKMRqPRaDSaQ6cWQX135fmC2RjIrPLLX/Lw928l4Qk++ollIOETH905mkBYdIu8Z/O76Cp2ccPGG1keWX7wbboubiiKz1C5f1MxYo/QHm3HZypRZRkWQStILBADQEqJK11s18bxnElCWyIxhIEhDHymD1OYsye0K+JahELEmjxCuSKDu7IMdRcJ+CW+kA98dRLXVXtHMAjNTUrkLWYsn2oWE2tQbdDnOxJ9MEwLWlqhv09Zf3QFEI1Go9FoZkQtZ/5dwEf3M08AH5vxaGYL06Qcj/PdH7Sw6bEoH//IDjraywC40uUjj3+Ivw79lc+c+FlOSqw7+PaKJYhGKXh+WtJTR6fzdp54IE5DcP+ZikIILGGN+rSnEtq2a1N0ixTsAnknjye9UVFtCnN2hLZhYDWEaTo+THSFS8+uMiNDOULlEQwhVcfBQ/HgSqmiooYJTc2Hn5ATYuGL6SqGAekmlaw4NFRpBqQrgGg0Go1Gcyjs9+wvhHgdsA64UkrpAL+WUn7nAMsfNwvjqxtbt8a58ZvtnP/8QV50/ljJ7C9t+SK/6/kd713zPs5ref70NuY6OKEYPmvq6LTjOSChKTJFi/JpMF5oh3whGlCiXEqJ4zk4nkPZLVN0ihSd4iShXbWNHDChcpqEIiZL14QYGgox0JfCdEoEy8MqsimE6mIznU42xZKK3iYSKpKrxdv8IwQkU8r3PTCgK4BoNBqNRnOIHEhx/TvwkYqYBrjrQBuSUl5Zt1HVmVwOvvCl9aQbbT74vt2jQdEf7Pg+P9z5Ay5ddhmXLr9sehsr2xAMUiRIe9PUAdZ8Oc+ShiV1EbTjEULgM334TB8hX4g4qsf5VEK7YBfIOTlcz6XklAhYh26rMAxVHCQSMentC5PLhwklHEynkpR3IHHtOMpvHg6rjfhmp++5lMpJ4jiqmmG5rIZyOAXAZ42GuLKt9PZUSi0ukii7RqPRaDQLhAOdOYtSyp+Me/9h4Pb9LSyEuFdKeVbdRlZH3v1u6OyMcP1XthKLuQDc3f1bvrjlC5zXfB7vXvOe6W/MLmM3tBLwT53PlS/nSYaSRAP7MVbPAgcS2rvN3ViGRbaUHfVwH6o9xO+H9jaln3t7LaSIEmqJIjxHeaL3Fde2rSwQde5y6HlKODuOagQpGKtK19AAw5b6+HweJMr67Z/jLuKLjnBYfU89PeB6qoGNRqPRaDSaaXEgQW0IId4A/BEoAn4hxFJgf7Kksd6DqwdSwnHHwSUXb2XjuhxgsDmzmQ8//iFOjJ/Ix0/4JIaYpv3AccDvpySCdKQnCzTbtRFCkA6n674fh0K1csjS+FKKTpHBwiDDpWEMYRD2hQ9JWAuhbC6hkOpqnclAIGDhq7btdmwlrnM5FZGOxmZk73BdpctdV4ljgQqgVsVzIKDeW+PyJTtNVR3OdVVwPJdTD0+qPjd+v3acTEkgqP5w3T26rJ5Go9FoNDVwIEF9FfB9YPxZdftsDEII8XbgWuAcKeU99d22ilDfeccWoJ3tI9t5z+Z30RZs44vrvkzQrKGBSKlEOdlCKCQI7rOalJKCU2BZfBnmAiz/FrSCtMXaSIfTDBWHGCgMABDyhQ5pvKapKsNFo6oBX24EwiEwLB9EfUpI14DnTbRsVMVzIKA+IxhUotnnm77N1zRV4DUcVmMtlVQAPZsdbXKJPwCmFtdjWL6xsnr5vPrjaTT7MJvHbI1Go1mM7FdQSyl/JoRYBZwCJIGrmYUqH0KIduD/Hcq6tdJf7ueKTW/HFCZfXf81Ev7E9Fd2VTm0shmiIzU5Op2386RCKcK+hS1AfKaPdCRNIpQgW8rSn+/HlS4hX+iQPN/BICxZogpF9PcrEbvvxca+uJ4KZDsVd75EidpgEGKxMRtvPT3Q+5TcHu3Ens1CwQHjELuJH5YYJjS3qFsQ2eHDrxqLZkbM5TFbo9FoFgsHVFBSyr3AHQBCiOcepMrHcw9xDNcCnwZuOMT1p0XRLfL+x95PX6mfm0/+BkvCS2rbQKlEKdpIKCwmeafLbhlTmDSGFqTrZUoswyIZShIPxsmVcvQV+ijYBQJWAL9Zm39WCFW8IxKBvj5lr6hWYXMcdS3iKus6ElVxLxxWAraaxziXeXDjO7GnUiqBsSqui0W1jN8/veIlhy2Gof44VqUCSDisfTKaKnNyzNZoNJrFxLRljJTy32YyfyqEEC8BbOBXta5bC47n8Lkdn+XJ7BN8Yd0XOT5+fG0b8DwQAtsXpmWfBopSSop2keWJ5QvS6nEwDGHQEGwgFoiRt/P0F/pHExhDvtoSCX0+ZcHN55UNxHWVLTcSGfM6+3wLT5f5/eqRSCi/drEIw1llYwF1AbBQKoZIOZaU6XnqAeo5N6IuZOpmYREC4gn1xfX26rJ6mjk7Zms0Gs1iY97qYwkhIsCngPOZ6NOuK1JKrrjrCh4afoj3r/kAZzYdQiGSUoliME4kZk6yM4zYI6TD6ZrF50JDCEHEHyHij1B0igwUBsiWspiGScgK1ZTAGA7DsmXV7c7SgGeJasQ8Fhur+JfNqouEalJjIDC7++V64DpjvvLxGIYaXzg8NlbThEI/tDSrOwRSKmFdtzFGoupDuruVx/pQmvpoFj1zdczWaDSaxch8Fpz9BHCDlLJTCLFiNj9oRWIFr2h+Ja9cclHtK1dCgk4gSts+0emSU8Jv+EmFU1Ovu0gJWkHaY+2Uw2UyxQyZQgYhBCFfaNoVURabkJ6KavWQSESJ22rFkGx2ZhVDqkLZdSsJmFJNlygvt2WNRc39fqVlxz+mQgh1ERAOq8org4NKbAfqJXuCIXX7oadXVwA5cpmzY7ZGo9EsNoSsns3n8kOF2IDy4Z0hpfQqB+dn2E/GuBDicuBygJaWlo233nprzZ85NDSEzzyE+/aehxQmhs/E2icw53ouASuA2G8lwfknl8sRnaqdY4240lUdIAGBqG+r8zpTHCkSjNRQveUQ8DyQ3lg5P1BiePSnICvT5dj8KkJM8UCte6h/1n33WXrgVAT7hHHNFClV6F7KBeHdcRwba99/zDnAcz1M0yAUqf3O1DnnnPOIlPLkWRjWrDEfx+x6HbsWG0fifh+J+wxH5n4vxn2e7jF7vgT1R4ALgeHKpCBwGvAYkAHeJKV8cqp1Tz75ZPnwww/X/Jl33vEL2lLtGDUaTGVuhJFkB8tW+vGPy9XLlrI0RZpIhRZ2dPqee+7h7LPPrsu2POmNVgYpu2WCvmDNCYxzwd8e+hvHn1KjT/4QkXIsqXF4WGnNqi1jfNJlNbo8vl52PZlqn6VUZQL7+pTwr1uxDs+DgX4Vrp/nCiBdg520Jtvm/HNz2REa4lHWnX5SzesKIRajoJ7zY3Y9j12LiSNxv4/EfYYjc78X4z5P95g9L5YPKeUnULcPARgX7XjXgqppWixRtKIk0hPFdNEpErSCJIPJ+RvbPGAIg3gwTkOggbydp3ekl+HiMH7LT9Ca3YjwQqXaoTEQUH1sqvWtFwLVJjzhsCprODAwvbKGB8UwoDGtNjY0NFbSRXPYMi/HbMdRV6kNDbOyeY1Go6knNQtqIcSZwNlAWEr5ASHEWcCjUspsvQc330jHwUvEiMfHpnnSw3ZtOhIdC9r2MJuMT2As2IXRBMaZtjafLlJKJBIpJZ70kFSeK3dbPOlRsAuYhokpTAxhzNl3tRB1pWEosR+JqFrhudxYo5xDRghIppSoHhgYK+NyJFC9LaErnswuUsKuXbB8uboy1Gg0mgXMtM+AQogYcDtwXmVSF/AB4B+BbwshzpVSPlPrAIQQXwZOr7z9shBiq5TyELIH60zZpkiQZEtwQj3ikfIIzZFmApZOygLVabHD10HJKZEpZhgqDWFgEPQFJyQwVkVwVfhWhfB4cSwZl503zou872tDGBgokWwZlnovjNHXlmHREGig7JYpu2Ucz8GTnhLVlW0IxOh6VeF9uF8g+f0qr7BQUI0QS6U6BJcb4mrDff1QGjn8S+sVS6oESyIODTU0hjqMmNNjdjAIe/bA0qW6a6dGo1nQ1BJSugYIowT034BfAFSi1Jsr8y+pdQBSynfVus5c4JXKePHWCXcbC3aBsC9MInhknkgPRMAK0BJtIRVKMVwaZqAwoARyRSMbhhLBpmGOit6qAN43kmwIY1TwCiEmvT6Y8DWFSVOkacI013PxpIcrXVxPJViW3TK2Z2O7NgW3gOd5IJT4F0p1j46rOu7pVjlZyIRCSp8MD6uIdbWL5CETDEFHB4zkVHmRclkJocPpAsW21X6Fw5BsAUce3hcOB2BOj9nVH2c1Uj1jv5JGo9HMDrUI6hcCJ0kpcwBCCK86Q0p5qxDiffUe3LzhOBQ9P6m24OhdbNdTQqwl3nLYRzJngs/00RgEzR9wAAAgAElEQVRuJBlKKmFaEcjzjWmYmJj42H9FCE966nuuiG5PeqNR7rJbpugW8aQ3FjUff7EgDExhjgrvhY5hjHW3HBhQpQCrSZSHhBAQrdTtGx5WtfvqYtieZ1xXdfrx+6G1VV08ADil+R3XkYRlqd/Rrl2qwH3dakFqNBpN/ahFUNtVMb0fDpuwrVcsQ6KJhviYcM7bedqibQuyqsVCxBBG/Uq1zRGGMDBM44CiW0o5Krj3jXaX3TJlpzxaXlCiLihMYY5G5BfaxZjPBy0tKu+rr68O3RYNExJJ5XnNDEEuq5rBBBbZ/42UyhtjGNDUBOHI4RVxX2z4fGOe6mXLmJAlrtFoNAuAWgT1iBDiFVLKn+47QwjxImCgfsOaR1yXomORag+N3tEt2AWi/iixQGx+x6aZd4QQWEKJ4/3hSQ/Hc3A8B9u1VXTbKVJwChOSJ6tWEsuw5t3DHQrBkiUqYbG3V2nHGbk2LB+k0xCLKhvIyMjiSVwc9Ukn1JWGcWRaO+Yb1xVkc4JYNSDt9ytRvXu38iwd8u0UjUajqT+1nN0+CdwmhLgf+BPQJIT4MHAS8BLgFbMwvjnHzZcQiUZicRWiq976b440L7joomZhYggDv+lXdzOmaAZUFduO51B0ihSdInknr+wkMGqTqUa2zTkSdNVui6GQcmxkhsBnzfAOeyAIrZVMyP5+KOfVBhei/7hsg11W0fVEgkmdnDRziidhxx6TFgSNSamSZwMB9VuqiurFcIGm0WiOCKZ9NJJS/kwIcSnwWeCMyuSPAzuBy6SUv5yF8c0tnkfRNmhaEh4934/YI3TEOlSXRY1mhpiG8lkHUCo1jqrJWLWSjI9sV8V2wSmMJUqO20Y1qbPeWFYluBwbZwOZafGOUCVxMT+iTNvVEiML4SK16pMOBiHdpi4CNAuCcEiSGTLIFyRtzZ5yeoRCSlTv2aNuqyzEizONRnPEUdPlvZTyR8CPhBBrgTTQt7/uWIsRt1DGjMeIxtUBumAXiAfi2uqhmXUOZCWRUo4KbVe6lJwSRadIySlhezZCiNHa2/WsAx4IQHv7WLfFYnGGjRGFgEhUCaKFkLjoeWqnTAuamue966NmMkJAJCwplmD7LpP2Vo9oRKrfUD4Pe/eqC7WFWABeo9EcUdRSh/pyKeVNABURfdgIaQCkpFCAljVRDAMcz0FKOan8mkYz1wgh8Jm+0bskUf9Yk4uqX3uPsYdYIEamkAFUffB6WEWq3RZDoUq3xUGwZqqB5ztxUUoVIfc81fEmGpuWIHNdVT3PcaHsarfBXBIMgGtJdncaNCY9ZQEJh9XVXmenKrCuRbVGo5lHajklXCGEuIv9126QQK+UsjjzYc09br6MLx4hmlSiJV/OszS+9IDJZxrNfFP1awshaI400xhqJFfO0Z/vJ2/nCViBulSmMU1IpZQGrlu3xflIXCyVwbFVQ5p4g4pOT4GUFfHsqNegcuIaGtR+ewbEtDNkTjFNiEUkgxllAWlv8fBFIurH2N2tyhrqOwwajWaeqOXMdRyw/SDLSCHEduATUsrvHOqg5oNC3qN1TRQhVDfEZChJxB+Z72FpNDVhGibxYJyGQAN5O09/ob+ubeGr3RbzeVUNpC7dFvdNXJyNjouOMzbY5ibwT8y0dD2Vj+i6KjJgCLVoIqH22eebOJySU7+haaaPEBCNSArFMQtIJBpVt08MA5qbtajWaDTzQi2C+n3AlcB/AY8DQ6ja0ycA5wJfBPzAs4DrhBBhKeX19R3u7ODkywTiQSLJALZrYwiDdDg938PSaA4ZIQQRf4SIP0LJKTFUGqqrHSQcnthtsdrrxjDUwzTHXk+b2UhcrCYcWr7RxixSqiC1bY9Fny1rzNri86mH1mXziysdhuwMaZmelHwbCoLjSHbtNUgnPVLJBozBQfXDS+tjt0ajmXtqEdTrgRdJKR/dd4YQYiPwJinl5ZX3NwHfBBaFoC6OuLSvawQkeTvP8sTyOStVptHMNgErQLPVTCqUIlvKMlAYwLGdGdtBqt0Wo1ElTj1PPdu2qkBXLiu/MYz5xIQYJ7jNKRrI1CtxUUolpIXAS6Wx/VEcV8CImh0MQSqmHCZ+vy4UsRCRUtJb6iGfz5P2p4lYkQl3WCxLWUAGMtUqIDF8fX3qB5ZKzePINRrNfOK66qak46jzUalUiatYKmYzW9QiqI+fSkwDSCkfqYjq6vsHhBCL4hRlF2yCMR+hZIiRco50OE3YF57vYWk0dccyLJKhJIlgYtQOMlwaxmf4ZmQHsaz92549Tx3cXFe9Hn+As20oTmGdUNFtE7MhiRGJIoZqS1x0RkrYRRc3GoeGBnwBk1BIRdV9PiWgdfR5cRAwQ1jCorvUTcD20xhIEzJDo/MnWEB2W7S3NBDp6VE/onh8Hkeu0Whmk/Gi2XGUYC4Wx4I7oOIq1QCOaSpX4WxSi6BeJoTokFLu2XeGEGIpsGzcewOw6zC+WaeUc+hY14TtlbFMi8Zw43wPSaOZVcbbQYpOkUwhw1BpCEMYBK1gXe/OVG0f+2tqJ+WBBXfJ8SFDaTCjKlqdzWMEA5h+U0W3ZTUSLpCVxiyBRJj4UQlCDX58Pl2NY7FjGaqcZNkrsye/m5ivgaQ/id8Yu7gatYB0mqQTMRr37EUYhiqmrtFoAHW8LRTUzb9yeSwYYlljorN6zN73MR9UzwnjzwvVh+uOBUaEGBv//lyC1UTz2aSWU80dwJ+EENcCm4AMkAQ2AG8FfgYghFiG8lr31neo9adcdAlFDYKJIDl7hOWJ5bPSKEOjWagErSCtsVbSkXRd7SDTRYgDR7ihKriDuG4rbjZPuasfu1DAtsJICQHTIWEW8DcG8Le1YIRD+9+YZtHiN/z4DT95N08unyPhS5DwJzArN0OrFpD+IYuCv4HWHXvxrehQniSN5gilWiU0m1UxCc8bO+aWSkpgS6mmV3NK9qV6nDbNiSK8Om0mIny8aK6mvBSLSvC77tg+VEWzZS2cnmD7UlPZPOAW4DNTzPsh8M7K6zcBHcB1Mxva7FPOlllyYooRJ09jqJGgpetgaY5MqnaQeDBO3s7TN9JX1+ogM6EaeQAgFIamkCqV1tfHUMGlJVGGdAtEIgvzKKupKyEzhJSSIXuIYWeYtD9N1IoihEAIJaoLRZMdAzHanb2E1y5VZ2CN5giiVFKVSDMZFZmtCtFDiTZLOSa6q5Hig4lwmFqEu65qFFaNNFejxtVDd/V4HwgsvtLytbQeHwFeJYS4CjgNaAU6gb9IKbeMW+5DdR/lLFAquESiIBos/IZJKqyTWDQaQxhE/VGi/uioHWS4PIxAEPKFFsYdHCHUrfxwGHpysGzZ4jvyamaEEIKwFcaVLj2lHjLlQdKBNCFL5b8oC4jBzsEo6c27aVy3FBHSARPN4Y1tq5KmAwMqwmsYKp97ps1ohRhLKK8Fz5sswh1HVbk0TZXPMmeNcj0Pyg6qGN3sULO7cH9dEoUQp8v/z959x0d21/f+f31Om6Iyalu9xV7c1mVt3DAYGzeaab8AIUBCYsr1Awg34YbkJkBI4AIhySMJqaRcLtcELg+DQ0I1zRgXbNwb645xWXu1fSWNNPWc8/n9cWZGI620K63KSJrPcx/zmJkzM2e+R+W77/nqc75f1dvnpVWLoDpaZfWpXVQ05NiuDUsjKBizhNTLQfqjfvKVPAcKB4g1JuWlGqs2ttRRzc03N1EcEWtMNa6SxgJaq7ni0uF1UI2rPF98ng6vk76gj5SbSkpAuh32D2co3jXIurPX43WkjrxTY5aRMExC9NBQUr7hOMno7uFOHwjjkFhjXHEXdEazqbpnx1nEPxhF0Xi9S34UQh9O2XTk1x2l+Txd53Mk9dRLXqmkdHVGhF0OqztWk/KskzVmOr7r05fpoyfdw1hljP2F8cViMv7y/1O6qhJrTKwxkUaN29T/lCnJcxxxcB0X3/HJpXITloA3reU7Pr7jU4pKPFt4lr6gl5zfg+d4dPV4FEeUp2/fxfqz15HtWaQl7o1ZIFGUhOehoaSsQyQZ7T1ciK5EFUphkZHKMKWoiCAgICr4rofnBLXfowDP8XDETQK3uDjitLTsb1aq1aQIO5+HYjHp3z2HKOURlisL+tYzDtSSfDV/F/hvwBYWctx8AalCOFohe2KadKqDnnRPq5tkzLLgiENXqouuVBfFapGDpYPky/mkw3UcBEnqWJuugQnbFlM9KDeH5HpQVjRpjybtq88kkfbS+G4Szlwn+Y+k/h+KzU2/9KXdNCknxUg1z3B1hP6gny6/i0y3TzhW5tm7drH6jPX0rvKs3N4sK3Gc5MSRkeQCyexJ04VoVaUclSmGBUarw5TDCuIIgQR0+l0TnhdrTBhVKYclYo1RUUTHxxQAPPHwXJ/ADZLQLV6tjxwP3Qv9l/5Y46S9jPfnqjFxpURYGCUaPkhYLhBqTOw7hK4kzwkVrShxSTmZ4xesfbMZof4fJCcc/idwJfAvte3rgLeQzAKy5JVK0NVRhp4O1nWtWz6fuoxZQjJ+hoyfoZqtkq/kqUbVCaG1HmS1dsZKTEwcx8kKL7VACzRGSRpLLR7msckBHZIOtlAtHDEoZ7wMgZuMvFhQXtlEhIyXIdaYfeV9DFWHWJVaRSabocsps/fng4xtWce6jZ5NqWiWtPr6VPl8Unccx0mInu7861hjylGZsWqefGWEWCMEh8BN0el3JkvEVkKo1Fa4ClKI5+J6Pq4bcLhCvnqfXqiOEWuemLjWz46fmOiI0xjlro90N0a7HbcxI4+qouiE/y+0FpKjOCKMQyLC5DoOk23atGiBKlKpQKmIjo1BGOI4LuIHOJkAQZJpYBkfWY+jmCFG5uG7Mr3ZdCe/AVyoqntE5JWq+on6AyLyN8Anpn/p0qAKUamCt8lhbc/GRZkWzJiVrF4OMlP1jrQetOu3J19P9VhjhBkat11x6c/0HxKU67dN+3LEocNP6qt3FneScTP0p/rpIqS4YzdPV9ZyzCbXJgAxS065nExkNDSU1EgfboaOKI4oRyXylRFGq3lAcXBJ4eJEUpsbrzbxdBzXzi6sDSLEw+M7qp8hmEqD5yYLaTW94fgI9PSxu94vl6MShbBArBGgCJIMkwiUozK/HH5ifLCEppu1EhQRB0cEBwcRB98NCGIfqVagUISx0eRYHAdS3ZBdGoMis/p8rqp7pnqdqj5em396SSuVhUwwQs+a4+hOdbe6Oca0ncbo8jz9Yag+3Z8x06nXV5ejMjsKO5L5qyUFB3bxTLSO1WsdenttxkXTWpVKUg998GBSBlyfOm6qD3zVuEqpWmSkOkwxLCBhiBcL2UiQUmniyif1pQLT6cP/kEcRjI6N15NAEqrr04R4bjI8fpi/6I2H7umjZV4cOvwZnn8SR1CuJCvlFgrJqKjrJeF/Cc7sNJtALSLiq2oVGBGRF6nqHbUHTgOOW5AWzqOwXKJjo8/a/k1W6mGMMW0k5aYInIDRaJQRHaGvkKfbF/buWUexKKxZY6tqmsU3MpKE6FJpfIaOyVPJqSqVuEIxLJAvHqBcHkOqIUE1prMSJ6Uc9bntXC/ZyWwzzoQJ/2uiKAmyo/mm1VW8WshOJQH7CCF71sLq+MwcpVKyzfOX7mouTWbTfdwLfE9E3gp8FbhBRH5EMlL/cuDaBWjfvEoFB9mw+eylMeWXMcaYRSUiZNykvvogJYb3P8oAZQrOZp55xmH9elsDpt3UFydpvsCRt8Xx+Ovrl+bHptrWfF1fwXDXrqmnuYs1plwtUigcJF88QFQcQ8oVgljoFG+8dMP3ILVA5avThexSCQpj418Y10sCdjqdfCr1/WTbTFXKyT5HR5OhepHxYvFlZDaB+lPAeUCVZIq8Y4B3ACng68AH571188hxlA1r++jKrW51U4wxxrSQIw5ZL0vYEbBr7+OkwiF6Bk7i2WezrF4NPT1LfjDMHEEcJ9kvisZvh2GS1yqV5HZ9lb5m9YHYI22D8UHh5seat9W315funrzNcaCzXv2gSlQuUS7nyY/uYzS/DyplHBxSbgrH9SHoPDTgLrapQnYcJ6UZhcL4J416zUo6nZRoeN54yFZNQnSxmJSZhNXkixEEyy5EN5vNSolPAU81bfqj2mVZSPku64/baqUexhhjgKQGv7N7NdXhYXbHP6djYBOVwX5GRwO6u5NBsvqSyUuwZLMtHS4oV6vJJQwnjirX/9uvLzTiOMn3NAha9MGp6QCq+/dQyh8gX9hPMSyACJ4bkA2ySHqZnOvlOBBMOmExjqEaQmmo6WRIJ/kG7Xg22ebW6rIXaoR9kc2pYkxETgROAe5U1Z3z06SF4fkpvM5l8sNpjDFmcYjgd+bwR8coeoOMdY5QyfdzcDSLKz6eeMkUjN74gFsqNR60XddGs+dDPRw3B+Z6UG6+rgflZq0IypNnJ0qmfqvdj0IIq2gcoWFIVC4RV0rElTJarRBrRIxSKRd4dnA7eC5BKkNHdtXCNnoxTRWyVaFA8gu0Aj+hzmZhl3cDHwW+oKqfEpHXA/9R28eoiLxKVW9boHbOnfV6xhhjpiICHR1khsZQL0spM0Qh3o8CruOSctOktYNyMUW+4COx1/hrZ73cM5OZWEJqo9rjmkPy5NKLau0ctF/84tDSioUMyrHGyTzHGo4vGKJxY878mIgojhqLiGhtruQoiojiKoS19B9H40PjlQoSRUBtGrhYk8aL4LjJpy/xk6ngRByk5NDROfNpR5e9es3LCv3FmM0I9TuAvwI+X7v/GeARkkVeLiSpsb50PhtnjDHGLAoRyGaR/fvJrFoF2U4QQVUJ4yrD0f7GPOiCkPLSZNwsKTdNqD6joz4jIzJhBLW5jLQ+qu37K2t850hhOQzHy2rr6pmqPqPbhFrieVZfFCSKQ8pRmVJUpBKWCQkb8yBrba7kxpJRcYzEMRIrTqxQrSKVKk4Y4UYRorWZPxu1JC44QTKHcy1Az8hK+SEwwOwCdbeqfg5ARM4AtgJvUNX7gPtE5D0L0UBjjDFmUThOkn737gVnPwQBkk7jp9L4npdM3zUhZB+sLV6RRLHATZH1Okh7aTzHx8UnDIXh4SRs1tVHtetT/DbXai8l8xGWF2u2szAOGyPO5TAJzuWoRKQRjiQfdOoLP/luQEoDqNbrSWojzNUQonC85rfOqaV+z4fgKKakM23haH993w7sAb7btG2K82WNMcaYWXrkEY77j2vZ++bfWvz3dt1kpgHVJEXma0vWQWMmgokhOzMesjVkuDLEwfJ4ek65KTJeB+lUErJ9x0dwGlP85vMT64Lr5Q/1t6ubXAqxELebT+5bSmG5TlWJNKIaV2sjziVKUYlKVCbSqDFq7ODiSVKq01gxNapN61EqJLNLVCrjByUOuLVLYPMmmqMzm0A9KCIfJpnp473Av6omf/8SkfMWonHGGGPaz87PX8e+qx/nrBvfxXN/+DHGtp25+I2oz3XmeSSzw9IUsvNJyK7XhE4I2S546Qkhe6QyzFD5QGPXScjOkvYyeH4SsuvBz3HG58JuDtrT3W4Ovc2j4DN5bbN6/XKrwvLEtiRftzAOqUYVynGJcliiElVQFEga6+LiOh5pNzNxBi/V2gIhpSQ8F4vJfUgOzvMgm23JsZmVazaB+kPAt4EXAA8Bfw4gIn9LErA/M++tM8YY03b+zvsQf8mHuPT5m/jk+z7Mia9by/Pv+x2iXE9rGzYhZNfMMmRDUp6Qr4wwVDkImkTEesiONGKsmp/m7adPuILUCnsbG2b0uvoT68+Ia5dqNPl50yTxI9DpEnyTWGNGysO1Mo0ilajaaJMCrrh4jk/Gy059LPUlqqvVZNi/XJ646Ijnrpip2czSNZt5qB8FThCRflXd3/TQp4HPArvnu3HGGGPaz5/+KRzY/whf/4/zuWD4Nl7x7R/ysZ98mg0fvIgDr3rt0qphPVLIHh4ef14QQDqNl0rj+R64E0P2aCVPGIfsLgwe8jaKThuMVbV+Ot1Uj8J0j+n0+5zqPRpm/fWvv3bq11XjKvuKe3AdF1c8OvzU4XcX1uqdS7XR5/oKLfXvRTq9tH5GTEtVq8LevT5DQ+kjP3kOZl1DPSlMo6p7AUTkVcD356ldxhhj2lTFGeLS197Pm183xPd+tIkv/ftFXJh/Ba/61Pf4g6/9HWs+/gbKm49rdTOnN13IDsOpQ3Ymgxek8HwPRxw6/AWa8mKJyotD1p9mhbw4rgXo6nj5Rr22xfWSpbetfGNG9u71+Nmd3Wx/OEs2E9PTE9KTC+ntCWu3I3p6Qro6oyU/s50qFAoO+/b77NvvsX+/37jdfL3/gM/QUPJ7eO7Z+/mNBZw+Yz7PKf4zLFAbY4yZo8/d9Tn+9ME/5dL+y/iN17yDN/9/p3Pt1/v58hcv4rLHX82rfv17/M4V32Xthy5DUws76jRv6lN7+JMWughDGBkZL4auVJKV5BwXHBmfV66+5LPjjD8G42cJ1k+um7wW9nJTP3mwXFuaulxOtoskxx0EK3Ye4/lWqQj3P9jBz+7o4pb7Qp7iDjjuBpxj7kErHejefni2D4r9UOyDQnLtlPvocrvp8XP0Zbvpy0FPbmLo7ukJ6W3alsnER27QDMQxHBzy2LfPZ/+BWjje57HvQBKY9zcF5lLp0GXYfT+mvy9koL/KhmMqnLltjIH+Kn29FQb6DgD989LOqcxmYZdDKqqMMcaY+fbmU97M7dtv5/p91/PDfT/gtNzp/Nrlb+U/fuWVfOMrPXzpKxdwxXdfzauvv573vH8Hx775hFY3+ehMFbLLw8mk1fWAHYbJAiFaOxlv8tQbU6mHbrc+JYc3Hs5drxZOZeJCG5ND6lRnMs7kTMdpz3o8zL7jGA4cSOqfo3D8GDyvtWdHLjOqsOO5gJ/d0c3Ndyv3HLiP6jE3wXE/gbfcD6KkJMupua2Euo+hypMMV0bIR8PEjEe8GBiuXZ4BnEoOin3Eo/1woA+enxjAKfbjhT10uz3kgm76Ut0MdHTQ2zMexHtrwXuk1MPDlRz7DiShORlFrgdnn4NDHlE0+futdOQK9K3K0zswypZNY5zZO0p37xidPWNkuwpkuwukOwu4qSIVrVCJylTiCuU4uX4+LFFiFfDCBfv6z2aEeg/wL5O2dQAnA9uAL85Xo4wxxrSvE/tP5H2b3sf7Nn2An+R/zNd2fJWPbf8o/cHf8MbL3sT/+dVf5ZZ/yXH1defwvc/28Kov/YwrPyKc8KJlMlp9JFILvzB+PRv1kFofAa9UjxzIJy9TeLSa9zPT22EIY2NJ+YadPDgrY2MOd93byS13etyyYzv7u26F426AS+4CJ8IjYFvuDF408D7O7TuXU7pPxXf8CfuINWYsHGO4OsxIdZih2vVw02UkHGGoMsTB0iBDlUcZCUco6HBt1hUIgQO1y1MAKlDqhUIfDPXDYC2AV7PglcErgVfCX1XE21jETRVxghKdXhH1ysROiUjKhJSpaoUxYAzYMeUXoXY5jJST4pyuhZ2QbjaB+muq+ompHhCRc4A3zXRHInIR8EGgD3CBHuDzqvp3s2iPMcaYRdKKfrvD6+Ctm97GWzb+Grfvv52v7fgqn//l/+YLT32By15zKZ/69bfw1F8N8Pl7LuL7v9fLK17wEFd+RDjp5MpCNWl5aA7ky0FlBNJHOBHRAMnnocd/keGW21Pc8IvHeCK6HT32J3DKz2BbBUc9TsyexgVr38m5feexLbeNlHv4r60jDl1+F11+F7Bhxm2JNGI0HGW4MsRwOMJwZYiRcGQ8hFeHOVgeZn8xz8HKDkaq2ynFY6TdNGkvIOMHpNwUKScgcFIETmfjdsoJCNwUgROQciZeB02vmdHznQCNlaGhkTl+9Q9vNrN8/O5hHrtbRD43i/d9O3C/qv4vaKy8eK+IPKmq35nFfowxxiyOlvXbjji8ZOAlvGTgJewo7ODaHV/jmzu/wQ93/5CT3n4yv33lq6j85fH825O/zg/f3cPlZ+3g3b8zxoknlBayWcYsioMHXX56Z5YfPfRL7h25k+Kam2HTT2FdAVTY5J3KhevfxvkD53JmzwvJeotzkqYrLjk/R87Pzfg1uw4OsrZ33QK2apxTLBLseo5g1yD+4E4CN4DXXbxg7zcvJyWKyCXA2lm85O9pGrlX1QdEZAg4fj7aY4wxZt4tiX57Y3Yjv3fSh3jf8e/nusHv8tVnr+HT+/+W3Ht7eFPxP+n8t/O4+t4/4vorN3LpS/dx1VX7OOEFFqzN8lEN4cGfZ/ju/c9x+5572N3xU9h8E5yejLCu1pN4yepf4cL1Z3NW79l0+92ze4P5Ku9pJVXcfJ5g1yDBrp2TrgcJdg/i11c4rTmw7YXwFx9fsCbN5qTEX061GegFupjFwi6q+nDTfh3g3UAZuHam+zDGGLN4llq/nXEzvGnDm3njMW/i7oN389Ud13B19UZ4/41cdvArrPnmpXzj1r/jhp+ezGUXH+Sqd+/m+C0WrM3S9PxOn+/ctYcbd9zLk/yMaOONsGE/bIBcuIWzcq/m8mPP4ryBc+gL+ma+Y1VSO56l4+cP0PHQg3Ruf5D0U08SpzOEuRxhd44o15PczvUQ5nqIunO1+72EuRxRLkfY3UO8mCeIquId2D8ekHcNkmoOzLsGcQsTC6ejdJrK2nVU1q6jcPIptdvrqaxdR2n1WvY6PpcvYJNnM0KdA741aVtEcrLiTar6g9m+uYj8MfABkjr2K1T1+dnuwxhjzOJZav22iHBu37mc23cug8WdXPvctXzD/y+Gr7yakw5+lS0/vZxbbv88N9x0EpdfMsRV79rFluPKrWyyaXOqUCw6/OjuCrc9fxMPFW9nbM1N0DUIJ0GmvIFT0xfzii1n8dL1Z7MmvWbG+3YKBbKPPETH9gfpfOhBOrY/iDecjNSGnZ2MnbqN4Re/FKlU8IaHksvIMMHzz+GNDOHlp16lEyD2/SRw53oIG6G7ZzyQd9fvN4Xzzq6ppzkMQxgBm+cAACAASURBVIJ9eyYE5GDXIMHgToLdgwS7d+FUJp4LEXZ1UVmzjvIxG8iffW4SmNesa4TosKd32sAfRzEscA21zGRZUAARuUFVL533BiTLNL0d+BzwalW9bYrnXAVcBbBmzZqzr7nmmlm/z+joKJ2d7TVZPrTncdsxt4/leNyXXHLJPap6TqvbMRdH6rfno88eGR7BERfHnf2cw+W4zM0HbuLbu7/Fk8VfkisKJ95/AT+/518p79/KhRcO8ra3/YJNG48wNUALhGEVz/OP/MQVZLkcc7UqFIsehUJyqd8uFt0J2/LFiOHoIMPxAUbZx5izj6K7l4q/l0p6N1FmN3Q9nwRowCutYnN8HuevOYWLN5/MutTama1gqUpm9y56H3mU3kcfpufRR+l66imc2kwuoxs2cnDrVg6efDJDJ29ldOPGI87hLVGEn8/j50cIRurXycXP5wnyI/gj+dr9EYJ8Hn9kpPGehzTRcah2dlLp6qLS3Y2KkNm3j/S+fYe8ptzTS3H1KoqrV1NcvaZ2vbpxP5zLAj6qRFFMV272/1/MtM+ecaBeaCLybSCnqhcd7nnnnHOO3n333bPe/4033sjFF198lK1bvtrxuO2Y28dyPG4RWfaBum4m/fbR9tnf++736PC66eyaZgW9GVBVHhh+gGsf/79cf/AWIlGOe+o0nr/zzyk/9ipedfkw73nnbo7bvHRGrBfzpK2lohXHPDTsct8DnQwOBoyOORQKLmMFh7Gx8etCwWF0zGWs4DJWEKpOHjoHkyDcuSu53bnr0PvZA4e+oQqp6ioy0Wo64lV0yWpe0LGRt531Yk7uPW5GAVrKJbKPPkLn9gfo2J6MPvsHksWro0yWsVNPY+zUbYydllyi7pmfLDgnqjhjo3hDyWh3fdTbHR7GGzpY2zaMOzJEtVSAYzY3RpXrJRmVNWsWdJGmOIoZGhrh8qM4KXGmffZ8rpQ4YyISqOrkeY0eBhZwUUhjjDFHazn22yLCmT1ncuZ5f8cHS3v49s/+hmvX/ojyW19Lz/B6rr/jf/KDd13Jqy6K+G/v3M3mTUsnWJv5tf+Ax733d3DvfZ3cc38nT/4ykzzghNCxm6BvB6n+nfi9gzhrB5GunWjHbsLMLirBHmJ/DziH1uD7pOj1VtEfDLAqvY41mdMZSPczkBpgIBigPzXAQGqAXr8Xz5kYuY70QcLfvYvOn9fD8wNkH38MqS18U9qwkZHzzmfstDMYO20bxS3Ht26qRBHizi4qnV1U2HjYp67kD4wtCdTAPSKyTScOj68HrIbaGGOWpmXdb69Kr+Zdl/w5vzn2Ye78z4/xpegW7nzFB/Ev/TA/uP9dfP93PsAVZ2/iPVfuYtPGNp/HegXYs9fnnvs6uPf+Tu69v5Onn0mDWyG16V7WnnMzJ7z5ZxzsvJv98fMoSgVo/q7n/B4GgiQY96dOr4XjfgaCAQZSqxq3O73OmZVnHIFUKmQef5TOWnju2P4gwd49AMSpNGNbT2H3297RGH0Oe2dxYqJZFK0K1F0kJ7X8A4CInA28GfijFrXHGGPM4a2IftvryPGSd/w9lz75BHs+/1G+0P8E17zwc1TP+Seu++XL+d7HP8D5vS/l9FPKnLq1wClbC/T2REfesWmpnYPBhAD93PMp6H6O1AtuoP/iW1h3zO3sDR6kTIVngFWpVZyR28YLOl+ThOagPwnKQT/9qX4CZ55XbFRFwhCplHHKZZxCgTUP3MExTz1Lx/YHyT72SOMkvPLadYyeeVajfKNwwomwDGrM212rAvVHgPeIyNtJZgrJAB8C/rlF7THGGHN4K6rfLr3gBLo/fQ2f/M43+My/fZYvbC3wDxfcxt4tP+L2So7bdp4J158JXz6TgeqpnL5mM6efHLL15AJbTyrQ1TnNEt5mwanCjueCRni+575Odu2PYd29pI+/lc7X30rnwJ2MuoOUgX1OwNaurVyaewun92xjW24ba9JrkGoVb+ggTrmE5Ms4+ys45Z1I+akk9FbKSLncuO2Ua/ePcNspl8eDc9NtmeLEvdj3KZx8Cnvf9GuNAF1dtXrxv6hmzloSqFX1K8BXWvHexhhjZm9F9tuOw/7XvxHvwot5/z9+lj/6zHe49sV9XHfJcTxwwiCPH3snFYrsA34S+fxk7ylww5nwlTNZE5/C6f3Hc8aJAaduLXDiCUUy6aVxkv9KowpPP5PinvuSAH33fR3sj56HDbeSesFtpH79NpyunxNLlRLQl17P2bltnN7zG5ye28aJXSc2Rpy9gwfo/vEt5G69me47b8ctFmbXFhHiVApNpYlTKeIgmHA77OpGB5LbcSqNplK1x1ITbsepFDv7usmcfQEazPNouGmJ2Szscq+qnrWQjTHGGGMWW9jbxzMf+ySdV7yeN/71Z3j7p+4BoJoK2H7midx9Sh/3HeNy38YCD6+9jhG+yG5gN3D90Ca48Uzka2ewVk/h1N4TOWfLAKdtLXL8C0r4voXs2YpjePKX6UaAvmc7DHU8ABu/SbDlNjjvDgiS+mJx0pyQO5XTcr/Ottw2TsudzkBqYHxnqmSefILcrTeT++nNZB/ZjqhSWbWaA694NYWTto4H3VQaDYJJtycGZ/W8eVvcZOjgIGkL0yvGbEaoN4vIFw7zuJIs8rId+KqqhnNqmTHGGLOIRs8+l4e/dC3pHc+QeexRso8/wvGPPcK2r23HHRsFIPY8nj71BO4+bRX3bQq4s7/K9p7t7D3pOwxKzCBwfSkHt5yB8/UzWMspnNJzIi86diPbtkYct7nUsskYlqoogkcezXDP/Z3cc38H9z6zk9HeO2HD7Xin3kb0su0gSR372uwmTs+dx+m50zk9t43jO48/ZPYMKZfpuvcucrfdQvetN5PavQuAsa2nMvju9zJ8wUUUTzhp+S+/bZaU2QTqEeCtQBoYAoaBHpIVFPMkq2b1kZy48ici8kpVfXpeW2uMMcYsJNeldOwWSsdu4eArr0i2xTGpnc81QvbAY4/yxm8/xFtGhgFQ1+XAC47j3m3ruOe4LLd1wAOb9rBz0+fZ6RTZCVwfeXDbVpxvnsHa+BS25k7k/M1bOOfkFBs3VJZ9tquv/jc65jI66pAfdRkddRkdc8nnXfJjDiOjMcOFkHyhSr5UJV8KGS1X2VuE8qqvwYbbcS64nfiyZB7njNPBtp7TOC33TrbltnFq7jR6g94p39/bv4/cbbeQu+0Wuu66HbdYJEqnyZ97PrveeRXDL34p4cCqxfySmDYzm0D9h8AVwEdUdWd9o4hsAP4E+Lqq/kBENgF/AfwVyRngxhhjzPLlOJQ3bKK8YRNDl70i2aaKv3sX2ccfJfvYI2Qfe4SLb3iEl9cW2lARCps28dC2Tdx9fDc3dfrc33+AZ/t+xE7/y+wEfgxwx0bc757B2ugUTug6kYwrdGSGcR1wHEUcbdx2XMWR2m1HcdzabVGc5uc49eeB1J7rOvXngDhxbRtI7XUqMWPFiJFCSL5UZbRUZbRcpVAOKVQrFCpVSmGFUlilHFWoxGUqWiXUMqFWCKUMbhm8Uu1Su+2WIVWCjjKsOXz5y6b0C3hh30XJ6HPPNo7rOA5XphnOVyXzxOPkbr2J3G230PHwdgAqa9Zy4FWvZfiCi8ifdS6aSs3Pz4AxRzCbQP1B4IJJc5Ciqs+JyPuAnwA/UNVnReQ3gSfnsZ3GGGPM0iFCde06hteuY/iiSxqbvX17x0P2449yxp2PcN63d/H+2uPl9Rt45rSLuOOEPn7c1cG96SGeXv8Ez6eu43lnBjOHKMkcKxFQXYDjmsyvXVIeRCkkSuNogBuncQkISNEhPr6TIuVkSLk9pDyfjB+Q9QMyvkdHKqAj5ZENAgInIOUE+E3XcTnigvUvpcvvOmxTpFyi6567knro224h2LM7+eCy9TR2XvXbDL/kQorHn2ilHKYlZhOo108O03WqGtVGpuv3qyKyf86tM8YYY5aRcGAVIwOrGHnJhY1t7tBBso8/Rvaxh8k+/iibHnqUE394M++oPV5ZvYb9Wy/gnpPX8ExnFm/1ZirdfVQ6u4nxUBWiCOJYiOP6tTTuR5E0PebUriGOhCiWQ14fRYKqQxQlpRrJfehMBXRlPXJZj56sS0+XR0+nS0+XS67DwXEW5mu26+DgtGHa27c3KeW49Wa67r4Dt1QiymTIn/tidr7nfYy8+KWEff0L07AVJIxDQg2JtDanugK1zx3SdFsnP4Y0Fq6R+j9Jrpsfn3y/Hc0mUI+KyJ8An1HVxudiEfFJ5icdadp2EmB/ZzHGGNP2op5e8uedT/688xvb3HyezBOPkX38EbKPPUrP44/wmpt/ijSNW6nrUh1YRWXN2vHL6rVUG/fXEXV1rawRWVUyjz+ajELfejMdjz4MQHnNWvZf8QaGX3oRoy88x6aaO4xIo0aAFgUVCByfTreDjJfFEw9HHDSJz6gq9X9osrV+P45j6v9UY2LV5J4mFyWuPUeTbdT+ytIUyptvxxozVh1thO7JT5ugecNhfsSl6cFpw3y88LPtzCZQ/0/gG8AHReQhkhMTe4FTgCzwegAR+Tjwu8BX57WlxhhjzAoRdXUxetY5jJ51TmObUywy/MSDrC9GBLt3EewaJNizm2D3LrIPP0TPjT/GqU6s84gymUa4bgTt1WuorFlHZc1aqqvXLPnw6ZRKdNcCdO7Wmwn27UVFGDv1dJ6/6gMMv/QiSluOX1kfHOZJrDHVuFobeU7CsC8eWTdLxsvgiUfgBDiyQH9emEK9mKER05sCe3F0jGOyG8af25yamz9MTt4nOuXtuGmxnMaHgsm3VdE4Ju0t7GJMMw7UqnpdbanZDwPnA2cDg8B1wKdV9ZHaU78E/BewY57baowxxqxYcSbD2MZN5HvXTfOEGO/ggSRk7xok2L0Lf/cugt1J8M4+8Rj+gUOrLat9/RNGuaura7fXJqE77OnlkHqOyUtlN6/+17yC4BQrCjY/NuVrJtyucMa+PbiVClEmy8iLXszOCy5KSjl6+xbgq7x8xRoTakgYh42w6IlH2k2TcTIEboDv+FOeyBmGUK1CFAvj48KKNo3vOg5I/QTX2kmtybbZtbO5RKR2Y/wxHNJuenY7nAcaK0W/vKDvMauVElX158Dbj/AcOxnRGGOMmW+OQ9g/QNg/QGHrqVM+Rcplgr27a0F74iXz1C/pvv1W3FJpwmviIKDa14/E8RGXyp6p2POSFQRrC6U0345TabSjM9kepBjKpohe9gpGzzxryY+mLxZVJdSQalwFFFVwxCHjZejxevBdH1/8Q+bghlp4DpPa+Hp4TqWUXLeSySi+l4TmpK4eYk1q68MQwqgevoVqKIQTVhTRJF3XBohFSGaYcecWwGf29Tj0EjfdRpPjaD7TT2lqi4K/wGuDz3r3IrIaeBkwAOwFblbVPfPdMGOMMcbMjqZSjSn+pn6C4uZHCHbVRrZ378Lfsxt/317U86ZYKXDS7UlLaE9eTrsenGezes2ug4OsnW5Uvg3Uw3OoYVKXrIorLmk3TVfQ1ZgNZarwHEVJeA5DqQ86EwRKV6eSrYVn3z/0DxAAXmN3U9UXN5dVTLo0BfDkvZP3D2MhqiTPSY4LkPEBapEkBBeKMh6Em95tPPwqqnJIMPe82jSPtVF0zwHPax5RV+oLWdYvjmhyG8WtLOx6g7MK1LX66D8imUSnfqgVEfmMqn5inttmjDHGmPkkQtSdo9ido3jiSa1uTdsJ45CYmEgjYo0YC8cQhJSTosfvIe2k8BwfT7xDTrCLY6hUx8OzxuAH0JGNG+E5CKYOz3NRH3ked/gArkptNpmJATyK4NlRpTcX43njo9kTgm9zGHYm3p+T+nSTC2jGgVpEfpvkZMN/Au5kfGXE84DfEZG9qvq5BWmlMcaYtlOJy1Ti5E/b7ToVl1l+Io0al1jjZOBYk9piXzxSboqUk2LUybMxu3HKn+/m8BxrMoLpeZBJJ+E5FSQjz0txGXuRpF2NtmncSNmuo/R3V6dK6cvebEao3w9coqr3T9r+VRH5d+ArgAVqY4wxc+a7Hv3OevLFMiPxGJ6vpHyHwAmmXz3PmEUSazLKXC/TqFcro+A7Hr4T0Ol1knJSuOLiiYcr7oTg/DzPETgBqkl4rlbHw7PjQDaj9PXEBH4Snr0FrgEmjqcpVm6q4Wiu1VA9dOi4/ljz9np4rgfoRsF2OP1+6vuYMIztLGyh9hzN5tvjTBGmAVDVB0QWcU4WY4wxK5rnwhlbUlSkm7HiAAfyFQ6MlRiJ8oRaIvCUTCqw0WuzYOq1zfXR5mb16eiybpaUOx6aJ5dq1PNoHEFF65lVGvXI+VFphOdcV0wqBYGv8x+eVZNpPqrVicXLzRwnGVZuDq71bZO3T1eXcaRajaefhmOPHb9f/0I0vlCTLmE4fomi8eupTphtDuZTtXGBzeZbFojIgKrum/xA7URFW8jFGGPMvHEcSKcgnRb6e1PEcYpKJcdIIWTfSIX9Y2MMx2MIkPKFbMpGr83sqOqEEo3G4iYCLm4Smr0MvgS44iHq4eCBOmhtNcq4CpEklzJMKDF2HHA98Bwl8JKg7LnJ9XMFZcvmqHEi3TwfGFQqSQCN4+QNslnI5SCT4ZCz91r1ofRoSz9Upw/iqhODeD2YZ7Pz3/4mswnU/wHcKCKfAu4GDpLUUJ9LslLi1+a/ecYYY9pWGCb/8deKMR0H0mlIpz1W93nEcZZiqZ/hYoW9wyX2jY1SiUu4DmR9n0xgo9fmUNW4SiWugCpR5ODi45MlK2mcRnmGh4uTLDNYq0xwXHBdxatfN4Vjp2n2iZlWJjgO+P48HVQcjwdo1WTnHR3Q15f80gTBkiyTOGr1Qu0lZDaB+k+A00hqpScvCHld7XFjjDFm7lwXOjuhWIRCoTb/rY7/+dnzcFyXjqxDRzbN+v40UdTDWKnKwbEKu0bG2Jcv1Hbl0Bn4BP7S+g/YLI5YY8pxmViTMgFfU2TjVQSSprvDJ51OSozqn93Gw3F8SIXDkhFFSYCOovHfi87OJESnUklSX1INXvlms1JiGXiNiFwOXEYyD/U+4HpV/fECtc8YY0w7chxYV5ubuDHpbTUJEcUilErJdb1u0nFwXZfujE93RwebV3dQDWPyxTL7R0sMjoxycLiEOJByAzp8D8+3wLESqSpVrdYWRUnqnTudTjztQOI06cClNxfT2aH4/jT1xEtNY6nDWoD2fejqSsoY6gHatNSsy95V9XrgegBJ/pZ2oYhcVHvs5vltnjHGmLbnOMmfrIMgGYHr7U22x3ESMsIQyuUkYJfLyTYRfKDPdejr7+CENTlKUZSUh+RH2ZMvUC0KiEPW80n7Lu5Cz6JgFkwYh1S1imqMKmTcDL2pXlxNEVdTaARdnckcyOl0ND54G9VONlxqM0fUTyCs1wQHwXj9cyq1CFN+mNma63fEA+oLurwIWNiKb2OMMabOcZJwkUolQbsuisZH9Mrlxmh2Oo5JO7Am10Hc20khijhYDdmdH2W4UKJaAM8JyLgeQSBLrUTTNFFVKnGFMA5RlMDxyfk5Mm6GQFJUyg5hRXB8WLUqpiPbNHNGFCU/E3E8XhoxeeaI+l8+Jl/DobNY1O8fbW3IVDNwpFJJ/XMmk4Rp+2Fc8uYUqFW1ClwCICJPzUuLjDHGmLmo11mnUkldaV0UNUa0nVKJzmKRznKZjb5PtTckXypxsFphX7HAcMkljJKAlHZdMoGH79nssK1UjZMyDtUYEYcOr4POVCeBE+A7fvL5qSQUgZ5cTHdnMg2d1FdWKZbGT3Tt709+NoJg4ps0zxwx3XU9fDfPIFE/KbA+0wQcPpSLJM8bHU3uZzLjI9ALsdyhWXDz+TeDZVKIZIwxpi01L9/WHLTDED8M6atW6SuV2FIoUC2OUqqEjJSqHChUOVCocCBWHMfF85JFZnz30HmHzfyJNaYSVxrT2aWdNH1BH2k3TcpJIZLM51wqC6UIUill7epkNLoxoFupJH+lcJyk5jiXS2a9mO57Vg+ycxkRbl4Qpfm6+XYUwY4dsHlzMkpuAXrZsyIcY4wx7c3zkks6DV1dCBCoEoQh3dUqG8plKBQoDY0yWqgwPBaxfzSkQEhZyniBEPiAJCfAeY5n82EfhfpCKpW4gqL44tPpdpD1OhqLp9RVqlCuCK4DPd0xXZ1Kqr4aRhTBWK2kI5OBY45JrherbKK5FORw6iVLZkU4bKAWkd9S1S8uVmOMMcaYJUEkGTn0/WQmhd5e0sdAOgwZqFbZUq5QHS5QGioyNFRiuKBUoiplqVJMVcEvNUoNHGd86WmnTRcVVlViYlSV+r9Y48b1WDgGtZMJVwWrSHvpQ1bBjKJkNDqOIZNWNqyLyaSTuZ8nlHT4PgwMJH+FsNkvzCI50gj17wIWqI0xxhhojGZLJkPQkyPYDN1RhFaqVMaqlIeK5PcWGR2uUNWIUEMIQkK/SpkSsShCUiPpittYsnqplo3UA3A9/CraCMdAY25nVBERtFYnrLX7dQ4OnriICJ54OOLg4uA4LnkZYX1mPSknNeUHjlIZqqHgudDfm0x31yh9LpeTsg7HSco5ursZL5w2ZvEcKVCfKSLREZ5jjDHGtC/XRTIuqUya1EAX3ceDRjHl0Srl0Soj+8oUD5bQShWNq4hfRbyIMhFFKhTjYrLkNYyP1k5DVRGmCIvT5MfJm3WqbbV9KpPCsIIjThJ+xUlCsePhUN/mNkbdBUFEEKRxv/n6cAZlJxk3M2FbfTRaFTo7ktroTFqTnByGMFpKnpjNwurVSUmH1SGbFjpSoD4IfGsG+xHgjXNvjjHGGLP8ieuQzqVI51LkjulMJoEoK8WRKvmDVUr5KkGhSKZSxndCcENCIgrkWeMPNOp9pwrPU2+bqhFTp+zD7XNyGF7MkXPVZDQ6jATfg4G+pDba80jqoYulJGkHAaxZk0yVaPMxmyXiSD+Jz6rqO2eyIxF52Ty0xxhjjFlxHAfSGSGdCehdE9RWju6hWISRgyHl0do8xKODOMUMVKuIU5tqzXPBccFzETcZhW3OuY2Z2CbdZ9IsbYc8f4ZZWaeYw2vytiPdn/I5TdtHx5LGdHfF5LriZCIOtLZgTzX5gNHTk8zUYSfymSXoSIH6FbPY1/lzaYgxxhjTLlw3qVLIZKCvzyOKPMrlDM8Ne/S/cBPEMXElWZwmLlehVESLZTQMQZVYk1kkYscDx0tu18qZ46bgGsVJUNWmNUsaz2vadiSTqymmqq6YXNnhyMQEPXnNk+a1USZMd1etwlg5eVJnJ6xdm8zAYiUdZgk7bKBW1b0z3ZGq7p57c4wxxpj247pJObDr1ldWd4CgdgHoSa6mXG691FhuvbEz103KIWYYQptHjxf7fL4nDijd2XB89cJUKgnR2ayVdJhlw35SjTHGmOVilsutTxiGrgft+nLbTeYtRE+3oEnzwib159XftL7K4HSrFxqzDFigNsYYY5a7GSy33gjZxWKyvXlEuz6afbgwXNcchidznGR/jjO+AqDjjO/f8yYufCICzz8PW7bYVHdmWbNAbYwxxqxUh1luvTGiXSollzCcGHwnh+F6AG4Ow5Ovj8bk4mpjliEL1MYYY0y7mbTcujFmbuyUWWOMMcYYY+bAArUxxhhjjDFz0JKSDxF5LfB+IAV0kKzI+Ieq+mAr2mOMMebwrN82xpjptWqE+mrgy6p6maqeDzwA/FhE1rSoPcYYYw7vaqzfNsaYKbUqUN+sql9puv/XwACzW5nRGGPM4rF+2xhjptGSQK2qb5y0qVi7Ti12W4wxxhyZ9dvGGDO9pXJS4ouBEvCtVjfEGGPMjFi/bYwxNS0P1CIiwMeAP1bVPa1ujzHGmMOzftsYYyYSbV5OtBUNEPkMsEFV33GY51wFXAWwZs2as6+55ppZv8/o6CidzatEtYl2PG475vaxHI/7kksuuUdVz2l1O+biSP229dlHrx2Pux2PGdrzuJfjMc+0z25poBaRDwKXAG9S1XAmrznnnHP07rvvnvV73XjjjVx88cWzft1y147HbcfcPpbjcYvIsg7Us+23rc+enXY87nY8ZmjP416OxzzTPrtlJR8i8h7gCuAtqhqKyBYRubxV7THGGHN41m8bY8zUWrWwy1uBjwJXAqcn5XicDawDrm9Fm4wxxkzP+m1jjJleSwI18KXae984afsnFr8pxhhjZsD6bWOMmUZLArWq+q14X2OMMUfH+m1jjJley6fNM8YYY4wxZjmzQG2MMcYYY8wcWKA2xhhjjDFmDixQG2OMMcYYMwcWqI0xxhhjjJkDC9TGGGOMMcbMgQVqY4wxxhhj5sACtTHGGGOMMXNggdoYY4wxxpg5sEBtjDHGGGPMHFigNsYYY4wxZg4sUBtjjDHGGDMHFqiNMcYYY4yZAwvUxhhjjDHGzIEFamOMMcYYY+bAArUxxhhjjDFzYIHaGGOMMcaYObBAbYwxxhhjzBxYoDbGGGOMMWYOLFAbY4wxxhgzBxaojTHGGGOMmQML1MYYY4wxxsyBBWpjjDHGGGPmwAK1McYYY4wxc2CB2hhjjDHGmDmwQG2MMcYYY8wcWKA2xhhjjDFmDixQG2OMMcYYMwcWqI0xxhhjjJkDC9TGGGOMMcbMgQVqY4wxxhhj5sACtTHGGGOMMXNggdoYY4wxxpg5sEBtjDHGGGPMHFigNsYYY4wxZg4sUBtjjDHGGDMHFqiNMcYYY4yZAwvUxhhjjDHGzEFLA7WIBCLy5yISisixrWyLMcaYw7M+2xhjptayQF3rjG8C1gFuq9phjDHmyKzPNsaY6bVyhLoTeAfwf1vYBmOMMTNjfbYxxkzDa9Ubq+p2ABHZ0Ko2GGOMmRnrs40xZnp2UqIxxhhjjDFz0LIR6tkQkauAq2p3R0XksaPYzQCwb/5atWy043HbMbeP5Xjcm1vdgIVmffactONxt+MxQ3se93I85hn12aKqC92QwzdA5GLgJ8Bxqvr0Ar7P3ap6BUI4sgAAIABJREFUzkLtf6lqx+O2Y24f7XrcrWR99sJqx+Nux2OG9jzulXzMVvJhjDHGGGPMHFigNsYYY4wxZg7aKVD/W6sb0CLteNx2zO2jXY+7HbTr97Ydj7sdjxna87hX7DG3rIZaRALgh0APcAZwB7BTVd/YkgYZY4yZlvXZxhgzvZaflGiMMcYYY8xytuJLPkTk9SJyl4jcLCK3isiKPLu0TkReKyLXiciPReR2EfmeiGxrdbsWk4h8QES0NhvBiicim0XkqyJyg4j8XETuEZFLWt2uhSIiKRH5rIjcLyI3icgdIvIrrW6XmT/t1G9bn2199krvs6E9+u0VHahF5GzgK8BvqepFwGeAH4jI2ta2bEFdDXxZVS9T1fOBB4Afi8ia1jZrcYjIeuAPWt2OxSIiA8ANwD+r6qXANuCXwKktbdjC+mPgDcCFqvoy4L3ANSJyRmubZeZDG/bbV2N9tvXZK7vPhjbot1d0oAY+DPxAVR8GUNXvALuB325pqxbWzar6lab7f00ykforWtSexfYPwJ+1uhGL6H8Cd6jqjQCa1HB9CPhOKxu1wM4E7lLVPICq3gcMA5e2tFVmvrRbv219tvXZK73Phjbot1d6oL4cuHvStruAl7egLYtiihOEirXr1GK3ZbGJyOuAKvCDVrdlEb0JuLl5g6o+u5ALbiwBXwcuFJENACLySmAVSegyy19b9dvWZ1uf3QZ9NrRBv70slh4/GiLSB+SAwUkP7QJevfgtapkXAyXgW61uyEISkQ7g08AraYP/iKBxzFsAV0T+H3AsUAD+TVWvbWXbFpKqXi0iWWC7iAwCJwLXAl9rbcvMXFm/DVifvWK1a58N7dFvr9hADXTUrsuTtpeB7CK3pSVERICPAX+sqnta3Z4F9kngX1R1UESObXFbFktP7fpTwGWqeq+InAfcJCL+pD8jrxgi8h7gI8A5qvqL2glclwNxa1tm5kFb99vWZ694bdlnQ3v02yu55GOsdj35k2+K5BNhO/gz4BlV/etWN2QhichZwIuAf2l1WxZZVLv+jqreC6CqdwL/Bfxey1q1gGqB4y+B/62qvwBQ1QeB15N01mZ5a/d+2/rsla3t+mxon357xQZqVT0ADAGTzwxfCzy5+C1aXCLyQeAU4J2tbssieA2QAW4QkRuBa2rb/1ZEbhSRk1rWsoW1l2Tk7rlJ258Bjlv85iyKVUAv8PSk7U+R1CaaZayd+23rswHrs1eqtui3V3LJB8D1wOT5S88B/rMFbVk0tT+tXAG8TlVDEdkCbFHV61vctAWhqp8k+fMhALU/Hz4FfLB+JvVKpKqRiNwKrJv00Brg2RY0aTHsI/kPafIxr6M9RjDbQdv129Zny7FYn71S+2xok357xY5Q1/w58EoR2QogIleQfAP/qaWtWkAi8lbgoyQne5xeWxDh5cBLW9ows1D+AniDiBwHyYIBwK8Af9/SVi0QVY2BLwLvqp3AVv/z8WWsoJNb2lxb9dvWZ7edtuqzoX367RW/9LiIvJ7kJI8i4JJ8Ar6rta1aOCJSZeq/PHxCVT++yM1ZdCLyt8D5JPV5DwBPqOqvtrZVC0tE3g78PsknfQ/4vKp+vrWtWji1M8U/TnJCSwHoIumsP6srvUNrE+3Ub1ufbX02K7zPhvbot1d8oDbGGGOMMWYhrfSSD2OMMcYYYxaUBWpjjDHGGGPmwAK1McYYY4wxc2CB2hhjjDHGmDmwQG2MMcYYY8wcWKA2xhhjjDFmDixQG2OMMcYYMwcWqI0xxhhjjJkDC9TGGGOMMcbMgQVqY4wxxhhj5sACtTHGGGOMMXNggdoYY4wxxpg5sEBtjDHGGGPMHFigNsYYY4wxZg4sUBtjjDHGGDMHFqiNMcYYY4yZAwvUxhhjjDHGzIEFamOMMcYYY+bAArUxxhhjjDFzYIHaLCki0n0Ur+laiLYYY5a3o+lPaq/LiIg33+0xxqxcFqjNkiAijoh8Eviro3j5/xCRfxWRYIbvdZKI7BKRURFRETlQu79LRIoi8riI/K2I9E563Tdrz9Ha9aop9v2Spn0Xa7ffLiJu7faB2uuvFxGZ4vW/X3teRUSGa7ePPYqviTFta6b9Se13uv47eWXTQ+uBe0TklFm85/dFZG9tX/Xf/V0iMlK7/r6InDfpNW9v6ndURH5zmn3f1bTvXSLyzdr2f6zdj0SkICInT/HajbXnDNf6lV0i8oczPa6jISJXi8gjIpKa4fO/P833YUkSkbUislNEPjGHfTxU+56oiFw8j807mrZM93sw1XPr/38WRUQXqYnLg6raxS4tvwD/BNwGdB3Fa33gm8A3AGcWr/s4oMDFTdsC4AO17T8H/Clep7XLt46w76un2H5x0+s/dJjX3whc2ervi13sshwvs+lPmn4nr5y0/deAfcAJs3jfY2v7unrS9rOAp4AQuHCK111de90wcNzh9j3NY0/XXn/PVH1W7TlXAjcu0tf/O8BuoGPS9huBp2fzfViKF2AzMAb84xz3c+Xk/4OO8PynF+p7ONuvf/1nttXfi6V0sRFq03IicgXwXuA9qpqf7etVtQpcBbwceM9c2qKqFVX9R5KO/zTgtdM89WngdSLy3qN4m6Ha5c9E5IyjaacxZmpz7U/qVPWrwE3A1VP9NWmW+7qX5EO2C/z+NE97GugGviQi7lG8zdMkwf2TR/Ha+fZ6YLOqjrW6IQtBVZ8BVgH/vdVtMUuHBWqzFPwpcJ2qPny0O1DV3cC/Ax89yv+MJruvdn3SNI+/B8gDfy0i0z1nOsMkHwAC4P+JSPrommiMmcKc+5Mmfwm8BLh8HvZ1pD7li8B3gQuAjxzF/j8EPAf8gYi87CheP29UNVbVUivbsNBUtaC1oVpjwAK1aTER2QKcB/x4msfX1uqjnxOR3SLyCxH5uoi8YYqnXw9sAl46D02r/27sm+bxJ4H3A1mSUOzPZueqei3wf4BTSf7TNsbM0Qz6k7NF5CYRyYvIUyLy90DmMLu8CxgB3j4PzTtSnwLwTmAX8CeT661n4ADwG7Xb/y4iPbN8PQAi8qWmmu4J9dYico2I3NV0/6ymGu69tfrapyfXBtfrbkk+nNRruneJyINTNMERkT+t9fVDIvIDETluodtd2y4i8t9FZHutpniviPyXiJze9No3yPh5Lk9P0Y6Xi8g9ktTOPyUifyMi75Xx83W+P0Xz0yLy9yLyjIjsF5FrRWSgaZ+X175+G4H6eTq7ROS7Tc85Ytubnjvb34MZE5FuEfmr2s/B7toxfVZEcpOeNyAi/1x7/0EReVJEviwilzY9JysinxGRJ2rPeVpE/lNE3jgfbZ1vFqhNq9XD76OTHxCR1cAdwBnAi1R1DUlZx2aS0ZzJHqldXzgP7XohSY3c/8/encfJUd4H/v98q7p7Tml0jiR0gmQTB5RgECHYJBbYsXFYB1ic2IGfHRTv2tkkgJxgBQJJvDHEWsVZYxzvOk52HS+GJY5jYhLsOAcWPsCswQdHwFiA7mN0ztln1ff3x1PVl3qOnulRT89833q1urvqqeqnunue/tZTz/GV0RKo6ueBzwMXAX88ide4BfgR8NsicuVkMmmMqTBWeXIu8HUgwLVHXg98E/joaDtT1RD3N9qoMgXgC2O83lHgvbimIfeLSFc9L6CqjwF/gqtY+J+TyaSqvodSs5G3qup/AxDX6fvtwEUiclaU9nvATwDHgbNU9Uequg5XtpXv80equhzXrn2fqi6Pbj9VIws3Ay8Br8U1u9uA6x8zrfmOtvufuO/D7wGLozwo8EQcmKrql8uOpYK4KwNfwX1nVkTbv4Jr7gPwH1W1Vln/YVyfnLXAzwNvxlW4xMf2r9Fr7gMeL3v/rirbx7h5j/JY99/BRIlIB6655DuAX4h+s98C/CLwmIh0liX/InAOcKGqrsC14X4t8Idlaf5HtO2bojQX4a7s/vep5nU6WEBtmu210f3hGuviH4b3qeoBAFV9FVfg1nKoap91E5F5InIr0AO8XVUPjrPJb+Jqq7eJyM/X81pR+8JfBfLAZ8trJIwxkzJWeXIXMA/4oKoej5ol/C3w1Dj7PASskzqvQsVEJCEil+E6O38Y12FyVKr6L7jRSTYAn5jES/5X4Ang3SLy/42XeBQPR/e/VLZsM66SQaqWvx34t6gvSyPsUdX/G30++4H7gZ+aSC01U8h39Bl9APiEqj6izkngP+NOcO6ewOt/DBfE3qyqw6qaj/rkPDfOdk+q6r8CqOrzuE6db5eJj1xVT94n+3cwEb+LO3G8Q1V/HB3Pj4E7cBVj26L8LgDeBPxjlE9UdR/wB8Desv1dDfxr/DusqseB23C/uTOOBdSm2RZH9xWdV0TEA94J7I8KmHLfAa6rsa94H/UGpl+KLp+dxF3evRX4fVX95ngbRp2efhV3tn9f9WWtCWz/fVyNwnLgr+rMtzGm0mjliY8LoA6r6g+rtvn6OPscxgUlC8dJV+5dUZnSB6SBbwDfAu5S1WAC29+BC3DeJyLX1vG6qGoB10SlH/iUTGLYTVV9DjcqSXkAejXuhGCwxvIv1/saY/h21fP90f1Z4204xXy/K7r/56p9HsfVMr9FxhibXESWAZuAp1W1ulnPeN+xWsecxHV8nIgJ5X2Kfwf15OORquX/gDvR+JXo+Qju8/igiLw1+r1HVb+mquVDR/YBvyYivxyf0Krqc6r65gbkteEsoDbNFp+BF6qWL8XVEp9WQxydUddqIxnvY0Jn9WX+Y3Q5bTEuUF8I/N0Ea0RQ1e/izqwne5n1E8BXgatF5P2T2N4Y44xVnnRRu+a61rJykylX/ia6JN+Lq2n+Ae7K2raJbBzVmv4qMAT8pYisqOO1UdXduBrLeNSQyfzW/wOwqey1rwK+BHwNuEJEuqMg58248qtRqoPRXHQ/0SsEk833huj+i2VtlA9HbZdXASGwaIzXjX8vJvMdm+oxTzTvU/k7mGg+TqlqunyhqmZxbfw3RM9zuKZNPbjPZZ+4MdWrmwBtwZ2QfgE4LCKfFZE3NiCf08ICatNsI9H9aAVHPT9icdqRMVONIgrUv4S7bNeOqzmeqD/FdYT61Xovs0Y9xW/Ejdv6cRGZdJMVY+a48cqTyZhqubIH11mwANw60XbRqroL+C3cif7ncE0W6nndvwE+i2tXPplRQx6OXvMdInIR7mrhsWh5G3AlrjnFD1W1fxL7H004xe2nmu9fKGujHN96VLVbVfummLfRTPWYY83I+6So6t/jOlm+F/gh8F+AH4jI75SleRzXzvo63O/r9cC3ROSeM5/j8VlAbZotroGuvpx6FHfJ8rSaGXGzoK2q0b4s3seBKeZpB26c6F+LOkaOK+q89B5cTcOncJ09Jiwq7N6L62n9AI0NCIyZK8YqT4ZxTauq1VpWbiGuluzkZDOlbgi/z+NqCX+9ju3+D648+AVg6yRe+iZcB78/wo1+Uo9v4MrBXwKuodQ84hFcE7dfovHNPRphsvl+KbpfWb1DEVkm489m+Gp0P5nv2FRNNO9T+TuYiB8DC6LOieV5aMN9939ctsxXN/Tgfar6i7hOoi8D2yUaSlZEElE79C+p6q/gfle/A9wiIusbkN+GsoDaNFvcWWNV+cIoQP0isExENlVt82ZcAVI9fnO8j/E6gIwpqrW4J9r/b9ex3SHcJar5uOC43tf9Z+DPcD2ZL613e2PMqOVJgBt9YbmcPpnS5nH2uQp4PrqSNBV34QK6D0p9Y+X/F1w72LonESnr+BziJrupZ9s88E+48vZXiDr8qeoJXHvwq3CjOTw82j5qGAaK7ZBF5G4Ref0Y6es2hXz/TXRfa0i2P8J1uBvrdY/ghlm8qEYH880TP4IxFd+/qE30n4vIGiaY9yn+HUxEPILNVVXL34G7avAFgKhdf79IacKkqPPil3GVSfFVnLyILC1LcwjXSRVgUsNCTicLqE2zfQM3ykWtGQN/H9fj9xPxcEci8hpcsPtnqjpQlf6C6P5fGpCvT+BqyH+zaqifManqPwKfpM7Ls2XuwE0fPKWZ2YyZo8YqT/4A1yb5v4vI4uhK13XAW0fbWdQ84zU0oExR1ZdxtdRnU7tT9WjbxeNgT6QzY63tvwfczuTKlIeJKi60NLRcvHwRrr3snjr29wLQG41BfDauTXmjmjuUqzvfUfOCTwHvEZF3R98PX0S2ADdQOZzbaD6Ee58/ISJdIpIUkd+kRs3xJL0AnBPV4F6KmyAsXWfe6/47qMOf4SYwuiv6rUZENuBOJn+IaxoZ6wI+EtVex2PIx6N6HC9L999EZF6UZhnuBPHFaH8zi86A+c/tNrdvuEuazwJSY91y4DO4ZhyHcQXK1lHSfg34xgRe79xoX0O4nscnouerq9J9OFp/HDdO55ejdIq7dPa9Ufbfhvtj/+uyZX607QncD+Nh4M9H2f41uB7QNzb7s7Gb3VrtNk55chFuOvFB3Mn6/waujf6m+3E10eXp4xF8XjOB1/2nqFxQXBORw8CtVWk24NpSj0Trfz+6T0fl0WHg50bZ/+1EXS7Klv15tE1QVo75NbYVXAe8nXW+lwtwJyh/WrV8fXScH6mxze7ovYzL1kfK1q3AjURxFDem8p3R8vuitPHn8E/R8keq9vXZ6cp32fv0G1H5fRzYg+vkeFFZmquj9zlXVpa/t2z9L+BGaBkAduFqiP9T9Lo/X5ZuZ9Wx/WW0/BlKv01HgT8u2+YncONfH8U1MflP9eR9sn8HVdvGv5/pKP1h3DB58fr5uMB6N65f0F7g40BPWZoUbsjZr0ffg0O45iAfBeaXpXsvrkZ9b5TmVdzY1MubVb6MdZMo08Y0TXRm+iwugPzbSe7jZ3GX8y5T1e80Mn/GmNbRiPIk2o+PC052quqEm34ZU03crI3bgfP19GFgzSwx6piK00lEXuT0IVpWABlVrXWpzsxiqvqKiFwPfEZE9qjq/6tn++iS0heA37Zg2pjp0Srl9lTLEygG0/fhagLHbDtrTExE3ga8QVX/qGrVpbgxlU+bwdPMHk0JqHGDim8uXyAin8NN12nmIFX9cjRm5i8C9f4Avh34gKo2cixUY0yllim3p1iegJtxcQ+uljs3XmJjIguB3xWRnar69WgkqvfiOuV9QCc2qY9pUU1p8iEiZ6ubQjp+3o1rI/s6HX+qZ2OMMWeYldvGjE1E1uI6Jr4FN2lJF65W+k+n0vzItIYZ0YY66on6TlWtHmrFGGPMDGTltjHGlMyUYfO24HqZGmOMaQ1WbhtjTKTpNdTRbDePA6vUDcheK837ceMt0tHRcdHq1avrfp0wDPG8mXL+cObMxeO2Y547WvG4X3rppWOqunT8lDPXeOW2ldmTNxePey4eM8zN427FY55omT0TAuqPAF2q+jvjJgY2bdqkTz31VN2vs3PnTjZv3lz3dq1uLh63HfPc0YrHLSJPq2r17J8tpZ5y28rs+szF456Lxwxz87hb8ZgnWmY3a5QPAKJpJ98D/Idm5sMYY8zEWLltjDGna3a9+xXAEVV9rsn5MMYYMzFWbhtjTJVmB9TWqcUYY1qLldvGGFOlaQG1iMwHrgT+b7PyYIwxZuKs3DbGmNqa1oZaVQeAJc16fWOMMfWxctsYY2praqdEY0xzDQwM0NfXRz5fc8TKGa+np4cXXnih2dkoSiaT9Pb2Mn/+/GZnxRgzC4VhyP79+xkeHm52ViZlNpfZFlAbM0cNDAxw5MgRVq5cSUdHB27whtYyODjIvHnzmp0NAFSVdDrNgQMHACyoNsY03LFjxxARzj333JYbzxlmd5ndep+GMaYh+vr6WLlyJZ2dnS0ZTM80IkJnZycrV66kr6+v2dkxxsxCp06dYtmyZS0ZTM80jS6z7RMxZo7K5/N0dHQ0OxuzTkdHR8s2oTHGzGxBEJBMJpudjVmlUWW2BdTGzGFWM9149p4aY6aTlTGN1aj30wJqY4wxxhhjpsA6JRpjWsa6detYt25d8fljjz3Gueeey/LlywF48cUXefDBB9m8eXNDXq+/v59bbrmF+++/35pxGGNMneZSmW0BtTGmpezcubP4WES47bbbuPHGGwGK943w1FNP8YEPfIBzzjkHVW3Yfo0xZi6ZK2W2NfkwxrSMrVu3jrn+mmuuqagNmYpcLsdXv/pV3va2tzVkf8YYM9fMpTLbAmpjTMuYaOH8la98hYsvvphLLrmEjRs3cs899xTTbNu2jbVr13LFFVewbds2Lr/8ctasWcPWrVsJgqCY7g1veAO9vb3TdizGGDPbzaUy25p8GGNmlWeffZZrrrmGRx99lMsuu4wDBw6wadMmenp62LJlCzt27CCVSrF9+3ZuuukmduzYQV9fHxdeeCGrVq3i1ltvbfYhGGPMnDFbymwLqI0xJVu3wg9+cGZf84ILoKw2Yqq2b9/OJZdcwmWXXQbAypUrueGGG7j77rvZsmVLMd3q1au59tprAejt7eX666/n3nvvnTGFszHGjMvK7BlTZluTD2PMrPLcc8+xYcOGimUbNmzglVdeYWRkpLhs7dq1FWnWr1/Pvn37GB4ePiP5NMYYM3vKbKuhNsaUNLDWwRhjzDSzMnvGsBpqY8yscv7557Nr166KZS+//DLnnHMOnZ2dxWV79+49Lc3q1avp6uo6I/k0xhgze8psC6iNMbPKbbfdxpNPPsnjjz8OwMGDB7n//vu54447KtIdOXKEhx9+GIC+vj4eeOABbr755jOeX2OMmctmS5ltTT6MMS3niSee4Pbbbwdch5Zdu3Zx1113AbBx40YeeughbrnlFjzPY2RkhA996EMVnVsALr30Up555hnuvfdeXnrpJa677jo++MEPFte/+uqrbNmyhUOHDhEEAZs3b2bjxo188pOfPHMHaowxs8BcKLMtoDbGtJxLL72UnTt3Mjg4yLx5805bf9VVV3HVVVeNu58777yTO++8s+a6s88+u2KGL2OMMZMzF8psa/JhjDHGGGPMFFhAbYyZU7Zt28Z9993H008/zdVXX93s7BhjjBlDq5TZ1uTDGDOn7Nixgx07djQ7G8YYYyagVcpsq6E2xhhjjDFmCiygNsYYY4wxZgosoDbGGGOMMWYKLKA2xhhjjDFmCiygNsYYY4wxZgosoDbGGGOMMWYKbNg8Y0zLWLduHevWrSs+f+yxxzj33HNZvnw5AC+++CIPPvggmzdvntLrhGHI5z//eT73uc+hqgwODrJ+/Xp27NjBmjVrprRvY4yZK+ZSmW0BtTGmpZRPLSsi3Hbbbdx4440AxfupGhgY4H3vex+PPfYYb3jDGwiCgBtuuIErr7yS73//+7S1tTXkdYwxZrabK2W2NfkwxrSMrVu3jrn+mmuuqagNmaxEIsH111/PG97wBgB83+eWW27hhRde4Hvf+96U92+MMXPBXCqzLaA2xrSMiRbOX/nKV7j44ou55JJL2LhxI/fcc08xzbZt21i7di1XXHEF27Zt4/LLL2fNmjVs3bqVIAgA6O7u5nOf+1zFvjs6OgDIZrMNPipjjJmd5lKZbU0+jDGzyrPPPss111zDo48+ymWXXcaBAwfYtGkTPT09bNmyhR07dpBKpdi+fTs33XQTO3bsoK+vjwsvvJBVq1Zx66231tzvE088wcqVK3njG994ho/IGGNmr9lSZltAbYwp2roVfvCDM/uaF1wAZZURU7Z9+3YuueQSLrvsMgBWrlzJDTfcwN13382WLVuK6VavXs21114LQG9vL9dffz333ntvzcI5nU7zsY99jD//8z8nmUw2LrPGGDMFVmbPnDLbmnwYY2aV5557jg0bNlQs27BhA6+88gojIyPFZWvXrq1Is379evbt28fw8HDFclXlxhtv5D3veQ/XXHPN9GXcGGPmoNlSZlsNtTGmqJG1DrPFTTfdxPLly/nwhz/c7KwYY0wFK7NP16wy2wJqY8yscv7557Nr166KZS+//DLnnHMOnZ2dxWV79+49Lc3q1avp6uoqLrv99ttJp9P81V/9FQDf/e53SSaTXHDBBdN4BMYYM3fMljLbmnwYY2aV2267jSeffJLHH38cgIMHD3L//fdzxx13VKQ7cuQIDz/8MAB9fX088MAD3HzzzcX1f/Inf8LXvvY1PvCBD/D000/z1FNP8fDDD/Pcc8+duYMxxphZbraU2U2toRaRtcAOYGl0ywG3qurXm5kvY8zM9sQTT3D77bcDrkPLrl27uOuuuwDYuHEjDz30ELfccgue5zEyMsKHPvShis4tAJdeeinPPPMM9957Ly+99BLXXXcdH/zgBwHYs2dPsTC/5JJLKra77777pvvwZiwrs40xkzEXyuymBdQisgR4FHifqu4UEQG+AJwHWOFsjBnVpZdeys6dOxkcHGTevHmnrb/qqqu46qqrxt3PnXfeyZ133nna8rVr16KqDcnrbGFltjFmsuZCmd3MGuptwJOquhNAVVVEfhdrhmKMMTORldnGGDOKZhaE1wHfKF+gqntVdXdzsmOMmQu2bdvGfffdx9NPP83VV1/d7Oy0EiuzjTFnXKuU2U2poRaRLuAcwBeR+4F1wAjwGVX922bkyRgzN+zYsYMdO3Y0OxstxcpsY0yztEqZ3awmHwui+7uAN6vq90TkZ4DHRCSpqg80KV/GGGNOZ2W2McaMQZrRiFtElgOHgM+r6nvKlj8AvFZVN1Wlfz/wfoBly5Zd9OCDD9b9mkNDQ3R3d08p361oLh63HfPE9PT0nDY7VasJggDf95udjdPs2rWL/v7+musuv/zyp6vLuJnOyuwzZy4e91w8Zpib5fZsLrObVUN9FMgC+6uW7wHeVp1YVT8DfAZg06ZNunnz5rpfcOfOnUxmu1Y3F4/bjnliXnjhhZq9rVvJaD3Gm629vZ3Xv/71zc5GI1mZfYbMxeOei8cMc7Pcns1ldlM6JapqAHwbWFG1ahmw9/QtjDHGNIuV2cYYM7ZmjvLx34CrReRsKE4YcC1wbxPzZIzsjRXLAAAgAElEQVQxpjYrs40xZhRNG4daVf9ZRH4L+DsRGYny8iFV/Wyz8mSMMaY2K7ONMWZ0TZ16POoZbr3DjTETsm7dOtatW1d8/thjj3HuueeyfPlyAF588UUefPDBhrTHfOihh/iLv/gL8vk8mUyGdDrN7/3e7/Gud71ryvtuVVZmG2PqMZfK7KYG1MYYU6+dO3cWH4sIt912GzfeeCNA8b4RPvWpT/Hrv/7rXH/99YArrN/5zndy/vnnc9555zXsdYwxZjabK2W2TRlrjGkZW7duHXP9NddcU1EbMhXbt2/n3e9+d/H55s2bCcOQV199tSH7N8aY2W4uldkWUBtjWsZEC+evfOUrXHzxxVxyySVs3LiRe+65p5hm27ZtrF27liuuuIJt27Zx+eWXs2bNGrZu3UoQBMV0mzZtwvNcEZnL5fjYxz7Gxo0bufzyy6fn4IwxZpaZS2W2Nfkwxswqzz77LNdccw2PPvool112GQcOHGDTpk309PSwZcsWduzYQSqVYvv27dx0003s2LGDvr4+LrzwQlatWsWtt95asb/f+I3f4MEHH+T888/nkUceoaurq0lHZowxs89sKbMtoDbGFG39p6384PAPzuhrXrD8Au658p7xE07Q9u3bueSSS7jssssAWLlyJTfccAN33303W7ZsKaZbvXo11157LQC9vb1cf/313HvvvacVzp/+9Kf51Kc+VdzvN7/5TdavX9+w/BpjzGRZmT1zymxr8mGMmVWee+6506bm3bBhA6+88gojIyPFZWvXrq1Is379evbt28fw8PBp+/R9nzvuuIMFCxZw9913T0/GjTFmDpotZbbVUBtjihpZ69Dq8vk8yWSyYtnrXvc6nn/++SblyBhjKlmZXdLsMttqqI0xs8r555/Prl27Kpa9/PLLnHPOOXR2dhaX7d2797Q0q1evpquri0KhwMUXX3zavg8ePMjKlSunJ+PGGDMHzZYye8IBtYhcOZ0ZMcaYRrjtttt48sknefzxxwFXoN5///3ccccdFemOHDnCww8/DEBfXx8PPPAAN998c3H9M888wyOPPFJ8/vd///c8+eSTvO997zsDR2GMMXPDbCmz62ny8WkRuVJVX5y23BhjzAQ88cQT3H777YDr0LJr1y7uuusuADZu3MhDDz3ELbfcgud5jIyM8KEPfaiicwvApZdeyjPPPMO9997LSy+9xHXXXccHP/hBABKJBB//+Me56667+OhHP4qqEgQBX/jCF7jqqqvO7MEaY0yLmwtldj0BdQfwGRFpB+4DHlDV49OTLWOMGd2ll17Kzp07GRwcZN68eaetv+qqqyZUiN55553ceeedNdfdcsst3HLLLVPOqzHGzHVzocyupw31I6r688C7gcXAt0XkyyJynYgkx9nWGGOMMcaYWWnCAbWq/np0/4qqflhVfwL4GPB24ICI/A8RuXSa8mmMMQ2xbds27rvvPp5++mmuvvrqZmfHGGPMGFqlzJ5wkw8RWamqB8qevxZ4K/AWYAlwHXCuiCwHPgt8UlWzDc6vMcZMyY4dO9ixY0ezs2GMMWYCWqXMrqfJxz+IyCIR+S0ReRJ4Afhd4DvAO4CzVPXNwJuAduALDc+tMcYYY4wxM0w9nRJfBxwEksA3gfcDf6uqA+WJVPUYcJeIPNuwXBpjjDHGGDND1RNQZ4E/BT6vqnvGSigiXwAWTCVjxpjpF4YhnmfzOzVSGIbNzoIxZhZTVUSk2dmYNRpVZtfzS/q/VfXu8YLpyO8Ap09ZY4yZMbq6ujhw4AC5XA5VbXZ2Wp6qksvlOHDgAF1dXc3OjjFmFmpvb+f48eNWZjdAo8vsemqoPyoivwQEqlqcikZE3g18XVWPlGVy/5RzZoyZVqtWreLYsWPs2bOHQqHQ7OxMSiaTob29vdnZKEokEvT09LBkyZJmZ8UYMwutWrWK/fv3c/To0WZnZVJmc5ldT0B9M64T4t8Cj5Qt/1ngYyLyi6r6zJRzZIw5IzzPo7e3l97e3mZnZdJ27tzJ61//+mZnwxhjzohkMsnZZ5/d7GxM2mwus+tp8nEVcLmq/lr5QlXdCrwXNya1McYYY4wxc0o9AbWo6pO1Vqjqo7ixqI0xxhhjjJlT6gmoF4pIzfQi4gOLGpMlY4wxxhhjWkc9AfW3gc+LyMryhSJyFvA54FuNzJgxxhhjjDGtoJ5OidtwQfMeETkCnAAWAsuAfcBljc+eMcYYY4wxM9uEa6hV9QBwIfBRYC9uevF90fOLVPXgtOTQGGOMMcaYGayeGmpU9STwB9HNGGOMMcaYOa9hcw6LyD83al/GGGOMMca0irpqqEXkLcBmXLtpv2r1hQ3KkzHGGGOMMS1jwgG1iNwF/D4wBJwEwqok3Q3MlzHGGGOMMS2hnhrqXwPepqr/UmuliHy/MVkyxhhjjDGmddTThvrIaMF0ZPMU82KMMcYYY0zLqSeg/lcRef0Y6++aamaMMcYYY4xpNfU0+cgBfxc17fgxMFK1/jrgpkZlzBhjjDHGmFZQT0B9Z3S/bpT1OrWsGGOMMcYY03rqafLxQ1X1RrsBz0xXJo0xxhhjjJmp6gmo/3Cc9dbcwxhjjDHGzDkTDqhV9R/ixyLii8iSqvXfamTGjDHGGGOMaQX1zpT4JuCPgDcAx4GVIvJp4AVV/UQd+7kRuA04XLXqalXtrydPxhhjpp+V28YYM7p6Zkq8EvgH4Cng88CbolV/AdwrIhlV/Ys6Xnu7qv51HemNMcY0l5XbxhhTQz1tqD8M/KqqXqqq/wkYBFDV7wNXA+9rfPaMMcYYY4yZ2eoJqBeo6hdrrVDVE0CyMVkyxhhjjDGmddQTULeLSFetFSLSDSys87X/g4g8KiLfEpEvisjFdW5vjDHmzLJy2xhjahDVic3HIiJ/CZwH3AE8ATyuqheKyHnAnwGvqOpvTnBfb8e1wf6wqmZE5Abgc8BlqvqdGunfD7wfYNmyZRc9+OCDE8pzuaGhIbq7u+vertXNxeO2Y547WvG4L7/88qdVdVOz81GvesptK7Mnby4e91w8Zpibx92KxzzRMruegHoh8G/AT+NmRVQgxHVsfBp4i6oOTDbDIvJN4LiqXjNWuk2bNulTTz1V9/537tzJ5s2bJ5m71jUXj9uOee5oxeMWkZYMqGuZSLltZXZ95uJxz8Vjhrl53K14zBMtsyc8yoeqnhSRnwXeC7wZWAIcA/4FuE9V85PNbORlYFb8yBhjzBxh5bYxxlDnONSqmgP+KrpNmoh8FPiIqo6ULV4J7J3Kfo0xxkwPK7eNMWZ09XRKHJOI/H0dyS+lbJi9aMKYK4D/0aj8GGOMaSgrt40xZhT1TOzyh+Mk+Zk6Xnc7cJOI/DIuqE8A71LVf6xjH8YYY84cK7eNMWYU9TT5+PA46yfWuxFQ1X8C/qmO1zbGGNNEVm4bY8zo6mny8UNV9cpvQDeuQ8qnABuP1BhjjDHGzDn11FBfX70g6pzyPRH5PvBV4MpGZcwYY4wxxphWMOEaalV9YZz9vHbq2THGGGOMMaa11NMp8b21FuOmHH8HcKRRmTLGGGOMMaZV1NPk46/HWPck8J+nlhVjjDHGGGNaTz0B9QvAL1YtC4C+aMIXY4wxxhhj5px6Aur/qqp7pi0nxhhjjDHGtKB6hs37yXp2LCIfri8rxhhjjDHGtJ66hs0TkX/DdUScUHrGnwzGGGOMMcaYllZPQL0B2DnGeqE0W2L5Y2OMMcYYY2ategLqLcAduNE+ngP6gQXA+cA7gbuBo1FaAf6yYbk0xhhjjDFmhqonoL4WeKuq7q5a/mUReQDYrqrviheKyGcbkD9jjDHGGGNmtHo6JZ5TI5gGQFVfBX6iatmfTCFfxhhjjDHGtIR6AuplIrKx1goR+SlgWWOyZIwxxhhjTOuop8nH/wG+ISL3A98HTuGmHb8Q+FXgLxqfPWOMMcYYY2a2egLq23AzI/428Ju4UTwEGAY+AfxRw3NnjJn5NBrQRyY6oqYxxhgzu0w4oFbVALhNRLYDP41r4nEIeEZV+6cpf8aYmSoIYGAATpxwjxMJ8H13X37zfXfzvMqbBeDGGGNmiXpqqAFQ1VPAY9OQF2NMK8jnob/fBdIAHR0uYA5Dd8vnIZstPR+N57ntkkl3Kw/AywPv+Pl0BOCqpVv181rLyp8nk9DW1vg8GWOMaTl1BdQi8lpc04/NAKp6joj8MfADVf1S47NnjJkxMhk4edLVSnsedHVVBrlxADxRqq5mu1CAXM49D8PKwBVKrxEH1+W130Hg8hQH7+VBfK3n5a+hWpmX8QL28jSFAixcCCtWTPx4jTHGzFoTDqhF5GLg68BJ4EVgfbTq28A9IiKq+neNz6IxpmlUIZ2GY8dgZMTVys6b15h9i7iguJ68xAFyJuPuCwU4frwU6Jbfl9/AvVb586nUeGezk9/WGGPMrFNPDfV2XMfDj6tqKCLfA1DVr4nIW4EHAQuojZkNwhCGhlwgnc9DKgXz5zc3TyKl9tgxz4POzublyRhjjKG+gHqNqv5ZrRWquk9E2huUJ2NMsxQKMDjoan2DwLWPbrc/bWOMMWYs9QTUSRHxVPW0XkYikgSWNC5bxpgzKpeDU6fcTcQF0vW0hzbGGGPmsHp+MZ8EvigiZ5cvFJEFwF8C32pkxowxZ0AmAwcPwquvus6GXV3uZsG0McYYM2H11FDfiuuAuEtE+oD5IrILWAUcBC6bhvwZYxpN1XUwPHrUda5rZEdDY4wxZg6qZ2KXfSJyAfA7wJtxTTyOAQ/gOiqenJ4sGmMaIghcR8Pjx11Hw7Y2C6SNMcaYBqhn2Lxfih5+VFXvnKb8GGMarVAozWgYhq6ToXU0NMYYYxqmniYffw98GXgcGJ6e7BhjGiabLXU09DzraGiMMcZMk3oC6hdV9dppy4kxrSwMXZOKeFa+6olFqicZmS6qrqPh8eMwPOwmM+nunv7XNcYYY+awegLqXSIyT1UHa60Ukf+lqu9rUL6MmVnKp8mO7zMZN9xcLueWlaeN1Qpk4ym6RUqPx7qNFZzHN9XSRCzW0dAYY4w5o+oJqD8O3C8if42benyoav0ljcqUMU1RHjAHgQtM41uhUJk2DoYTCde5r56mFKqVt7h2u3xZrXTx69aSy8GBA65ttAXSxhhjzBlVT0D9b9H9VdORETOLxIEplALAZjR/qBaGlQFzLueC5biWubxmGUrTXCeTje3ENx3H7nkWSBtjjDFNUk9AvQ/4w1HWCfDhKefGtI7y2tx83jV/yGTc4/C0yTTHVqsJRBx01moCUb1NdYCu6toP5/OlgDmbLeVLtbTvOGju7LR2xsYYY4yZlFEDahF5L3ABsE1VC8A/q+rnxkj/k9OQP9NMcY1uoVAKTuNbEFTWPseBaUdH/YFprSYQtZo9lD+PH9faV9z8oTxf7e02woUxxhhjpsVYNdS/D/xBFEwDfHWsHanqtoblypw55c0g4o52cWe7uKNdXKPr+67N8GSC5rE0ugmE57mRLYwxxphqccVLNgvpNKRSri9MIuGa+NnVSjMJYwXUGVX927LndwJfGi2xiDymqm9qWM5M46iWapoLhcqa5nzepYkLkLhGt96OdsYYYyYvLqfje9+3wK5RwrAUQA8OuiA6DEsVRfFV0bjyKJVyFUft7e5xMmmfhxnXWAG1JyJbgG8DGSAlIqtx7aVrWdzozJkpCALo73eFyI9/XLkuDppTKZsxzxhjzqT4amDclC6dLlVuxDWnr7zi0iYSpbI6vvl+Zf8Pq/g4XdzpPJNxAXQmUxksj9dnplBw/XD6+0vbibiKpo4Od4trs33/zB2XmdHGCqj/CLgfaCtbtns6MiEivw18ErhcVXdOx2vMGaquAOnrK52BW/MHY0wDWZk9juqrgnFTurhzdNz/Iw6MEwno6ioti8vseEjNTAZGRiqb4UGpc3Uy6fYRB91xIF4eeM9mhYILoNNp9/sXj9rkee79qPoNVFXCMCAkRFXxxMMXH4mD7ETC3So3cq8zMAAnT1Z2bo+D7PJmI3aiM+eMGlCr6kMisgG4GFgI/FemYZQPETkL+NBktjVVRkbgyBFXmHR2zv5C1BhzxlmZXaa8tjmuEY1HOyoPeifbObp8ZKPRxJNOxa9fHrDH6+Mx8+PmC/EtzlccfLdKk4Z8HnI5dHiYcHCAMJ9Fw5DQ9wiTCcI2jyAMKYRZCoURCrkCQRgQoARhgVArR6JSFEFISIK2RIqUlyLlJUl4CXzx8D0fX3y8+H0rF4alKw3lI0klky7I7uwsvd+JROu8x6ZuYw6bp6oHgS8DiMgbxxnl442TzMMngT8BPj3J7U0mA0ePuktUHR02HrExZjrNrTJ7rNrm8hlSy2ub29pG398ogkAZyeUIwpCBdIZUwifp+/jjBdQitWtUq48hDvxqBd2xuGY7Dr7j/cbHVmsI0wYJNax5C4ICYS5LIZumMDRAYXiQQj5LEOQJfQ9NJpG48igQCBQERAVPBBEPwT1O4JHy20s10VWCMCAfFMgUsoQaoiiuvtDt08Mj6SVJxTc/5YJt38NPpCpruYPABdlDQ6WrxVBqNtLe7j6DTKZy2Nj43rScCY9Drar/eSrraxGRdwB54Gv1bmtwheOJE+7yUyoF8+c3O0fGnBG1YgEz/c5omR0qwanB8S+0lQ+lORmjbd/o2uZIPLBSJh8wlMlxaiTLyXSaoUwWVSWXL/DEjw8CHggkfKEt4dOe9OhIpehOJUklE6R8j4QvxcA74Y+Rl/J8j5e5uANf3O64evz+8n3GAXd8K2vjrSIEooSeEAqEKEEYUAgLFMIC+TBPPsgThAHZQpZdx3eVXqeQg2weTQ8jIxk8VUQ8PD+B19ZOIjWPlHijBsajHVoQQj6AIBDyURP2QiAkE+rOH/wEvq8k/WTNPoiqSqABmSDLSGGEEEXVhd2U1XKn/CRtfpur5U4l8CXpAm88vDBqlhn3cdq7t/L9rTVPQnySE19piNdVB+EWlDdVPRO7NJSIdAF3A2+jsp22GU/c4fDoUfdHNW+eXUYyZ1RcaZcvSLGiLg5Jyuf1qXwspy/T8sduvY66/en5yGaFXa/6JJNKKqnuNz26suqJtuTV7JnqTJfZhWzArm8fxkv4JFPQlgxJJSl+zr6nxdgiyuDUX7R8H3HwMonaZigFzvmCkMmGDKRz9KcLDGbSpINhV/spSirh0Z5IsGReByLC4ZMDLJ1favMbBEoQhqSzIYPpNAfDEcIwjIYHUFBBAd8T2pI+7QmfjlSS7rYkbckEqYRHwnOBd8LzSCXHCKrjmudRartDDQk0cLXHYUAY5CikhygEeQpBjnwhTz7Mu2YVKKohItEHJC4I9FIpJJHESyTxkylSiSQe0J0N3VXWdLp0ApNIQPfCCQWHQViaBDcMXcCcy0EuL+QLUio/4gpncd8hz3PlSDgk7mXL1icSkEwobUmNzhUE3xcSY5ybuJOGgGwwOG4td4GQ436uYnsRcScKYehq2/MhnkbPUVfQqlLxjkRBuCiV3+FEwr3/xWDcFYaScG28xfMR33dpRBDPczX61cs8v66Tl+mgqsX3053ElO5DDSuWFa9uhEHp+6ohST9Jb1fvtOWxaQE18BHg06p6SETWNTEfraO6w2FXl52FmmlXHTyPpIV0RtzVbgFPXPAaj/9TXYlV83GNZQkv7qhVOWdQre1j3iB0tKvrt5UVwrT7MdXod0ei/+MKOlcTpST8ssq0qsDbjOqMltkKpOa1kepKuc83hOGCEOaI4hP32bo+eUpbSmmLmggn/DP3mcYtKQqBuH5xGWUgHZDJ50kXRkiHaQrk8fyQpOfR1pGgQ9rwZGIZc0GcP3YgDIShUghDcoWQkVyaIwMjBIELvFVd7Wkc2rUnE7QnfTqSSTpTCdpTSdqSHp6AElLQPIEGBBQIwjwFAgIt4PmgoSKeF51Bu79ZXzwk4eElUiSkvXbtcVzbHYaQCyGbgXDEnUHn83Ds2KjzHKi6k+9Cwf19BwHk8kRBcylgFolreaNzA1F8D9rbdMzzLdcs+vSrFHET+WxWCEKpKFM8z5Un7rsHyQR4npJI+CQ8n5SfPG1/7lhKtdyBhpzK9VeuH2WbCgJanjJ6Ll7V+5YPXZCdjq8yhGgYLVOteLW4HXmNF49qvAXPc23APc9Hkik8z3PLPA8vkXRXEPyEWy+CeD6e7+OJj+e5P8ZQAwbT/S7IRd2tvIlPWRCsqoSExRPI+Hscn5/E94q671u0THAnJfHxxH9r6UJ69gXUInIhcAlw6wTTvx94P8CyZcvYuXNn3a85NDQ0qe1mjLi6I+5gMkFDmQw7n39+GjM289gxT03lpJXiapHjcjcqy2ZKbW+mkObfjzw34fTFSTaL/1UpOz4RLc1qX7auGMyJwI9+NLUDaBHNKLPT+RH+vf9ZvEE/+kwEij+RpXsofZ41P9fopK/i8yz/LOtQ/bfhAr2ymrEoRCj/vrgAQCAPOWB4nNcoFPIcPnmovozVaaigDI24QKQYW1WRiv+l+F5JWYJaj4tlg9R6e08PbEUgkw957tCASxHVuFdPoFszf5P8HBtGq8qUMqVyxFXOu+cuVfwe5HIBr+ztp2VogYogvPqD0bjxS8XCimfZgvL41x8rWxJ9x8o/SCkL7Uf9Qo33vGodEBKyP7F/tERTJqe9IWeAiPwBcC0wEC1qxxXWPwROAR9Q1Zq/VJs2bdKnnnqq7tfcuXMnmzdvnlR+myrucDgy4trsVfcwHsfO559n83nnTVPmZiY75okZr+bZ9yCRUJIzuGP684ef47zl5zdsf3ElWnz5OA6aymtEARJhjoW9SRa+bnndryEiT6vqpoZl+gxoRpn91Ue+SpvfSXtXW/FSr/sYSp+DJx5JL0HSS5EQn6S4TmLxMGgeHqK+q9UMXdvZ0tULJ5GAtpS7chE3F/I9JQjd30U6I2Rz4mpHVSlojoACWYYpyAgF8q5GDCHpJUlIYkqXxw+fPMTyhSsmvf10qwhy48dU9nNUpGYgXGyRoOWfAPSnD9LTcVap5hH3GZSP/NdqwhDCAAqBa85W3pwE3E/5icGDLO2p8VmPEqRXJCl7r8dMM8pOJKrBd01bFE9KV3QSftnJQJSmook2pfX1ev6Vw5x3TlW5WTyY+EtVtlwVDdWVzUF04hpG37FA3TLiqxeuiVSoQiHwos9AKcRXLVM53nTlm+rO80TL7KbUUKvqR3CXDwGILh++Cmy1MU0j+TwcPw6nTrlr0zZyh5mCiQbPHe1jXxqtFmpIPswXLxeWX2Yrfx4/nukq+m7VvAzsnmcGlUz2DGeuiZpVZickQbs/+uRT8eXzbJglXXbZ2JO4ljPqKBYNf+YC7wRJSeJ7UeCrPpm8TzrjEYZxe19AIaRA6GUJJEtGRsiEmWIc6ItP0kvSLnOrC9DEAqmJVNSV0gxmoavzzFfuTadic/QxmpNAZZ+RamO9z6WK2/Hft1r7iWPXMHRNWoonSkhlfxUp30Aq+k66JnPg+6WgO+Fr5aAwZcG4iAuMM9k4Vnb7C6JmPGEYnYDEz7W0PM5CdKEqWlB5jPEJgnjgJaK8eZAS0DDk1KnpLbTrDqhF5OeBzUCnqt4mIm8Cvqeqg43O3JwUBC6IPnbMfSNt5A4zCfn82G2ek8nJB88FLbi2oUGanOajjjAQ9Y8Cqtq6QWXbNgRPPLxiwO3hRW0uo2fF4a7if3FHndI/QAQlJBfmom28CbdLnaoWODdoad/8JvzfB9ezbqWyfr2wamWWBT1BjeYCblSF8cSBdjbMMqIjrgOTltr9A6CQ8BIkJIEnHjnNkQ/z0fBrHglJ0JnobIkTQzPz+T4gccDdxHyctmTMevHKZ3EQHkZN4QPXpj0OzMuvUsRXJ3J54cARv2J3pWZYWqoJF3eVolFXSM/E6dqEA2oRmQd8CXhztOgwcBvwduCvReQKVX213gyIyD3Az0ZP7xGRH6vqL9e7n5an6mZgOnrUPe7ubtlfbdXKkaag8lDG63A2kcczWfWcCqMtq7V+3HRlEUD5NmEIJ0/JtATPmSDNSDBCNsjhIai42rmEJOjyuya+U0pt7pTKdqdxB5Q4Tfyv/HlpJxSby+XCPPtG9lVcw09Iolh7mBAfXxIkvERF0H2mA/DZ5EyU2Y89ptz3+ddWLOvqClh1VpaVZ+VYtTLLqpU5Vp7l7pcty5Ec49dsop91PIpFoAFJzw19Np28dJrUoYO0HdxP6tABvMMHmKcF2laeQ2HxEvJLlpBfvJT84iVoKjWteZkuqspQYYhjuWMczx7nWPYox3PHOZY9Fi07xrHMcRK+H5UHcdkQRiM4qOu6Fq2DytEe4tkO439uHaXtq/ZVsT1Kh9/BsrZl9LYvo7etl2Xl9+3LWNa2jO5Et51I1VC8WlHzT6t2CDuYga6O2XU1IlZPDfV2oBMXQD8P/CNAVEv9g2j9u+rNgKpurXebWWd42M1wWCi4Hs4t1mCsOElXVhgecQFdGLrLLkXFYEmKgV31sKb1KO+XWRo2KzoDzgmv7qv9Ho51ea08q+N1LRgrTa3jGn9ZHGjK2OnKz/bL0uTzwrET3qSCZ1Ulr264q0yQJh2kyQY54l7Vca1dd3LqU9jHP0rFLidT/I0akAG6EqWgvjxAj5sBlA+vVGzCWPYGJiVRDLotAB/fmSizO8++iYV3/i8WF5YyL1hNIns2haENpI+9hhf2rucb319PYWAV8Yfo+8ryZTlWRcH2ypU5F3yvdM+7uybwh8/EA+8JKxRIHe0jdXA/bQcPEB7eS9+xl3l56Biv5Ad5tS3P7gVwYEGBIwsy9J87jKjQmW5j3qEU81/xWZD2WJSGxXmfxdLOkkQ7Szu66elaTHf3Mub1rKB78Wralq6hsKSXsKOjcfkfQ6ABJ3InOJaNguI4YM4dc0Fz8fFxsmHmtO1TXorFqcUsaVvCwuRCOpMdlE/C4pqJRVeyqJyghbKrXPHj8iZm7pwKBC0AACAASURBVDmlq19Qtr37fOMrX8OFIY5k+ujLHuGlwZc4kTteeQIPdPgd9LYtY1l7b3Tvgu7e9tLjBckFFnTPcfUE1FcCP62qQwAiUiyhVPVBEZlQ7++myedh/343pmg8/Wo8WHqzAtjqGQ7bR28rOFPEbXFzeWEkDUMjHrksFbWhnR1jBXRTPzMdrxZXpGwItmp1jEc8kXSNLz8n9/54gxNrgxgHz4WwQCbMMFIYIRtki002PM8jKUm6kvXVPM8UIoKPmyZ4IkYLwOOpiasDcDdxg0+YVhZ3LGIF9XdKNOM7/5Uh3vnDDHt79rGnZx97FjxOehGwBrjQpeko+CxJL6QrswJ/ZC3BwAYOnjiX5184l6Gvb4DBNaDue9DTU3C12nHAXXbfuzQ/qaH18nlhYMBj+MAw6d2nGN43yMkj/ewfPsTB8BhHkic53nGKkwv6Gew5QXrBEYJ1R2Fd2U5CH/rXwKm18PI66F+DegFDHScY6jjBoY7j0H0Clp6AzuPQ1lc7M8eBoz7JdBft6W7as9105LvoKnQxT+fR7c2nJ9VDT8dieuYtYeGiZSxatJTe7h6WdHfQ1ek6ZQKkg7QLknOuNvlY1gXFbtmxYs3yqdxJQk4/UZkv3Sz2elhCDz/FKpaEr2NJ0MWSfCdLc50sybbRm2ljXtrDy+UhlyedHiY5bzFBRweFtk6Ctg6Ctg4KHZ0EyXaCtnYK7Z0Ebe0EqQ6CtjZCL1lqbqCl0YhCBQ3FLadsGE2Nr+ZF7eujTpRdnSG9Z+VZvChPIgH5MM+x7FGOZPvoyxyhL7qPn3/35Hc5lj1KoEHFcae8VEXQ3dveWwq6o+eLU4sbcsIWX0F0FSE58mGBXJgb43mevBZKj8M8QFmfl+j/sgqPeHQaKXteGmmnNApHxT6q0iNVaRH6h0+xOFiCJ9FEN+K76d3FLz72og7F8ePSfWmbYsfjsg7IcdOsZp3Y1BNQ5+NgehQLppqZaRUPFlo9XSwQDWTqgu22tmgg07IpWBv94VR3OJzB7aTjSbOyOVf7PJIudVjwPTcG57ypV1zWpVTDrSDRGJbRP9WQkICsjlTVVpTVYrRIB7mpUlUK6mYky4QZ0oU02TBLSOjahXrWLnSyAXhGXRtyMz3e+gd/jX7pGhYMFliQHcY/dozBk/voG9jDocwhDuaPckBOsT8xyP6OY+xZ+izH11buww+ERUPddA334g2tYXBgA9898Tr+5VuvIzx1tgtkCx0kkyFnrciVBdw52ttD+gd8Bgd9Bk7A4NECQydDTo6kOZk8wkBnH5n5h6BnDyzYDQv2wMrd8NqjlZkIkqSGVtKRXsWK/o30DK5hcXIly5IrWdm5grPmLWbhMmH+/ICeeQW65wUcOn6EeamzGEn7jIx4jKQ9hkfc48F0wMn0ECez/fTn+xlMH2c4f5yR4ARp+kl7/WRT/fSn+jneNkDYsz8KxKu6OA1TGr8v9CG9EHLzoPPY6WnjNEPLYGgFDL4Ghn7OPR5aDoMrSo+HljNQaGcA12O1lXiesnhRnt7ePMuWxvc5envznBc9X7okTyrlOsKeyB4vBtlHskfoy/RF90d4pv+H9B3pI6/5itfwJcHStiUsa1vG0vZecvkciYRfDIALmneBcBgFvzWf5wm00KR3qTW43/soEKcUeF/YfRFvYfO0vW49AfWwiFynqn9XvUJEfhE40bhsTZNUavTurkHghqYbGjp9SrZ4tqz4Vl6zXU/tdhC4acJPnJixHQ7j2ud0GoZGhExGimNoJhJKe5tOy0QJ5TWFcYAcLyuEBQItUNDADfpOgSAMCYi7SVNsU6tAPixwKHPIPR+lXUl8NuuLh+AVL/H7nl/xB3j6ZcTmB+bVQ11GI8m6Ns9hnkzopsXNhtnipcv4zL3D75izwXMjxAG4Nf2YfmFbG9mupQzPK10tWRrdfqoiYYg/OEDu6D6OHdtFX/9uDg0f4FD2MAf1BPvbj7B//m4Obvg6YdXHNm+og67+JeQHVvOjgdfw1IHzyD7/Gte7dsFuvAWvkFzwY2TNbgo9Byh0DlRsnwgSLMotZSnLWN7xM5y1YB1rFq/i7AXLWdV5FovblozzXRk5bUlnZ8DShQVgrKBpfnRbPUYa99OWzcLQ0WFOHNjP8aOHOXHqKCeHTnIy08+pwiADOsygN8Kwn6Ujs4qukR660j10ZxbSnVlAV2YhnfkeJPrNk4SPJtwMeyR8mO+hi04g/ik0sQtJ+JD00UQiSptw6aPHJH3XEy/hZuRDlMH0AAu65uNpAS+fw8/n8PNZ/EIOL5/Fz2ej5Vn8XBY/n4nuo+e5NF4uSyKfwc9m8HPR+myaRC6NR+g6vFXdC8oA89nTtoE983+SfW0b2D+wij3HlvLk/1vAcPr0HoOLFpYH3e4Kx7LePBuW5lnWm2Pp0jwd7a6i51T+FEcyR4o13Eezfe55to8fD/6YfJCjI9lJUtzMiUkvSaffRSqZKg4H6dad/jzhJdxySbrlpz2P9ilJEl60D4mGmPQSxS+I4oaDDOOh6RSCUKNl7rm7V4IoTRAqWlynFWlChSAa6i5eryrFZSeGTtHdOQ+NJm8JCAg0JKTg7qNKMRcLBISUZucMNHDriNcFlekJCbQQVa+V7yMg1IDe9Flj/r1MVT0B9V3AF0XkW8DjwFIRuRP4aeAdwHXTkL8zww3EOOp0qwSBq1XOZGrXbqdSlbXb5QF3PL5MeYfDrq4Z0cNOtTQ16/AIjKQ9N3cMbqiZZEKZ1z25Jghxxx7X2cxNdxCEAQUK7l4L0fqg+EdUbFYbBcjxuJ3lAawXBcApPzHqD9VgVbva2seuFUF7Nsy6x4E7mYov+VMWj2vZtiKCqpZdcvKK7fViYVmD7TjorXhe9taGVU09qrctb9NXHEGjbH02zLFneA8iYsGzmVs8j6BnAX7PApZt2MgyYGONZPkwz7GhA/T1/Yi+k69yZGgvh9oOcXDRMQ4sfoYTye+Q9SsrU9oDn1VhDyuSS1jRuYnlC9ezbOE5rOhcyYr2FSxKLZrRJ1ciriVh++oulqw+Fzi3ibkJotvpao+9nYhunVN72TDEy2bx0iN46TR+esQ9Hknjjwyz9lgfF+/ZTfue79C251VSx48VN+33FvLq8ot4dfEF7Ol+HXuTZ3NAV3Iws4SDhzv4wTNd9A+cHjf0zC/Q25und6kLuOOg+8Io6O49O093V1g87iCAbNYjmxWyOa/0OOuRyXrkcqXH8fJcThjJxmk9slGa4n3142y83m0bj8kehnPnN+LiC4+7oTSmyYQDalV9SESuB3YAPxct/mNgL3CDqj4yDfmbGcaqiY4bFQ8Pu6C5emiLRKI07EVnZ1M7HJZ3Hhwadp0H4+rdREJJJZX2SXZqL0SXrNJBmpHCMFnNFdtOxe9Irdpe30uQpMY0tdMsrmmcaqe4uLNbsdnJGL0ey4NgQSqmifVqrK/O71iGZLAhnQaNmUniMWgbcVUs6SVZMX8dK+avq7leVTmZP8mhtJul8KyOFSxILrST0lbneYQdHRPurOkNDdK+dw/te16lfc9u1u3Zzbl7/462F/bhFUpXDfKLl5BZv44TK1/LnkU/zZ6u17I/sY4D2aX0HUvR15fiyNEkL7zYyYmTp9d0d3YEIOeRy/kUCpP/gicSIW1tSntbSCqltLWFtLWFxefzuvPF9W1xmlQYjZNdPmmLFqdrF696GYinFffl690+tPYyoTSJjAenhk+wqHth5WhfZSOsxhPJlK8juovHso7XFf8y49FGyravXqdBiGo/sHjS7/W4n0U9iVX1b4C/EZFzgSXAsdFmx5ozRFyt9GgzGMY12k3ocBjPHNR3TBhOn955sKsz/uLWVwtdPirESGGEkWCEQlgo1iYnJUm3PzeCu/ITBGNM43ge4OcYyCQRdZ2RiEZsiGfRiyePaAQRYVFqEYtSixqzQ9OSwu55jPzk+Yz8ZNUMrIU8bQcPukB7727a9u6mfc9uVj72j6wdfKC0fVs7mdVryKxdR/aNZ5NZu46BFevZ37Wew/3z6Dua5EhfkqNHkwxnh1k4r7MYALe1aTHojQPgtjYXALeVrW9rC2mLgucJ19GpQlDAyxeQQgH1BPV98Hw0nonlDJw8Hj55lOULJxh6BgGSz+Hl8kgui5fPI7kcXi6L5PPuPpeP0rjHpXW5sm2ySDbHiSXLcBO8To96xqF+v6p+BiAKoud2ID1RZ7hGOgjcVLmn+l0nwnxeGBwSUkmlbZIxrqqSC3PkwhwjwQgjhRHXu1vB9/wzMl6rMWZuSSV8Lli9kGwC0vkcI/k0hQCCAmTzkMl6hDkf1McjgedLVCY1Ptg20y9uSjdjJZJk16wlu2Yt/eXLVUmcOknbnt20791drNnueuHfWfjovyDRVeufBrLLV5BZezbZNevIrF3LqXyaBakupFBACnkknUcG8kih4ALBfN4tLxRKj/N5vPh5Po8EZY8LeSRfwIvSuWVu314+X+uoKqiUBdm+Vwy21ffAT7jHUfDt7hOl9cW0fml9jWUr81na8aIAOOcC39OC5qx7HjSm82WYTKLJFFww7uzhU1JPDfXNIvJVRr9IrsBRVT19wEkzrcLQNeM41e+aciiQSrr2z94QdNRZOR6qm30uF+QYDoZJB+liG96EJGjz26xG1hgzrQRhYVuP65sSiftfFMIgGvoxSyafYzg3TKEQUgiFTA6yeSHMJAgCn4Tn43meBdtNEvelqW4WJ1E3kngSl3SQdk3oRBF11+yL/WnK9lfdp6Z8WVN+l0QoLFxEYeEihi+4sHJVNkPb/n207ykF2u17d9P9w+/hZzKsGWWX6vtoIkmYTKCJpOvYmUy6x0l3C6NlYSqFdnYVl7vtom1qbhf189IQieb6ljBwj4PoPgxdoB6EENZaFrptghCCAhKGVdsHSBC4YL5830GAFxTwO7oIU0nCzi4KCxaiqRRhqs3lMZVyx5SM7lMpwmSqtHysdckaaZJJ1+wnCDl1aoBl0/hVqCeg/klg9zhpVER2Ax9R1c9NNlNmfKquj+TgsNA/4KFAwi9vxjFxgQbkwhzZIMtQYYhskHVtn8W1O7TObcaYmcD3fHx82qILfz0AUdPYIHQdoQsaUAgKZMMc6UKWkWyGbCFPEEadu/IQZHw0TEQTufgVzUjiq99nQvksoPEEROj/396dh0lylXe+/74RuVVWVXdXdavV2tUSEkjCWCCBxRhkCYFYDWMz48vDDGN7jLGvx8/AXO/LMOYOGHuuPXi5Bsbm2ngZjHeMQUaywAKbxSAhBFoMBiSE9l6qa6/KjIj3/nEiKqOyq7orlVWVtfw+evLJzMjIzBNdpVO/PHniPaEs21Yv8el5O4sqDMVy7mb5SdYeakHHViGmQmwNGlSJrEJEqDlsHmNEzHMPB+1iLHKIUiJziDKiaPlKiGmWdio55GVBU0/JsvBzL/Yt/5uVa8m7+dKCLt2Vm6INOJfH6w0WLr6EhYsvWf5AllE9dpQjxx/hwP5z8tDbCc/bbXG3Xqx8AurO0Eug/nHgJ4EPAncDk4Ta008HXgD8T6BGOMH6t8ys6e7vWt/myuIizMwaJ6YikjQsYDLU6K2UXZLXtJzPFphNZmgVRd6xULZnF9clFpEtIix7Gi7FCd5FFaUVFGG7Bsv/so2Gb91C+c2UJEtppS3mkkXm2y0WWm3aKSRJxGILksWYLK+v5w62tKQ1+ZDp8mo9huWndhdDrvkZUUulPD1f+a8TnIsTkmOL8hOoImIzYgt7tZM0L0GWlioglUZtu3hp6c/Oyd/hXmSdk8HLJ4avFNbzlbnzbwAyUs9IsyxvSwjJnR9PFEq5WZ2KhfJs5UU4qnFMtR4R5ye1VSr5CW5RqLa3dAJclvDofMbZZ7RpZzGtdvjg006MpF2c5x/KLUUOlfzEtzgO1ai6fx2KZcWXXefLkWdkZFlGQoJ7Fj58ZQlZlrLonTKj5eVpu1dKXZfgHUW0zzjIQiUlGTujv9daJ0U51nJVqfIHvqX9ig9+XfuWX2fFqlT5P1nmGbNJKIK+Wlnajfhwsxl6CdTPBF7m7p/vfsDMrgJ+yN3fkN//beB3AQXqddBuw9y8cXwynFgYRdCo+5qnchQrI80ls8ylc7Sy9lJ5tapVT1tiTkRk01UqcPHFoQNstcI6AfPz4RpC4InjULb0NCN6kUXU4tqybcW5/sUCSGk+ytlKWywkLcwi8FL4JIRs82hpGeuQKzprwxX3DQMPi2CZWVi5z8O2sEpffp9QtqxY+iBzmJ6d5KxGZ5WaIqAUQab8H6UqQ8X0icxDaFyaZrF0v1O/N5QL9aWVDjulSkNQrcdVGtUKjVqdRqVKNapQr0ZU4zCFJo4iKpHlVRdYqupQvp0fUX6VhbPk03R56VkzqFeJYmOk1go/62oE440w5zavb1w8Lc0s/Dq0IUmMVmIsLC4P3Z7FSxUs4ji8XLTG8+2KWsdhxD1UPA4DUGGBlSxLWSjPaj1F8F7rYlFPli/72Xd+P4qfabniVFF7wDuFvfIX6dyO6EyfiYqPY6UPX+XpNZ198999MyKi8HPIwv8fSytWOuFjp4fbM8wymp2V17wO60pkpLil4ZsHS8m8hZMtrYFhEbBUrpalAghFu09aI2IbrJR4xUphGsDd78hDdXH/M2Yb/Nu0wyVJCNEnJkN5uyiCeu30qxKmnob/+dMW89k8rWwx1CeGUKIuqjKiEwhFZDso1gcYGoK9e8O2Yl2AVqsTsOfnOyVLi5Hs1dYV6GJm+WIYeaWm6mYNMHjnupQa759IOXxwjqXh3GUJtVRHbL1aUQpmoZTpk/zTXZSQbeXBubyoVrE42uhouC5+rkVliQcegMOHw890ZgYmJ2FuDosi4kaDuFa0qTwa6ktv2x260zSE7lYrhO5ksbP0eDFYWpR1i2OWysBFUQhnVVap2pUrLzRSBO+wsFayLHgX32CUy8eWgzceFuTqJQyX55hXrEJkRkS89A1NEeYrUSX/GBg+6RSjvuUpL6uFz+LftFjYpVjiPcun8RT/+lY+MDq/rnHsVOLwrUQlX5ajeOz414xLzxta/h5hKnf+ucvy+06aQTsJ35S4Z2GRGAsfEMOCMGG6T2spmLfJPIWiXB+AOXFkIZCv8/873XoJ1Oeb2Tnu/nD3A2Z2HnTm15tZBJz+lNJNlGUwO2fLFjjcat8oZFmo0DE5FSpzmJHXkVy5rF0RnttZm/l0nvl0nra3ifIvF4s17VWfWER2jKIDbzQ6q81mWQjZ7XYnZM/MdEJ2sdhWtbq5HX932suy5WsVFIq2NRqdY0uScDzJKSodFH/Iionfy4eH16Tn0p9p2hltLobW3TuLnI2MhPYXH2qKNHX6hnQWSBsfPylch69mGyd9G1F8UdHZfHLoLpq99GNwy1cFDqE7SWGxZcsGz8sDueU6yyF851NaegjexUmZraxFmoXzliCMsHav1Hu6MLyWKRHFr153OE68841IODg6nzRyeQEPKpFTy6fqFAF56dcMX/aZb62/ehZBc+hUpXq7HzPcY9zjZcdTfEDK8pHv4tcxTUMYT7KMVjtch20pjZHF0zewD70E6r8GPmVmvwncCZwAxoBnAT8C/BWAmZ1PmGt9ZH2b2p92Yjz0aBTmruUfnCtVaNQyatV8RfHIlwL3Zp0BXpxcODltTM+Er0mqFWdkePnJhUXljcQT5pN55tM52p7kX4N0PpHWrXv0eYt9ahARWW9R1AljI/kAQrGgVrHK7dxcuBRpIoo6QfbJdPjFX/HyX/JuxdzvWi2skFueB14uN1Lu7O+7D87qOmmrSETFexVTKIpLq7U85JZHh4vbxfsU71lcVju24rW7j6sI/t2heY3fCKzJkwzXp7KW0F0On0XwLv6p20v/3GF+93y5npktf6k4KhZHCSPHlai6Ytg8MTXBOc1zVm3zskDs0M7CexQhcvl7nxyKozi0pVoJo8ZhtfiQc4pfich8WSB+Ep/JNlx5OtHJVgvnxc75D90rML/6wmvroaeyecD/B/zyCo/9MfDG/PYPAecAv9Vf09bfSDP8khfSNJSbm5sLXxOVv5epVEKwbTScWr5uSzlw98O9c3Lh5HR+cmHsNIfyM6Q9o5W1aXub+WSehXSelrdDmaH8a55KVKF2UngWERGA/Cu+Tpjdv78TFNvt0AkX00WK0Fg++bEcYJfmC+Tcwx+CIlwWi3uVvwJdz3IhS2fzreFPdnm4rnwMxXEXo95FCC8/rxDHIczu2ROOrxyaNzttbUC4PtVbFT++sFbbSmGts+2kzzn5yHeShCkM7bbRTo20Vf6ck3/AyYPyzKzl89eXZ+PiVzGKnDiCWqVzImb5BM/IOqsdbuVQvBv0svT4LPAaM/tvhKVmDgGPAv/k7l8p7fdz697KDbL6J9bO/yRT00aWdSbCF6Pb1apTr4WluqvVEIiLbxVX+0VutcK0k4nJiHYS/seo1VKiapvEE44tzjGfzbOYtsK0DYPYwsIpw1Zb+UVFRGRtyivbNpswNha2F2GzOPlxYSF05uWw3D2qvFULWRdJbC26h2SL527Vsm2nC9fFB4FNav/Jn3O6A/jy0e9ln3My46E559yzs1VDsWwvPX9Hs9oqiWZ2jbt/Zl1atQFSTzm2eDSc5GBx58zVqFMkPkxgL03Wj41KfHKpIbCl0e3ZuXw+koVJ+0V/VK85tZpTr4X/kSYmjYUFSK1FXG3TroQ5z4tzLYqUHltMxSqa8ywisplWOvlxNzh5SHb72GLh+nRO/pwTRplPPZ9YtpN1nPTEOwnzqbek1FOmk5mlaTUn1Vcsnf1b3F8qublCmZlyKZmlSJ6fIUwakc1G+FQo4ZN5hlfmSC2chEAr1EytWIXhTTujXEREZAfaZuFaNkn32YobbM2B2sIppW8EfhC4iLCIy7ZSj+pE8fp8j1KuB1rcL5ZVdcLyqV7pPF6xCo1I4VlERGTDKFzvXN219opLMf+/fDIuLD/xeGgoTOHaQL2MUP8XwgmHfwl8H/DufPtZwPcQqoDsGsUUkM6GwbVFREREuihcb33lYFzULy+XYywH5GLeTFE5p3x+Q6cIdm91/NZRL4H63wPPd/cnzOzF7v6W4gEz+5/AW1Z/qojsNJWJ4zTvu4fa44+R7NtHMjZOe2ycZGycdGRUZ9WIyNZxunBt1glwRSjbyido9qOoWlMe2S1vX21b+fmrPda9X3eozbJOjfjySbDFicJFtZzucLyVTwTO9TSH2t2fWOl57v6VvP701vS2t3H5Zz/Hwiu/h8WnXaZ6MiI9iubmaH75Xpr33cvwfXfTvPdu6o89uur+Hsck+8Zoj42R7AshO9wfJxkbC/fHxmjnj2XN5tb5/zJpE8/OhsvMDPHcDFFxf3aaeHaWAxMTtJ53LVzzrYNurYj0qhyu9+8vrQhSquu9uBgu8/PLn1su7bFVV4gr6qMXc4hhebjtHsEtgmo5tJavi0LQ3QWhu/eBla/Ltx9+OKyKOaBR5I3US6A2M6u6exuYMrNvc/d/yh94OnB4Q1q4Hr75TQ7f9GGiD/4184cv5vhLX8HxG19G+4yDg27Zuovm5tj7yY8z9tFbGL39szx1bB/tw09h8YLDzF94mMULLmTh/MOkxQpjIt2SNkNf+yrD995N85/vYfjee2g88HUs/xpu8ayzmbv8Wzjy6tcwd/kVLJ59LpWpSSoTx6lMTFA5MUF14nh+/ziVExM0772b6sRx4rnZFd8yq9XzgF2E7ZMDeDvfloyN4/UVarAnCfFcEYSnQwiemyWencmD8WzYNhNC8bL7xfNmZ4kWF05+7S4exTw6Pt7XP7OIbBFFuFup0kkRSouwXdQwL+qYl0doi7C5ESvEdZ9gV0yT6A6kxZzhogZ7rdYZ7S2XfRyUonTlDtRLoP488Ldm9hrgT4CPmdnfEepevAj4sw1o3/p497u55XnfwWVf+BL7b/4w57zz1zn7Xb/B9FXP5vhLXsGJ77ghjJBtU7a4wN5Pf5Kxj97C3k9+gmhxgdYZBzl+40tJjj3OvkceYc9nP03U7qwG3x4bZ+HCwyycfyELF+RB+8LDtA4e2vJfq6zE2m2qx45QOXqUsYnHGDo0RTo6Sjo8Sjo8vC2PaVO4U3/oQZr33hNGnu+7h+ZXvkzUCku0Jnv3MXvZFZy47gZmL7uCqac9jaPDxkRrgonWcSbaR5hvP0hzZJiRfSOMXnIOI5WnMlIZYbgywlA8tGyJXFtcWCF0T1A9MdEJ4BPHGbr/a1QmjhO1Wis2O20O0x4b51Iy6guLRLMzxAtrCcIR6fAI6fAw2fAI6fAIyfh+Fs87n3R4JN82nF9G8m3DJM1h5pt1phrGVAOOzE9z3v5zOXt9fgoislWV5+2upBy2k6QTthcWOnOBC0Wg7V6OvXt5+vLzyitdFmF5eDgE5XJIfpJLz8v66SVQvxV4DtAmlMg7B3gdUAf+AnjTurduHbVHRznyqn/Dse/+HuoPPcj4zTcx/pEPc+Fb30z6K7/I5LUv4NhLXsH01c/ZFnOmrN1m9HOfYezWm9n3D7cRz83SHhvn6MtfxcQNNzL7jCshinhs4lEOjZ0FaUrt0UdoPPgAjQfup/GN+2k8+ABjf38rlanJpdfN6g0Wzr+AhQtC0F4K2+edj9c39gzZFSVtqsePUz16ZPnlWNf9EydO+TJpczgP2COkIyOkI6XbwyMnPzYyEsJ4vj0bGtoRHVXl6BGG77uH5n33MHzv3dS/fA+T6TRPDMPX9lV5+OJzePh5z+CxQ6M8PlbnaGWRifYEx1s3c6L1fibvmDz9m5TEFjMcDzNSGVl2Ga6MMLJvhJEDxbYQxIeX7TfMnlbM3qkF6pMnQhAvAvjEcSonjrOwMEtt7IylkFwOwa3mENPNCpONiOk6zNRhJkqYzeaYS2aZS+eYLV2H299kNpljLp1lLpljNp1lbnqO2RNzpJ4sO7YfveRHuZEXreePR0S2B/RLcwAAIABJREFUmyLMrvStWXmJ+DQNIbuYTpIk4fHZ2eWrbhYn3JVX2xz0qLKsSS8rJd4P3F/a9NP5Zct7z3vgU5+8iOu/3XjaUxdZPPd8Hv2BH+bR//hDDH/pLsY/8iHGPnYL47fcRGv/ASZufCnHX/IK5p9y6aCbvlySMHrn7SFEf/xjVKanSEb3MHHDjUzccCPTz7x69U/RcUzr3PNonXseU//q+cseqkwcp/6NB0LY/sb9NB64n+F772bso7dg+ddZbkbrrHPyoB3C9tT55/Lo2fs4NuScaE0w0ZrgRPsEE60JZpIZUk+XXTIy0iwhJSNN23hrAW8tkLUW8PYiWXuBrN0iS1pkaZs0a5NlKUkEqRGuI0jGIT0jol0x0shIYiO1Kqk5qTkRRpMaQ16hmVZophHNxBhuZwy3JmkuTjCykNKcTxidazNytM3wYsZwG5ptGG6x7PZoG5ppRKMyTH1oFJqjq4fy5jDZUJNsaIi02Qy3m03SoXA7bQ5BZeO+7ko9Zao9GX4WU48w+427mXnky0wd+wYnZh/nuM3zxDAcGYEjN8Qce1naqbdOG3gAeADD2Duzl/HaOGO1MZ4y8pSl22P59Xh1jLHaGEPxELPpHDPJDDPt6XCdX2bT2c79/LHHFh5btj31U9cHNYxmZZiReDgE8EOd0D3fjsiiI8wlDzCbLg/KC5MLsIb8H1tMM27SjIcZrgwzFIXL3tpBGjZMw0aoM0zDhqkzQs1H8IUaz6o8tb8flojsbFHUmXYBMDraeSzL4JFH4ClP2RGDNdLnwi5mdilwOfBZd39kfZq0/j78YfjABy7n994Lw8Mpz7pyhqueOcPVz5zh0iuuZPYZV/LQG3+CvZ/6B8Zv/jAH//SPOfOP/5C5p1zC8Re/gokXvWRw862zjOEvfoHxj97Mvr+/lerEcdLmMCeuvY6JG17M9LOvwVeYj7S4aDz4zTpPTI4yM9Ygjpw4Xx49jj3cr+S3aweILt3P/KWXMJUeZyo5wYn2BCfmjzBz5AGmJx7ixOxjTC5OcDy7nePxJzkSOdNHgCMnN9kwRm2I2I2KG3HqVFMnTjOqSUacpFTbKXEGsUMlgziDikMUVYkqNaLqEFF9H1ZtENUbWG0Iqw9hjSZWGyKOK8RExFGFiLD6ZWwxkUVMz08RVWMWsgXm07Ai5UK6wGP59dK2LGUhbS1f4Gf1HwQwDUxTT42hNGK4bQy3nGbLGVnIaJ6AaCIsCOSsfo0ZWRyRxREexeE6jsiiCI+K7fntyPLblj9uuC2/7ZGxmCwy257iRDpNZl3HsydcxttVxm2cfUNncPaes7i8cYBR20+TcZp+gEayn3pygGrrANHifhYXqsyfiJhfiJifD9cn5iIeXShtm49ptaxzvkrkYS3RpfNWOkvqGlA1Z38EB4pFlKIMj+dIq1Nk1WnS6iRpZYq0OkVSmSKtTJJWpkkq4f5MZYoTlSmSeIp25VE8y6hke4iTUaL2GUTtUeL2KHvbI+xtjcJiuPjiKCzsIVscJZvfQ7YwSjq/h3R+D8nCEHNJxHTa2x+16g89yvd/T09PEREJihFnhekdo5eFXX4A+Dngd939rWb2SuDP89eYMbOXuPunNqidfXneT/wqU8+7DZ8+zPGHzua+r57DP3z4HPjTM2hykKsurXP1Mxe46pnfyaVveyG16QnGPnoL+z/yYc79rXdwzrt+nemrv43jL3k5J659Qfj6fyO507zvHsZu/QhjH/s7akeeIKs3mPz2a5m44UYmn/vty6ZfJAnc/0CDe+5rcu99Te755yb/8g0nrU5CswXNh6F5FIaPhOvmkZXvx8nK7WkPYekZRO1ziRYOEC/uJ57fz765fVTn9lGbHaUxPUxjskljZoj6fJOqOzEpFRJiUqKqEdUqWL1K1KhgjSpRo4oN1bHhGjQb2FCduGJEsVOJPT9PxKlUPP/mK/8gEEMUO3G+LYo6HxSiyJldnODM/Xup1zMa9YzGUEa97tTrWb4t3I6isCDPYraYh+5O4O4O4/Ndjy2k88ynnev5dI7J9hyeJVjmWJYRdV1bmhFl2dJtyzKiNKWSZURJhqUJUZqGfdIUSzMyj8mIyTzGiUlL91MqS48PZw0OzZ9BdXYv8eKZOOeTcpjED9NODtOaO8TCbI3ZhZijeRheXOztK8RaLWOoEf49hxrh0mxmjIyEEWbPLHxwWCojarhbONkcwCHLolLFJgv7eg18H+5GVlRhcsjyx4v7sRuRhw9e4T0MJ6Fei6jEnk9z9JMvcX7ddCp7wu242BbPU6nMnfp55f0r4X2S1jyXX26EMvwiIrLb9TJC/TrgV4D35PffDtxHWOTl+YQ51i9Yz8atl7sev4vPzX+cGfswfp7DeZ3H5oB/AP5hbhw+fwbRpw4wXh3n7L17uegHn8el1edwwb1f58LPfpFz/9enOfDOBpVnv4DpF38n08969vrNt3Zn6KtfYezWmxn72C3UHnmY6WaFr/yrq3nwef8Hjzz9qUzGLabb0zz4z3/F/Y/P88jELE/MzDLVmiKrTcLQBHbJBDxjAo8XV32rId/HkO9nKBtnKDubRvZ0Ggv7qSf7qSX5dXucavsAldZ+omQkP1/CSDPr3E6NtArpiJEOGekByBZTstkF5loZaVQjiWskViX1sH9WPHfRyOYhPZq/ThoCUvH6WWok+Xv07sI17VWtdoJ2o55Rr60cvMOls99w3RkvnpM/1qhn1GoZKcZCK2JhMQTWhYWIhQVjobi97NqYX8j3W9q3eK7Rbvc+Z64SZwwN5ZdS+N03mjF0xiKNRnisOZQyNJQt3R9qZDSHSmG52Kf0GqvNJhqkpXMENtnM9Cx79o5s+vuKiMjW1MufyD3u/k4AM/tW4DLgVe5+J3Cnmb1+Ixq4Hv7gu/6Av4k+xBn7DjLjM0y0JjjeOp7P+Q1zfx+ZOsH9R6Z4fGaSyeSrHE2P8sWJYxBlcBB4RfFqC8BN7Hv0Jg78ZcxYfT97DlzAnn3nhfml1c4c07HaGPuq+0g8Yao9xXR7iulkOtzOr2cnHmbxka8yN/EIk8wzMQbHv6/CZDUisQT4TLjc3X1UBkN7qdX2sTfew1hjlDNHz+Pgnqext7qH0eooeyp7oAWHxw6zL2/PnsoeKlEvP/ZJ1jQRdQNlGaRZCNkh1IdQnpXCfXE7SY3Hjh1jpH6QxTyYFoG1uL3YCreL0Lu0fTFiIb89NxczMZHv11q+X5b1HvKjKITuRiO/1DMaDafRyBgdTTnjQLv0WB7eG8v3r9d96f5Q6fF63ZlceIQLDx2kWl3L9BURERFZT092zOm1wBPAh0vb2qvsu2VUogrj8TjjtXEu5uJT7vvEkSqfu7PBp+9KuPNf5nlsehKGj9AYf4xDhx/mwPB9jCZfxCce4PGpJ/jSns9ztJGdPH/1FOIMxuZhbAH2DA9TH76EPbXDVGcO0Xz4AMcePoO54wdgYR/R4j7OOzDE085v8C0X1bjyqRWecvEi1dP8BAc1greelmrNV/Lv/k9jaM80h8Y2ZvTQHZLE8pHkThBfXDQWWxGVincCcyk0Vyq+oVPlsolEYVpERGRAegnUj5rZzxAqffww8L/cPcyUNHvORjRukA6e0eblN7Z5+Y3h/uNPHOCOOy/kjjtHuOPvR7j9oVAiZ89Im2sOfpnXzfwNLzryx5zTvJdvXPMMvv78q/nmZYeZYJaqVRmbyzj7rvs4/zN3cvY9XyVeGOauc/4tnzz31dyeXc3d94/x8CPhNc2cC85f5PrL5rj82jmuuGyOSy6Zp1EvAlOaX2SzhZr0TrWaLjthW0RERHavXgL1jwF/A1wM3AP8EoCZ/RohYL993Vu3hZx5sM3LXjzBy148AcBjj1f5/BdGuP3zI9xx5yXc8sTP8FP8DPvas1z7j5/gBR/9CDc0PsC51x6ER4/w9S85n+PZfGDP/8Pn4mv4avtM/H6D++GsQy0uv2yOV//rY1z+tDkue9ocI8PZaVokIiIiIltBL3Wo/xm4xMz2u/ux0kNvA94BPL7ejdvKDp15csC+484R7rhzhNs//wI++MhLYQH23TLBLMO0CXUox+M2l182xwsue4zLnzbH5ZfNMz62SnUNEREREdnyep5D3RWmcfcjAGb2EuAj69SubefQmW1e/pIJXv6SELAffSyMYH/hi8OMjk5wxdPmuPyyOQ6d2VbZSREREZEdZD0LYf0iuzhQdzvr0PKALSIiIiI7Uy8Lu+gsOBERERGRLr2MUD8BvLtr2zDwNOAZwO+vV6NERERERLaLXgL1n7r7W1Z6wMyuBl691hcys2uBNwHjQAzsA97j7r/eQ3tERGSTqN8WEVldL1U+3niKx243s3f28L6vBb7g7v83LK28+Hkz+5q7f6iH1xERkc2hfltEZBXrclKimV0PHOrhKb8BfLO44+53mdkJ4Cnr0Z6VxJFxdHaeSgz1GmAQWURsMRHh2lR+Q0RkNZveb4uIbBe9nJT49ZU2A2PAKD0s7OLu95ZeNwJ+AFgE/mytr9GrZq3Csy86n4nZjIlJJ0kzPF7A4jatbJH5tIV3LWsdWUTFKkvBW0RktxpEvy0isl30MkK9F/hg17aUcLLix9395l7f3Mx+HvhR4DjwMnd/uNfX6MVwM2J4OObsAzC/YEycaDI7ZwwbNBqOxSlJlpB5SkrGYrpIK2uRZG0WsoXQZsBxzKKloB1bTGTRRjZdRGRL2Ox+W0RkOzB3P/1egJl9zN1fsO4NCPMsXgu8E3ipu39qhX3eALwB4Mwzz7zq/e9/f8/vMzM1xcjQ0Enb3SHLIE0Nd/KpICu9QjF+Ha7dHSfLrzuPFZHbKF7E8oVcBjOdJEnaVCrVgbz3oOiYd49BHXeWZsRxxNDwyX3K6Vx//fV3uPvVG9CsTXO6fntd+uyZGUZGRtahtdvLbjzu3XjMsDuPezse81r77DUH6o1mZn8D7HX3a0+139VXX+233357z69/2y23cN1FF8HQEKstVbi4CNMzxuR0RJJCteLUa6vuvkzmGamnS5d21qadtVnMFmhnCamnYY52nrlD7A7B3MyILMJY+bofj008yqGxs/p6je1Gx7x7DOq4Z6Zn2bN3hCuv+daen2tm2z5QF9bSbz/pPvu227juuuv6aN32tBuPezceM+zO496Ox7zWPns9V0pcMzOruXura/O9wOs37E1rNRgdhYkJqNfDpUvY7OwfT5lfMKamYWo6yp/u1E4xEBblU0CqrLxTMZKdeUZGRuYZ7hkZTpqlZGSknpB4Pu0kS0k8bA8vwKYGcRGRsoH02yIi28RAAjVwh5k9w5cPj58NbOxcvDPPhL174bHHYHoamk2ITz7Z0AyaQ05zCM7YnzI3b0ycMKZnjCiCRt1XetopmdmTCrqnCuKOk2TJKYN45hmzyexSEAcwLIRxoqUPAhGRqpyIyKkMpt8WEdkGBhWoRwkntfwmgJldBfwb4Kc3/J0bDbjgghCon3gibDvFNJA4htERZ3TEabdhZtaYmIyYW4BK5NTrEG3gYHC/QfzemXs4r3neSSPibW+TeLIUwlveIvNsaaq35SPinXnlJ4+AK4SL7CqD67dFRLa4QQXqnwVeb2avJVQKGQJ+DHjXpry7GezZE0aojx8P00BqtRWngZRVqzC2z9m3N2VxEaZmjKnpiDTrbb71ZiiCuGHUotqanuPuS6PgxYh4sW2lkfDuEI47mC2bjgIsC+Ld9xXIRbaNwfbbIiJb2EACtbu/D3jfIN57mUoFDh4M4fqJJ2BqCoaHV5wGUmYWBrobDedAPt96cipMCTGDes2pbnDhAfdOhRJ3yPL7noUaI1k+9TrLoNXmlPO/O8dlxMQ91dwuAnfq6YrzwjMysiyUIewE9ZR2li6FdhzcHHM7eYQcOsVTYFlIL4/cl6exiKynzLOlb3Mcx91JPKUenfoD+E6zZfptEZEtqJeFXT7v7s/ayMYMTKMB550HMzPw+OMhmTabaxpujiIYbjrDTSdJYG7eOH6a+dZrDcPA8tFfrBgEBsLngShy4giqMcRxuB3HTqUS9vvmbNg2M2tLJzXWqusX+J9MCO9WhPJOCcIwZ9wJ/zBOKFZYDunuWZgrnod0JyPNUlr5/Zn2TBgRL/8Il0J6KGtopaBePLw0x6W0vXskvQjzxfEbyx9bqyc7Or/ye4R/M4369yfJEhIPVXmK/9kqVqERN9hT2UM9qlGJqqRkDNV2V6AWEZHV9TJCfYGZ/e4pHnfCIi93A3/i7klfLdtsZqEKSLMZpoAcPRqmgTQaa36JSgX2jDp7Rp1WqzPfOl04+a3iuBOGaxUniqCSbyvCcBSBER5bul+6Xos4hvPOyciyUBZwYTGE/ZlZwyG8fzW856AUoXy9SnXPzcxy8cjFACyrEl4K7OX7xX5FeO9+XpYtjbXnz8vIusJ/5vljlD8Nnay8GqefeteTnneqApfuzmK62Gl3+cNC6Xb5Q0Qx+h8WKupMx1l2O79fnq6z0v3tJowyh/CcZWn4H8qhFlcZiYdpVIaoWIVqVF3xw2Jm3cUuRERkN+slRk0BrwEawAlgEthHWEFxmrBq1jjhxJU3m9mL3f2BdW3tZohjOHAghOtiGkizSa+Js1aD8Zozti8lScLf617D8HqKonDu5dCQM7bPSVNotcKKkVMz+XSVKCxqM+iAvR7KobCzcUCN2QQz09McHjm8dL/84WG12+XR/5U+PBQfHMrz6p0s36fzLcJS1M8Tull5kaTlJ7EWVWU2U5rP+088CdVuPLSrHtUZrg7TiBpUogpVq27LDwciIjJ4vcSmnwJeBvysuz9SbDSzc4E3A3/h7jeb2fnALwO/QjgDfHuq1+Hcc8M0kCeegIWFML+6xz+4Zmz4fOonI447AXt8LATsxZYxNwfTcxELsyEfVSKnVjvttHLZYpZNRdngjFgu7ZjmJRvLJ7MmWZuElCRf7CgpvrxaYRS9nwC+bNTZM8zBDar5lI2haIhqXKVqVSrRNv/EKCIiW0ovf1XeBHx7Vw1S3P0hM/s/gb8Hbnb3B83sPwBfW8d2Dkb3NJBjx8JI9QpLmG93cdypvX1gfxhVb7WN2TmYno2YmwcMKnFY4EYBWwrl0o6VNXYpxYj3SgE89YS2J2sK4EWddSCvaFNlT2WURtyZsqFFjkREZKP1EqjP7g7TBXdP85Hp4n7bzI713bqtopgGsmcPHDkSalgPDfU8DWQ7qVSgUuksbpMkYQR7dg5mZiPm83nhcRzKBW5kLW7ZeYqR534D+Oz0DGc3ziLWlA0RERmgXhLhjJm9GXi7u7eLjWZWJdQnnSpteyqw806Br9XgnHNgdjZUA1lcDMF6F6TJImAPN+HggZR2uxOwZ+ci2u0woF+phBHsXfBPIptotQAeW8xQpTmgVomIiAS9BOqfBD4AvMnM7iGcmDgGXA40gVcCmNkvAG8E/mRdW7qVDA/DhRfCiROhGkgxIXkXqVahWnVGhgFSWq0wRWRmNoxgZ1n+rXxRUaJU7u+U5SpWUB50XHa7/ELl8nceam9HpZNANXApIiIiG2XNgdrdb8qXmv0Z4BrgKuBR4Cbgbe5+X77rHwJ/BXxzndu6tUQRjI/DyEiYBjI1FUL1IM9AzDJIU0iScLt82eAh41oNarUQsN3DCHa5nnZ5spCX0u+y7avcLr/OSrfdOxndHaJJp1qBJA0hP0k6r2fG8nm4FKE7lCcsQvigqrFAqT55tnKN8qUPJ6XjyLJOrfHiuOLIieJQGrE4JulNmobfozTN68Nb+FlY29izBU82FhGRwehpErC7fwl47Wn22f4nI/aimAYyNwePPRamgTSbG5Ne3JcH5jRdnvoqlRDoR0dDlZJKBR56KFQoybIQ+DfhbEKz8M+yuh6HqHtUeRzOOWt5kefuzxdhQZ0QkpIkhKYkgSQxksxIW6yywE4e2iOIzEOpwWj5aHh3GM6y8LzMrfNBobRgj7ud9GO0KFRYKRbsWalGeWS+dPuRLzsXXZCSppBmtlQWsdUOHyoWFq3z67JK6I7j3TmSv2poNqjWwsqn9VpGvR7+vSoVqKQJNrRzz6EQEZHe9PwXwcwOAt8BHACOAJ9w9yfWu2HbTrMZpoFMToYR6yc7DaQ7MBfcw2tWq+G96vVwu1IJ28NKMSe/XhzD4cOh/N+xYyH4Nxpbs5bfBlp5hHalYF9aeMVPDuLlEF4EsSSxcN22pS8DilUrK5WwUmZxO4pODsO2HqPiVsxzX+m4ihrTnV+rlUL3/EJnBLxccW8nhO5eQnMlDj+z4sPLinpYlEdERHa+ngJ1Pj/6p4EqnTG2lpm93d3fss5t236iCMbGwjSQo0dDuG40lg/XltPYUnqhM+xZqYSwXK+H55UD85MdXY5j2Ls3VCmZnQ1tm54Or1/feeeOrpdiRcvl/+ynDuFbWRHaTxe607QTupME2m1oJ8tDN7A00l2eo254J4yXt5dWc+/e3r3tyVopNBeHWa1Bo55Rq/raQ7OIiMgarTlQm9l/Ipxs+FvAZ+msjPgc4D+b2RF3f+eGtHK7qVbhrLNg374wDWR6Omy3fBixVgsnNhaBuRyaN/Kvu1kI+8PDMD8fRqynp8P7NxpKFrIUusMXGGsP3cXoN5TmfXtpW2bLHk+z8Lvm5eetMupbPqE13O5sWJo7Tic012thMaJK7Ev/a+lXW0RENlIvI9Q/Alzv7l/o2v4nZvYHwPsABeqyoSG44ILwvfpWGg4zC9NGms0wv/rEiTCaXkxT2QptlC3r1KF7NWsfxS/C+FpuPzwX5o4rNIuIyCD1EqijFcI0AO5+l5mWI1tRFIXR362q0YBDh0LFkqkpOH48JJNdUl9btp5epn8UX/qIiIgMUi9/impmdsDdj3Y/kJ+oqMm421mtFlaD3LcvTAM5dix8n95obI/EkmX5ZN+8Xt/sbGd6jYYuRUREZAP1kpT+HLjNzN4K3A5MEOZQP5uwUuKfrn/zZNNVKuHEyr17Q2WQo0fDfOviJMmtoihRUVRCiaIwN3z/fnj4YTh4MLR/bq5Th1sBW0RERDZAL4H6zcDTCXOlyxMijbC4y5vXsV0yaFEUqoKMjoZQWixeU6sNZgpLkiwP0EW97WYztKlaXV4yYu/ecHEPz1tYUMAWERGRDdHLSomLwMvN7IXADYQ61EeBW939oxvUPhk0szDyW64MMjUVAuxGVQZx70zfKM5Cq9fDyPnQUKc6ylrbX5QhLAfsxcUwtUUBW0RERPrU8+RYd78VuBXAzAx4vpldmz/2ifVtnmwpQ0Nw7rkhjE5MdCqDNBr9ncCYZSHkFmuER1F4r337OnW81+sEyXLA3rNHAVtERET61u/ZZhWgWNDl24Bmn68n20G9HiqD7N8fQvXERAima13avDz/uVgBshgFL+Zqb1aIVcAWERGRPvUVqN29DVwPYGb3r0uLZPuoVkNlkLGxTsm9JAnBujwlo1x9A8Jjo6OdxW220jLopwrYMzOhekgxDaVaVcAWERGRvkeoy7bH+suy/uL45Mogc3OdgsL1eqhzXUzf2A5l+Aq9BuxqVfW7RUREdpltlGxkyytXBllYCGF0Pec/bwWnC9jz852pLGYnX5dfp3yJopOvRUREZFs4ZaA2s+9199/frMbIDlGstLgbdAfsQpaFEL3adZqG20ly8rV7uF6LIoC7h1BfLh240kVERETW3elGqN8IKFCL9KoYYV7LSZqrOVUgL66LIF4scZ9lnceK4F7sX2zvNViXn7NSOC9G1KMoHK+Cu4iI7DKnC9RXmlm6KS0RkeXM1h7IKxU466zT71fM9y4Cd/dltceK7UUwLwf0LOtUbmm1Vg7uRTWXInzHcSeEbwXl4+j+0NK9X3EM9fpg2ioiIlvO6QL1BPDBNbyOAd/df3NEZEOVR5o3SnlKSzmkJklnxcvydfdzy/PKuy9rbfdqwT/LVn6NIuRXKmGkv1oNt8vBv/siIiKSO12gftDdv38tL2Rm37EO7RGR7c5s7ZVcuke9i/Cdpp1yi0nSuS4/zyzsOzPT2VZ+/zjuBOPiUgTk7qCsaSoiItKH0/3Vu7GH17qmn4aIyC5UTGtZ69SW7uD90ENw3nlPfiRbRERkHZwyULv7kbW+kLs/3n9zREROoQjMxQh4sUy9iIjIAGkioIiIiIhIHxSoRURERET6oEAtIiIiItIHBWoRERERkT4oUIuIiIiI9EGBWkRERESkD2tcfWF9mdkrgB8B6sAwYUXGn3L3Lw6iPSIicmrqt0VEVjeoEer3An/k7je4+zXAXcBHzezMAbVHRERO7b2o3xYRWdGgAvUn3P19pfu/Chygt5UZRURk86jfFhFZxUACtbt/d9em+fy6vtltERGR01O/LSKyuq1yUuJzgQXgg4NuiIiIrIn6bRGRnLn7YBtgZsDHgb92919dZZ83AG8AOPPMM696//vf3/P7zMzMMDIy0k9Tt6XdeNw65t1jOx739ddff4e7Xz3odvTjdP22+uwnbzce9248Ztidx70dj3mtffZWCNRvB85199etZf+rr77ab7/99p7f57bbbuO6667r+Xnb3W48bh3z7rEdj9vMdkKgXnO/rT67N7vxuHfjMcPuPO7teMxr7bMHUjavYGZvAi4HXj3IdoiIyNqo3xYROdnA5lCb2euBlwHf4+6JmV1kZi8cVHtEROTU1G+LiKxsUAu7vAb4OeD7gG8J0/G4CjgLuHUQbRIRkdWp3xYRWd2gpnz8Yf7et3Vtf8vmN0VERNZA/baIyCoGEqjdvTqI9xURkSdH/baIyOq2Sh1qEREREZFtSYFaRERERKQPCtQiIiIiIn1QoBYRERER6YMCtYiIiIhIHxSoRURERET6oEAtIiIiItIHBWoRERERkT4oUIuIiIiI9EGBWkRERESkDwrUIiIiIiJ9UKAWEREREemDArWIiIiISB8UqEVERERE+qBALSIiIiLSBwVqEREREZE+KFCLiIiIiPRgs4r0AAAKnUlEQVRBgVpEREREpA8K1CIiIiIifVCgFhERERHpgwK1iIiIiEgfFKhFRERERPqgQC0iIiIi0gcFahERERGRPihQi4iIiIj0QYFaRERERKQPCtQiIiIiIn1QoBYRERER6YMCtYiIiIhIHxSoRURERET6oEAtIiIiItIHBWoRERERkT4oUIuIiIiI9EGBWkRERESkDwrUIiIiIiJ9UKAWEREREemDArWIiIiISB8GGqjNrGZmv2RmiZldOMi2iIjIqanPFhFZ2cACdd4Zfxw4C4gH1Q4RETk99dkiIqsb5Aj1CPA64PcG2AYREVkb9dkiIquoDOqN3f1uADM7d1BtEBGRtVGfLSKyOp2UKCIiIiLSBwVqEREREZE+DGzKRy/M7A3AG/K7M2b25SfxMgeAo+vXqm1jNx63jnn32I7HfcGgG7DR1Gf3ZTce9248Ztidx70dj3lNfba5+0Y35NQNMLsO+HvgsLs/sIHvc7u7X71Rr79V7cbj1jHvHrv1uAdJffbG2o3HvRuPGXbnce/kY9aUDxERERGRPihQi4iIiIj0YWBzqM2sBtwC7Ms3vd/MHnH3796gt/ztDXrdrW43HreOeffYrce96dRnb5rdeNy78Zhhdx73jj3mgc+hFhERERHZzjTlQ0RERESkDzs+UJvZK83sc2b2CTP7pJntyLNLC2b2CjO7ycw+amafMbO/NbNnDLpdm8nMftTMPK9GsOOZ2QVm9idm9jEz+5KZ3WFm1w+6XRvFzOpm9g4z+4KZfdzM/snMvmvQ7ZL1s5v6bfXZ6rN3ep8Nu6Pf3tGB2syuAt4HfK+7Xwu8HbjZzA4NtmUb6r3AH7n7De5+DXAX8FEzO3OwzdocZnY28BODbsdmMbMDwMeAd7n7C4BnAF8HrhhowzbWzwOvAp7v7t8B/DBhPu+3DrZZsh52Yb/9XtRnq8/e2X027IJ+e0cHauBngJvd/V4Ad/8Q8Djwnwbaqo31CXd/X+n+rxIKqd84oPZstt8EfnHQjdhEPwn8k7vfBuDhpIgfAz40yEZtsCuBz7n7NIC73wlMAi8YaKtkvey2flt9tvrsnd5nwy7ot3d6oH4hcHvXts8BLxpAWzbFCmfcz+fX9c1uy2Yzs+8E2sDNg27LJno18InyBnd/cCMX3NgC/gJ4vpmdC2BmLwbOIIQu2f52Vb+tPlt99i7os2EX9NvbYunxJ8PMxoG9wKNdDz0GvHTzWzQwzwUWgA8OuiEbycyGgbcBL2YX/CGCpWO+CIjN7H8DFwJzwG+7+58Nsm0byd3fa2ZN4G4zexS4FPgz4E8H2zLpl/ptQH32jrVb+2zYHf32jg3UwHB+vdi1fRFobnJbBsLMDPivwM+7+xODbs8G++/Au939UTO7cMBt2SxFPeC3Aje4++fN7DnAx82s2vU18o5hZq8Hfha42t2/mp/A9UIgG2zLZB3s6n5bffaOtyv7bNgd/fZOnvIxm193f/KtEz4R7ga/CHzD3X910A3ZSGb2LODbgHcPui2bLM2vP+Tunwdw988CfwX8XwNr1QbKA8f/AH7H3b8K4O5fBF5J6Kxle9vt/bb67J1t1/XZsHv67R0bqN39OHAC6D4z/BDwtc1v0eYyszcBlwPfP+i2bIKXA0PAx8zsNuD9+fZfM7PbzOypA2vZxjpCGLl7qGv7N4DDm9+cTXEGMAY80LX9fsLcRNnGdnO/rT4bUJ+9U+2KfnsnT/kAuBXorl96NfCXA2jLpsm/WnkZ8J3unpjZRcBF7n7rgJu2Idz9vxO+PgQg//rwfuBNxZnUO5G7p2b2SeCsrofOBB4cQJM2w1HCH6TuYz6L3TGCuRvsun5bfbZdiPrsndpnwy7pt3fsCHXul4AXm9llAGb2MsIP8LcG2qoNZGavAX6OcLLHt+QLIrwIeN5AGyYb5ZeBV5nZYQgLBgDfBfzGQFu1Qdw9A34f+I/5CWzF18c3sINObtnldlW/rT5719lVfTbsnn7bQgnEncvMXkk4yWMeiAmfgD832FZtHDNrs/I3D29x91/Y5OZsOjP7NeAawvy8u4B/cfd/O9hWbSwzey3w44RP+hXgPe7+nsG2auPkZ4r/AuGEljlglNBZv8N3eoe2S+ymflt9tvpsdnifDbuj397xgVpEREREZCPt9CkfIiIiIiIbSoFaRERERKQPCtQiIiIiIn1QoBYRERER6YMCtYiIiIhIHxSoRURERET6oEAt0gczu8nMHjMz1Z8UEdni1GfLRlGgli3NzA6a2RfM7LiZeX67+zJjZtcNon3u/jLg3YN4bxGRrUZ9tuxWK63OJLJluPsTwJVm9l7ge939yu59zOy2zW6XiIicTH227FYK1LIT/Dzwz4NuhIiIrIn6bNlxNOVDti0zu87MbnP3f3T3o+W5cWZ2g5n9o5l91cy+Zmb/YYXn/4CZ3W1mXzaz+83s18xsuGuffWb2LjP7hpl9Mb+8w8wOr/B6zzazm83sATP7jJld0fX4c83s42Z2p5ndZWYfMbPvWv9/GRGRrUd9tuxkCtSyY3TNjfvPwIvc/SnAW4HfN7MXFfua2U8Cvw78oLs/FbgKuBb4kJlF+T414FbgCuAKd38G8Grg3wGvWqEJ/x54KfAUYBH4ndL7jQI3Ab/j7s8ErgS+CLxxfY5eRGR7UZ8tO4kCtWwr5RNbgPecYtdfcvd5AHf/PeBe4L/lr7E3v/3H7v7pfJ/jwC8A1wH/On+N1xE67Z9195l8v38BfhtIVnjP33P3zN0T4G+A5+YdPMBTgX3A1/PXceAdwJ/3+m8gIrJdqM+W3UKBWrYVd7+yuACvP8Wu93TdvwN4Tj6S8VygCXyua5/P5tcv6rpetp+7/7y7/78rvOdXSreP59dn5tdfBh4HPmBm/9XMLnX3R1d5HRGRHUF9tuwWCtSybbn7be5+3SqPTXVtmgCqwBnAgdK2sqJDPVC6nnP3xTW2Z650N8uv4/yxaeDbgL8Cfhz4spl91sy+fS2vLSKy3anPlp1MgVp2JDPb07VpHGgDR4CjpW3d+1B6/CjQNLP6erTJ3b/h7j8EHCJ8NXkm8Ldm1t0OEZFdRX22bHcK1LLtmdlvmtlrujZf0XX/KuCz7p4BnwbmgGd37VPc/7uu66u63u+nzOzHemzjt5jZzwK4+7y7/xHwX4BR4MJeXktEZDtTny07kQK17ASjQKNr24+a2RCAmX0/cBnwFgB3n8xvv8bMnpvvM0Y4weU24AP5a/whYR7f24rSTGb2dOBNwC09tnE/8GNmdkn+OgZ8O/AYcF+PryUisp2pz5YdRwu7yJZmZoeAz5DPkTOzB1bY7QChUy37dcJXc+cCRlixqxi9wN3/h5kdB34nP6u7Bvw18HP5iAju3jKzFwK/BNxrZhPADPDv3P1LeXv+N3BDfvsLhK8FXw78SP5WN5nZm/P2vRf4SzNLCXMD7wduLM5sFxHZ7tRny25loRKMyM5gZr8A/Dd3t0G3RURETk19tuwUmvIhIiIiItIHBWoRERERkT4oUMuOYWY3AT+c3/6Cmb14wE0SEZFVqM+WnURzqEVERERE+qARahERERGRPihQi4iIiIj0QYFaRERERKQPCtQiIiIiIn1QoBYRERER6YMCtYiIiIhIH/5/9Wz8Yjcw5ekAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "usage_ylim = (1.0, 7.0)\n", - "\n", - "def plot_usage(ax, x_val1, y1_top1, y2_top1, x_val2, y1_top2, y2_top2, x_val3, y1_top3, y2_top3, title, xlabel, ylabel, leg):\n", - " x_pos = np.arange(len(x_val1))\n", - " ax.plot(x_pos, x_val1, 'r')\n", - " ax.plot(x_pos, x_val2, 'b')\n", - " ax.plot(x_pos, x_val3, 'g')\n", - " ax.set_title(title, size=size_title)\n", - " ax.fill_between(x_pos, y1_top1, y2_top1, color = 'r', alpha = alpha_fade)\n", - " ax.fill_between(x_pos, y1_top2, y2_top2, color = 'b', alpha = alpha_fade)\n", - " ax.fill_between(x_pos, y1_top3, y2_top3, color = 'g', alpha = alpha_fade)\n", - " ax.legend(leg)\n", - " ax.set_ylim(usage_ylim)\n", - " ax.grid(True)\n", - "\n", - "def assemble_usage():\n", - " fig = plt.figure(figsize=fig_size)\n", - " fig.suptitle('Average log usage frequency over training epochs', size=size_title + 2)\n", - " gs = gridspec.GridSpec(2, 2)\n", - " for idx, approach in enumerate(all_approaches_path):\n", - " if idx == 0:\n", - " ax = plt.subplot(gs[0,0])\n", - " ax.set_ylabel(\"Log usage frequency\", size=size_label)\n", - " elif idx == 1:\n", - " ax = plt.subplot(gs[0,1])\n", - " elif idx == 2:\n", - " ax = plt.subplot(gs[1,0])\n", - " ax.set_xlabel(\"Epochs\", size=size_label)\n", - " ax.set_ylabel(\"Log usage frequency\", size=size_label)\n", - " else:\n", - " ax = plt.subplot(gs[1,1])\n", - " ax.set_xlabel(\"Epochs\", size=size_label)\n", - " usage_top1 = list()\n", - " usage_top2 = list()\n", - " usage_top3 = list()\n", - "\n", - " for i in range(1, runs+1):\n", - " path = base_path + approach + 'run' + str(i) + '/'\n", - " usage_path = path + 'usage_weights.txt'\n", - " try:\n", - " top1_p, top2_p, top3_p = extract_precision(usage_path)\n", - " usage_top1.append(top1_p)\n", - " usage_top2.append(top2_p)\n", - " usage_top3.append(top3_p)\n", - " except Exception:\n", - " continue\n", - " mean_top1_usage = np.mean(usage_top1, axis=0)\n", - " mean_top2_usage = np.mean(usage_top2, axis=0)\n", - " mean_top3_usage = np.mean(usage_top3, axis=0)\n", - "\n", - " y1_top1, y2_top1 = compute_fill_between(usage_top1)\n", - " y1_top2, y2_top2 = compute_fill_between(usage_top2)\n", - " y1_top3, y2_top3 = compute_fill_between(usage_top3)\n", - " plt_title = titles[idx]\n", - "\n", - " plot_usage(ax, mean_top1_usage, mean_top1_usage - y1_top1, mean_top1_usage + y2_top1, \\\n", - " mean_top2_usage, mean_top2_usage - y1_top2, mean_top2_usage + y2_top2, \\\n", - " mean_top3_usage, mean_top3_usage - y1_top3, mean_top3_usage + y2_top3, \\\n", - " plt_title, \"Epochs\", \"Log usage\", ['Top1', 'Top2', 'Top3'])\n", - "\n", - "assemble_usage()" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAMbCAYAAADAZRqMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmcHEX5+PHPM3tkc3OYkwSScCeAAoFE5AiIGjkS5KscyhHwCyiHRBBQQAgYFDkioAiCR9AfGBDwyxFuNaggyCFKOERIguTcBHLuPTPP74+q3u3t7Zmd2Z3d2dl93nlNZqe6uru6Z6b6merqalFVjDHGGGOMMaUnUewCGGOMMcYYYzrGgnljjDHGGGNKlAXzxhhjjDHGlCgL5o0xxhhjjClRFswbY4wxxhhToiyYN8YYY4wxpkRZMG9MB4jIyyKiIjKl2GUxxSUit4lItYjs3sH5K0XkH/5RWejyGUdEZovI7G5e50T/2bitQMt7TESWiciwQizPgIjc7utyFZFlxS6PMR1hwbwxeRKRPYB9/ctTilkW0yOMA7YBtu7g/BXAGP+oKFCZTFuz/aM7bYX7bIwr0PLGA8OBgQVaXp+nql9TVQHeL3ZZjOkosZtGGZMfEbkBOA13kP4IGKWqjcUtlSkWEakAtlbV6k4sYwiAqm4qWMFMK0Grq6qO6+b1DgfWq2pTAZbVH+ivqh91vmQmrFifD2MKwVrmjcmDiJQBXwEuwgXy2wBHFbVQpqhUtakzgbxfxiYL5HsnVa0uRCDvl1VngbwxJsqCeWPyMx0YDNwL/M6nnRrOICJzQn0wg8c0P21cJH1RaL5yETlfRF4TkToR2SAiT4vI4ZHlfzuyjEEicouIrBCRlE+b5fMeKiK/FJG3RaQ2tMzDMm2giBwtIi/6MnwkIr8XkV18X91gnfMj83xSRB71+etF5A0RuVRE+uWyU6PLFpEjROR5EdkiIptE5CER2TUyz9uReSb7bdsUpEfynyIiL/hlbhaR50Tk+AzlKRORb/h+7LUisk5EXhGRm0Rkzwzv5azIMrYRkR+KyDt+Gf/1fZ5PF5EBPs+syDLGxZRlkogsEJE1ItIgIktE5EYR2aad/TFFRP4cKv/PfMtuzkRkWxGZJyJL/brX+LJMDOWJbkOrfRFJX5bveyIiJ0SWsbOIXOXLlPRpc7Jswxz/WdgB2CGyrGkiMjWSdqh/798Skcbw511EdhWRa0XkVXHfpVr/99dERCLrnR+33SIyMrqv/H540+/jZRLp2+/L2aY+8dOeCKUvEvddfczvz40icq+IfCzDvsn7u55lP28T+aysFpG7RWTnSL68v+uheXP6LoTy7y4iv/X560XkPXH11Fclw3fBvz8LRGS9iNSIyOMiMiEm3xhx36klfv8tEZEHROR4ESnPZZ8ZUzCqag972CPHBy6A/43/+0BAgUbgY5F8O/lpL2RYznPAWaHXCeAhIAWcBwwCRgO/ANLAKTHLWOTX8RDuB8VWwFSgDpjl8ywG/gHsB1ThApof+/UcHbPMr/j1/QHYGegHHAG8gTsTsSxmnhOAJPAYrm9wf+BEoBZ4CkjkuG/H+e35D/A8sKdf/zRgObAO2CnDPM8Df8ZdyzAI+KGr3prz/cTnuwbXt31bYK5PuzyyzOC9aATO8MsbBpzrt/O1SP5ZfjmzQmkCvOTLfaDfJ2OA233eaZFlzPfp4yLphwI1wLPAbn5/HOaX+y4wIsP+eA54HNjdfy4u9Ok/yeOzPgp4z6/rML/u3f1+3gIcHMo7xJdzBVAWs6y7gR9E0nJ+TyL76HG/PcP8PlkDzMlhe5YR8/kNTZ/jl/8UcB2wnX/P3gDmh8q8HpgZ+lycCTQA1+ez3tDn5mngZtz3fRSwwKd/MUsZp8VMU+B14BlgMq7R4StAE/BoIb7rWfbdSNz3di3wOb+sPYAX/f7aswDf9Xy/C4f4z+mzuM9tFbAP7ruhwDEx79NK4Am/rsF+WzYAr0fyDsT1sf8XsLdf9k7A74n5HtvDHl39KHoB7GGPUnngAo564LP+tQBLfOX9jZj8f/bTJkbSd/EHpaGhtPN83l9H8pYBS4FNwDaRaYuID0avAQ7xf98PTI4p26sxB6gh/sC1CdcHPDztDL+uZZH0kf6AuQnYKjLtaj/PGTnu3+AAn4o5kB/lpz2WYZ4ksEMofQywwP99tM/z5wzvURLYLea9uCYm/0/ILZjfy6fdEMkbXGg3LZI+PxoE+ABhJbAZ2DaS/3M+//0Z9kcjbYObt3B9t3P9vAeByWcj6dv6Mi0H+oXSf+3zHxHJPxT3w26XUFpe70lkH/08kj6bmMA3ZrnLop/fyPQ5fvnPRNK/Anzd//1t4Gsx8/4IFzSPyHW9oc/NPyPpI3z6/2Up47SYaeof+0TSH8MF7duE0vL+rrezbx/w85weSd/Jr/u5DJ/TnL7r+X4XfP4VxNebo/x7FRfMK3BsJD340fmJUNoMn3ZuJO8A3A+7ceF0e9ijqx/WzcaY3J2Ia7H6A/hmX9fiCJGuNt6v/PPpkfTTgd+r6sZQ2tf988/DGVU1hTsbMBj4nwzlui8yz2Wq+qz/+4uq+nLMPIuBPcRfeOnNxAVeT6nq+kj+32ZY9ym4Vqr7VXVDZNoC/zwrw7yZvKKq70bSHscdmKeLu6Aw6u+q2jwahaouV9UT/MvYfRsqYxlwcigtyB+3zb8AHmyn/OAO9ACHi8i2oXIpcACuxbI9M3GBx1Oq+mFk2lPAh8CxIjIyZt4XVXVNJO1NYCvJYVhDERnl1/8hruW4mS/L07iW65mhSZk+7ycCr6rqO6G0fN+TsOjn/SZVvT9D3o6ILv9uVb3N/32tqt4eM8/rQDnQkaFqH46sbw2untk5PntWy1X11UjaW7gfkTuG0jryXY/lP39fwAWx/y88zX+PXwYOiHa38XL9ruf7XZiBO9PxlEauMVDVVbgzQMtiypMGHomk/ds/h8sffL+PEpHmkYVUtRbXWLM8ZtnGdBkL5o3J3Sxca28qlBYcvPYRkUmR/L/DtcCfFPShFHcB7cm0BD6IyGDcaWCAf8as9wP/PDlDuT7IkI6IDBeR68X1Yd8S9FWlJVAKD6e4t3/+NxGqugUXYETt759fy1KufUQkn7rmvzHrT+G6fAiu1TvTuuLkUsbJACIyiJb3Im4//ENVr86yrsBiXHeHjwNLReQXIvJ5EalQ1RWqWpfDMvbzz2/HlEOBd3D7Y9/odFwrZtQW/zwgh3Xv65f9b7+uqKBM+4XSFuECpKMjfbRPI/R593J+T7JM7yrZvk/9RORcEXlJRD4MfZ9+4bN0ZHjSTO9VLu9TrssisryOfNczmYz7rLyp8aN6ZXs/c/2u5/tdCPK32T4/z1WqGvfZW6dtL1aO239P477jn8N9v28RkUNEJKGq76tqMm69xnQVC+aNyYG4C/72o23L079xfaMh0jrvD4q/w502D0a8+RzuFO8fQ1nDreMbIhe6KXCLnzYirmyZAkPfAvsqcA7wfWB7VRV1YyrfFWSLKUdN3PJwp7ijhvrnm2PKHYzOUhXZxvZsyZAelGtozLRswXGQ/58xZQxaRUdE8jbFHNRz5gOMI4BvAqtwrdWPAR+IyIUirS+WbKfcmd6PIH2rmGlx+yMIyrtk3X6b5wOVwEnQ/L2ZRKS1m/zek6hcfgh1Rqbvk+DK9mPcD7W9cNeDCO4HC+S2b3NZnxZ4WdD573omwXu5d/S99O/nsX563PuZ63c938/jVpH0XOW0/1S1HneGbQ7ujMR5uB+z74qI3XvEdDsL5o3JTRCovxJzsApagb7iW97DfumfTw893xVp7Qy6pyiuD7JkeByTZ5nPwHWFuN13FWivtS3o9pPphjSDY9KCsp+RpdwS0wUnm0EZ0oNybcwwPZNg3TtnKd8nInkrxI0f32Hqhqy8SVV3xV14Nw+3bTcAl+VR7kzvR5Ae7SZRCB1d93zc5zgIbk8HHlDVaHCYz3vSU3wS+CzwD1X9jj/DEnfWohR05LueSfBePtdOHXBTzLy5ftfz/Ty2l7/TVHWzql4FbA8chOsyNga4S0RO6qr1GhPHgnlj2uED9JNwFzu1OUjhxpqvw/XRbDWMpKr+BTfSwud9N5yjcAFPOE8NbgQJwR0Y4spwaIY+p9mM88//iZkWNyxb0Nd2t5j1D8JtZ1TQ93tczDTEDXM3LVshY7TZB/49CC6mi+uKlE17ZZwqIntB83vxpp8Utx92Ezd8aFW2FYrIx0Tk4OC1755zIW5oU4Av5lDuv/vn3aMTfLelXXD7I+6aiM562S971wxnEYIy/T2c6K9b+COwl4hMxX1vfklbOb8nBdTZwHucf871+9STdeS7nslLuM/KuLiJIjJQRKaHrx0JyfW7nu93IcjfZvv8PLM6UC+F599eRCaDOyOlqn9V1TNoabTJ5fttTMFYMG9M+z6LOy3967iJ/gKyoBtB3CnW+biL4+4HnlfVpTF5fuqfZ0Un+IPGH3EXgOUj6I/aKijyLc77t83Ow7gWrc+ISLTv74kZ1vFr3Knyr0THVvYH5fuI3yfZ7CsiO0XSjsC1Fj6mqmvzXF62fbsd7vR4uBX4Nv98QjQ/cClwqj/Nns0ewIKYMzVv+Odcuoo8jBuR4zMxgdBncKPKPKidvGFVHH8R5u/9Oj4bnubL8hlftujFgtDSP/5XuG4Of47Jk+97UgjrcV2+gvXcKCK3ZMkfFXyf9oj5gXNgZwvXzTryXY/lP38PANtJ5J4Y3tdw9+VoiJmW63c93+9COH/0fgw74X5g5tP1L+ow4NaY9Hy+38YUjAXzxrTvVODumK4CYcEIF1+IjBADLuBN41qJohcChud/ELhIRL4l7oYkg0XkKJ8+X1XjgqJs5uMO2F8Vd5OUoSKyvS/DDtHMfvvOxp36/p2I7OQv+DsC18IaHR0lOJCfhju9/LCIfFxEBvi+0vfhLgi8Ms9yvwTcISJ7iEiliByCC7DX4YYhzIuqPgbcBHxZ3E2cJvgyHoIbOeNZWo/g8VNcMHCRiJwh7qZcw0TkUuC4PMowCrhTRHb0+3ECbpg7cOOKt1fuBuDLuDM2D/qzApXibvj1C9xFgufmWJaOOMev4xcicphf9260jObzZV/GqAdx10vshvvctmkR78B7UggvA8NFZC//PQhGp8rV87gW34nALSIyStyNki4k/odfj9WR73o7zsVdhPobETlWRLb235lzcUPlnu+vIYrK6bue73chlD/h8+8uIlX+bNEDuOtXHs1zG6P2F5Ef+Lq6n6/zrsNdExUX6BvTdbQHjI9pD3v0xActYyE3PzLkmx/Nh7/JTCjPk7gAZ0CW9ZXhDrCv4MblXo8LHs4gdOMlWsanjj7GxSxzZ9wZgVW4lrG3ge8C94TmWxSZ5whcN4h63E1gfoO7eG058E6Gsu8H/B9uiLg6XFeEW4DtOrC/5+POHPwBdyHeJtxNnHaJ5F8Usw8WZVn+icBfaRkX/5/At4D+Gd6Lb+BGW6nz++FxYGq2z0fwPuC6XczCBQ3L/L5c6Zfx6Xbey2WRskzEDddYjRs/fimu/32m+w6EH9P8I+f9FFnmNsCNuPspNPoyLCBy74SY+X6GG0N8+3bytfueZCi/EjPWejvrGo0L4Db4z+nduBbgTO/jrJhlDMWNKf8e7vu0ArgTN/58q3qCLPVC3Pp8+pyYaXMy7YMs65mVYbuin628v+tZ9u9WuJu1vev3zSrcDZgO7+x3Pd/vQiT/b3E/Tupx9d8VhOrhTPu8nfdpK9yP3T/6fVWPO3MTe18Pe9ijqx+i2qbRxBhjWvHdReqBv6jqYV20jnG4g/NdqjqrK9ZhjMnOvuvGlB7rZmOMaeZPG58RM+lzuH7/nT01bYzpAey7bkzvUd5+FmNMHzIKOFNEVuO6bZTjhl27Fdf957bMsxpjSoh9143pJaybjTGmmYjsB/wvcDCuj3EVrs/3A8D3Nf4itkKsdxltL8o9TVXnd8X6jOnr7LtuTO9hwbwxxhhjjDElyvrMG2OMMcYYU6IsmDfGGGOMMaZEWTBvjDHGGGNMibJg3hhjjDHGmBJlwbwxxhhjjDElyoJ5Y4wxxhhjSpQF88YYY4wxxpQoC+aNMcYYY4wpURbMG2OMMcYYU6IsmDfGGGOMMaZEWTBvjDHGGGNMibJg3hhjjDHGmBJlwbwxxhhjjDElyoJ5Y4wxxhhjSpQF88YYY4wxxpQoC+aNMcYYY4wpURbMG2OMMcYYU6IsmDfGGGOMMaZEWTBvjDHGGGNMibJg3hhjjDHGmBJlwbwxxhhjjDElyoJ5Y4wxxhhjSpQF88YYY4wxxpQoC+aNMcYYY4wpURbMG2OMMcYYU6IsmDfGGGOMMaZEWTBvjDHGGGNMibJg3hhjjDHGmBJlwbwxxhhjjDElyoJ5Y4wxxhhjSpQF88YYY4wxxpQoC+aNMcYYY4wpURbMG2OMMcYYU6IsmDfGGGOMMaZEWTBvjDHGGGNMibJg3hhjjDHGmBJlwbwxxhhjjDElyoJ5Y4wxxhhjSpQF88YYY4wxxpQoC+aNMcYYY4wpURbMG2OMMcYYU6IsmDfGGGOMMaZEWTBvjDHGGGNMibJg3hhjjDHGmBJlwbwxxhhjjDElyoJ5Y4wxxhhjSpQF86bLiciQDs43uNBlMcYY0zt04tjSX0TKC10eY4rFgnnTZUQkISLfA27o4CL+JCLH5rG+K0RktYik/GO1iKwRkbUi8i8RuUVEdu9gWUwRiMid/v1TEZlT7PIYY4ovemwRkdNCdf+iHBYxGnhFRCZ2cP37icj/E5Fl/hizQUReFpGbReQzIpLw+cb5cm30ddgvMyzv5lD5P/J/l4nIl/3fdX7+UzLM/1KonlwtIg91ZLtM6bJg3nSlHwOfBi7s4PynALeLyBdzyayqV6vqSOAD4ANVHamqI4ARwP/iKvA3ROQqEZEOlqnXEJFpvvKfVeyyZKKqZwD7FbscxpgepdWxRVV/Far726Wq7wHfB/4sIjvns2IRuQJYBLwA7OGPMaOAHwAzgaeAH/r1LPPlOt/PfpqI/E9Mec4Plf9Yf+xKqeo9Pv3eYLtFZHzM/Pvh60k/78x8tsmUPgvmTZcQkSOArwH/q6qbO7IMVX0T+B7wcxEZ3tGyqGpaVf+uql8ErgWuAC7v6PKMMcYURyGOLQCqei/wLDA/18YdETkLuAo4TVV/oqpb/LLqVPUB4EigHqiImX0l0ATcISLbdaDIy4AhwG9EpKwD85tezIJ501WuBB7zAXln3OGfz8+aK3ffBd4ErhCRCQVapjHGmO5RqGMLwHXAAcDh7WUUkaE+/z9U9b64PKr6BvBYhkX8B7gM2IY8fkCE3AUsBD4FXJrnvKaXs2DeFJwPkvcH/hA3TURuEpG3fN++j0TkMRHZO25ZqtoA/AU4sRBlU9UU8CugHJgVKdsuInKfiKzz5XpTRC6OawXxfRlf9vk+EpGnROSg0PTD/fY1+n6VB4vI8z5tnYjcKiKD2iuviLwR6m853ff7f19EPhSR34nIx2LmGSoi80TkA1+2D/z6tg3luRN40L8M+muuFpFTROQ3oT6aq0XkktB8C0TkpdDrfUJ9PdeKyK4+XUTkHHHXKqzxee4TkV1C8+4a6Q86RkQeFJEV/vWiLPvlXyJSKyL1fhlHtbcvjTGlLduxJZLvMBF50dc9K0VkrsRf8PoSsAn4cg6r/yKuZfyRdvKdD9ycYdoNwNO4Hw/fzGGdUacBq3GNUft3YH7TW6mqPexR0Aeur7sC02OmnYs73binf70V8FtgMzAhw/Ku88sbk+P6lwHLskw/2C/vD6G03YH1wO+BrQEBPu/LdVdk/m8DKeBUoAwYAPwEdwr1s5G8i/wyngfG+bSDfNqTOW7PLF/eF4DDfdoevrwPRfL2B14F3gZ282m7AW/hzkgMDOWd5pc7K2adl/ppe4XSKoGNQBoYHUrfCqgGKkJptwO1wWcAGIr78bABmBRZ13y/roeAiT7t+8Ai//c4P31OaJ79gKXAPsX+vNvDHvbonke2Y4ufvgx4H3gYGObTvggkgTsyzPN34N0c1v1Lv+7jOlDuWaH6bKSvL+vD9Wuo/NNi5p8f1H/AZ3wd/J9IfT4O0GK/R/YozsNa5k1XCFpfV8dMqwauUtXXAVR1A3AGLgg9O8PyVkWW21lr/POoUNqPca31p6vqenUeB24DThGRfcCNTgDMBRao6l3qLlKqxbWyrCF+5J5BwMWqugxAVf8C3Al8VkSOzqPcL6jqM34Zi4FHgc+LSGUoz4XA3sB5qvq2z/u2T98dOCvHdT3sn2eE0qYBNbgfOuH0z+N+GDUBiMiBfj2/VNUnfBk24t7fgcCtGdZ5t7acOv8Z7gdSGyKyL3Af8CVVfTXH7THGlL5sx5bAdrj6by2Aqt6Pq8/OEJE9Y/KvAsaJSFw/97DgeLEhj/K2oaqrcS3s/YC7RaQqz/mfxh1ndiLzGQDTx1gwb7pC0J2jJjpBVe9T1Z9F0rbgWusnZVhesJw2XUo6KPjcK4DvqnIY8LKqro/kDbqUTPfP/4NrjX8qnMkHsv8E9hSR0ZFlNALPRdKCfpX5BPPPR15/gLvQalgo7Xi/vkWRvNHtyMr/WFhK66B9JjAHd1Yhmh4eCu14//xoZJmrfTkOyXBB859Ded/3B+FWfHesp4ATVfXlXLbFGNNrZDy2hCxR1fcjadnq2xpcnb51O+vWyHOHqepCXCC+B37kmzxdBrwMfFVEvtDZ8pjSZ8G86QpBS3EyOkFE+onIbN+fcWXQVxvXmtI/w/KC5VRmmJ6vkf45aPHfEdfaPDXUdzwo109xlX0QfO7kn38Uk/cAnzc6UkG1qkYPAEHLUpthxrJYF3nd6J/DLUo74c4wfBAp2+u+bNuSu0eAySIStEgdiesq8yRwmIgM8q1ZnwYej5QBWvZv2MpInrDqdsqzl1/3NsCB7RffGNPLZDy2hKyJSctW3+Z6fAmW0V7Qn6tLcA1A54nI5/KZ0TcenQhsAe4M1dGmj7Jg3nSFWv8cd9rybuB64Ee4PuQjtf3xgYNKtjZLnnxM9c/R1vIng/KEHsNUdZCqzo7kPT0m79Y+70t0jXSO+TbHlG2kL9u+eazvYdyPnKN915blqrrOp/fDtfJPA/7pu9F0iqq2t32fAb4EvAJ8L3wxrTGmT8h2bOmoXI8vwfGiQzeailI3uMOJQB1udJu8zjyr6rvAObgGmrtwdbXpoyyYN10haH1t1YIhIlsDxwJPq+oCVW1sM2e8YDkrOlswP6LBabiLVX/lk9/FnTqNHftXRD4pItv7l+/45zZ5/Sgyh8eMmhDXpSQ4O7A0j+Ln4h1gqIgMjCnfbiLy8TyW9Wdc/9AZwDG0dKVZiLsAeAZtu9iAuzAL3E26ooK0d/MoR+BmVX0W9/4lgF+Jv9OiMaZPiD22RIyISctW326NC6ijXSyj7vd5so6cJSKPiMht7SwLAFV9C5jty/fzXOaJzP9r4B5cQ0e0wcn0IXYgNF1hsX8eE0lvxAXNrbqc+As44yrgwBhc8Ph2Acr2Q2Bn4HuhC1I/BJ4B9hGRHSJlG40bGjPol/4g7rTssTHLPgv4kapGTwFXisgBkbQj/fPDFFZwp8BW5fNB7/20Hk856Hda7vN8SkQuCyb6U7lP4LrRHBeUVVU/Av6K24ajY7YhGIP5yHCiiIzEjUKzSFXb61ITJ+nX/zruZmIHULj7Dxhjer5Mx5awCaHGl0BQF8UNKzkGeCOmK2Qr/uzjhcC+EnMXVwCffhSuwSMnqnonrm6eCUTLnYuvA0uA8zowr+klLJg3XeHPuJbvVq3AqlqD61v9WRE5BkBEBuBGksl2Rf8ngL93tCuHiCREZKqI/B436sz3cCPShJ2La4X+edD/0B8QFgD3qeorfhveB76D6zM+W0Qq/JjqR+IuSrqEtj7CjQu8g1/uQcBXcRdy5lzp52ge7sKoa3zXGMSNZ/9j3EVe4daf93A/sILTxqcDkyPLexj/3qjqvyPp2wAbohebqepfcaPRnB70BRV3w5Xg+oNzO7eJgLuT76u47Yzrf2+M6X1ijy0R64Hbg24rPsA+GrgzGEUt4M9g7owb+71dqvor3LC980Xk7OAMqIgMFJGvAb/Gjdb2aLblxDgD+C8d6CqjqsE4+al85zW9SLHHxrRH73zgTv29DkgkfRtcoLcCd8Hjq8AFuIqsEXeR0aRQ/rG4yvv0HNZ5hZ8/5R+rcRdDrfNl+TF+HPMM8+/oy70Gdzr3TVzg3i8m75dw475/iOvv/0fg0zH5FuHGDt4L+JNf7oe4wHZQDtu0CDe2u+J+FNzp0/+Fu/hJgbXA1aF5BuPG5l/mt2UJbtz3UTHLP9Pv+zW4PqG7RqZv5ff/9TH7SnFnOOLKLbig/XX/Pq8Bfhdevv8srMad4lb/96LIcr7vt0/99r7n0x/C3exFcaPr/KXYn3l72MMeXf+IO7bQcjOllK8zvwD8w9c9K3GNN+UxyzrRz7NznmWYjLs/ygd+vctwDRyfjuQb56dvpOX4dkmGZR6IO/s4LZT25VAducX/fVCG+b+DjTPfZx/iPwRF4btXXA18C9hJfbeHLPmHALfghjAsw/2avkxD3Rp8q+rtuH7K/YB7VPWGyHJ2wwVTFbgb/tykqr8p0GYZmu/U9zruhkS/68RybsddsDpZ23Zf6fH8XUzHqeq4IhfFmE6zOtsUWwGPLWW40WQWqWohzhYaUzRF62bjb77zLO5GDGU5zjYfKFPV/XAB3kG4A0uwzASuT9y/VPWTwKHA10XkzFCeQbjuDXer6kG4fmo35zs0lMlOVZfgWhV+0tHbTovI2bi+jseWYiBvTG9idbbpCQp0bCkDfoM763dhAYtnTFEUs8/8IOBkWkYUyUpE9sCdOrsOQN1IKDcBs31lD3AErn/1jT7PRlyXjstFJOiLNgs3nvmvfJ7luH7Rl3d6i0wrqvoQbsSTIzq4iH2B/X3lbYwpLquzTY9QgGPLLsD7wOfUDRFpTEkrWjCvqovVjZOaq8OBelquZgd3N8n+tNxA5nBcn9oNkTxjgV1DeV7V1mNavwQc4C/GNAWkqi+q6pwOzvtVVY278VCP54eoDG4kNdbfvOnLxS6XMR1ldbajhbrlAAAgAElEQVTpSTp5bHlLVb+juQ+PbEyPVkqj2UwA1mjrTv6rQ9OC52jwl2ueBO5iFWM6TVWfUXejpkpVLfN/31PschnTjazONsaYbhC9uU1PNhCIng4LXg8ocJ5mvu/mmQD9+/ffd+zYsfmVGkin0yQSpfS7qTD64nb3xW2GvrndpbjN77zzzjpVHdZ+zoIoSp0NBaq3U2laevq0pRRv8IiuoqpZt7k36ovbDH1zu4u5zapQVpb/8SLXOruUgvka3EgHYcHr2lCeITnkaW85zVT1DuAOgMmTJ+vLL7+cX6mBRYsWMW3atLznK3V9cbv74jZD39zuUtxmEXm//VwFU5Q6Gzpfb29ZtZm/vvQ39hqzV5tpTekmltctp1zKqUhU5LXcnm71+lWM3HpUsYvRrfriNkPf3O5ibvPa6g/51KFTGDR0UPuZQ3Kts0upWWkJMFxa/6wKbtH8XijPSFrLNU8aN1asMcaYzivZOlsVJKblPa1pVtevIkGi1wXyxpjSVUrB/NO4C6cmhdIm426m8Fwoz04islUkzwfacvfKp4F9/JBo4TzPq2psK48xxpi89ao6W1VZ27CWpnSSfmXREwXGGFM8PTaYF5G5IrJYRIJbyb8B/B64yE+vAM7H3Txki5/tceA14Js+zxBcv8m5oUXfhRth4VSfZzvghEgeY4wxeejtdfaGpg1sTm5mQLkNoGOM6VmK1mfe30nwKdzt4gEWiMhKVT3Wv67CXdwUPkU7C/ixiLyEu2nJM8AVwURVTYvIDOB2EfmbX8Ydvv9kkGeLiHwWuE1ETsddXPVNVX2yK7bTGGN6g75cZ9cma1lXv5ZBFYO7a5XGGJOzogXzfnzXaVmmfwt3y/Bw2iZ860yW+VbibiaRLc/buDsNGmOMyUFfrbMbUg2sql9F//IBfW70D2NMaSil0WyMMb1IOp1m+fLl1NTUFLsoHTJ06FDeeuutYhejWUVFBcOHD2fIkOjgMKajUppiTf1qKhIVlCfscGmMilJelWh9/q1EjKwaQVmiOAUfNnYb3l/+PomVLb3bC1lnW+1kjCmKdevWISLsuuuuJTdeO8DmzZsZPLhndLtQVerq6lixYgWABfQFoEB1fTVplKqEXfBqjIpSObCC0aNH069fv5I7U5VMNlFeXpxRqJJNSQYNHkhZeRlQ+Dq79I6gxpheYcOGDYwYMaIkA/meRkQYMGAA2223HdXV1cUuTq+Q0hS1yRqqyqqKXRRjeoTyqgSjR4+mqqqq5AL5nqbQdbYdRY0xRZFKpaiosLG6C6l///40NTUVuxglrzZZS0qTDCgfWOyiGNNzCPTrZ2epCqlQdbYF88aYorHWncKy/VkYqXQKENufxkTYd6KwCrU/LZg3xhhjjDGmRNkFsMYYk4Nx48Yxbty45tfPPvssu+66KyNHjgTg7bffZsGCBUybNq0g69u4cSPnn38+d999N02NjaDqJgTPZWUFWY8xxvRWEyftzvbb7wCAaprnnnuOnXfehREjRgDwzjv/Zv78uzj4oIMLsr6NGzdy8cUXce9997Jh/caCLDMXFswbY0yOFi1a1Py3iPDtb3+bWbNmATQ/5021daCuyssvv8xZZ5/NhPHjUVVoaGg7nwXzxhjTricefwJwo9lstfVWXHjBBZx00skAnHXWmQVbz6uvvso3zj+PceN8vd2NrJuNMaa0BMGvKqTTLY9wehdUpLNnz846/ZhjjmnVct+qrOk0pFLukUxCY6ML0Ovr3XNjo3s0NUEySWNdHY8/9BCfO/xwt5xEovXDGGNMu845+5ys04866mh28C33ndXY2MiDD/6ewz99eEGWlw9rmTfGdL9wkBtOi06P+ztf4QuM4v7OND3yevY3vuHKG84TbIMqxxx9NKjy2EMPceX3vkdChNq6Or566qnMPu88AC6+9FLuvf9+dpwwgcn77stLr7zCe0uWcOzMmdx43XWU+db2Az71qfjyGGOMydk555ybdfrRRx8NwJNPPsE137+GRCJBbW0tp55yavO8l19+GQ88+ADjx49nn7334ZVXX2Xp0iXMmDGDH3z/2uZ6e+rUqV27MVlYMG+M6ThV19qsCnV1LS3kQSt00BKdTLa0TieTbt6ghTqbaKDdmeA22mJfiBb8yDa8vngxx3zpS/zxiSc48MADWbFiBZMPOIChW23FaaeeynXXXktlv35ce/31nHfOOVz3gx9QXV3NPlOnMma77fjWBRd0rjzGGGPysviNxZxw4gksfPQxDjjgAFauXMlBBx/IkCFDOPnkU5g79xoqKiuZN+9GvnbW15k79xqq11Zz4IGfYrvR23H++dnP2nYHC+aNMdmFg/BUynULCR7JpAuIGxvhgw9a5gkCbxHXLSR4rqyEfv3c68bG1l1GLrwQ/vWv7t22vfaCG2/s+PzBdnnX3ngjU/bfnwMPPBCA7bbbjq+ccALXXHstp516anO+sWPG8IWZMwEYPnw4Xz7+eG756U8tmDfGlIzKSy4i8a/Xu3Wd6b32pPGH1xd0mfPm3cjkyftxwAEHADB69GiOP+54rr/hek4++ZTmfGPGjGHGjBkADB82nOO+dBy33X6bBfPGmB4i3IqeSrXuyx20pKu2BK9lZVBe7gJzcGmDBhWv/D3E4jfeYJ+9926VttOOO7Jk6VJqa2sZMGAAADvs0LqP5o4TJvDBBx9QU1PDwIF2oyJjjOkub775Jp/4+CdapU3YcUeWRurtsWO3b5Vn/IQJLF++vEfU2xbMG9MXhLu+BN1ewgF70Hc9CNjLytyjshKquul29p1pITfGGNOtCt1CbjrOgnlj8hEeQSU6mkoQLH/4YUvXi+hz9KLLQj8HLevJpBsZJQjYm5paX0QatK6XlUH//nahZYHsMWkS7773Xqu095YsYcL48c2tOwD//e9/2+QZO3Zs0Vt3jDGmr5k4cSLvLVnSKm3pkiWMj9Tby5d/0CbPmDFjekS9bcG86ZvaC8qDoDjckp1KteSH+JFPkknYsKHt6CvdPOYs0DpgHzDAAvYOUiKjYSpo2u3LpqTQ0Cj+8gDlWxdcxJRPTeUvz/2NTx3wSVatXMndCxZwzVVXtVrmmupqHn7kEWYcfTTV1dXcc++9zD43+6gLxhhjCu+CCy7koIMO5IUXXmDq1KmsWrWKe++7lyuvuLJVvurqahYuXMiRRx5J9dpq7vvdfe0OfdldLJg3vUs63dLPuzNBefjizUTC9Q+vrGw/IE4kXEu3KSnq/wsH7um0xA548+LfX+C7cy4H4IZ517FkybvMueJqVIXdd9+Te+/+HbMvvJBEIkFdXS2zz7uAE0+cRUOj+/ik0jB1yhRee30xt9x6K+/8512OPeYYZp9/fvM6li5dymlnnsmqVatIpVJM+8xn2HPSJH58003dtk+MMaa3ePHFF7niyu8CcOO8eby3ZElzsL7HpD347T0LuPiSi5qHppx9/uxWF78C7L///ix+YzG33f5T3n33XWbOnMm5557XPH3ZsmV87etfY83q1aRSKaZ/fjqTJk3ixhu6vgupBfOmtKm2dCfZvBlqalqmdSYoL4LosOpxQ623SkPapGWSaXOz7YaM89B2ZcFNSsP3NeqBu7hNK7traRc0HckoIMSPhvnJqVN55olnqE/WUVXePzobRx5xBEcecUQ76xYuvvBSLr7w0ubpySQkU259240dz9OPP93yEfYLV20pmzHGmNxMmTKFhY8upLy8Inb69OnTmT59ervLueTiS7jk4ktip40bN675brPdzYJ5U3qamlzkWFPjAviUj4AqKmDgwC6NIqM3Hm3+W6W5h876DeLTWvKBa+ltTldXRo3cwDRa9Ja0lonNaRqXL79tyXse4udpbBTeX55AVZqnB0F9WZlSXgbl5ep+T/mBcNJp10rd3O2/+b/OB6ttusZkaGUn9FuvqwXbF2xbpnUqrhtPOngRIwFUdtN1ycYYY3o2C+ZNzxeMbV5bC5s2uWAeXERYVZV3JBa6aWfroDwUkKdSrpU0mRT3WoVUsuV3g19SywsfKCaTwofrE671Wlq37AYtrCJQnnBRmpTlcy+kIvS7z1FiEwwaCOEyhn/4NCWhoVGaW6XTaUgNgqamjM3/rYJfEW17zW/wn+8e495HIa203lVZWtlzpy7IRlFVlDRpTdOYbgDEl0VCP0KCvyW0TuHSyy/l/gd+x+bNm/mf44/l/nsfaDVPeLvCP26iZUknrW3eGGO6Q3AH2M2bN3P88cdx7733FbtIbVgwb3qeoN97XZ1rea+vd+ntDJUY9LhpbBKamnxQnnYBdjLlgvVUsqWl3M+FBgFXqAt9QhQJuovggu/KqrhgsHWAndgCA/r33KC7O4V7OLXm9k9jov3fYdrcj12a+7VnXqF7rxJCJ5v2tflfWhXVNGmCXwjNIbr7FzpbgqovXugHTav/hKuuvoqrrr6q+XVjujGUM+bHQOgHQvgvzbojjDHGFMrcudcwd+41xS5GVhbM91ZB83LQlByMatId/QnyFdfvPRg+sbIy9mZErhXcBe719VBT60YVSadDNx2lJSBPSO4Becc3wwV8KU35v6ElvNNQnrbpwUaFSxLNk/a/QtK0ftZQh+8yKaciUUFCEpRJWfOjVIXfq8wt1R0V39oeadQHhIRk+t5Im3LSpq09/3JBth8ISjqtgF1obYwxxoL50hYeRjG4CVAwrni4+TncOVqk5SLQ4LmiovUwhokcmkw7K+j3vmWLe7TT772pyQ8D2OAC97p6ae7/nEhARbkyoL/m1Y3CBXBBC2y6OahLk24OotKkSafTpEmT0hRp9X+nU6RxQXtK06RIgUJDupFlNctQVcS3oIpI0P4PPh1wFzTSEvA1h2vBH9FBdpoDR4lNB5q3I9ylXhAqpJzyRAWViQoqpJLyRHmrgD9zsNpb5NjaLtJqfxZHOz8QVEmT6t4iGWOM6bEsmO/pgjt3BgF7Q0NLwJ5MtuQLmqPLyrL3I2/uxOxbwsMdyJv7f6tbTkVFS8BfWdkS7AcBf1lZ7p2Qo/3eg7LHlDe431FDozQH7um0C7vKEu5CyrjAPZlOkkwnSWmKpnQTadKopkkGQbimSWuKtA/eU5oKdZNwQbcoaCi6VlESJJrzBX8H/xKJBGWUNwfDm2UTA8uLfwOJsOAHSlKTNCQbXMCvbv8FAX+CBBWJcioSlVQkKqhMVJIgQUISlIvbvtII+AvR2m6MMcaUDgvme4pwwN7YGH/nTmgJpCsqMvYdzyrc5Sab4EdEUJbgStFwwB+08peXu/IErf3l5W75qrB+vQveGxpayh/q955KQVOjC9xr66CuPuGubxXfNaZcqeqnzbG+awlP0ZBOuuA0VU99qoHGdGNzizoirVpZE5Jobm1NJMooi/R37u1EhDJcC3wF8cNytezXBmpTtaR91x3RloC/TMooT7huPEHAX0aChJShKE3ppvhlZ+jGpAkXbOcjw5JKoLXdGGOM6RpFDeZFZAbwXaAOKAPOV9WXs+T/OHAdrrPo1sCfgItUtcFPnwMcA2wIzwYcDOyjqv8QkXHAC8DbkcVfqarPdn6rskinWwL2oGW8ocEFzOFuMUHAXV7eqTt3BmN/B4vM9mgjHKi3t02plNuW2lr3d6CxEdata+73HlzX2lTnAveaugRNjSAJQF3gXlmhVPVzwWVSXcBem07R0FRPXaqexnRjq1bloOW4qqyqzwTnXUFEKJfs73VwNqM+Vd8q4EeVxnQD79e8n9d7MGjwABoz/ADIT9B1yVrbu1qfq7ONMaYEFC2YF5F9gXuA/VX1TRE5CnhSRCap6uqY/KOBZ4GLVfUOEekHPAXcApwVyjpbVReF5jsUuF1V/xHK84Sqzir4RmWSSsGSJa27xUBLwN6/f2fGzGsjnYYtNcK69YnWq9SWFsuo8MgjknCjuSQk6D6vLTcDkpYu9e7GQGX+4S84LW9ZlkqCLQyidmNL4B505i4vVyrKlX4DW4L2xlQTmxsbaEjX05hucheLCs2t62VSRv+y/ha0F0m2rjabZTODKtpeqJx9eRZ8l5I+VWcbY0wJKWbL/HeAJ1X1TQBVfVRE1gDn4Fp+ok7G3Svl5z5/g4j8BPitiFyhqmuAnwI1kflmAb/smk3IUdAnPWZUlkJKJmHTZuGjDQlSaejfT6kaEM2VoaNC6AY7weuUv6mPauiGO0qrO4+2Iq0X2NgorFiVoLxcKS9LU9m/iVQ6SVM6yeZ0A/UNdTSmmpqHFFR8Vw4pt6Dd9DgTJ+3O9tvv0Pz6r3/9CzvvvAsjRowA4J13/s38+Xdx8EEHd2o96XSaBQt+y9333I2qsmXLFsaPn8Dc781l7NixnVp2J/WdOtsY0yuE623VNM8991yvrLeLGcwfDvwwkvYS8BniDwzbA+tUW914fSXuVO+BwAOqWh2eQUQGATOBbxeq0B3WhaPDNDTAhk3Cho0JEgnoX6V5ry6/G+q0Hf2leWQYTbdcgCgpastX05hqoLGpqTnYF6R5FJWBFT3rYlFjsgnfqnvQ4IFceMEFnHTSyQCcddaZBVnHpk2bOPucs3ni8SeZOnUqqVSK0796Osd84Rief+55+lVWFmQ9HdC36mxjTK8Q1NvJZBNbbb1VUertskTXDhFdlGBeRLYBhgKrIpNWA5/PMNsyYKSIVKpqcKeVMZHnqOOAv6hqdD27icjDuD6cNcCvVfWePDah6FShrl74aL2wpUaoKFcGDcw+NGN7AXjrYRiTpINRUNLJ5lFBUn5oxmD0l+BaQ/HPofvjkNQk9al6yhPlDCwrWgBiTEGcc/Y5WacfddTR7BBque+o8vJyjvvScUydOhWAsrIyzv762Xz68MN47bXXmLL//p1eR76szjbGlKKeUm/vu8++nV5H1vV36dIzC5pjGyLpDUCbjiHeXcClwLdF5Hu4A8t5flqmnzyzgHmRtHrcQWa2qq4WkU8AT4vIdqp6fc5bUCRBf/gPNyRobITKCmXI4Nb9XVSVhnQDdak6tjRtdkMzhkcNCQXgmYZhDN/hMvhXliinIjRMY3s2yyb6lfUrzIYbU2TnnHNu1ulHH300AE8++QTXfP8aEokEtbW1nHrKqc3zBrcFHz9+PPvsvQ+vvPoqS5cuYcaMGfzg+9dSVlbGoEGDuOOOO1stu39/N/pTQ2O0yuw2VmcbY0pOX6m3ixXMB30ko5FeP6A2bgZVrRaRqcDVwPPARuAa4DHgo2h+EdkR2AV4NLKc1cAJodevicjtwGVAmwODiJwJnAkwYsQIFi1a1P7WRWypr2fRf/7TuYtcfR/2ZMo1f7ftFqN+/PRU87jabnyPvPrPFFQy2cTq9dEGtt6tL24zdGy7R1aNIJksxGg2xZNKp1ptwxtvvMEJJ57Aww89zCc/+UlWrlzJoYcdysBBAznpKycxZ84cysvL+dFNP+KMM85gzpw5rF27lkOmHcKokaM477zzYtfzt7/9jdGjR7Pf5MkkU0kUZfPmzbF56+vrO1RPtaNk6my/rE7V202NTSjpPvdd7ov1V1/cZuibdXYwTHIx6m0lTU1tTWxjaCHq7KIE86r6kYhsAEZGJo0E3ssy37+B44PXfsgygNdjss8C/p+qJmOmRb0HDBWRj6nqusg67wDuAJg8ebJOmzYth8W1tujpp5m2007QL/9W6sbGlv7wIq37w6c0RUOqgc3JzWxp2uLHZk/QL9GvR4wSsnr9KkZuParYxehWfXGboWPbXZYQystbxr2/+JIK/vWv7v3c7rVXmut+2PGDU1mirNU23HzLzUyevB8H+Yuptt9+B44/7njmzZvHrFNPA0ASCcaMGcMXjjkWgFGjRnPcl47jZ3f8jG9+84I266irq+Mnt/6EG2+YR//+A0CVZDLF4MGDY8tUVVXF3nvv3eFtilNKdbZfb6fq7ZXLVvLya6/0ue9yX6y/+uI2Q9+ss4MAvhj1drIpycABAykrb3tSshB1djEjvmeAyZG0yT69DRGpFJFPRZIPBpYAr0byJoBTgF/ELOfLIjIlkrwdrnXpw5xL34VUoa4Olq9MsPS/ZWzanGDgAGXgACVFE5ubNrOidgVLa5ayqm4l9al6BpQPYGD5QPqX9e8RgbwxfdGbb77JjhMmtEqbsOOOLF26lNralgbssWO3b5Vn/IQJLF++nJqa1gO7qCpnfe0sTjjhxObTwUVkdbYxptfpDfV2MUezuRZYJCK7q+pbInIEMAq4FUBE5uJuJjJZVeuBIcBDPv9aERmGG/FgtmqbQRIPA1aq6lsx690FmCkiX1HVpB8L+UzgtpjldKt0GmpqhQ/XCw2NwUWtaRrTjWxsqmNzclPzUI6ViUoGlXftUJfGdKfOtJD3Vhd+60JGjBjOZZdeVuyigNXZxpgQq7PjFaPeLlowr6qviMhXgF+LSHA3wc+Fbj5ShbuwKuhgVAf8HfibiCz3aZeo6iMxi59F5nGK7wMuAv4qIo24C7vuIEPfy+6QTMLmLW58+GQK+lWkqaiqpyZZw5raLTRpEwkSVCYqbShHY3qwiRMn8t6SJa3Sli5Zwvjx4xkwoOU60eXLP2iTZ8yYMQwc2PL9vvLKK6ivq+PWW38KwCuvvEJFRTl77blXF25BZlZnG2N6o+6otyfuPqkLt6C4LfOo6sPAwxmmfQv4Vuh1DXBEjss9Kcu0N4HT8itp1wj3h09rmkRlDfXUsLZxM6ppEokyKhOV9BMbEcaYUnDBBRdy0EEH8sILLzB16lRWrVrFvffdy5VXXNkqX3V1NQsXLuTII4+kem019/3uvlZDqF1//fU884dnuPmmW/jHP9yNUBc+tpBddt65aME8WJ1tjOl9uqPe7tXBfF9VVwfrNyZYvylFUupJlm+iLlWLNiplUkZVWZX1ezemh3rxxRe5co6r5G+cN4/3lixprvT3mLQHv71nARdfclHzEGezz5/NySef0moZ+++/P4vfWMxtt/+Ud999l5kzZ3LuuW5EhP/+979cdfUcAKYdekir+X5+58+7eOuMMab3efHFF7niSndvu95Yb1sw303SaaitEVaua2JjbQMNshEtbwCFCq2gf1n/nMdvN8YUz5QpU3ji8SdIJptajYgQmD59OtOnT293OZdcfAmXXHxJm/Ttt9+eLZtrYubwrJu4McbkZcqUKSx8dGFsnQ1dX28nm3IZpKvjLJjvBqm08tqSLazXtSTKGimvECoTlVQkrP+7McYYY4zpOOvL0Q0akynWNa5j8IAEQ/sPYmD5QCoS8b8OjTG91+WXX8aCBb/ltdde4/jjjyt2cYwxxrSjFOpta5nvJlXllZQnbHcb05fNnXsNc+deU+xiGGOMyVEp1NvWMm+MMcYYY0yJsmDeGGOMMcaYEmXBvDHGGGOMMSXKgnljjDHGGGNKlAXzxhhjjDHGlCgL5o0xxhhjjClRNlaiMcbkYOKk3dl++x2aX//1r39h5513YcSIEQC8886/mT//Lg4+6OBOr+vhhx/ml7/6BU1NTTTUN1BXX8c3v3kBX/yfL3Z62cYY01eE623VNM8991yvrLctmDfGmBw98fgTzX8PGjyQCy+4gJNOOhmAs846s2DruePOn3HKyadw3HHHA+4gcdLJX2HixIlM3G33gq3HGGN6u6DeTiab2GrrrYpSb++y0y4FW08c62ZjjDE5OOfsc7JOP+qoo9kh1HLfGVdf9T2++MUvNb8+6KCDSKfTvL/s/YIs3xhj+oK+Um9by7wxxuTgnHPOzTr96KOPBuDJJ5/gmu9fQyKRoLa2llNPObV53ssvv4wHHnyA8ePHs8/e+/DKq6+ydOkSZsyYwQ++fy1lZWUA7LPPPs3LbWxs5OZbbmbSpEkcfHDnTwUbY0xf0VfqbQvmjTGmQBa/sZgTTjyBhY8+xgEHHMDKlSs56OADGTJkCCeffApz515DRWUl8+bdyNfO+jpz515D9dpqDjzwU2w3ejvOP392q+V94/xv8MAD9zNx94k8cP+DDBw4EFSLtHXGGNP7dEe9nWxKduk2WDBvjOkRLv7TRfyr+vVuXedew/fkukOvL9jy5s27kcmT9+OAAw4AYPTo0Rx/3PFcf8P1nHzyKc35xowZw4wZMwAYPmw4x33pOG67/bY2B4Vbbr6FH837ETfOu5Fphx7CU08+zYTx4wtWXmOM6ajeUGdD99Tb24/dvqBljrI+88YYUyBvvvkmO06Y0Cptwo47snTpUmpra5vTxkYq9vETJrB8+XJqamraLLOsrIyLL7qYoUO34vrrr+uaghtjTB/VG+pta5k3xvQIhW5tKWVNTU1UVFS0Stt111156+23ilQiY4xpzers1opZb1vLvDHGFMjEiRN5b8mSVmlLlyxh/PjxDBgwoDlt+fIP2uQZM2aM61uZTHLwIQe1WfbqVasYNWp01xTcGGP6qN5Qb1swb4wxBXLBBRfy8ssv8cILLwCwatUq7r3vXi761kWt8lVXV7Nw4UL399pq7vvdfXz9a19vnr548WKeeKJlTPtHHnmEl15+iVNPObUbtsIYY/qO3lBvWzcbY4zJw4svvsiVc64E4MZ583hvyRKuvMK93mPSHvz2ngVcfMlFzUOczT5/dquLqAD2339/Fr+xmNtu/ynvvvsuM2fO5NxzzwOgvLyca6/9Iddd90NuvPEGVJVUKsWvf/0bpk+fbqPZGGNMnl588UWuuPK7QHHqbRvNxhhjepApU6bwxONPkEw2UV5e0Wb69OnTXdDdjksuvoRLLr4kdto5Z5/T7s1OjDHG5GbKlCksfHRhbJ0NpV9vWzcbY4wxxhhjSpQF88YY000uv/wyFiz4La+99hrHH39csYtjjDGmHaVQbxe1m42IzAC+C9QBZcD5qvpylvwfB64D+gNbA38CLlLVhlCeDcBrkVlvU9V7Q3lGAbcDw4F+wD2qekNBNsoYYzKYO/ca5s69ptjF6DCrs40xfU0p1NtFC+ZFZF/gHmB/VX1TRI4CnhSRSaq6Oib/aBnpNKIAACAASURBVOBZ4GJVvUNE+gFPAbcAZ4Wyvqaq07KsNwE8Ajyuqt8VkaHAqyKySVXvKNgGGmNML2J1tjHG9EzF7GbzHeBJVX0TQFUfBdYAma4eOBlX3p/7/A3AT4CvisiIPNZ7BPAJ4Ea/nI3Az4DLRUQ6sB3GGNMXWJ1tjDE9UDGD+cOB6OnZl4DPZMi/PbBOVdOhtJW4U70H5rne91R1Q2S9Y4Fd81iOMaaT1IZZLKgu3p9WZxvTx1mdXViF2p9FCeZFZBtgKLAqMmk1MCHDbMuAkSJSGUobE3nG57lXRP4sIs+IyLkiUhaaPiHDeoNpxpjuoJBMdu3Yu31NXV1dm9uJF4LV2cYYFBoaGtrPZ3JWqDq7WC3zA/1z9FPRAAwg3l1++rfF2Qo4z08LV/zvAper6sHA/wLfwPXRDK87br1kWbcxpsBSTWnWrVtHOp1uP7PJSlWpra1lxYoVDB8+vCtWYXW2MX1csj7NypUrqa+vtxb6Tip0nV2sC2Br/HO/SHo/oDZuBlWtFpGpwNXA88BG4BrgMeCjUL6jQn8vE5EfAneKyHdV9SO/7iEx6yVu3SJyJnAmwIgRI1i0aFEu29dKU7KJTakNbEluynveUpZMNrF6fbRBrXfri9sMHd/uhmQ9mzZthBLs+ayqFKvLtqqSSCTapNXU1LBixYquWGXJ1NnQ+Xq7qbEJJd3nvst9sf7qi9sMHd/uyi2VNDTUu/qnxOrt3lxnFyyYF5Hvq+qlueRV1Y/8cGQjI5NGAu9lme/fwPGhdY7zf76eZXXv4T5yE3AHkCVA9DZfI0N5o+u8A7gDYPLkyTpt2rQsq4r3+MLHGVg+hEGDB7afuRdZvX4VI7ceVexidKu+uM3Qye0u0bO2a4r0XqdTaT78cD2fO+bwbltnKdXZfr2dqrdXLlvJy6+90ue+y32x/uqL2wyd3O6mwpaluxSrzgZYV/0hnzp0CoOGDuqS5ecVzPshwfYDRtD6NCnAl4GcgnnvGWByJG0y8GCGdVcC+6nqc6Hkg3EV/as+z6eBgar6cCjPdv75v/75aeBcEdkqdEHVZOADf+AxxhjTltXZxhjTA+XcZ15EjgWWA08CvwHmRx5j81z3tcDnRGR3v/wjgFHArf71XBFZLCJVPv8Q4CERGeanDwO+DczWls5bY4GLRGSAzzMU+CbwgKpW+zyP425Q8k2fZwjudOzcPMtvjDF9idXZxhjTA+XTMn8t7qKkB3GnPsNXrQmwMJ8Vq+orIvIV4NciEtxN8HOhm49U4S5uCjo41QF/B/4mIst92iWq+khosX8A9gH+JCL1wGDgj8BVofWm/V0MbxeRv/n13GE3HzHG9EiqJGq2ULm2morqasqr11CmQDd2s3HFsDrbGGN6onyC+SZVvSzTRBH5Rr4r96dWH84w7VvAt0Kva3A3D8m2vA9wIyG0t96VwIy8CmuMMYWWTlO+YT0Va6uprF5DxbpqKqurqVhbTcXaNVSuXUtF9RrK6lpf5/nRxD3h2jndXlyrs40xpufJJ5j/l4hsrarrM0wfkyHdGGP6nmQTlevWusC8utq1rK9d4wL3tUHAXk0iMta+lpXRtO3HaBw2nLoJO7Jp/0/SOHwETcOG0ThsBA3bfow1Up7xTk3GGGP6lnyC+QeAB0XkQeA/tB0S7DLcuMLGGNM7JZtINDSQaGhg4IrlDFrygWtRDwfo1WuoXFtN+fqPkMhYzOl+VTQOG0bTsBHU7PkJGocPp2nYCBqHDadp+AiaPjaMpm22hbLo+AKhZaTSpD/8KON0Y4wxfUs+wfx9/vkQ/xw+SknktenDErW1DH3+z5R/tIaBI7cnNWQIycFDSA0eQnLIELRfFRRprFfTy6giTS7AloZ6EvX1JBob3HNDvQu86+uRhgb/uiUt0dCA1NeTaKxvft2SP5Q3nD+V+Y61ycGDXWA+fDh1O+9K03AfpPtH4/ARpAYPsc++McaYgsonmH8Pd3e+OALc2fnimJKlyoA3Xudjj/4fWz/zZJs+vmHpiormwD4VCvKjfycHDyEV/nvwELSyMuNyTS+USlGxbi2Vq1bSb/VKKleuoHL1KvqtWknlqhVUVldnDbCzSVf2I11VRbpfP/eoqkIr3evUNts2p6X7VaGt8laRrqriI21kwLhdm4P1dP/+Bd54Y4wxpn35BPP3qOqzmSaKyK0FKI8pMeXrP2KbJxey7SP/R/9lS0hVVbHhsM+y7siZrKxKMFL6Ub55E2WbN1G2aVPz3+WbfNrmTVSsW0vV0vdc+pYtWdeXqqpyQf+QoSQHD/bB/1BSob+TQ7eifsedqB+7Q9buCqYHSKep+HAdlatXUrnSB+xBoL5qFZVrVrXpU974sWE0jhpNzR4fZ/2IkaQGDPz/7J13fBzF2ce/c/10Vb27SHLvJZSEXkMJJOQNJYQEUuClmgQS0ggvLQFM7xBCAgkBEkghEEJxMIQWiivuklzU+0nX2877x55OJ1myLVu2bGu+fO6zuzOzs7PmNPfbZ595HqQ1Q2ynBHiv8JYZAjwt2s0WMOxyZN5BGavJZhQKhWK3kBLrti0kcvJIulyjPZqDil0W81LKG3ZSf++eD0dxQJBM4v7oA3Jf/hued9/GkEgQnD6LrdddT9fxJ6E59Axn4a4mwsMVO4kExmBAF/0pwW8a8CCQuW9tbCBrwzq9PBzuP0x7FqEpUwlNm0Fo6nRCU6cTLS1Xbg77EikxdXViaWzIEOqNKct6oy7WY7F+p8RzcokWlxCaNh3fsScQLSklVlRCrLiEWGER0modpZsZfZJJ6O420uVTb6gUCsWBgYhGyV7yGvkvPo9j/Vo0kwn/wkPwHX08vqOOJenNHu0hHvAMNwNsIfAT4EQgD2gHXgduk1K2jPzwFPsTlsYGcl/+G7mv/gNLawtxr5e2r55Dx+lfJlJRNTIXMZlIerwkPd5hnyricd3S39GOfdMGstatxbF+LfkvPp8WjAmXi9CU6WlxH5w2g3hhkRL4e4CxpwfPxo14g59hbWrYTrAbYtF+7ePebGLFJYQnTcZ31LHEiouJFZXoor2wCGk7+N1VIlFBT4+J7h4jfr+R7h4TPT3G7Y57/EZ6ekz61m/E79en7AXz2jn3wtG9B4VCodgRluZG8v76Ann/+Cumbh/hCRXULfohlrZWvEuXMP72mxm3+Fb88xbiO0YX9om8/NEe9gHJLot5IUQF8B6QDWwGqoEc4FLgHCHEF6SUm/fKKBWjhohG8b79b3Jf/hvuTz9CCkHPoYdTf9U1dB9xDNJsHu0hppFmM4mcXBI5uYQnTaHz1FRY6kQce20tWevXkLVeF/iFz/4+7Wsd92anxX1o2gyCU6erCWUHWJobca5cjmPlcpwrl2Hf0v/PPuH2EC0uITyxgu7PH0G0uFS3qheVECsqRsvK2qXrhEIG2jtMdHSYaeswp/fbe/c7zfh8RoxGsFo0LFaJxaxhsUgsFg2rRWK2SL0utc08tlg0LGaJxaq3TR9bJFZrqk2qv77jVDuLRNNIC/CelADXhXiGAB+w353aj8WGdvExGiVuVwK3K4nbnSQnJ87ECRFcriQedxKXM47X3Y5uT1EoFIr9CClxffoR+S8+j+dd3TPbd+QxtH31XALzF6YNZw2XLcK+aQPepUvIXrqEcXf9ivK7byM4a45usT/mOGJFJaN5JwcUw7HM3wH8E/iRlLKjt1AIkYueHXYx8D8jOzzFaGHfuJ7cf/yNnDf+icnvJ1pcQuN3L6Xj1DN0S/aBhMlMePIUwpOn0HHGWYD+kGKv2UTW+rW6wF+3BvdHHyA0PbFxLC+/n3tOcOr0sfkqUNOwbdmMc+UynCuX41y1HEuLnvAz6XASmDWHzpNOo6kwh6xJM3WxnnKzGqI7uruMtKcEekeHKSXOt98Phbdf72AyaeTmJsjLiVNSFGP61ASaBrGYgWhMEIsZiMUE4bARX3ffcSxV19tG0/b8TYwQc5By6H7sdl2Mu11J3K4E48dFcbtDulB3p4S5K4HHnUwdJ3C5kjiytB2+KNKSGh0qNKVCodiPMASD5PzrZQpefB7b1s3EvV5avnERbWd+lXjRIO62QhCePJXw5Kk0XXw5ts01eJcuwbt0CWUP3EXZA3cRnDpdt9gfczzR8vH7/qYOIIYj5hdIKScOLJRSdgghLkGPdqM4gDH6/WS/8Sp5L/+NrA3r0CwWfEcfR8fpX8Y//3N7vGBwf0JarYSmzyQ0fWa6zBAO6+45KXGftX4t3v8sTddHi0v6LPhTpxOaMv2gW8Qj4nHsG9bpwn3lMpyrV2Lq6QYgnptHYM48Ws77JoE58wlXVqUXGDe0tmDSymjfbKa9U7ect7eb6eg0pcR5nzU9mdxeqTqykuTlxsnLSzBtSii9n5sT77fvcSdH5GuYSPQ9AMTjBqLRDOEfF0RjBmK9ZfGMB4Fo33FPKEBpgR23u8+K3ivI3a4kFouK1qtQKA5urFs3k//i8+S++jLGUJDgtBlsuf5muo49sd/6Jk2DDRvtLFvhJDs7weyZQUpLYmnDRWRiJc0TK2m+6GKs9dvSwr700QcoffQBQlWTUhb7E4hMrFCusQMYjpjXhqqQUmpCiCHrFfsxmoZz+afkvfw3vEuXYIhFCU2aQt33r6PzpFNIuj2jPcJ9hma3E5w9l+DsubSlygwBP1kbN5C1bg2OlBU/+6030+dEysdlWO9nYMr36I5oBwiGUAjHmlUp8b4cx5rVGKIRQL8331HHEJg9n8CcecRKy0AINA2qa2ws+4uT5ascrFjppL1j7nZ9CyHJyU6Qm5MgLy9OVWVY38+Nk5cX79vPTWC379vpw2TSrfy6x09yt/pQ0WwUCsWYJJnE8/475L/wPO5P/otmNtN1/Mm0ffWcfgaypmYz//3YpX8+cdHd3V9y5mTHmTUzxOyZQWbPDDJtagi7TRItG0fLNy6i5RsXYW5uwvv2v8leuoTiJx+j5DePEhk3Ad8xx9N1zPGEJ0/df4V9Io6luRlrYwOmbdvg2EP32qWGI+brhBCXSSkfHlghhLgCqBu5YSn2Nua2VnL/+RK5L/8da2M9CaeTjtPPpP30LxOeMm20h7ffoDldBOYv1H39Uhi7fWStX5f2v3euWkHOG/8CYAq6+0ksP594XkFG4iD9uDfTZ8KbPSpvOkxdnThWrUi7zWRt2oBIJpEGA+GqybSf8RUCc+YRmD2PRK7ukx1PwPr1WSx/28GylU5WrHKkF2IWF8U4ZKGf3Px2xpfayMtLCfScONnZCUzDWmKvUCgUiv0VY7ePvJf/Rt5f/oS1uYlYQSENF19BxxlfIZGdQzBo4NN3nXz4kYsPP3axdZsNgLzcOEcc3sNhh/j53Hw/nV1mVq3JYvVnDlZ95uDt/+hGQ6NRMrkqzOyZQWbNDDJ7ZoiS4mLazjmftnPOx9Tehvedt/AuXULhM7+j6OnfEC0pxXf0cXQdc4L+ILEvf1elxNjTjbWxAWtDPZbGeqyNDXr0tsZ6LC3NadddzWQi9PPr9tpQhvNT+3PgTSHEVcAnQBf6AtiFwHjg+JEfnmIkEfE4nvfe0Rez/vd9hKbhn7eQpu/+L13HHK9nZlXslKTHi//Qw/Efeni6zNTRTtaGdSTWLCcnGMHc1oq5rRXXJ//F3NGOSPa3/momE/HcPD3hUEEhsbzeTKH5xPIL9f28/D0LwygllqZGnKuWpy3vtq36YlXNYiE4fSbN37iI4Oy5BGbNSfu6R6KCz9Y4WPZ3B8tXOln1WRaRiO5OM35chBOO9TF/bpB5cwIUF8WBsWWljmkxOmOdbAltptvUgyY1/YOGlBpJqSFJbaVGMlXe20brty/RZBKNvu3O+khqSZxxFydzwmj/UygUijGAfcM68l98npw3/oUhFsU//3M0XHkN7YcdzbpqNx/+Tbe+r/rMQTIpsFo1Fs4L8NUzOzjsED8VEyP9jOf5+QmmTA7zta/oyy+7uoysXqML+1WfZfH3V3J4/kU9CEVuTjwt7GfPcDDttHNoP+tsjL4uvP9ZinfpEvL//CyFz/6eWH4BvqOPw3fM8QRmzxuRPDMiHsfS0oSlQRfoulivx9qg7xuD/XPjxLNziJaUEpw5h86TTiVaWkaspJQmq4MFe/FBYzhx5t8VQpyAvtj1XMCA7nrzAfBtKeV7e2eIij3FtqWW3Jf/Rs6rL2P2dRHLy6flGxfRftqZxMrKR3t4BwWJ3Dx6Pn8kzdOqCA0UtcmkHms9JfDNba1YWlswt7dibmvDXr0J9wfvbhcnHyDh8aYs+/onlhL5fRb/ApIut/6aUdOwba7p83dfuRxLW6vej9NJcNZcOk45ncCc+YSmTk9n0/UHDKxa5WDZCt1tZs3aLBIJA0LoVpIvf6mT+XMCzJ0TJDdn97Kt7u9EkhE6Y510xDrojHbQEeukM9ZBZyy1n1HmT/hHe7jMd87nl9wy2sNQKBQHKSIex/vWm+S/+BzOz1aRtNvpOO0Mlh3xbd5pnsGHr7v4+DYnfr8JISRTJ4e54LxWDjvEz5xZwWGtGcrOTnLUET0cdUQPoK9pqq61s+qzPuv90nf0cNVGo2TKpHBK4E9k9rXnUObowPv+23iXLiHvpb9S8MJzxLNz8B11LL6jj8e/YCGYhoi8JyXGbp9uXW+s3060W1pb0tZ10A1hseJSoiWlBGbPJVZSRrS0lGhJGbHiUhK2LLq7jbR36oEcOjrNdKwz0d4eZcHX9p470LBegksp3wWOEELY0a3yXVLK0F4ZmWKPcb//H4qeegLnZ6uQRhPdXziK9i99mZ5DDudg9H+IRgU9fiOhkJEsexKnK4nNKkffnc5oJJGXr4e7nDZj8DZSYggGdMHf2oq5vTUt/nu3WevXYu7aPoqJZrURy8/H1N2Nya9PhrG8fAJz5hGcPY/AnHmEK/oWq3Z1GVn+gZPlK3S3mY2b7GiawGiUzJgW4vxz2pg3N8jcWUFcrt3zJ98fCCVCujjPEORpwT6gLJgMDtqH0+Qk15JLjiWHKmcVudZDybHkkGvJJRlNkuvKw4gBIQwYhQGBAYNIfUiVCQMGBAZh7NsKgcio7+vDiED062PgPhr4Orv38b+mQqEYC5jbWsn72wvkvfQXzJ0dNJfO5NnTf8fr8iQ+/CiH+r/qb4sLC2Mcd3Q3h33Oz+cW+sn2Dv5b0RXrpCZQS22wltpADVtDW3CanJTZyynLKqPMXkZZVjmF1kJMBl2XmEwwdXKYqZPDnH2Wbr3v7DKx+rMsVn3mYPUaB39/OYfnX0hZ73PjzJ4xi9mzLmLOWZ0c2vkGxe+9Rs7r/yT/7y+ScLnpPuJoxMxp5Eoj1oaGtEvMoNb13DxdrM+ZT6yklEhxKe3ZFTTZJ9CiFdDRZaG9Uw+V3FFjovNjc/q4y2caNMiD3Zbg4UciI/b/aSC7peiklGGgIbNMCPGwlPKyERmVYs+QksJnfkfpI/cTKR9H/eXfp/OLp5HIyR3tke2QZBICQT1pjt9vxB/oTZTTd6yXmQj0JtEJ9NUNFrvbZNJwOZO4XElcziTOjP3ejzPz2NW/fJ89DAiB5nQRcbqITKwculkshrmjvc/C39aS3tfsWbq/e2oC6h14c4uZ5UscLF/hZNlKJ5u36O5UVqvGrBlBvnthC/PmBpg1PTSshagd0Q5Wd69ibc9a2oKtOFqdGBCAQAiBAQMiNYbefUHqWBgQvf8JsYP9VI+p/hB6D739aVKjK9bVT6R3xjrpiHYQ0QafOD1mDzmWHHIsuUxzTyPHkkuuNTdd1ivecyw5WI1DuzmNlmuRltQIGbZ/i6NQKBS7hZQ4Vy7TM7QufYf/ap/j3vI7ecP9RVZuK0RrEGTZkyyYH+C8r7Vx6CF+JoyL9vtt7Ix1UhuopTZYk97WBGrwxX3pNg6TkwlZE2iNtvFu+7vEtL7s30ZhotRekhb3ZfY+oV9qLyUn28bRR/Zw9JF91vtNNfaU5V4X+W+94wVKMZlmMGXSJcw+pYdDLcs4uvEFZrzzAvNe/QcAmsVKtKQEX2EldZUn0+CaRJN1PM3GUlq0fNp77HoEtjoTnSv1qGyD6QujUZKbowdzyM+LM3VyOH2cm5vapvZDgTYMhlFaACuEKAWiUsp2IcQ3d9LXqSM3LMVuk4gzbvEvyXv5b3SecDJbf3rjnvld7wbJJDQ0Wti0NZuNuIcU5X6/nmSnV5QHgzv2bzMaJU6nHvZPF94JCgtjuFJlvXVZWRrhsKGf0A8E+oR/S6slvb+j5D0w+MOA2zX0w0EkGaEj147ZJDGbJabU1myWfWVmDZNx9xbgS4tFT8BUPHgyDSmhrt7CspedutvMSgeNTfr/f4cjydzZAU4/pZP5cwNMmxLGbN61V6FxLc4m/0ZWda9idfdqVnevoiGsP88bhQmbwarfkJQp33GJBGR6P3UsNfqORgaBINuSnRLiOZR5ynXreUqg6+Jcr/NasjEb9p9EZwqFQjFaGMJhvK/9k57n/ssbdZN4zbSItwx/J6DZMTRIpk8NcdEFLRx+iJ+ZM0KYTBpd8S5qAjV8XF9LTaCG2kANtcHafqLdaXJS6ajkmIJjqXRUUuGspMJRQb41P23g0aRGa7SV+lA99eE66kP11KW2q7pXEUj0t5bnW/Mpt5f3Cf2sMsqKyjm5ooyzv6ovoO3oNLF6Tcp6/5mDv7xSyLPR04DTyMt9jKpxjUTx0O6309lqJrhle80hhMTrSZCbq4dDnjAuqkdly+2LwJabkyBnmKGSw4O//B0xdmaZX46e7fVQ4Hc7aauCKo8yRr+fiT+/FvcnH9H0re/S9N1L9/rK7lDIQHWtjQ2b7GzaZGfDJjvVtbb0gsmBOLJ0i3evIC8uijF5kr7vdid0cZwpmF19x3b7jpPp7A7RqEg/XAT6PWgYhyxvbrEQSD2gxOMD/32HtqoPxGTSBoj8vn19qw1SltlO61fW2Ghh2UonHR26WM32xpk3J8h5Z7cxf26QSZXhXV4P1BZt00W7bxWrulexrmctUS0KQIG1gFme2Xyt7Gxme2cz1TWNrp7OYVup+0S+RJP6G4He/V6xLzMeDoCMBwX9P4HAbXZjFHu+0EmhUBzcGIJBbJtrsNdWY6/ZhL2mmmn1W8HlIeHNJp6dTSI7h4RX38Yz9hPZOSSdzv03DOKOkBJDKITB7yfcFibQHKPmlTpeXJHHkvh32MrNAJTkRTjp0ACHLmyias42WsVGNgdqeTVYw8MraqkJ1tI9iGg/tuC4tGCvdFSQlyHah8IgDBTZiiiyFbGQhf3qpJR0x7upD9dTH6rTt6n999vfoz3W3q+9y+SivFfkF5czvqKML5xTRpGlHF/dOD5b42LVZ1lsqM4hx2tgWkmY3Bx/hvU8nhbv2d6dR2FLyiRxLU4wGSeeiBPTYsS1OHEtRlwmiGkxElqcuJaqkwl8vm6+wOiFprwE6Entr2No67sAXhmpQSmGj6WxgcofXoW1fhtbfnojnaedMaL9Swlt7eaUaLexodrOxk126uqt6SyYLleCyVVhvvKlTiZPCmPOamZ8kSctyp2O5H7nqm+1SqzWBHm5u7ewc+DDQF1LNy57LvG4IBEXxBOCeMZWLzPoZanyfu1S9QPLwpFUWeb5vefG9URHubkJDlng1yPNzA1s9xp0KOJanA3+DazqXsVnKfHeFGkCwCzMTHVP5X/K/odZ3jnM8syiyDYyGYAz3W6UGFcoFCNGIo5t2zbstbpgt9VWY6+txtrYQBQL65nKO+YFrPBcwkZRhTMQw9vdQXZ1K9nRFnKiLXhYj4duvPjw0E0+PlzGIMZsR1rcpx8AMgR/PGNfs9tHTPyLWAxjwI/R34PR78fQ4yfYFqO7XaOnQ8+s7esx4QuY6QrY6Apn0Rl10hV305n00E4lHeSSoO/NpNMYYP6h6zj86A9xTlxNl2kjtcEalgQ3072sT7S7TC4qnJUcX3A8E526YK/YRdG+W/cqBF6LF6/Fy0zPzO3qw8kwDeGGPqEf0sX+2p51LGn9N0nZ93tuNVgpKSmhvLKcGcKN3ZpFTIvRI+N0aHFiWpy4jBP3x4h368cJ2SvQEymB3neckHGScvhrySzCwnVcu0f/Ljtih9JKSvnXjMPFUsqtQ7UVQiwesVEphkXWmtVUXnc1IhGn+p5H+sVE3x3iCdiy1cbGTXY2pkT7xmo7Pl/f16W0JMrkqjCnnNTFlElhJk8KU1QY7zdvNXd1UJRt2aOx7O8MfBjIL22nKHv/duNojbSyqntl2vK+zr8u7btYaCtitmc25437OrM9s5ninorFcHD/P1QoFAcoUmJubdGt7LXVKeG+CdvWLch4khoq+dQwhxXuL7PaMp+13sls7ikgqRkgDiafRmFhCC1pIRA2EAgY08apQUmCrTOKuzuAZ6sfr+zCk+wkW+vAQ3dK/G9MPwS4TCEcLonLA1leA848M7Y8G1qOl0R2NprdjjEQQHYH8Xdo+DoFPT4DPr+ZroAVX8hGZ9hBV8xFp+alnTw6KKWdPLrIRmNwI4iJODnmHrItAXKcQUrcXYwrXI5WsJVoTh0hTwPtni20m+t5J5FaTN8CbpM7LdornLpgr3BWkmfJ2yuifXexG+1UOauoclZtV5fQEjRHmge16i8LL8NkMGE2mLEYLJiEGYvBjNlgxizMmA0W3GY7FoM5VWfR69L1veeZMuosmDOOTQYzlsy2qa2/a+/62QwnNOXvBisXQnillL6h6hV7F+9bbzDhpuuJ5+VTfef9RMdPHNb5fr+RjdW2tGjfsMlO7WZb2n3EYtGoqohw9BHdumivClNVFcblHL2Ev5rUiCQjBJNBQokQoWSIUCJIMBkinAwR1WLkWXIpthVTZC/GbrSP2lhHm5gWY0PPelZ1r0r7u7dEmgGwGCxMc03j7PJzmOWZxWzPHApsBaM8YoVCsa8xt7ZQ8vhDVFSvR+Tkk3R7SHg8JDxeEh4vSY+HhNtLwusl4faQ9HjRzYBHUwAAIABJREFUbLZ96nJi9Pux9Yr2DOFuDASoo5yVzGSF43BW2a9kjXMaG3tKiSVNoIHolpSVxqicGuboia1UVUaoqghTXh6lw9+3kF3TIJQS9ZlrrQLpj0EP0hAwEgh48AdyaAlMptovCPoNBIImwrEMWZVAz8jT1f9eXPTgxYeZOJ3k4NtB2nCrIUaONYDXHibbGaHSGWOBpwlPdgPuXIE7z4C7wIQ5N0DQuplu02batG3Uh+uoC9WxMVRHxwC3lBxLDsWWYk70nJCytOt+7bmW3P1KtO8OJoNJ96fPKoPcw/rVjWY+lLZwx17tf5fFvBDiKOBC4HUp5XNCiGnAq0C5EGIFcKaUsn7vDFOxHRkRawKz5lD7q7tJZOfsqDmNTZZ+on1TtS29OBJ0H+vJk8Kc97U2Jk8KM7kqwvhxkT12jUnKZJ/oToYIJUIEk0HCiRDBlBAPJcOEksG+/QxxHkyEUnX6+eFkeFgLKLPN2RTbi3VxbyumxF5Csa04VVaCy+zasxvcj2iONLPKt4rPUuJ9fc964lJP7FRsK2aOZzazxl+gW91dU9RiUIViDCNiMQqe/wNFTz2BSCbpmDGDrJ5ubHXbMHX7tgvZl4lmsaYEv4dkhtDv/wCg+6L3PgDsis+5iMWwbd2MvbYaW0112upuaW2hjTw+YyYrLQtY6TyHzywz2WAZjz+WSngYhEJHjMqqCOdM7KSyIkxVRYQJEyLYbdv/ZmhSX9DpiDtxmBwYDAacDg2nQ6OoML5b/6bxBBni34g/qLtg9kZqCwQMBHySYCckYiY82d24c/248wRebxKPO4HHk8TrSeD1JLHZtFRsAd2PvC4l0utDdawO11EX2kZdqA5fo6/fOHoXjB6R9wXKssopzxqXWkBahtPkHFOJ/sYCw5Fpi4AIsDJ1/ADgBK5FXyB7O3D+iI5OMTi7GLHm0+UOliz1sqlad5MJBPRXckJIxo+LMnN6iLPO7GDKpDCTqsLk5SaGZWiJJqO0RltoijTTHGmmOdykb1Of7piPsBYhOkSIwMHIMmbpH1MWWUYHDlMWedY8HMZxZJkcZBntqW3fvsOYhd2UhcPoIMuUhVmYaY+10xhupDnSRFO4icZII9WBGt5tfze9kLMXp8mpi/sMgZ+5zTZnj4q1QkpJRIvQE++hJ95NT7yH7kTvvl/fJnrS9ZuDm2mN6kmirAYr09zTOW/c15nlmcUs72zyrfn7/B4UCsX+ifv9/1B2/53Y6rbhO/IY6q+8hm1Zxv4CLxHH1NODyefD1OPD2N2NqduX+nRj7Ok7tldvwtjjw9TT0y/JTibSaEwJ/tQDQMr6n3S5Mbc269b2uq34k1msYQarDHNY6foenxnnsM5eSXs4ZXiJgSeRoKoywikT/VRWtFFZEaGqIjJobgwpJU3h5lS4xN7wiTVsDm4mlNRT5QgEWSYHTqMDp8mZ/jhMDpwmV8Z+b7mzXztnqp3ZZCbbmxwy7vqOkFLSEeugLlTHx+E66ht00d4r4DMT1gkERbYiyrPKOa7geH0BaFZ5WrCP5TfSY5HhiPlKYIGUMimEKAOOAy6TUj4qhDABK/bKCBX92JWINZGo4IFHSnjuz/nY7UkmVUb44oldadFeVRHZaTxxKSW+eBfNkeYhxHoTHbHtXxvlWfIoshdT5azCKi3kZuWRZczCYXJgN2bhSIn0wYS4zWjTk+KMAGVZZcz1zh30vrriXTSGG2lKCf3mSCON4SYaI0186ltGcEBILKvBlrbsby/4i8mz5u1wAWdSJvGnxHd3ogd/vIfuXoGeEuPd8W69fEB9r1V9MIzChNvkwm324DG7mZc9n9me2cz2zGaSa7KyuisUiu2w1NdRdv+deN97h0j5eKrvepCew76gV3Y19W9sMpPIyR1ejhJNwxjw65b97m4MXT4SHUFinRFinVEiviix7hjRniSRFo1IUBIMG9lk+xKrLPNZa5tMfTAv1RfYY0kqJ0b4QkWEqooGKivCVFZEyM3Z3vgkpaQl0qqHTEwJ9ppgLZsDtf0Sw+VacqlwVvKlkjPw4sVusxNIBAgmgwQSAX0/EaAr3kVduI5gQi8faAgaDKvBukPR78h4WJCQCsuoi/W6cB3hZF8OCaMwUmwroTyrnJnFs9KhGcuzyimxlewwD4ZibDEcMZ+QMr2E92tAGHgGQEqZEELEhjxTMSLsSsSa9RvtXH/jOGq32Dn3a21ceWkjNuv2rxeHtqr3CfaBE1evqC2yFTHJNYkiW1HadaXIVkSBraDfYsn98TWeECKdEGiwVfIA/rifxkgjTRmCvynSSFO4iXU9a/vF0wUwCROFtkKKbSVYsZIQcbrjPfgTukgfGC93IFnGLNxmNx6zB5fJzUTHRNxmD26zG7fJndrvFe2etIDPMmYd8P6NCoVi3yAiYYqefpLCZ59GGk3UX3Y1bWd/HWnWH/oTCWhvtxL1WwlHDEQiBsJhw3b76bKM40h08HL93F2LVGWKakwsjjJzYpgzKxqpqohQWRGhuCi2XYRlKSXt0TZqUllFa4J98c4z59scSw4THRWcVnK6HjbRWUmFoxKvxZtuM5zfqbgWT4t9XfAHCST8A477HgZ697fFOtP7oUSwn5uoSZgotZdRnlXOgpyFlNt1sV6eVU6RrVgZZRS7xLDEvBDicPS481cCf5VS+gGEEAXAsL9xQogzgOvRHwyMwCIp5Sc7aD8HuAOwA9nAW8APpZTRVH0F8ANgDnrcewfwmJTy8Yw+JgAfAusHdH+DlPLt4d7DvmJnEWuSSXj6jwU8+kQRXk+SB++uYcq8rbzvW5ES6439XGB2ZFWf5JrMkflHpWLA9vqaF+Exe8aEeHSZXUwxT2GKa8qg9eFkeIDQb0ofN0ebybZ6ybXmUuGswGVy6QI8Q5h7zG5cafHuUpO14oBBzdkHIFLifetNyh68G0tLM50nnUrDZYuI5/ctdn/nPTd33ltKQ+OuWXrNZg27TcNu17D1bq0ableSwvx4v3J7xtZmG1ieTNfn5cUxD1AkvW4nfYK9lppgDZsDtfQketLtPGYvlY4Kvlh0CpXOKj10orOCbMvQ68h2B7PBTLYlm2zL0AtWd4YmNULJEIFEACk1CmyFKjSvYo8Zjpi/GX0iNqP7zv8KQAjxHeBHwJLhXFgIsQD4I3CIlHKtEOJ04DUhxAwpZfMg7UuAt4EfSSkfF0JYgdeB+9Hj4QNcBowHjpdSxlI/JP8VQiSklE9mdPcvKeWFwxnvaNI/Ys0DRMdP6Fff2GThFzePY/lKJycc18VPrq1nm1zG2e9/n664voy+v1V9cjpZQ69VvdBWqEIQ7iJ2o11PkOHcPkHU/vg2QqEYCdScfeBhq62h7N47cH/6EaGqyWz+xa0E585P1zc1m1l8bxlv/8fDxAkRLr10DSX5zpTYTqZEukyLbltKhO+NfCGdsU5qOmu2s7R3x7vTbTxmDxWOCk4sOikdgaXSWTlq65p2B4MwpN1sFIqRYjihKV8RQkwH5gEfSym3pao2A78Elg7z2j8BXpNSrk31/7IQogW4HN3yM5ALAAPwRKp9VAjxIPCsEOIXUsoWoA54SUoZS7VZKYRYgr4w98lB+ty/2UnEGinh5VezWXxPGQi46fqtnHpyF2+0vMYNa35BgbWQO+YsZqKjAq/Ze8BMdgqFYr9EzdkHCIaAn+LfPEbBi8+RzHKw7Zqf0H7GWfSq8Hhc8Ifn8vn1b4sQQnLlpY2cf04bHYHGvWKM0KRGR6xDX4M1iEtnc6Spn2jvS1J0AhUHWehEhWJvMKznayllLVA7oOzfAEKILwJDJpUahBPQI+Bk8jFwIoP/MIwD2qWUmSs3G9Ff9R4BvCilvG+Q88KAZxjj2j/YScQaX7eRX95RzpKlXubPDXDT9VspKozx2y1P8lD1g8z1zuPOOXft0etAhUKhyEDN2fs7mkbOq/+g9JH7Mfm6aD/jLBovvpykt+934ONPndx2Vxlbtto49igf1yxqoLho98Iw9hJOhvuEecr1MNOtsyXSTEL2z7LtMDooSr0tnumZyYSsCbqlfS9mFlUoDlZG8mXZL4F/7UpDIUQO+mQ9YOk8zcApQ5y2BSgSQlh6rThA2YDtwOsI9LCZA7PTThVCvITuwxkEnpZS/nFXxr4v2FnEmvf/6+LGW8fh6zZy1WWNfOPcVjQR58a1t/CPxpf4YtEp3DDj/5TbjEKhGBHUnL3/k7VuDeV3345j7WoCM2dTfecDhKdOT9e3d5i498ESXn09h9KSKPcuruXIz/fsoEedTKt6ZrCETMHePSAogAED+baCtFA/sfDEfm6dRbaigyq/h0Ix2uxQzAsh/gw0SCmvFkJoMIxMPTvGkdoOjPMUBbKGOOcp4KfAj4UQN6P/sFyZqhtq9ch3gDbgkYyyCPqPzNVSymYhxFzgDSFEqZRy4A/IPqdfxJqf3UjnqX0RayJRwf0Pl/D8C/lUTgxz/521TJkcpjvezQ9XXsunXZ9wccUlXFxxibJqKBSKkUTN2fsppq5OSh57kNyX/0YiO4ctP7+JzpNPSxuAkkl44a95PPR4MbGY4LsXNnPRN1u2i3K2LbiVt9r+Taijz8reFGnaJat6ZlSzIlsR+dZ8TIa94FivUCgGZWd/bUZ0n0eAFuDRIdoJ4OJhXLc34OvApfNWIDTYCVLKViHEYcBNwPtAN3Ar8E+gc7sBCTEffWHuCVL2BetOLdQ6N+N4hRDiUeBnbG8NQghxMal7KywsZOnSpbt2hxnEE3F6kj4CiR1bQTwb1jPj5pswxBN8dNMtdM6enY77W13tZvGdc6ivd3LmmZu58FsbsVg0ljc1ccOmX9ASa+GaiddyXM5xtPi2W4s2KiQScZoHxi0+yBmL9wxj875H7Z6lJEFyt+aiPeCAmbNTfe3RvB2PxZFo+/V3WiSTjPvnP5n8h99jjITZfOaXqT7v6yQcDuhuAWD9Bg8PPzyDmhoPc+e2c9mlaygtDeELkf6/FtWiPNf4HC+2vEBSJjFgINeSS74lnyp7JYd7DqfAUkC+JZ8CSz75lgIcJsfQA4tAe6Rt7/8DjBBjce6CsXnfo3nPCRJ89MlHGIwjk0tnIDsU81LKszIOP5BS3jhUWyHE7F29qJSyUwjhA4oGVBUBNTs4bwNwTsY1J6R2Vw8YyxTgaeDLGQt1d0QN4BFC5Ekp2wdc83HgcYCFCxfKY445Zhe668+rr7yKw+TG6Rp6AsyMWLPxzgewjJ9AEbpV5ak/FPDob4rJzYnz8L3VHPq5AFDICt8KrtlwDSB5dMFjzMueP2T/o8FYjOwyFu8ZxuZ9j9Y9a0mNjo5Odmcu2l0OpDk7dd09mrcbtzTyyYpP99vvtHPFp5TdcztZ1ZvoWXgI9Vf/iMjESlKplujuMfLgo8X89aVc8nLj/OqmLZx4nA8hPGQuR3i//X1uW/8rGsL1fKnkDM7MOZNZhbPHlFV9LM5dMDbvezTvua21g0MWHoLTs3eiGA0nms1Ze1I/CG8CCweULQT+MlhjIYQF+JyU8r2M4qPQF+Quy2g3HngB+GZv1AUhxMW9cYuFEF8HaqSU/83opxTdTrF98PW9zQ4i1jQ0Wrj+5nGsXOXkxOO6+MkP6/G49bxdrza9yo1rbqDYXsx9c+9nnGP8Ph+6QqEYU6g5e5Qxt7VS+tA95LzxL6KFRdTeshjfMcfTmwpV0+DlV3O47+ES/H4jXz+7jYu/04zT0T/jd3u0nbs33MlrLa8xPmsCjy34NQtzFtLc1TSmhLxCcbCwy3+1QoiZwLeBuJTyuozyxejhyt4c5rVvA5YKIaZJKdcJIU4FioGHUv3eAnwZWCiljABu4O+p9m1CiHzgx+h+lDJ1TjH6D86DgEEI0fvDcyEpKw0wGThTCHF+KnNtCfrr2Ed6+9lnDBGxRkr4xz9zWHxPKcIAN/9iK6ec1IUQehKNX9c+zmO1jzLfO5/Fc+7ql81OoVAo9hJqzh4lRCxGwZ+eoeh3v0YkkzRd+D2aL7gIabOn22yqtvGru8pYucrJnFkBfnJtPZOqIv360aTGX+pf5IHq+4lpMS6p+F8unHiRCpagUBzgDOcR/CrgSODOAeWrgUeFED+SUg5qoRkMKeWnQojzgaeFEL3ZBE/OSD5iQ19Y1buSMwx8BHwghKhPlV0npfxHRrc3AVXAvQMulxky80/AD4F3hRAx9IVdjzOE7+XeYqiINV0+I7feXs5b73hZMC/AjT/fmg4bFtNi3LL2Jl5peoXTik/n59OvV5OwQqHYJ4z1OXu0cH/wLmX3LcZWtw3fkcdQf+U1xEr7ggEFgwYee7KI5/6cj9OZ5IafbuP0UzozA6ABsMm/kVvX3cLq7tV8LucQfjL1p4xXb3QVioOC4Yj5w4CjpJT9VrZIKZ8WQvwbeJEhXrcOhZTyJeClIequBa7NOA4Cp+6kv+8B39tJm7XARcMZ50gzVMSa9z5wceOvxtHdbWTRZQ2cf24bxlTMB1/Mx7Urf8By33IurbyM70z8ropYo1Ao9iljdc4eDSz1dZTdfyfe994hUj6e6rsepOewL6TrpYQ33/Jw132ltLVbOOvMdi6/pAmvJ9mvn3AyzOM1j/HMtj/gNrm5eeYtnFJ0qvr9UCgOIoYj5uVAIZ9RUS+EsI3QmA5qstaspvK6qxGJONX3PEJg/kLCEcF9D5Xw57/oIScfvKuGyZP6Xo9uC25l0YqraI40c+vMX/LF4qHCOisUCoXiQEZEwhQ9/SSFzz6NNBppuGwRrWefjzSb0222brNy+92l/PdjN1Mmh1h86xZmzdw+qNB/2v7D7et/RVOkiS+XfoWrJi3CY1b5uBSKg43hiHmnECJ/MEGf8oXcO0t0DyIyI9ZU3/kA0fETWLfezs9uHM/WbTbOP6eVyy9pwpoR/3dZ16dcu/IaBIJHFjzGXO/cUbwDhUKhUOwtstatYeLPrsXa0kzniafQcPnVxPML0vWRqOC3Txfy1DMFWCySH15dz/98pR3TgF/ytkgrizcsZknrm1Q4Knhi4ZPMy563j+9GoVDsK4Yj5v8MvCWEuBX4BD1OcDZ6NIOfAs+P/PAOEqSk7E9/oOLJR9MRayKuHJ56qpDHflNEbk6cR+6r5pCFgX6nvdL4MjetvZFSexn3zbuf8qzyUboBhUKhUOxNRDzOhJuvR0jJxoeeIDB3Qb/6d993ccc9ZTQ0WvniiZ1cfUUj+Xn9kzklZZI/1/2Jh6sfIiETXF51BReM/yZmgxmFQnHwMhwx/wtgOvAM22eCfRm4YaQGdVARjzPzgfsof/31dMSaunYXv/jJOFaudnLyCV38+Jp63O4+P0cpJY/WPMITm3/NwuzPsXjOnbjN7lG8CYVCoVDsTQr+9Ay2rZupXnx/PyHf1GzmrvtKeesdLxPGR3jk/moOWRDY7vz1Peu5dd3NrO1Zy2G5h/PjqT9RBiCFYowwnDjzMeAMIcTxwIlALtAOvCGl/PdeGt+Bzw03UP7662w971u0X3oVL72ax533lmIwwi03bOGUk3z9mkeTUW5c+3+81vwvzig5k59O+5myqigUCsVBjLmlmaLfPo7viKPp+fyRAMTjgj/+KZ/HnyxESsEV/9vIN85tw2zub0sLJUI8WvMwz257lmxLNr+c9StOKjxZLXBVKMYQw84OIaVcAizZC2M5OPnhD1kuoW7umdzz8wqWvuNlwTw/N/58WzrkZC9dsU6uWXkNK30ruLzqCi6a8G01ISsUCsVBTtmDdyOSGvWLfgjAp8sd3HZnGbVb7Bx9ZDfXLmqgpDi23XlLW9/ijvW30xJt4atl/8OVVVfhMrv29fAVCsUoMywxL4QwA+cBxwAWKeU3hBBfAz6WUm4Z+eEdBGRn8w/rWdx36Wz8ARNXX9HA+ee0bRcDeHNwM4uWX0V7tI3bZt/BiYUnjs54FQqFQrHPcH30Idn/foPG715Km3Mcd91cyiv/yqGkOMo9t9dy1BE9253THGnmjvW383bbUqqck7ht9u3M9s4ZhdErFIr9geFkgC1Ct8hPA+JAb1SbccC9QohTpZQrR36IBzZ33gk33LiQiROCPHxv7XYZ+QA+7vyYH668BrPBzGMLHmeWd/YojFShUCgU+xIRi1F+921ESstp+fq3uPWmct5+1813vtXMRd9swW7r71KT0BI8X/ccj9Q8jCYliyZdzXnjvq5cMRWKMc5wLPN3AuuBs4CNwDIAKeVdQohPgV8Cp434CA9wTjkFPvyglksubCY3N2u7+pca/s4t625hXFY59817gFJ76SiMUqFQKBT7moLn/4CtbivVdz3Ih6tyWbLUy2UXN/Gdb7Vs13ZN9xpuXXcLG/zr+ULeEfx46k8osZeMwqgVCsX+xnDE/OHAZCllEkAIkTYZSCmXCiHGRGrt4TJjBnzn2xuwmvpHo9GkxsPVD/HbLU9yaM6h3D57sfJ1VCgUijGCubmJot/9Gt9Rx9Gx4Aju+FYZZaVRvnFua792gUSAh6sf5E91fyLXksvts+/g+IIT1HoqhUKRZjhiPtkr5Icgb08HM1aIJCP835obeKPldb5SehbXTf2xek2qUCgUY4iyB+5CSKhfdA3PvZDHlq027rmjNp00UErJktY3uXPDYtqj7ZxdfjaXVl6ujD4KhWI7hiPmW4QQ10gp7xpYIYS4GNgyYqM6iOmMdfKDFVezuns1iyZdzQXjv6ksLAqFQjGGcP33fbKXLqHh4itoMI3j8d8UccTnuznqC/pi18ZwI7evv4132//DFNcU7pxzNzM9M0d51AqFYn9lOGL+Z8AbQogrgA+BUiHEE8AcYCZw7F4Y30FFbaCGRcuvoiPWyeLZd3Jc4fGjPSSFQqFQ7ENELEb5PbcTKR9H63kX8MDtJcQTgmsXNZDQEvxx2zM8VvMoQgi+P/kHnFt+HibDsKNIKxSKMcRwkka9I4Q4Drgd+BpgAC4E3geOlVJ+uFdGeJDwSffH3LDpeqwGK79e+AQzPDNGe0gKhUKh2McUPPt7bHXb2HT3Qyxfn80r/8rh299sprwsxr0bH+D3W5/m6Pyj+eGU6yi2F4/2cBUKxQHAcEJTuoHVwJGADcgBOqWU4b00toOGf7X9i4e2PcQEx0Tum3sfxSoCgUKhUIw5LM2NFD/1BF3HHI9v4ee54zulFBbE+PY3W6kLbePZbX/kjJIzuWHG/432UBUKxQGEYedN0vjQQ1OOk1KGpZQNSsjvnLvev4v7t97PAvcCnvzcb5WQVygUijFK2X13IQXUX3kNf3kplw2bsrj6ikbsdo0HNt2P2WDmsqrLR3uYCoXiAGM4jniNwCQl4IfHqZNO5b1V73HFhEU4Tc7RHo5CoVAoRgH3B+/ifeffNPzvlbTaynj4sWIWzvdz4nE+lnctZ0nrEi6p+F/yrfmjPVSFQnGAMRzL/KYdCXkhxKUjMJ6Djmn50/he+fcwCbWASaFQKMYiIhql7J47iIybQOu5F/DI48UEQ0Z+9P0GQHLPxrvJt+ZzwYRvjvZQFQrFAchwxPyvhBB3CyFyh6j/3kgMSKFQKBSKg4nCZ5/G1lBH3fevY22Nm7+8lMs5X22jsiLC6y2vsabnMy6rugK70T7aQ1UoFAcgwzEXPwZkA4uEEB1AYEC9cgZX6EgJoRBoGgSDYLaARSXFUigUYw9LYwNFT/2GruNOpHvhYdxxaRnZ3gQXf6eZaDLKA5vuZ4prCqcXnz7aQ1UoFAcowxHzbuCvQ9QJQM1Eij4h7/aAFoLCIujp1kW9wQBWq75VKBSKMUDZfYuRRgP1V17DK//KZtVnDm746TZcTo2ntjxLU6SJX8z4PwxCzYsKhWL3GI6Y3yalvGioSiHEv0dgPIoDmWQSIhHIzgaPF3xNYLfrn3hMF/R+v95OWesVCsVBjvu9d/C++zYNly2iM6uYBx4pYdaMIKef0klXrJPfbP4NR+YdxSE5h4z2UBUKxQHMcJJGzdtJ/XF7PhzFAUuvkM8vAIdj+3qzBbwW3WIfjUK3T1nrFQrFQYuIRii/9w4i4yfSevb5/PqRIjq7TNx7Ry0GAzxe+ziRZJhFk68e7aEqFIoDnGGHWEllgT0c3Ue+EfhASqms8mOZWBwScSgqAttOFnAZDENb6y0WMCtrvUKhOPApfOYprI0NbLrvUarrXDz3Qj5fOaOD6dPCbA5u5sX6Fzir9KtMdEwc7aEqFIoDnOFkgM0HXgS+gO4j34sUQrwLfFVK2T7C41Ps70SiIAQUF4PFOrxzlbVeoVAchFga6in6/ZN0Hn8SPQsOZfGiUhxZSS67uAmA+zfei81o55LKS0Z5pAqF4mBgOGrpEcAFnANUAjlAFXAe+uLYh4d7cSHEGUKIj4UQ7wgh3hNCLNxJ+zlCiNdS7VcLIe4XQlgHtCkWQvxdCPGBEGKZEOLaQfqZKoT4txDiP0KIT4UQFwx37AogHAaTEYqLhi/kM+m11hcVQ2kpuN0QS1nt4/GRG69Codgj1Jy9a5TftxhpNNJw5TW8+ZaHjz91cenFTWR7k3zc+THvtL/Dtyd8m2xLzmgPVaFQHAQMx83mWGCilLIno8wH1AohXgc2DefCQogFwB+BQ6SUa4UQpwOvCSFmSCmbB2lfArwN/EhK+XjqB+F14H7gklQbA/AP4FUp5fVCCA+wTAjRI6V8PNXGmTrvRinlb4QQZcAqIUSrlPK14dzDmCYYhKwsyMsDg3Hk+s201kcifZFwjEbdDUdZ6xWKUUHN2buG59238bz3DvWXf58eZxH3PFjK5KowXz2zA01q3LPxbopsRZw37uujPVSFQnGQMBxltGWAkE8jpfQBW4Z57Z8Ar0kp16b6eBloAS4fov0F6ON9ItU+CjwIfEcIUZhqcyowF7gr1aYbPT7+z4UQva5BFwJ24LepNvXAc8DPhzn+sYmUurh2ufXFriMp5DMxGPSHhV5rvculW+tDIWWtVyhGBzVn7wQRjVB27x2EJ1TQevZ5/Pa570VcAAAgAElEQVT3BbS0WPjRD+oxGuGVppfZ4F/PFVVXYTXuwdtMhUKhyGA4Yv6/QogTBqsQQpwIvDWg7MWd9HcC8MmAso+BE4doPw5ol1JqGWWNgBE4IqPPmtTDRWaf5cCUjDbLBvTzMfB5IUTWTsY8tkkmdTGdnQ05Obqv/L7AbAFvNpSWpR4gDPoDRSSiJ6ZSKBT7AjVn74Si3/8Wa1Mjddf8hLpmB0//sYBTTupk3pwg4WSYh6sfYoZ7BicXnTzaQ1UoFAcRw3Gz6QFeFEK8B6xNHbuBGcAc4AkhxC8y2h8+VEdCiBzAAzQNqGoGThnitC1AkRDCIqWMpcrKBmwrhuizt259artskDYGYAL6vSkGkg49mQ8O5+iModdan5UFsaj+YNHTowt6FQlHcTAhpf691jTQJMjUvpQgAcOwA5HtEWrO3jnW+m0UPvM7Ok88hcD8hdz1o1LMJsmiyxoB+MPW39MabeWXs25TCaIUCsWIMpxfhB+ltl9MfQYy8JWn3EFfvYHIowPKo8BQlpangJ8CPxZC3Iz+w3Jlqq7X18MxRJ9k9LsrbRSZxOP6Z1dCT+4rLFb94/boC3H9PX2+9VbrvntroFAMl16RnkyJcy2pbzO/s0KA0aQvMLeawWzSj40GQEBo4BS211Fz9o6QkrJ77kCazDRcfjX/ed/Nf97zsOiyBvLzE7RF23hqy+84ruA45mXvMGWLQqFQDJvhiPmVO0sclYkQYvkOqoOp7UCnQSsQGuwEKWWrEOIw4CbgfaAbuBX4J9CZ0a97kD7J6Dc4xHUz26QRQlwMXAxQWFjI0qVLB72hHRFPxOlJ+ggkBl1ysH/T68ZiNkNjcMdtB5CIRmiuXbMXBjUEUkJcg2BSPxZin4v6RCJOc9dAQ+PBz1i870HvWcr+20ERenDf3u9n73d04DbB9hK299pJjaVLW3Zz5LvFATNnw57P2/FYHIm2y9/pgg8/wPPhe6z97veo0SS3311IWVmAY09cTXOX5P4t9xHX4pxX8PX9+u9E/R2PHcbifY/mPSdI8NEnH2Ew7p23csMR87/YeZNday+l7BRC+ICiAVVFQM0OztuAHhoTACHEhNTu6tS2lu3fGvReoyajzWDX1RhkEW8qosLjAAsXLpTHHHPMUMMbkldfeRWHyY3TNUhm1P2ZSES3dBcUgGn4LizNtWsoqpixFwa2EzQNQkHo8ulWT6tVv499QHNXE0XZxfvkWvsTB/1997Om6/vNWhdFVk9fG4MBTKa+j9msLxA3CP37ZzSCMOz2A6am9b4kk0QJcsy8ySN0czvnQJqzU9fdo3m7cUsjn6z4dJe+0yISZvoTTxCuqCJywfd485lSmpocPHh3DeUFRWzyb+KN9jc4d9x5zC9eMKxx7GsO+r/jQRiL9wxj875H857bWjs4ZOEhOD17x015l8W8lPIfw+l4F9q/CQyMUbwQ+MtgjYUQFuBzUsr3MoqPQp/oe/0p3wCuEEJ4MxZULQTqUj8qvW1uEEIYMhZULQTel1IOauUZk4RCeuz3kQ49uS8wGMDpgiwHhEO6qI9EdFFv2re+xoqRJ5mAWEKQ1DKy1wlAgskoMZmG+ew2iFDfzu2l1+XFbu9zeWny68nSekX6CIdNTWp6kuRkUvdZNBrA4dDXnsdHx4tMzdmDUPT0k1ibm9j40BM0d2Txm6cLOfYoH4cf6gfgvk334jQ5+W7F90Z5pAqF4mBlNJXNbcBSIcQ0KeU6IcSpQDHwEIAQ4hbgy8BCKWUE/VXs31Pt21IZaX8MXC1l+p32q8AK4Pvok78b/VXrLRnXfQq4DvgW8FshRClwLqCC/oIuYkIhPfTkvoxYszcwGPTFulkO3a++q0v3q1eLZQ8okkndIp3QBEiwWiRet4bNKrFa9DbxBMTignAYwhED4UjKCK5pmI1JTGgIdkGom4z6WyhjSpwbjfrD7GB/BwbDniVLG+I+e8W72QROpz6szK+slBCM7bCrvYWaswdgrdtK4R+fouPk0wjMXcC915cgNcEPrtIXvb7f/j4fdLzPDyZfg8fs2UlvCoVCsXuMmpiXUn4qhDgfeFoIEUZfEHVyRvIRG/ript5f0TDwEfCBEKI+VXZd5hsAKaUmhDgDeFQI8UGqj8d7k4+k2gSEECcBjwghvo2+uOr7+2PykX2OpulCPidHX1h6IAv5TITQI+DY7bqF3pcS9WYLWJSo39/QND2lQK94N5vB7dSw2yUWi6Sfy2EyCYkEVk3DKiQuuwQ7JJIQTwiimolQzEw4aUczmhB2E0azAbPZwP+zd+dxst1lgf8/zzmn9qqu6n27SwgQwAAiZHD5/SRRkDjILyAzOAjzA+aHMgg4IBN1UEAY4YWILEYQiIrIIAy4jCzKZEJiAGdAkwAiBBFC1ntzs9y1u9azPL8/vqe66/Zyb1ff7q7uruf9etWr+tbZvqe77+nnfM/zfb5+7hyB+g6IojR4T/uac1k3+XGh4M55tz1Esmv2Ct1Br9kcR17xam6+tcz1N47yH19yH3OzHWKNefd33sWBwkF+5uC/O//+jDFmkwb650JVPwV8ap1lVwNX9/y7jptg5Hz7PApcdZ51/hk3o63p6paenJoaXOnJ7SbiIqVCAVpNOHXKBfVBhqUuXrPjurngUSyopj3SpYRiGrwHPq47OoqgE7vf1a5sdjn6zWTSnnSPwPcJfJ+CCLV0825RplZreZoCxUWe3eB5uyYY7jY/DF2lSQHyeajV3Hs2u2PDOi6IXbOXVb/wt1T//v9wz6t+mWZ1gre/a5652TYvfMEDAHzyyCe5ffG7/Pbj307Gs04DY8z22WV9P2YgdmPpye2WL8BMAdotOH06LWsZQN5mZdxuS4F15IJ334dSIaFUdMF7xktc5BtF0FJAXc5MPueSxvP55UGmG4y+RVzAnM26XYyPL6e1dDouC6vRWC7e5HkX1jvePccoWg7eCwXX857LuXZs142D2X5es8mB3307zYc/kgef8zP82V9McvsdBX7nrXeQzyn1qM77b/99nlD7AX586qmDbq4xZp/b1J8qEfGBUVV9aIvbY3ZaK619Nzu7pfm/e0YuD1N5NwnVmTOwuOiC+lx2/6QZDdhSp3ooS1UZC3lltJaQ8yIyhEiSJoq3cRF0Pg/Vqot6u4H7Fv88ugVm8nkXZMNyAN5sule9vtx7HwTL6fQrLT1diNI5ndLMrtHR5ZsI+3XaP2Y+/Efk7j/Gt9/wFo6fyfP+P5rhh3/wDFf86GkA/uTOD3G8c5x3PuHdiP3gjTHbrK9gXkQuB34D+BHgODAvIu8HvqWqv7sN7TPb6QJLT+4r2RxMTLoA8syCm4TKJqDatCh0FWcUQCGfTZgcCcn5IVk/Xq5CE2QhX0oHnwbLqTID0s3WKaQPqJbLQS733rfSgD1JloP9wHfBe6m0vA/7tdmfcnffxdRH/4TjP/lM6k94Ir/3llnabeHqVx1BBO5v3c9H7voIV878JI+tPnbQzTXGDIENB/Mi8pPAp4FbgI8Al6eLPgBcIyItVf3A1jfRbItGw3VJTk7uvdKT2ymTdTkY1RFYWHApOL5veRHno9BsCYkCcULOjxjLheSCmFxW3UQZ+RzkR9zvne+nddh39/fU89z9XC7nKsuAS8/pdKDxoHug1Q3ezRBQ5eA7fwvN5TnyilfzT98o8um/GedFL7ifiw67p5zv/e57UBJe+YhfPM/OjDFma/TTM/9G4GdV9c8BROQrAKr6VRF5FvA/cYG92c16S0+Oju76YGpgggyMjrn8i25QL+KiOvueLel0oNOI0CSh6i9SyCnZvIdfyrse925t/21IkxkUP61i6ae98WZ41G76HCM3f5l7Xv0rtKvjvO3qA0xOdHjJi9xsvN868y3++r7P8KKLXsxcYW7ArTXGDIt+gvlaN5BfKZ0d0PqmdrskcbkCo6P7q/TkdvIDqI0uB/Vnzrgbor1SfmSbdBohnUZEIavMz2X43oM+Y983O/A0GWO2i9docOCad9B4xCU8+NPP5ZN/Pca3vl3kzb9xJ6VSgqryrn95J7VMjf9w0f836OYaY4ZIP8F8XkRKabmxs4hIGRjdumaZLdctPTk5uX9LT24nz4dqDSoVlyh96rT7fnZTRoZBFNFeCAkjKFQzzD92jMJomut+4pT7Xpi+JZqQqAsGl75GUXUvAEXPGkiZC4ZwsPqAzfzJH5B94H7ueNNvcbqR4z3vn+MHvn+Rn/wJN3HtFx78PLeevIVfffR/oZKpDLi1xphh0k8wfz1wvYj8OvCl7ocicinwDuBvtrhtZqsMY+nJ7eL5LkWpVIZmA06e2t9BfRRBp0OrDZGfpzg7zvRsjnx5+UFclEQkmlDv1JcCTmH1U5+1lq38rDdgXfnZWtvtFt0gvDcoP19ArqoIQuAFeOLhez5ZP0vgBfiejy8+vufjiYcgeOKd9TI7J3/n95j+2Ec4/oyrqD/+CbzvHTMsLPj8yi/diwiEScjvfufdHC5exE/PP2fQzTXGDJl+gvlfAW4APocr4KAi0k73cSvwM1vfPHPB2h2XFrKDpSdVod1ervYBLs1cxL17nisb7skezvTxPBfQF4oudenkyXQWIj3/trvd0uxGCS3NERUmKM/nqE1kzup8TzShETbwxSfwAiZLk0uBa6LJWe9rfXauZaqKoktfAyT0rN8tCN/H7083eN6Mblt6g/FEExbaC6sC8sAPNhSQi4gF5XuBKgfe9TbiYoEjL38V3/6XAn/xVxM896cf4pJHtgD4y3v/grsad/GuJ7zbJogyxuy4DQfzqnpSRH4IeCHwVGACeAjXY//fVDXcniaaTYuiNJCf2ZHSk91MHpE0xTzj7iGSdA6gOE7nAoohTifzTJL197cnbgA8z9UjLBbdyd992g0w7vIDV7dwt/fad0u0JAmaydIujhEFeSqjGWo1N461S1Vphk0STZgsTVLNV7lH7qGWr+14s3WDN0/dYHwrj3HUP8ojxx9pAfk+V7vxekZu+Qfu/s+vJayN8du/Ns/ISMzLfu4YAAvhAh/43ge4bPRf8aMTTxlwa40xw6ivOvOq2gH+MH2Z3a7ddqk12xjId3vhoxiyGVeyvlh0sev9d5y/2oeqC+h7X93PNnoD0A21hOUbgCBwbdixwF/ElTjJZODgQRcYR5GblKvVct+kLs+HTDD4AL8bwKtCkEGrNdpegUiyjIy4kvu5FQ9zmmGTMAkZK4wxVhgj8AY7ifRG02022yOfbrwuC+T3N69e58A1v0Pjkkfz0LP+DZ/9X6N87etlXverdzMyEgPwx3d+kDPhaX7pktfsuvQvY8xw6KfO/FdU9Ynb2RizhVotl9u9TTnycQKtpgukRyrL09T3+7dMZHkmzo1a6wYgSVxs2n21Oy77JUkjfU+WKyRue2VJz1/+vpfTgXBJnE4RGrvAvtl0P6MuP9iZAL+nB54gA7Uami/QirPEiSuv3514tVcn7tCO2pSzZQ4UD9gATDMUZj/0B2QfepDvveV3WGxlePd757j0MXWe9cwTABxtHuWjd/0pPzX7TB498ugBt9YYM6z66VY7LCIfPMdyBR4AvgF8XFWjC2qZ2bzY9RgxuvVpD+22i0kzGVcYp1h0AfJO2ugNgGraqx+dHT/HPenWQeBiWn8nAvycDzlcWg6kjx+6AX7LNa43Rcfzl1N0LqTHb40AnnwezeRotSAJXQA/MrI6iI+SiGbYJOfnOFg9SDFjhdXNcCjfczdTH/9THnrms2k89vH84XtmOH48wzveesdSh8B7vnMNnvi84hGvHGxjjTFDrZ8w7AzwPCAPnAJOAzWgCiwAJ4AxoAK8QUSuVNU7t7S1ZmNaLZic2rKZXePExZqJQrnkUmny+V2Wu74GkeXZOQsFF8PC8vjOMFwO8JvpraewPDnptmfBeJ4blJxlOR9JdXWA3zuw1vNcw843CdPKAL5add+EbA7V9KYmdPd7IyOrZzBNNKEZNvHEY7Y8SyVXsRQCMzxUedy1HyAuFjn6sl/kjrtyfPQTkzzrmcd53KXuhvufTv8T191/HT/3sJ9nKj814AYbY4ZZP8H8rwLPAH5NVY92PxSRA8AbgL9Q1etE5BDwNuB3gH+7lY01G9Bqu8Cw2/t7ATod6ISuc3h01E1nvx+mre+m2xQKLpAFF/uGoQv0m8301VpOl+7Gz9uehy8CmSxkcA0EF8jH0VKZyKUc/KWKLuLSdHzPnUQcuwB+ZMT9LmSyIEKSQKvhdjc66krmr/x5qiqNsIGqLg1utbxwM2zyn/kUY9/4J+6++tcIa2O8/U3zFAoJr3zZfYD7f/Kub7+D8ewEL7roxYNtrDFm6PUTzL8a+L90RWkHVb1XRH4B+FvgOlW9W0ReCNy+he00G5EkLjd7bOyCdtFuu974QgHmJtz7fu+U7U3bKadzaiXJcoDfTdNpNs/uJO/eGGx7gB9k3CtfcLP39gb4YegC/E7oIvS0B77bqKQ7viEN4kdG1k6NaoZNoiRitDC6Kwa3GjMQCwtU3/wmTj38ETx01XP42y9U+fubR7j61fcyNuoe4d3wwOf4x9P/yOse83qKgaWeGWMGq5+/1nMrA/kuVY3THvnuv0MROX7BrTP9aTZhYmJT1WvC0A0a9T2XkVEur86fHjae5wb15nLLDzpUVwf4rdZyJ3mSuH9veznNlQF+ZWTVKkni2iey3BO/VhDfiTu0whaVXIWJ4oQNbjXD7StfQZpNvv6ffxk/DHjnNfM8/OImz/3phwDoJB2u+c41PKL8SK6af9aAG2uMMf0F84si8gbgrb015UUkA/waLqe++9mjcEP9zE5pd9Kos7zhTXrLSuayMDPtsjI2W+1FVQmTkCiJiJOYJElY7CymCzlrkpyVE+fslVQOEXeTk82679Xo6NkDbesPuqB5kPX0e4P48XHXnrXy/+MkphE2yPk5DtUO2eBWYwAuv5z7/8/NnPrut/nrP53mvmNZPvB73126Ef7EPR/nSPNe3vPE38eXXT5/hDFmKPQ7A+xfAa8WkW/iBsGOAt8HFIGrAETkjcCrgI9vaUvN+rqDJqfmNhQBdid3AtcLX6msrid+PlESLb26D2x8zyfv5xkpjJDzcxwNjnJw5OBZU91HSUSsMXESLwX9kab76ZnuftVsncLSLJq9NwDdWTUHOTizd6Ct77sAeqWtqKffa60bAHDpNJ537iA+0YRGp4Hv+Ta41Zg1aLnMsWNFPvSRKa582kkue6LrlDjVOcUffu8P+JHxH+GHx394wK00xhinnxlg/0ZEngS8Fvgh4EnAfcDfAG9R1W+lq/434H8A92xxW816mk3XRZxdPyLv7YXPBGdP7nQuvb3tiSauAKlAxstQypTIB3myfpaMn1mVYy0IhczG69wnmqCqS4G/0vO16tLNQ/emYOnGQOPltvXwPZ9ckNsVvf5bVU9/zRuAyN3LgSsXWi6v/XRFVWlGTZIkYaI0QTVXxd+iikfG7Dcf/ONL8TzlVa9YqvfAH97xB9SjOq+65JcG2DJjjDlbvzPA/hPw/POsYwNfd1IYukoma+RMw+rJnSqV9ctKxkm8FLh3e8Y9zyPn56jkK+SDPIEXkPEz2xIge+KBgE//AaaqnhX8h3HIQnuBhc6C6/FHyAW5PTWoczM3AOtpRS3COKSWrzFWGCPj74OyRMZsk7/9fI6//4dxXvmyo0xPuTvlu+t38Yl7PsGz5p/NI8qPGHALjTFm2ZZFNiLyIVV98Vbtz2yAqitVODOzZldst3rh+Ljrre3mfKoqnTgkTlyvdjdwz/gZikGRQqawbm/7biUiSyk3AFk/SylbYlqnacdtGmGD063TtMIWipL1s2T97L5PLwnjkGbYpJwtM1+Zt8GtxpxHpwNveFOVudlFXvDvHlz6/JrvXkPOy/Kyh//CAFtnjDGr9RWpiUgJV2v+YlYPcH36VjXKbFCr5coU5lensrRarmd3bj5BvQ7tJKbV0aWBqPkgTyVfIRfkyHiZbettH7TuueaDPGOFsaXgdqGzQD2so6oEXrBr0nG2Sndwa9bP2uBWY/pw001wx50+r//1b5JNUxe/cvJW/vaBG/mFh7+cidzEYBtojDErbDiYTyvUfA6YZylz+ixrlq002ySO3ajHWnXVolbLpWZMTIWE2qYSVChmimT9LIEXEHjBvu+RXk/GdzcuI/kREk1oRS3qnToL7QXCJMQTb+mpxF7UHdxqM7caszlPfzp88cYHOH7qAcAN4H/Xv7yTqdwULzj87wfdPGOMWaWfnvnfAd4JvA/4kqr+AICIzAC/Dty29c0z62q1YHoGVgxgbDZdVZXpaaUZNzlcO9zXINRh4olHMVOkmCkyUZxw9dajFqfbp1loLwAu+M/5uV0dEHfTpcI4JNHEzdxqg1uN2bSHXRRz/Gvu6+uOXcdtZ27jTZf+Vwq+XUuNMbtPP8H8YVV9F4CILPXCq+ox4BdF5AZcoL9hInIV8HqgCfjAq1T1lnOsfznwFtxTgAzwz8BrVPVEuvyNwLNxZTOXNgOeAjxRVb8qIhcBX0637fUbqvr5fto/MK22S4IvnP2HpdGAXN7Vi2/GdSaKExbIb5CIGyCbC3JU81WiJKIdtZcG0Saa4Hv+0tONnaKqS6U8e0t8dnniEXgBWT9LOVOmmq/u2acKZvcbtmt2K27xnu9ew6Mrj+EZsz+1nYcyxphN6ycqafV87YtIXlVbACLiAQ/r58BpmcuPAk9W1dtE5JnAdSJyaXqDsHL9GvAZ4LWq+p70mJ8APgA8t2fVV6vqTT3b/RjwflX9as86/3PPDtaNY0hiqNXO+rhed7H9zAx0khY5P8d4cY2C52ZDAi8gyAZnDaKtd+qcbp+mGTaXBgxf6CDaRJOlnvVuwA7u5gIFz/PIeJmlEqBZP4vv+fjiL73v5qcGZv8Yxmv2x+7+KMdax3jTpb+5r8bUGGP2l36C+Y6IPE1VPwd8A/gjEfntdNmrgMU+j/1a4DpVvQ1AVT8jIvcDr8D1/Kz0cKAM3JCun4jIjcBbe9b5faC+YrsXAx/ss227V6vliokHy72v9TqUSq52vBITxREHRg9YkLdFegfRjhfHlwbRnmmfod6poywPou3VrZnfDdSXKgelgToCgbhSn731+ruBeuAFFkCY3WSortmnwlP88R0f5PLJy7ls7LJBN8cYY9bVTzD/YeAaEXk28Gbgi8Dz0mUh8DN9HvtpwNtWfHYz8BOs/Yfhm7jHrM8HXi8iReA5wP3dFVT1gd4NRKQMPAv4L322bXdqd1yR+GJp6aPFOlTKLpAXgTPtOnPlObJ+doAN3d96B9HGSUw7brPYWeRM+wxJkrDYXgRxk2Z1U2BKmdJZA5CtV93sQUN1zf7v93+MVtLmPz3y1YNuijHGnFM/M8BeC1zb/beIPB74KVyJyutV9dsb3ZeIjAFV3AyyvY4B/3qd47dE5KnAn4nIC9Pt28ALznGonwG+qKorj/NoEfkUMIrrFfqwqn50o+0fiCRx03xOu6hdFeoNqI7AxIQL5BudBtVclZH82hNIma3nez5Fzw2inSxOck9wDxeNXoQvPp54FqybfWHYrtnfOfUdrjt+Hc89+FwuKl20XYcxxpgt0U9pyr9Mv/xPqnqvqh4F/mCTx+12LbdXfN4G1iyILSIV4Hrg07jHvUXgJcCRcxznxbgKPL1awJ24PM1jIvIE4HoRmVfVt/dxDjur1YLRUchklwL50RqMjblAPoxDRISp0tSgWzq0uhNX2VMRsw8N1TX7N2/9TQpegZ+/+D9ux+6NMWZL9ZNm86+Bn8X1xFyobo7kyomnckBjnW1egpus6o2qqkBdRL4OfF5ELlHV3moIiMjDgUtwA7CWpAO1ntfz76+JyPtx5TVX/WEQkZcCLwWYnp7mpptu2tAJ9gqjkDPxKRajM31vmzbSvR+vw/EjJAkEPrRPwLHvuUVxEpPzc9wj92zuGNtgcXFxU9+vvWwYzxmG87yH7Jz3zDU73demr9tfOfkVbrj3Bl40+yLa9RbH6isfEuxfURRy7OTwnC8M5znDcJ73IM85IuIfbvkHPH97xsH1E8z/o6r+1XoL016Sc/W4LFHVEyJyCphZsWgGuH2dzS4BjnUr6KTuACaBy4FPrlj/xcBHVDXaQJNuB6oiMqGqD61o61J60WWXXaZXXHHFBnZ3ts/+9WcpBSOUK6Xzr7ySqqs5OTtLksnTaMD4uOuk71rsLDKWH2OitLtmJrzpppvYzPdrLxvGc4bhPO9hOue9dM1O27vp6/a/6vwrTmVP8fj29zMzOrvh7faDYyfvs3MeEsN43oM85wcfOM6TL3sy5Wp5W/bfzy3CjSLylHMs/3Sfx/4csLJEwGXp52s5AkyKSO9MON2fylk9Q2kJtBcCf7RyJyLyfBH5wRUfz6f7OL6xpu+gVguq1aVAfmLi7EC+FVkZSmPMjhiKa3YpW+Jll76MrGfpcsaYvaGfYD4CPiIinxKR3xaRN/S+WN1jcz6/BVwpIo8BEJFn4C70703//WYR+YaI5NP1P5a29+Xpch94DXAP8KUV+/5x4KiqfmuN414CvEZEgnQ/c7jHse9LHwXvHnEM4hGXqzQaMD19dnn5OHFlKGcrszbQ0hiz3eyabYwxu1A/aTavS98PAM9cY3lfF1VVvVVEXgB8WES6swle2TP5SB43YErS9b8nIlcCbxGR56XLj6TbrKxx/2LWr1P8CeCXgb8TkQ5uYNe1rJN7OVCtFvHkDM22z8yMm/S1Vz20MpTGmJ1h12xjjNmd+s2Z/4H1ForIV9dbth5V/RTwqXWWXQ1cveKzL+Km+T7ffv/9OZbdBvyH/lo6AK0Wcb5MkwKzs25SqF5WhtIYs9Psmm2MMbtPP2k2bzjP8l+8kIaYHnFMFCqt4ijzc6sDeStDaYwxxhhjoI9gXlWXBriKiC8iEyuW/91WNmyYhQst2uVx5g4GFApnL1NVmmGTucocvrbd2aEAACAASURBVOevvQNjjDHGGDMU+ip4KSKXi8iNuJrD/5h+9n4RedV2NG4YhYttwqDA/CNLqwJ5cGUoJ4oTFDJrLDTGGGOMMUNlw8G8iPwkrgRZAfgIy6XFPgD8WxGxqfIuUKeVELVj5h83Rr6wujpNK2qRD/JWhtIYY4wxxgD99cy/EfhZVf1hVf05YAFAVb8KPAs325/ZpHYbkkaL+Utr5Mqrq9NYGUpjjDHGGLNSP8F8TVX/fK0FqnoCyGxNk4ZPqwWEIfMHfbIT1TXXqYd1ZsozVobSGGOMMcYs6SeYz4tIaa0FIlIGRtdaZs6t1QLfU+bHmmTmJmGNXncrQ2mMMcYYY9bSTzB/PXC9iPxYzwx/iMilwJ8Df7PVjdvvmi0hCGC2skgwOQb5/Kp1rAylMcYYY4xZTz+TRv0KcANuEKwCKiLtdB+3Aj+z9c3bvxpNIZdVZkY7+ARQq61ap1uG8nDtsJWhNMYYY4wxq2w4mFfVkyLyQ8ALgacCE8BDuB77/6aq4fY0cf+pN4RCXpmZTPAaLZifB2/1Q5LFziKTpUkrQ2mMMcYYY9a04WBeRF6qqtcCf5i+zCbUG0KxoExPJHjtJlSrrFVQvluGcqwwNoBWGmOMMcaYvaCfnPk3ichPiUhfE00ZRxUWG0K5lAbyxG7B6Opxw1aG0hhjjDHGbEQ/gXmIy4v/FxF5h4g8fpvatC81W1AtJ0yNJy6jptGEyUkIVj8csTKUxhhjjDFmI/oJ5v9YVV8EfD/wDeAaEblVRF4lIhPb07z9QQQmx5SJMXWVJ1stKJWgXF61rpWhNMYYY4wxG7XhYF5VfyN9r6vqH6vqFcC/BS4B7hWRv9qeJu59vg9jtcQF8kkCcQwTq+9/rAylMcYYY4zpx4aD+bSSTffrQESeDbwT+DncQNri1jdvH2o2XHpN5uwJc7tlKOcqc1aG0hhjjDHGbEg/aTa/LyJPFJFrgPuAvwQeA7wRuEhVn74N7dtfOh3I5aFSWbXIylAaY4wxxph+9TNp1BOAm4HTwMeBP1HVL29Lq/ajJIG4AwcPuiT6HlaG0hhjjDHGbEY/PfMPAj8LzKrqL6wM5EXk97a0ZftNqwVjY5DLnfWxlaE0xhhjjDGb1U8w/1ZV/YSqtns/FBFPRP4f3GBYs55CAWq1VR9bGUpjjDHGGLNZG06zUdV39/47rTP/IuD5wDSgW9u0fcQTmJrEFZhfZmUojTHGGGPMhehrNlcRmRSRV4vIV4GvAq/E1Zx/DfC9bWjf/uD7kD97YGsYh3jiWRlKY4wxxhizaeftmReRDHAVrhf+ynSbvwPuBh6nqovpevE2tnNf6ZahPFw7bGUojTHGGDMcOiGEHTdxptky5+yZF5H34spQ/hnwfwPvAx6rqpcDJ7uBPICq2gDYDVrsLDJVnrIylMYYY4wZHmEHMlkX1Jstc76e+ZcBEXA18N6Vg19N/7plKEfzo4NuijHGGGPMzmi1XY/8yAjcdx9kM+ffxmzI+XLmDwJvAP498EERecpWHlxErhKRm0XkCyLyv0XksvOsf7mI/J2IfFFEviwiHxKRsRXrnBKRm1a8/t2KdWZF5JMi8iUR+YqIXL2V57UeK0NpjNnLhu2abYzZIqoQR1Ctuskzy2UX3Jstcc6eeVU9CrwNeFt60X6RiLwZ+AvgrFsqEXmkqn5nowcWkScBHwWerKq3icgzgetE5FJVPbbG+jXgM8BrVfU9IuIBnwA+ADy3Z9WvqeoV5ziuB3wa+Kyqvl5EqsBXROSMql670fb3S1HqYZ258pyVoTTG7DnDds02xmyhdhsqI5BN59qpVmFxETS7aiJN078NV7NR1VtU9ReBp+IGv/6LiPyliPxHEZnHzQrbj9cC16nqben+PwPcD7xinfUfDpSBG9L1E+BG4Ol9HvcZuNls35Hu5zTuj8vrZBu7y5th08pQGmP2sqG6ZhtjtogqxDFUe+KfTNbNvdNqDa5d+0hfpSkBVDVU1f+hqv8GeCmQBz4FPLbPXT0NuGXFZzcDP7HO+t8E/hlX1x4RKQLPwf0x6fe4t6vqqRXHPQg8qs99bVghKFgZSmPMXjZU12xjzBZptVzgHqzIkR9Jg/sk2fk27TN9B/O9VPUhVf1dVX0ScNtGt0tzJqu4Sjm9jgEXr3OsFu6pwI+LyF3AUeBxwMtXrDojIh9Pczo/JyKvFJHe+o8Xr3Pc7rIt54nH3MiclaE0xuxJw3bNNsZskW6gXqmsXub51ju/RTY8A+wG/Hgf63YLjK4c/dAGimttICIV4Hpc7uRr0/VeAhxZsep3gdep6ndE5CLgfwGPYflRcGmd47LesS+ULz75IL8duzbGmJ0wVNdsY8wWabVgdBT8dcLNcgXOLLg0HN86PDdry4J5VT3Rx+r19D234vMc0Fhnm5fgemHeqKoK1EXk68DnReSS7iNYVX1mT5vuFJG3AX8gIq9P21gHViaud9ux6tgi8lJcOhHT09PcdNNNGzzFZYuLi5vabq8bxvMexnOG4TzvITvnPXPNhgu/boedECXh2MmVDwT2tygK7ZyHxI6ct2qaL1+Hh+5df70kgSgC74KSRc5rkD/riIh/uOUf8PztOcet7JnfMFU9ISKngJkVi2aA29fZ7BLgWProtusOYBK4HPjkOtvdDgjuj8oJ4HvAT65x3O66K9t6LXAtwGWXXaZXXHHFOodZ30033cRmttvrhvG8h/GcYTjPe5jOeS9ds9P2XtB1++idR7nla7cyMzrb13Z73bGT99k5D4kdOe9GAyYmoFQ+93qqcN9R93Vm+2rPD/Jn/eADx3nyZU+mXD3P92KTtvc26Nw+B6ysUXxZ+vlajgCTK3Ipuz+VBoCIPFVErlqx3Xz6fnf6fj3wiLRsWu9x71HVb/fRfmOMGSZ2zTbGbEwUudSaYun864rA2Bh0Otvfrn1qkMH8bwFXishjAETkGbgL/XvTf79ZRL4hIt1k84/h2vvydLkPvAa4B/hSus5B4JfTqgmk9Yh/CfgLVX0gXeezwNfSzxGREdzj2Ddv36kaY8yeZ9dsY8zGtNsuQN9o9dh8AYpFm0hqkwaSZgOgqreKyAuAD4tIE/CBK3smH8njBjdJuv73RORK4C0i8rx0+ZF0m8V0mxuAJwJ/KyItoIKra/ymnuMmaU/Q+0XkS+l+rrXJR4wxZn12zTbGbEgYQjYLhcKqRaouRX7Nsa61Ghw9ahNJbcLAgnkAVf0Urkb9WsuuBq5e8dkXgaecY3/3AP9pA8c9Cqx8tGuMMeYc7JptjDmvTgdmZtYMyOvpkPV8DoKVEWg2ByNVqC9C3ioA9mOQaTbGGGOMMWa/aHdcIJ5f3SvfbEKpCPNzrmLlmnNFVUfcAptIqi8WzBtjjDHGmAsXha6u/Aph6CpPTk257JuJCWg019jeD2wiqU2wYN4YY4wxxlyYVhvKZcidnSITJ67DfmZmOVe+WoVK2VWvXKUy4maHjePtb/M+YcG8McYYY4zZPFWIIxelr/i42YDpKcj1TDknApOTrqx8e2UBG8+DsVHrne+DBfPGGGOMMWbzWi03eDWTPevjZjPtha+s3sTzYHradcCv6oQvlty+omj72ryPWDBvjDHGGGM2J0lcF/zI2RF7q+UqVI6Pr79pNuvSb5pNt4slIjA+tka3vVmLBfPGGGOMMWZz2m3X/R5klj6KYxfjT0+7HvhzKRZdwF9fmT+fL7jKOG2bGfZ8LJg3xhhjjDH965aQHBlZ+kjV9bTPzrqc+I2o1aBcctudZXTUVcgx52TBvDHGGGOM6V+r5SJxb3lK13rD9bSvMQHsuroDYj3PzTm1JJeHcsUGw56HBfPGGGOMMaY/ceyC+PJyrnyr5SaGqtVWr66qLHYWOdM6Q5SsHtjq+y5/PgxdOcsltepyXr5ZkwXzxhhjjDGmP62WKyGZJsWHoethn5py770STVjoLFDL1zhUO0Q7atOOVg9uzeVcnn2z0RO7BxmXk2+98+uyYN4YY4wxxmxcFLkgu1gCXMd5u+MCcd8/e9UwDlnsLDJbnmWqNEUxU+Rw7TAAzXD1NLDlMoyNQb3e8+HIiLtDsImk1mTBvDHGGGOM2bh22yXGp13wjXRiqPzZk7/SilqEccjh6mGq+eUJpbJ+lkPVQ+SCHAvtBXRFCs3oKJRKPZ3xnu8+tN75NVkwb4wxxhhjNqYTunyYNHKv19eeGKreqePhcbh2mEJm9WhY3/OZr8wzWhhlobNAosuJ8t0BsSIufQdwTwGCjPXOr8GCeWOMMcYYszFhx/WSi9Buu7i+d2IoVeVM6wzlbJlDtUNk/PXrU4oIU6UpZsozLLYXzxoYGwRuQGynkw6I9Tx3IOudX8WCeWOMMcYYc37tjpvlKV8gjl0nee/EUHESc6Z9hqmyC9A92ViY2R0Y2wpbZw2MzeXcgNqlAbH5vPuwY7Xne1kwb4wxxhhjzi8KoVZD1eXJz8wsTwzVjto0wyYHRw4yVhhDVpa0OY/uwFhVpREuTwdbqbgHAY0GLu9mdNQ9HTBLLJg3xhhjjDHn1mq7mvLZHPUGTEy4TnpwVWlUlcO1w5Rz5U0fIhfkOFQ7RM7PsdhZXPp8bAzyhTTDJl9IR8euLm05rCyYN8YYY4wx61OFOILqCM3m8sRQqspCe4FckONw7TC5IHfBhwq8gPmReaq5KmfaZ0g0QcRVywFXFZNazbVnl08kpQqNphD4q0t2biUL5o0xxhhjzPrabahWCcniea7SjJKw0F5grDDGfGUe39u6aNUTj6nSFNOlaRbbi8RJvDQgttWGxM+6Ejrt3ds7H4ZQrwvVXJu56Rg/s30htwXzxhhjjDFmbUkCSUJSHlmaGEolpN6pM1eZY7I02Xd+/EaICKOFUQ6MHKARNujEHfJ5mJpM8+dHRpbatpskCdQbAqocqC0wPqb4B+dceZ5tYsG8McYYY4xZW6sFtRqNdsDUJKjfJIxDDlUPMZIf2fbDl3NlLqpdRJzENMMmIyOuU77RDnbdRFLttkurGa90mK8skJ+qwvw8ZLLbelwL5o0xxhhjzGpxDJ5H3atQrYKXWyTwgnUngtou3Zz8jJ9hsb3I+Dhks9AKKm522AFPJBXHsNgQggAOjS1SK3TwDsy5uvje9ofaFswbY4wxZtcPJjQD0GrRLo4S5IRM+Qwj+REOVg+ecyKo7RJ4AQdGDjCSH2Gxc4apKUXFI6oMtne+1YJWW5gei5grnSFbycPBg0ulfjpxh4TtTQXavgQeY4wxxux+SQLNpgvmWy03MY8xcUwsGdrZHOOji8xWpqnla9uSH79RnnhMl6bJ+lkeqD/A5FSJY0dLFIPTeGG4XPR+B8QRNDtCqaBMlJpk6MDkFFQqxJrQ7jSINaaQKTBXniPrb1+qjQXzxhhjzLBqd9xEQJOTcH/DDdJrtSF/4SUGzd6mzRanCzUmJjtcPHGQUrY06CYBbmDsWGGMjJfh6MJRRsZynGmPUV48tiPBvKrriQeYnYgpUYdsFp08QMtXos4iGS/DWHGMcra8rUF810CDeRG5Cng90AR84FWqess51r8ceAugQAb4Z+A1qnoiXX4x8Brg+9N1SsAHVPXann1cBHw53bbXb6jq57fkxIwxZh+ya/Y+0p3CM5eD6Z4BelNTcN8xF+Tntj8IMbtUGPJgJ2Hi4gLfN3dgRwLSflVyFQ77h7lXjtBqQ2OxSHGbf2+jEFodoVpJGKtE+J0m7ZESYaWEeDHVXJVKtkI+yO/oE4yBBfMi8iTgo8CTVfU2EXkmcJ2IXKqqx9ZYvwZ8Bnitqr5HRDzgE8AHgOemq70cOAw8VVU7IvL9wN+LSKSqH+zZ3f9U1Rdv39kZY8z+YtfsfSSKXNmN0VGojJw9QM8PYGbaBfQ7nLZgdgdV5fiJU4w/7GE84WGHCbZztqMLlA/yHK4dwveOcudChvb9TXLZDGxxIN07+dP8TEwmXqDV7pBMTVKqTDBZqFHMFPFkMENRBzkA9rXAdap6G4Cqfga4H3jFOus/HCgDN6TrJ8CNwNN71rkHeLuqdtJ1/jFd/wXbcQLGGDNE7Jq9HzSbECdu9p1qbe1KG0HGTbcZhul0m2ZYxBpzauEko5UZnnDpw3d1IN+V8TMcrh3k4oeNcyYrRItbOxi200knf6pETEwuEDXvJ8plmXjkE7h49lIOVA9QzpYHFsjDYIP5pwErH8/eDPzEOut/E/eY9fkAIlIEnoP7YwKAqv6uqn5hxXZNwJL/jDHmwtg1ey+LY6jXoVSGuVnIn6esYDbnZgdqtwde9s/sjDAJqYdNap0xHvekR5DJDG6ga7888Tg0NsNjHnsRDy4uEMUXfhPanfwp1DajU2co5s9Qiz0OP/yJPOxRP8hoZXIgVX3WMpA0GxEZA6rAfSsWHQP+9VrbqGpLRJ4K/JmIvDDdvs05enDEJSz9IPD2FYseLSKfAkaBOvBhVf3oZs7FGGP2O7tm73GtNmjiKm2U+hjEmC/A1DQ8cD8UCjtSL9sMRjNuIgij7SkuemSZ/OjO1ZDfKiLCodlZku/rcNs/f5fxyREy3uaC7cVGSCMMGR+LmasVqSV5CvkK3ty8G2eyywwqZ757NWmv+LwNFNfaQEQqwPXAp3GPe4vAS4Aj5zjOS4AHgff1fNYC7gRerarHROQJwPUiMq+qK/+AICIvBV4KMD09zU033XTOE1vL4uLiprbb64bxvIfxnGE4z3vIznnPXLPTY1/QdTvshCgJx06uvHfZY1TdS8RVqbl/cf1VE4jCFke/+008AXo7ZZMETp7al8F8FIV7/+e8Cb3nnWiCh+CRoSGnOXksC/f/y4BbeGGCTMgDJx7A80DS9Jfz/6yVRJUkAd8TchmP+mmP75ysu/8/wUm46+6dOYE+DSqYr6fvK29vckBjnW1eAlwMvFFVFaiLyNeBz4vIJap6qndlEXki8CvA01Q17H6eDtR6Xs+/vyYi7wd+ndW9QaRVFa4FuOyyy/SKK67Y8El23XTTTWxmu71uGM97GM8ZhvO8h+yc98w1O13ngq7bR+88yi1fu5WZ0dm+tttVOiGEHRgbc4Nc1xkQGCfQbEClAg/e9U0OP+ZSTpyAMHJFQZbGv545DSdOuIlwBlhnfKsdO3nfjv6c49gNRYgTWbphEiDwlSDYufulYyfvY6o2TSNqUM1UKTFO0Olw6FEFvNnpnWnENopPnOb2rxzjfu80XhBTCApr/qxVlXbSJtaYTiugEoxw8WyB8ZEs0kwvbXNzSxNA7VYDCeZV9YSInAJmViyaAW5fZ7NLgGOq2juy4Q5gErgc+GT3QxF5FPBh4NmqupHbqNuBqohMqOpDGzwNY4wZCnbN3kNU3SDXTMYFIdn1UwLabTe+dXraBfMP3e3ey2W3i+PHYbEO2QxkR6ouEj19ur9UnSEWx+77GydCoi5oz2SgXEoo5BW8kDiBTkdotoR6W4hjEA88ZFWAL6y+iVrzs43cbKlSj+pM5iap+DWaTZgbb+NNzF/gWe8O/ugIFx04Tnx0mgU5QT08+6lUmIR04g4IFKjgxxWmJ/JMTSiBl8DCGfefYXra9crvcoNs4eeAy1Z8dhnwl+usfwSYFBFfVbujcbq3WEs9QyJyGPhz4IXdqgsi8tJu3WIReT5wu6r+fc++59N9HL+A8zHGmP3Mrtm7XRy7GVyr1fUr1eDi/XoDCnmYnYXsirLcIq4jslBwuztx0gX1QX6UfKKwuLDreyp3WpK4wD2KlwP3wIdCPiGbjxAvQvwIz1PATaqQ9bPkxaOQV6oj7vM4ck9F2qHSbEGzLSQxxKjbp+duCDzPpcesagerP1PVVUG/ohwozJP3iyzUhQMjC2Rnx/dPKVIRsgenOVi/l3sWZ8lnHuK0nqIZNYk1Ju/nmcxNQVgi4/vMzicUC+rucFuh+48xsv4Trd1mkMH8bwE3ichjVPVbIvIM3IX+vQAi8mbg2cBlac/Ox3CPVV8O/J6I+LjJRu4BvpRuM4v7g/MewBOR7h+eF5M+csX1Fj1LRF6gqpGIzOFyK9+XPgo2xhizml2zd7NWOpxhZuaclWrC0M0HNT4Gtdq5YxURF9DPp0H96dPCQjSGLzH5RhMp7r1BkltBdTlwjxMXuHse5HMJxUoHzwvx/AQ/SIcrEFAI8uSDEXJ+jkB8Ml5mw5MKRZH7uXVCodGEZstzFUM9d2zfVzIBrFdFcq3/JrfVv0EhcIH8RC2iXFD3C7GfFIuUJwtM0uZ4Y5KMHGE0O0oxKEKcpdUSxscSxmoxvqfpY6gsHD68Kwe5nsvAgnlVvVVEXgB8WES6swle2TP5SB43YErS9b8nIlcCbxGR56XLj6TbdJ+f/FfgEcC7Vxzurp6vPwH8MvB3ItLBDey6lnVyL40xxtg1e9fq9saXy24SKH/9P+uNhgv4DsxDPt/fYfJ59xodFc5UJzj1nfvxT7bJVXP7cVzsElXXWx7FECXd/m0lk40olEO8ICYTQBAk+OKT93MU/Cq5IEfGC8h4mQuuPx4E7lUoKNURgHgp977dEZotaDQ9Gk0gTcUPguUAf+2bBqHZhGJeGc/VYWJyT6ST9EUEpqYYb9xFmxyc8RkJajSaQiYLFx2M3f+DKIKFBoyPu9ce/IUe6E9OVT8FfGqdZVcDV6/47IvAU86xv58Hfv48x7wN+A99N9YYY4acXbN3mXbHRZqTk1AsrT/INXY58NWqGw97IfMAZbMwMeVRq05x5jvHOHWig+Zy5HN6QfvdLbppLnEigBJrQhCEZAsRhaySCZRsIOSCLIWgRMHPk/ECgvS1U3zfvfL51QF+J0wD/JZHs4WL7nW5Bz8I3E0KIsxOdJDYc78c+1E+j1RHmPHqfPOYqxs/OZ5Qq6qL2Rtpxt+hQ3s6dWyf3YYZY4wx+5yqC0JyOZieg0x23VVbLZfPPTu7teNWg5zP2KOmqN59hIWmcqqZp9mGQlbP9XBgV4ljV5Kz3hASEuIkxgtCcvmYcg4yvlLMZSgEOYpBlYyfcYG7BBtOkdlJvQH+SAV6A/wwcgF+venRqrtfofmZmKDTcL8ce7A3esPGx/HPnCGTUR52KHZjRJIEFuruidYeGeR6Lnu79cYYY8wwCUM3v/zoKIxU1+2NTxIX75dKruN+W2KVTAb/4By1e+9lZESohxlOnPRotiGfVYJdNJaym+ceRhAmEWEc4QcJKjGl2gLZQKgW8pQyaV67529JisygLQX4KJUyQEySwNHblHwQARkX0O5n2SyMjyN33ukC+Xbb/T+amdlTg1zPxYJ5Y4wxZi9oNsHzXU9qbv2k907HxSpTU6663rbGKtkszM3hHbmXSl4oz/s0W8Lxk8JiQ8gGuqpazk6IIqUVxrTDGCVGRcnloFSGqUKOSq5EJZ/n5m8v8v0zh/G9AeQIdQem7nAw6Xm41JtmE+bn93evfFd3cO/iovudveii1WWc9jAL5o0xxpjdrDvItTICozUX0K+hm32TzcKBA5soyKG4VBPx+ksjyedhbh6OHEGKBYoFn0JeabWFE6eExbqrmd7voNuNipKYVieiFSUkmiAqBBmhVvI5WCxSyWcp5gKyfgZf/LPOTUR2JpBPEneHFUXLQXw3iE56ykl2Z+ztvvdy05me/fXK941Sdb8gwzJnQHcU8diYe+2zGxgL5o0xxpjdqtV2id1T0+ccoBdFLt4fS0tO9hOrJJrQ6DRQlDAJieJoaZmiZwW/nnhrvigUXNrCsWNQLCKeq58+P6O02nDqjMdiXVzKR0431Rkda0ysMe1ORBgrUewmTcr6AbVigUNjOSqFgFI+IBcMMK+9m6geLX8f03I07meYTafW7eY+qS6/kuTs996vo8h9Hcfu1S1u3/vvtW4CVhJx605N7YsUkw3zfZiYGHQrtoUF88YYY8xukyQuDaJYdBH6ORLQm00Xk83Pu3ixH82wSZRETJWmOOof5eLRi93h1fVyx0m89HWiCZ24Q5RERElEGId0tLM8eVEWGCnAiQehVEJIg/3AY3xcqFY9Fhd8Ti/4+D7ksrrmTUeiCbHGRBoRJwlhqESx50o/egWquRyjowGVQkAx55PLeoOLSbtF4ON4+bMgWJ51K5t1r3OV+hFZDqovtCTQWjcBa73fffeert5izmbBvDHGGLObdEIIO67mdXn9pPc4gWbD5cVPTPQXB8ZJTL1Tp5QtcbB6kKx/dv5wt8d9I+UWVXUpAE+qCUnxAZKHHiQqFwnTwD9SNwtqYaRFUITFReH4gjuvfA5EFA8hiiGJfQLy5KRCJZulUvWplQMKOSGTufB4d1OWZopKe8K7qTK5nPsBFAqut31gDUxt9JHMfqgjapZYMG+MMcbsFq2WC7Tm5iC7ftJ7q+ViypmZ/ouRNMMmiSbMVeao5CoXnI4iIvji45MGiDMHwcvBqVNQGV+1fqIJyVhCJ4o5taA8dNJNypT1Aooln5Gi5zq1M0oQDCATRHU5Tabb4y7iAveRkbMD932We232JgvmjTHGmN2gmx4xM7PuINckgUbTxZPzky6e3KgoiWiEDSrZClOlKTL+NtWOTGfedLW8F1bdbSz1+mcDiuMwM+pi5+XYWLenXevpdJbz0VVdI/J51+Oezy8H7sOUX272FAvmjTHGmN2g3XFpNesE8mHoSmRPTLgJO/uJLRsdN9PlfGWeSq6yFa09NxE3GU8UuRI758jP9rxNVN65EKrLtcaTxAXq1aprRHdgqgXuZg+xYN4YY4zZDeIISquD3m7JyUzGlZzsp8RjGIc0oyaj+VHGi+MbyoHfMp7n0oXuuceN0u13dO5WUl0uwA/LM3/ed58bOWzMHmbBvDHGGDNocQyZ7KrJoOLYxcGjo+610RRtVaURNvDE41D1EMXMgCqX+L67A7n7btcbvqNd8Cz3wIOrqT415e6GbACo2UcsmDfGGGMGrd121Wt6NJvuvd+Sk524QytsMV4cZ6wwNpjZTXsFwXJA3+ls/8ybnY57gUvvmZx0OIsSTgAAIABJREFU30AL4M0+ZcG8McYYM0jdga9pxJ4kLq2mVHJxaLDBv9SqSj2sE3gBh2uHKWQGmNayUnda2rvvdo8XNnpSG9UdUND9Ps7MuEB+q49jzC5kv+XGGGPMIHVCF7n7getUDl06d7m88XGY7ahNO24zWZxktDDqZmXdbfJ5OHhwecKiC+0pjyIXwCeJS9+ZTmfJ7afEjzH7gAXzxhhjzCBFIUyMuzGaIRw8sPHU8kQT6p06OT/Hw2oPIxfscE56vwoFNyj2yBF3t9JvnfaVAfzUlAXwZuhZMG+MMcYMSpKAH0AuT7sNI5WNB/KtqEWUREyVpqjlaxc8+dOOqVRgdtZVkqmsP8Ptkjh2s2R1y0hOTLgnGdude2/MHmHBvDHGGDMo7babVVSEKHJfnk+cxNQ7dUrZEgdGDpD192BQW626IP2BB9YO6JNkeZrbTMYNDi6Vdr4ajjF7gAXzxhhjzKAkCZRKhKFLKT9fDflm2CROYuYqc1Rylb3TG7+WsTEXrJ844QL6JHE3N1HkBq7Wai4VJ5ezSZyMOQcL5o0xxphBiKJ01tEs7TrMzqy/apzE1MM6lWyFqdIUGX+f5IhPTLjvw+nTbkBsreYCewvgjdkwC+aNMcaYQeh0YGKCJIHAX7+WfDNsoqrMV+ap5Co728btJuKq0IyOWgBvzCZZMG+MMcbsNFX3XijQarmMk5WFXaIkotFpUM1XmSxNEnj79E+2550/v8gYs659emUwxhhjdrF2B0plVHxUXWp4l6rSCBt44nGodohipji4dhpjdj0L5o0xxpidFkdQLtFuuxTx7kSlYRzSDJuMFccYL4zjexc4sZIxZt+zYN4YY4zZSXEMQQZyeaLG2eUom1HTeuONMX0Z6HzPInKViNwsIl8Qkf8tIpedZ/3LReTvROSLIvJlEfmQiIytWGdWRD4pIl8Ska+IyNVr7OfRInJjup9bReT/3epzM8aY/cau2Vuk04GRClEs5LLL6eKtqMVIbsQCeWNMXwYWzIvIk4CPAi9S1acAbwWuE5E1i3OJSA34DPDfVfVHgR8BysAHetbxgE8DX1fVHwZ+DPgFEXlpzzpl4H8Bf5ru51nA74rIldtwmsYYsy/YNXsLJQkUi7TbrohLVxiHjOZH19/OGGPWMMie+dcC16nqbQCq+hngfuAV66z/cNwfghvS9RPgRuDpPes8A3gC8I50ndO4Pxyvk+WZNV4MFIA/Tte5F/jvwOu26LyMMWY/smv2VuiEUCiQeBk8D4ppJ3wYh2T9LPnAqroYY/ozyGD+acAtKz67GfiJddb/JvDPwPMBRKQIPAf3x6R3n7er6qkV+zwIPKpnna+kf1h61/mRdJ/GGGNWs2v2Vgg7MFKl3XbzI3XLUbaiFuOF8b09o6sxZiAGEsynOZNV4L4Vi44BF6+1jaq2gKcCPy4idwFHgccBL+9Z7eJ19tlddq51POCiDZ+EMcYMCbtmb5EkcbOc5nLEyXI5ykQTPPEo58rn3t4YY9YwqGo2pfS9veLzNrBmT4uIVIDrcfmVr03XewlwZMV+19onPfvdyDq9x30p0M3fXBSRb6/VvvOYAB7axHZ73TCe9zCeMwznee/Fcz68ye32zDU7PfYFXbc98XIi3qyInOhnu/PuFySGJMZLXGQfRq7BeCREJMRbebxN2Iu/0xdqGM8ZhvO89+I5b+iaPahgvp6+51Z8ngMa62zzElwPzRtVVYG6iHwd+LyIXJI+pq0DIyu26x6ju9/6OsftXWeJql4LXHuOczkvEblFVc9Z9WE/GsbzHsZzhuE87yE75z1zzQa7bm+WnfPwGMbz3s/nPJA0G1U9AZwCVlZBmAFuX2ezS4Bj6aPbrjuASeDy9N/fW2ef9Ox3vXUS4M4NNN8YY4aKXbONMWb3GuQA2M8BK++QLks/X8sRYFJEeqfDm03fu70z1wOPSEui9e7zHlX9ds86T0xLovWu839Udb0eJmOMGXZ2zTbGmF1okMH8bwFXishjAETkGbgL/XvTf79ZRL4hIt06XR/Dtffl6XIfeA1wD/CldJ3PAl8DfildZwSXN/nmnuP+CdACXpSuMw88b8U6W+2CHvfuYcN43sN4zjCc5z1s5zxM12wYvp8v2DkPk2E87317zuJSGQd0cJGrgNcDTcAHXq2qN6fLfgdXxuxSVW2mn/0o8JZ03Tyu5+dXVfVbPfucA96Pe5SbBz6qqm9fcdxHA+/DjRkoAe9W1Q9v46kaY8yeZ9dsY4zZfQYazBtjjDHGGGM2b5BpNkNBRK4SkZtF5Asi8r9FZF+OpAYQkWeKyN+IyA0i8mUR+ayIPH7Q7dpJIvJKEVERuWLQbdkJInJYRD4uIjeKyD+JyK0i8mODbtd2EpGciLxLRL4mIp8Xkb8XkZ8edLvM1himazbYdduu2XbN3g8smN9GIvIk4KPAi1T1KcBbgetEZGVlhv3iQ8BHVPWpqvpDwD8CN4jI9GCbtTPSdIFfHnQ7doqITAA3Au9T1R8HHo+rPHLpQBu2/V4HPAv4Uf3/2XvzOLmO8l7/eXvv2UfSSKN1JFn7vhmDN2xjYzbbYBLWCzhcLnATuCEXQhK4N5ALvyQkIQECCVkhYUkgCYkJEBsbkFeMbW3WvlirJY00o9mn93Pe3x91uudMq0ezT89Sjz6t012nqk6dM911vuett95SfSXwQeCfRWRzeZtlGS0zsM+GGdxv2z7b9tnlbdbYYcX8+PI7wMOqeghAVX+AWcr818raqvHjcVX9tu/z5zGLNLy6TO2ZaP4c+P1yN2IC+TjwC1XdCeDFEv8o8INyNmoC2AI8p6rdAKq6B+gE7ihrqyxjwUzrs2Fm99u2z7Z99rTAivnx5U7g+aK054C7ytCWcUdV7y9KSnrb4gVfph0icg+QBR4ud1smkDcDj/sTVPWsqp4uT3MmjH8DbhGRRQAicjdm8ualsrbKMhbMqD4bZm6/bftsg+2zpwflWgF22iMis4Ba4GLRrmbgtRPforLwCkxIue+XuyHjiYhUYiJ23M00vwHm8c55ORAUkW8BSzGxw/9aVf+lnG0bb1T16yJSARwQkYuYxZH+BfhueVtmGQ22zy4w7ftt22fbPptp1mdbMT9+VHrbdFF6GqiY4LZMOCIimBB2/0dVL5e7PePMZ4CvqupFEVla5rZMFPlFfj4LvEpVd4vIy4DHRCRcNGw/rRCR9wGfAHao6glvsuCdmBVJLVOXGd1nw4zqt22fbfvsadVnWzeb8aPX2xY/9UfpW/1wOvP7wBlV/Xy5GzKeiMg24AZMnOyZhONtf6CquwFU9Vng3zELA01LPLHzR8DfqOoJAFV9AbgXc7OwTF1mep8NM6Dftn227bOnY59txfw4oaptQAdQHAWhEXhx4ls0cYjIR4B1wK+Uuy0TwOuBOPBTEdkJ/LOX/gUR2Skiq8vWsvGlBWOxfKko/QywbOKbM2E0APXA6aL0Uxh/VMsUZSb32TCj+m3bZ/fH9tnTAOtmM748ChTHKN4BfK8MbZkQvOGs1wH3qGpORJYDy1X10TI3bVxQ1c9ghmwB8IZsT2FWxtxZnlaNP6rqiMhTwPyiXfOAs2Vo0kTRirkhFp/3fGaO9XY6M+P6bJhZ/bbts22f7TGt+mxrmR9f/hC4W0TWAojI6zBfoK+UtVXjhIi8DfgkZmLRRm+xlbuAm8vaMMt48TngPhFZBmYxEuBNwJfK2qpxRFVd4B+A93oTJvPD9q9iGk2mmsHMqD4bbL89w7B9NtOzzxYTZtQyXojIvZgJRUkgiHn6f668rRofRCRL6dGe31PVT09wcyYcEfkC8HKMP+Y+4Liq/nJ5WzW+iMg7gI9hLBwh4G9V9W/L26rxxYuK8GnMBKoEUI25WfyZ2g51yjOT+myY2f227bNtnz1d+mwr5i0Wi8VisVgslimKdbOxWCwWi8VisVimKFbMWywWi8VisVgsUxQr5i0Wi8VisVgslimKFfMWi8VisVgsFssUxYp5i8VisVgsFotlimLFvMVisVgsFovFMkWxYt5isVgsFovFYpmiWDFvsVgsFovFYrFMUayYt1gsFovFYrFYpihWzFssFovFYrFYLFMUK+YtFovFYrFYLJYpihXzFovFYrFYLBbLFMWKeYvFYrFYLBaLZYpixbzFYrFYLBaLxTJFsWLeYrFYLBaLxWKZolgxb7FYLBaLxWKxTFGsmLdYLBaLxWKxWKYoVsxbLBaLxWKxWCxTFCvmLRaLxWKxWCyWKYoV8xaLh4jUjKBM9Xi0xWKxTG1G0p945eIiEhrr9lgslumLFfOWGY+IBETkM8CfjKD4b4jIX4lIZIjHWi0izSLSIyIqIm3e52YRSYrIMRH5gojUF5V70Muj3rahRN03+upOeu/fISJB732bV/5REZES5T/m5cuISKf3fukIronFMmMZan/i/abzv8kHfLsWALtEZN0wjvmQiLR4deV/+80i0uVtHxKRlxWVeYev31ERefcAdT/nq7tZRB700r/sfXZEJCEia0qUXezl6fT6lWYR+a2hntdIEJGvi8hhEYkOMf9DA/wdJiUi0igiF0Tk90ZRx0Hvb6IictsYNm8kbRnod1Aqb/7+mRQRnaAmTg1U1b7sa0a/gK8ATwPVIygbBh4E/gMIDKPcpwEFbvOlRYAPeen7gXCJcuq9vj9I3V8vkX6br/xHr1F+J/BAuf8u9mVfU/E1nP7E95t8oCj9rUArsHIYx13q1fX1ovRtwCkgB9xSotzXvXKdwLJr1T3AvtNe+V2l+iwvzwPAzgm6/j8ALgGVRek7gdPD+TtMxhfQBPQCXx5lPQ8U34MGyX96vP6Gw73++e9suf8Wk+llLfOWGY2IvA74IPA+Ve0ebnlVzQLvB+4C3jeatqhqRlW/jLnpbADeMEDW08A9IvLBERymw3v9vohsHkk7LRZLaUbbn+RR1e8AjwFfLzWKNsy6dmMe8IPAxwbIdhqoAb4hIsERHOY05qHhMyMoO9bcCzSpam+5GzIeqOoZoAH4cLnbYpk8WDFvmel8CviRqh4aaQWqegn4R+CTI7wRFrPH264eYP/7gG7g8yIyUJ6B6MQ8fESAb4lIbGRNtFgsJRh1f+Ljj4AbgTvHoK7B+pR/AH4I3AR8YgT1fxR4CfhNEXnlCMqPGarqqmqqnG0Yb1Q1oZ6J2mIBK+YtMxgRWQ68DPjJAPsbPX/4l0TkkoicEJF/E5H7SmR/FFgC3DwGTcv/LlsH2P8i8KtABUaQh4dTuar+C/B3wHqMYLBYLKNkCP3JdhF5TES6ReSUiHwJiF+jyueALuAdY9C8wfoUgF8BmoHfLfavHwJtwH/z3v+jiNQNszwAIvINnw9/P/96EflnEXnO93mbz2e/xfOnPl3sC573s8Y8GOV9+JtF5IUSTQiIyKe8vr5DRB4WkWXj3W4vXUTkwyJywPMhbxGRfxeRjb6y90nfvKbTJdpxl4jsEjNX4pSI/KmIfFD65mc9VKL5MRH5koicEZErIvIvIjLHV+ed3vVbDOTnZTWLyA99eQZtuy/vcH8HQ0ZEakTkT7zvwSXvnP5MRGqL8s0Rkb/0jn9RRF4UkW+KyB2+PBUi8gcictzLc1pEvici949FW8caK+YtM5m88D5SvENE5gK/ADYDN6jqPIwrTRPGilXMYW97yxi0ayvGJ/JHA2VQ1W8C3wS2A/9vBMf4deAo8CERec1IGmmxWPpxrf5kNfAzwMH4n18HPAH8wUCVqaqL+Y2OVZ8C8N1rHK8FeDfGHedbIlI5nAOo6mPA72OMGn85kkaq6rvoc9V5tap+DkBMgIHXAttFZIGXdzewBrgCLFDVo6q6FNO3+es8qqqNmHkM51S10XttKtGE/wUcA1ZhXB1XYOZDjWu7vXJ/ifk+/BYw22uDAj/Pi2JVfdB3Lv0QMyLyI8x3Zr5X/iTGxQrgflUt1dd/GjMHqwm4FXgVxtiTP7dHvWOeA572Xb/X++oYtO1eG4f9OxgqIhLHuKjeA9zl3bPvBF4HPCYiFb7s/wosB7ap6nyMz/4q4Hd9ef7CK/tKL892zIj2n462reOBFfOWmcwqb9tcYl/+pvTfVfU8gKqewnT2pbhYVOewEZFqEfkYUAu8VlUvDFLkVzFW+o+LyK3DOZbnT/p2IAt8zW+JsVgsI+Ja/clngWrgN1T1iucK8i/A84PUeRFYKsMcfcsjIiERuRkzsf7TmMm5A6Kqj2Ci8KwAvjiCQ/4e8HPgbSLy3wbLPADf97b3+tJuwxg4pCj9tcBPvLlLY8EZVf0n7+/zEvAtYNNQrPOMot3e3+gDwBdV9YdqaAf+B+bh6v8bwvH/BCOg/5eq9qpq1puDdWCQcr9Q1UcBVPUgZgLxa2XoEdqG0/aR/g6GwkcxD62fVNXj3vkcBz6JMcp93GtvHfBK4AdeO1HVc8D/Bc766rsPeDR/H1bVK8BvY+65kw4r5i0zmdnett9EKREJAL8EvOR1bn6eAd5coq58HcMVxd/zhizbMUPqHwM+oapPDFbQm2D3doyV4xvFQ4lDKL8HY0lpBP52mO22WCz9Gag/CWLEW7Oq7isq87NB6uzFCKL6QfL5eavXp1wGksDjwJPAZ1XVGUL5T2LE1X8XkTcN47ioag7jFtQJfEVGENpWVQ9gou/4xe99mIeR7hLpDw73GNfgqaLPL3nbBYMVHGW73+ptf1xU5xWMdf1OucbaAyIyD9gB7FLVYleqwb5jpc45jJlkOxSG1PZR/g6G044fFqX/J+Yh5y3e5wTm7/EbIvJq736Pqj6sqv7wrJeB94jIL+cfplX1gKq+agzaOuZYMW+ZyeQtD7mi9AaMdfwqy7hnSSjlE5uvY0jWDB/3e0OYszEPCfXAvw3REoSqPoexKIx0aPuLwH8B94nI+0dQ3mKxGK7Vn1RS2mJfKs3PSPqV73huEHMxFva9mBHFjw+lsGctfjvQA/yNiMwfxrFR1dMYS20+Os5IdMZ/Ajt8x3498D3gYeAOEanyBNarMP3XWFEshDPedqgjIyNt9wpv+68+n/Rmz1d9EeACs65x3Pz9YiTfsdGe81DbPprfwVDb0aGqSX+iqqYxczpWeJ8zGHeyWszf5ZyYNROK3a5+BfMw/F2gWUS+JiI3jUE7xwUr5i0zmYS3HajTGs4NNJ83cc1cA+A9JHwPM1Qaw1jMh8ofYybdvX24Q9teRIQHMHGZ/0xERuwmZLHMcAbrT0bCaPuVM5iJqTngY0P1g1fVE8CvYYwM/4BxExnOcb8DfA0zj2Ak0XG+7x3zHhHZjhklbfXSo8BrMC4s+1S1cwT1D4Q7yvKjbfddPp/0/KtWVatU9fIo2zYQoz3nPOVo+4hQ1f/ATOh9N7AP+J/AXhH53748T2P86t+Mub++A3hSRL4w8S0eHCvmLTOZvOW9eAi7BTNMfJVFSszqjotK+BPm6zg/yjb9ESYO/Hu8SbiD4k2UexfGwvIVzMSiIeN1tO/GRBT4NmMrRiyWmcK1+pNejDtbMaXS/NRjrIPtI22UmjCZ38RYR987jHL/iOkP7gI+MoJDfxgzmfRTmCg/w+FxTD94L/BG+lxSfohxK7yXsXexGQtG2u5j3nZhcYUiMk8GX6X1lLcdyXdstAy17aP5HQyF40CdNxHW34Yo5rt/3JcWVBPe8xuq+jrMhOQXgT8UL1yziIS8eQffU9W3YO6rzwC/LiLXjUF7xxQr5i0zmfzEoEX+RE8c/yswT0R2FJV5FabzKo7Pnq9jsMlG18Sz1nzBq/9Dwyh3ETMsWIMR5sM97o+Bz2Nm7L9iuOUtFsuA/YmDiTLSKFcv1HbbIHUuAg56I2ij4bMYMfkbMry1MP4nxu952AsU+SbZu5iFtIZTNgs8hOlv34I3uVRV2zD+/6/HRC35/kB1lKAXKPidi8j/JyJbr5F/2Iyi3d/xtqXCHn4KM7nzWse9hAllur1EMIPbhn4G16Rw/Twf+C+LyBKG2PZR/g6GQj5S0+uL0u/BjJZ8F8Cbx9Ep0rcYmzdR9kGMISs/epUVkQZfnouYCdEAIwq9Op5YMW+ZyTyOieZSaiXUT2Bmtn8xH1JMRFZihPbnVbWrKP8Wb/vIGLTri5iRgV8tCqd1TVT1B8CfM8whcR+fxCzJPqoVJy2WGcq1+pP/i/FB/1MRme2N8L0ZePVAlXkuMSsZgz5FVV/EWOeXUXoC/0Dl8nHuhzJxtlT53cDvMLI+5ft4RhPtC9+YT5+F8Y8+M4z6DgNzvRjjyzBzCMbKxcTPsNvtuXR8BXiXiLzN+34EReRXgHfSP2TiQPwm5jp/UUQqRSQsIr9KCYv5CDkMLPcs16/ALD6YHGbbh/07GAafxyyO9lnvXo2IrMA8yO7DuKPmqQQ+41nt82tE5KPXXPHl+5yIVHt55mEeTo949U0uVNW+7GvGvjDDyPsBKbGvEfhrjOtMM6Yz+8gAeR8GHh/C8VZ7dfVgZti3eZ8XF+X7tLf/CiYO74NePsUMV+4eoP4opqP5ui8t6JVtw9yUm4EvD1B+JWam/wPl/tvYl31Ntdcg/cl24DHv93UW+HvgTd5vuhNjgffnz0eqWjmE4z7k9QuKcctpBj5WlGcFxnc+4e3/hLdNev1RM3DLAPX/Dt4UG1/al70yjq8fC5YoK5jJnjuHeS3rMA9Hf1yUfp13np8pUea0dy3zfesPffvmYyKutGBipv8fL/0bXt783+EhL/2HRXV9bbza7btOH/T67yvAGcyE2u2+PPd51znj68vf7dt/FyYSURdwAmMZf5933Ft9+XYWndvfeOkv0HdvagH+n6/MGkx8+xaMW8/7htP2kf4Oisrm759JL38zJhRlfn8NRtSfxswDOwv8GVDryxPBhHX+mfc9uIhxwfkDoMaX792YkYSzXp5TmNjzjeXqX671Eq/RFsuMxHsi348Rr/8ywjpejhlCvVlVnxnL9lkslqnDWPQnXj1BjDDaqapDdrezWIoRsxrtHwIb9OpQy5ZpQlndbEQkIiJ/KCK5ocSjFbNU79dF5DkR2S0inyuOvSoi80XkQRH5uZfnYyXqWSMiPxWRJ8QsffyusTsry1RCVU9ihpG/LMNfwjw/jPdd4ENWyFumO7bPvjaj7U+gIOS/gbGAXtNX2mLJIyJ3i8jvldj1CkzM9KtWJrZMH8om5r0bwWOYoa+hTsj5OmYY73rg5ZhlrgtL2YuJZ/ufwAuq+grgduB/ii9+tohUYYbavqWqt2CGrb4oIneP8pQsUxRVfRATZeB1Iyj+WuADqvrVsW2VxTK5sH320BhlfwJmJdkzwN1qYmRbLEOhHvioiNwOhQfv92EmgH5Sh7ZgmGWKUjY3GxHZAKQws/V/BixTs9jEtfLvBzap6n4v7S2Ym8VcVe0RkTcA/wHMUdUOL8/HMVFBmlRVReRDGD+yeWqiliAifwFs9G4UFovFYinC9tkWy+RFRJowk2DvxCyIVImxxv/xaFy+LFODslnm1SyLe2IYRe7E3Ej8of+ew8TGvtmX58X8TcGXZzFm4kQ+z+78TcGX58bhRA6xWCyWmYTtsy2WyYuqnlHVD6nqGlWdr6o1qvoyK+RnBlMpNOVy4JL2H0po9u3Lby8WlRtqngDDXGzHYrFYLANi+2yLxWKZAEKDZ5k0VALF/oP5zxVjnKeA57v5foB4PL598eLFw2s14LougcDEPjep95/ZKoov0O94RBHXwn99Sar41mUYABmwTeJLHLSawfDpCb+0UMbWzWxo5zz9KNt554+Z/zOOZRMG+Wqour5zHsWBR1BUFYKB4Rc8duxYq6o2DJ5zTChLnw1Tt98uN/acZw7T4ryH6SbuqhIY6n1qktzHh9pnTyUx34uJoe0n/znhy1MzhDyD1VNAVf8aE2ucHTt26PPPPz+8VgM7d+7ktttuG3a5Ylx1cVwHRx0c1yHn5kjnMvQmM/SkMnR250gkFdc1+iAUhnBIiIRChAORsRNbqpDNQDoN3d2QyZgvvjlg4UfQ3H6Rxvr5pcu7LuQccB3zOf+jDAYhHCYTErJBJRSJUR2ZS5A6gqEwdXVQWwvR4r/gQHR3w4ULEImQcGM0Xw6QzblkQm20ZdqIBqNEApGxuS7XOudpzoSfdzoDuSzZqgrceJSQhAgS8L5Lrvl+OQ64vs+Fly/Nj+rAHbgqBALefu/73XuFxqo5ffv7MveljWZO0gDtcV3lStbh7tffOuwqRWQ4i+yMlrL02TC5+u2phD3nmcOUPO9cztzT29shm4Vw2IiBIWqbnQcPctv69YNndF1IJEy9s2dDTQ2EyiOXh9pnTyUxfxKzepv4hm0bve2LvjyvKSpXKk9jiTwuZqGBslBKqGecDFk3SyaXIac5XNfFVfMdTqch0Stk0gFEgoQCISKhCLOrZXweKF0XMmlIpaCnF3JZI27CYaisHLy8HxEj2oMlAmKoguMQSeaIuA6O20u7exEEaiL15C7Npj1cQ6w6wuy5QSpqQgQioat/zKrQ2gqtrTjxKlo7Q7R3BiDUSzst5LI5qkJVM9KKPi2IRiASJpxMQ0+i/99fpE9059+Llx4IGOeMQHj0lpekmHZMNI4LibaJP+7wmdZ9tsVimQBUIZmEjg7o6TH9dixmXuNFIABVVUb3XLlitMSsWVBXVzZRPxiTs1WleQSzktd6+iZU7cCsBPaUL8+HRKTON6FqB3BO+5ZVfgT4lIgEfBOqdgBPq2pJK89YkHWy/YR61skaoe4JdjdvTvf5wwQliLoBnFyQbDpOMikkU2ZfQCAahsrqcRwNch1jAe3thURvn3UyHB4/ESNifizeDyaIGWNXVXpyCZzMaWKZCE53NcmzlYSCMKvOpbo2QLgqan7g0ah5ck8k6A3V0nwhSNbJkQ610pntIBqMURkc5gOIZfKR79Qtk5Up3WdbLJYyks0a8e63wldVTWwbAgFjrHRd8zDR1mZEfW2tac8kYtKKeRH5LPBGYIeqplT1oIj8OyZ1cnTzAAAgAElEQVT00ntEJAz8OvAFVe3xiv0XsBf4DUznX4Pxm/ysr+p/AH4LeA/wNRFZCLwNs9DHuJBzc7zY/mLBB1xECEqQgAQIBoLEQ/GChTiXM14rqZT5Hmeypo6gp6GrxluD5rJ97jOplGdFDxnRVEYrtogQD1dCGLJulla3k1Csl5pgHZfT1bRcFKqiWeqrOohHHByCtCRq6egCN9RFu7YQcAJUhavLdg4Wy3RmOvXZFoulDPit8N3dRkyPtxV+KAQCUFFh2tfRYaz19fXmNUlEfdnEvIhEMAuB1HlJ/ywiF1T1fu9zDDO5ya8gHwD+XESewxhtHwV+N79TVV0RuRf4qoj83Kvjrz3/yXyeHhF5NfCXIvJejOH3N1T14fE4TzCTLKPBKNFQf7dPzbvMZM33t7cXsjlzwp7rOFXjPYqv2t99Juv5v4/EfWaCCAfChANhHHVoz11BaaU2UovrVNPdXkUk7HkFuRl6g5dJOSliwRhBGeo6NxaLpZiZ1GdbLJYJJG+Fb2szFs1wGKonoeFNpE/Ud3WZUYO6OiPqI2VwufRRNjGvqhngtmvs/xjwsaK0Lox15lr1XsCsvnetPEcwKw1OKKrG6p7Nep4rCeP+WhDvkWFM7BwNef/3RBJ6e8xEwUDAfBkjk1PAlyIoQSpDlcYFx+nB0U5igRg11JMlS7u2EiJEZWjqnJPFMlmZiX22xWIZJ1SNCGpvN4Iob4WPx8vdssHxi/rubmOtr601on5CRNzVTFo3m+mEutDcDE6mL7hFKGT+5hMWGcrJef7vPWYYQBUCQSPgp3h4KhEhHjQdQNbN0pJtBoWKUAUBmdrnZrFYLBbLlMUtiibmOMaVt73dWOEjkclphR8KflHf2wudnSbyzaxZEy7qrZifABzH6OfaqnF2O3dd8+TgOH0h+JycGb5Kp/vCR5bZ/308ybvgWCwWi8ViGWPyoaULOsMn0jMZI9Dzr3ye4vKBgLHATwUr/FAQ6TuXRMKI+upqE9Zygvz9rZifIEIloicOCdc1UWX8MbJdp/8PJucY0Q79Y1P7o89MUv93i8VisVgsZSIvzv2iPL/N5YxfcDY7sDjPUwj9671CIWN1n6aGwwHJP6Qkk3DmjNFes2eP+4OLFfPlYCwEungL2AQDEApCZAziZlssFovFYpk4/IvLlXo/1H15kZ3XFfn9A33OZODEiYEXz8uL8/x2porzkZIX76lUn6hfuHDc3JqtmJ8IXBcuN5tZroMJ9EDABJG3At1isVgsE03Od4/yM9BqxqXSR5LXLyD9InKq3QO9hQ+v8hXPW7fzr/znUuWvtRK1f5//s39bchE93/v851hsys+Zm/TkQ2t2d/fNERgHrJifCFzXBIyvjliBbrFYLJbJQ35SV3u7mVt18uS1BWUxpfIONe1a6Xny4j4YNNbhvJU4/z4Y7C/+ix8GRstgbij5xWH8biilzqm4feGwmSRZLj0wVtfHMjTG+e9sxfxEEQyal8VisVgs5UTVDP93dhqLoev2hVeb6FU2B8PvHpLN9r33u5bk85USTPkJa/4HAP971zWRSPKuJ/3cXT2BXtwe64YyKvxeQkPyIkJK5ss/XxXea/+vi+tKv32ZjHDufIBYTImEzfNUMKCEQlNfnlkxb7FYLBbLTCCdNtHNOjqMUA2FTGi9ySxA/cJ5JPiFfyrVX/3lV248f96k+S3ngcAEx4+eHvgHLhxXzMBF1gjpbA5yObnGM5jP5cq/T82e4m9pPw8itJDhKs+ifJVi2tbVLThOvjZTsxksUWJRJRb1nveCWrDDTuafCFgxb7FYLBbL9CWXM+Hy2tqMmJ9Ki/OMBXkxPpDpdTKORkxSHMf3csVEo/SEeiYn5LK+aRGeCDfPYWo8ogIQj+kQhPEAcy5GiWCs8eFw8TEUVfNT6U0IXd3eSICYaN95oR+NGKEfDhuhn7foTwahb8W8xWKxWCzTCdc1fvB5NxoRY2WeqovzWMYVf+j4vFDPZiGbg2y2WKgrihSs3YGAsV6HAkokPjmE7UgQ8YQ+UPwwkZ/TnEwJvQlvZEH6soUjEPXEfjTa33VnogZ2rJi3WCwWi2Wqo2os711d5uU4U3t1zQlkOPN9JyP+aQTF7xXp52nkuibydS4H584HyOaMhT0v1BHpZ1EvLdTHx3I+WfFPuSh17o4D6Qwkk4LjSj+XoFAIY9HPBahfAuOl7a2Yt1gsFotlqpLNGj/49nbzPhSa8iEHS02QzAvSfvu9iZHFIdQLy7e4fRMhC2kqqC9fOi0cP9nnglMIhuNdvoAoAZ/Lft5lpODK75sHWxxNsxAJ0hOAxZEhRfqfp6v9zyeX8y3m7oDjiO+z9JsAepXveSH0df85u/n25K9JOGRcR3xXf1R/O1dd88Lt9z7n5nA0R1ZzOK5DKBAiQICACAEJEiRIIBBAEAKYhgpCQEyaIIgIAQLIJHvy6h/fpP/1c10zwtHdFqQ6B+MTmNKKeYvFYrFYphaOY/zg29uNO03eD34Mlo4fbM2iq9JKRBopXr+oVJSRQp4SArtUOHqj34rjrF+dpyCepVjAehbWgCJBn/juhqpKLXnu+feuC05BNEu//ZS4BvltoalS9LmUY3m+TNH5BKTvXAKBvvMIh7Tfg8PVXFuUS2fed/zaqCouLo46uOqi6uKi5NwcOc2SU4ecm8NVh6zmUN9sVfHKI32iPL9Nu2lUlcI/7duKSOE6FM4ib+72tgEChCTo5Q0M6eFAccm4GS9foPCAMJ4EAhAJQCYwvqMZVsxbLBaLxTLZUTXCPe9GA2PiRpPLQTojdPeY7bEXgwOuS3SVmPaSiiON9I8kcnWUkb4IJFcLbH/50oyfKBra8Usx0jZp0Xb8yYtzRUk76YIF3XEdchiredbN4miOnCfgEeMpHyiMMVAQ5gWRHggSJzxhVvPCeXjbgR4O8giQcbOcS5zr92AQEPNQEJAgoUCIIAECgSAhQgQDQQII4j9PCUzK0QEr5i0Wi8Vimayk02YSa2enUd7hsFkafoRiQtWEU08kha4eIZ02Ai0cMu4k1VWDCcuZ5S892Sl2a8lbzvPiPOfmCi4ufnGecTOcT7xkwjWqGrHqubEExAja2ASK8+EiIgQJXh2v8hp0SReVocp+afmHAVfNA4GrLur0fxjIDwjkRw2KHwKCATMSECzxEJB/AHDUubpBY4gV8xaLxWKxTCZyObOQUVubUd7B4KjCSToOpNJCTy909wRwXOPrHQlrwcVkJqCqxl3E5zbiqENHpoOANzUx75qRd/QQKPhvm8/iuXZc+/NIyYvzfDvzYtMvyPNuLXlxrvS5pvgt535xLhIgFugT593SRUW4csB2zBTyDwVBGd6qUf6HAMd1zGfHvXpEQEEFkqk0S5wFRMbJa96KeYvFYrFYxhp/CJFSW/8MR//WcYw1XsQI+BG40eSt76m00NklJFOCCASDZlGcKTw3tiR+v25HjbDKuTmymiWnObJuhpzr7fMJX1eVnOZoz7Yb327oE2I+t3bxHUcQVPp/psTnwsOBBDwrrVm1yO+eAnjCPYejLjnN9R27/5pGV/mcT3bL+XRnuA8BCVL9RP5YY8W8xWKxWCx+8mI7kyktxEuJ8Hygbn+IkeI68+FL8gLMHwYlP8MxEBiRgM9b33sT0NUdwHWNaI2EdQiuM5OT4smXeYt1VrNk3aw3CdO4kfRzt1AjtkSEoAQJECASjBQEtJ8e6SYeHPsFtPwW2n4TPFHPHcak5cV5OBAmKtFBarVYSmPFvMVisVgsfnp7jXX89OnS+4tFeF6Ih8MMEmJkzCi2vqc83/dQP+t7eUS8X7gWf+63T02O/OeMm8FxHTJuxoj0vKWafGQUClbqoAT7RHBw8olgv+uNSShfWyzTHyvmLRaLxWLxk7eeV1WVuyX9MIvT9Pm+53J9S82PxvddVclqFheXRC7RZ0F2vYmVeBMrfZFQVD0Lc8GvWwsTMU2EG+1zAfG5jYjvvXr/5fPmI4UExIQatJZqi2VoWDFvsVgsFsskJZMxy8h3dRvfd8WEcoxGlfgIwsq76hoXFc2RcpIknSQZN4uiZN0sF5MX+4S3bzJnv0mhRRM+A4EAQd/CPhZLMYHeXuqe3Entk4+Rq6unZ8NmejduJjN/wdRefneSYMW8xWKxWCyThLz1vTdhrO/ZrNE6kcjwre+OmpjhWTdLykmRcpJkNFtwbwkGgoQkRDwYR0Toli4qbYSTscVxCKSSBBMJAqkkgWSKQNK812iU3vWb0KGs3jQFkXSK2qefpP4nD1P71BMEMmkycxoIJhI0fO+7AGRmz6F3oxH2PRs2k1y9dupfD1XCl5qpOHrYex1iRfMl2Lt33A5pxbzFYrFYLBNIfs5szhGyWUhnIJ0W0hnBcQBvIaVIRIkNwdNEvagsOTdL1s2RdJOknBQ5zRXs50FvUZxKGa8F5acwqkg6RTCZJJBMeqI7WSTCzStYeN+X3r9cwsvnifZM5pqHdiqr6LrhFXTeeAtdL7+JXP2sCTrp8UGyWaqfe4b6Rx+m7vGfEUwmyM6aTeu9b6L9rtfQu24jqBI/eYLKA/uo3P8CVfv3Ub/zJwC4kQiJNevp2biZ3o2b6N2weXJfE1UiFy/4hPth4scOE+7oMLuDQVJLl9O2fAW16TQwPq57VsxbLBaLxTLG+AW7WWUVUikj2E2wG8ULZEgwqISCEI/poB4Hef/2nJsj7aZJ5pKFxW5MWSEUCNnoKAMgmQwVhw5QvW83VXt2sfHQAUKJXkSHPuqhwRBORRw35r0qKnBiMXK1tbiN801aPI4Tr8CNxXDjcdx4hUkrlIkT6min9uknqXnqcep/+ggqQu+GTXTeeAudN91KavmKqeGC4jhU7d3FrEcfpm7nTwh1dZKrrqH9rtfQdufd9GzZbtZK8JFcuZrkytW0vuktAIRaW6g68IIn8Pcx97vfIvCtrwOQWryE3g2bPYG/hdTSZZQlvqoqkfMvGdF+7DAVRw5TcewIoa5OszsYIrlsOZ03v5LE6nUkVq8luWIlGo3RcvkKN0XH7/doxbzFYrFYLCMgH40yL9pTaWNhz2SNgFcFCQBqBHswSFGc92sLyFL+7Wkng4oiill2XkLEgjHrqz4AgWSSyoMvULVnF1X7dlN5cH/BWp5YsZKLt9xCeN5C3IoK3FgcJy+8PRHueCLcCHTzfizdQDpvuR1cl/ixI9Q+/QS1Tz3Owr/6Mgv/6sukG+fTeeOtdN10C91bd6DjKAaHjSqVB1+g/pGHqP/Zo4SvtOLEK+i49Xba77yb7utfPqzrlJvTQMdtr6LjtlcBIOk0FUcPU7l/H1UH9lHz8yeZ/V//afJWVdG7wVjtezZtIbF2A25Fxdien+sSPX/OCPcjh4kfO0LFscOEurvN7lCI1HUr6bjtVSRWrSGxZh3J5SvK9jcqq5gXkXuB/wskgSDw66r6/DXybwb+CIgD9cDPgN9U1bS3/9PAG4EOfzHgVmCbqu4RkaXAM8CRouo/paqPjf6sLBaLZXoyE/vsfFj5vGDPh4NMZ6Tgz55fNyggSjBkVlYdinuMH1ddMm5mUP/2ilCFFe7XINDTTdULe6nat5uqvbupPHwIcXJoIEBi1Rpa7n8LPVu207N5K05NLc3tF2msn1/mRgdIrllHcs06mt/7AUKtLUbYP/0Es3/0IHO/9x2cWIzu619O50230vmKm8nNaZj4dqoSP36U+kcfpv4nDxNtvogbidB54y2033k3nTfegkZHMCu71KGiUXo3baF30xYue8eOnj9H5X5jua/av4+av/sqoooGAiRXrPIs997E2nnzhz6q4bpEz50t+Lcby/tRgr09Znc4TPK6lbTf8WoSa9aRWLWG1PIVaGRwl7VEIsCRY3GOHg1z0+0jvx6DUTYxLyLbgW8DL1PVQyLyBuBhEVmvqs0l8i8AHgM+rqp/LSJR4MfAl4AP+LJ+RFV3+srdDnxVVff48jykqg+M+UlZLBbLNGUm9dnpNGSzcPJskFzWpOUjKgYDIxfsefwW92QuYSLKaNYL22j924dDsLODqn17qNq7i+q9u4kfP4q4Lm4oRGLtei694930bNlGz8bNuJWTK9ToQOTmNHDl3vu5cu/9SDpN9e7nClb7uid2AtC7Zp0R9jfdSnLVmnF1x4meOcWsRx+m/tGHiZ09jQZDdN3wCi6+/9fouPmVE3NdRUgvWkJ60RLaXnsPAMHubioO7afqhb1UHtjH7B99n7n/9h0AMnMa6N20pRA1J7lytanHcYidPU3FsSPEj3ji/dhRgskEAG4kSnLFKtpe/VoSq9eSWL2O5PLlEBp8lCGTEY6diHPocAUHD1dw6HCcU2diqAqhkMtvfzIxTh7z5bXM/w7wsKoeAlDVH4jIJeDXMJafYt4FBIC/9fKnReTLwD+JyO+q6iXgL4DeonIPAH8/PqdgsVgsM4YZ02dnMuA4QjioxEapp/M+7nmLe9JJkHYyeMuUGuEuISqDNorMUAhdaaVq726q9+6iau9u4idPAEaE9a7fSPMD/4PuLdvoXb8RjY39yq5jQSYjHH8xRmdXiI3re6muKrFisIdGo3S94ma6XnEz5/73bxN/8Tg1Tz1B7dOPM//v/4oFf/dVMnMa6PL87Lt2vGxMzjty8QL1P3mY+kceouLEMVSE7m3Xc+nt76LjlXfg1NaN+hijxamupvuGG+m+4UaTkMsRP/kilfv3UrV/H5UH9lH/00cA8/24buFCKpsvEkwmTVo0RmLlKq687h7j3756Lcmly4Yk3B0HTp6O+YR7BcdfjJHLGR+6WfVZ1q1NcOcdnaxbm6BxzktEo9vG50JQXjF/J/C5orTngLsofWNYArSqqv9bfwEz1Hsz8G+qetlfQESqgPuA3x6rRlssFssMZUb12SJaPGdvUPJRZbJulpSb6puciouoiccelrAN/zgMws0XC8K9au9uYufOAODEK+jZtIW2O19Dz5ZtJNauH5Lbw0STzQonTsY4fKSCw0fjHDpSwQmf6AsElHVrEly/vYfrt3ezaWMv8dgAcylESK5YRXLFKi69578Tam+j5udPUvv0E9Q/+jBzvv893EiU7u3XG6v9jbeQndc45LaGWy5T97NHqX/0IaoO7gegZ8Mmzn3kN2m//a4RufaowsXmCLv2VLJnXxUvHKgkGnVZOD/D/PkZFjSa7cL5GeY3ZqioGPjBZlBCIZKrVpNctZrWN7+1cE75SbVy4gipHTd4Fve1pJYshdDgMlgVXjofKYj2g4crOHIsTiplOojKSod1axK8820trF+TMOJ9XrbfYEnL5ezIz2sIlEXMi8gsoBa4WLSrGXjtAMVOA40iElHVfKynRUXbYt4CPKGqxcdZIyLfx/hw9gL/qKrfHsYpWCwWy4zB9tmlybk5sm6GtJshkUuQclNeVBmzmqk/hrtlCKgSfelsQbhX7d1FtNl8FXLV1fRs2krrvffTs3U7iZWrhyTEJpJsDk6dinH4aAWHjlRw+EicYyfiZLNGuNdU51i7JsF/e1sL69YkqKpy2L23iud2VfGP357L174xj3DYZdOGBNdv7+b67T2sX5sgHC4t7nP1s2h73b20ve5eJJulau8uap8y7ji1P38SgMSKVQV3nMTa9VdFgQl2dlC38yfMevRhqvY8j6iSWLma87/667Tf8WqzqNMwUIUzZ6Ps3lfJ7j1V7N5XxaVL5iGrtibHpo29uI7w4qkYTz5dQzrTvz11dTkWNGZYsCDdT+gvmJ+hsTEz8IPOAGQb5tJx+1103H7XkOZHqMLllnBBuB86EufwkQq6us13LRpxWb0qyRvvaWP92gTr1iRYsjjd77K66vJS8jzHu49xrOcYx7uPc6n3Es/e/othtX04lOuXkDdLpIvS08BAU5L/AfgE8Nsi8hnMjeXD3r6B7CcPAH9alJbC3GQ+oqrNIrIFeEREFqrqHxdXICLvB94PMG/ePHbu3DnAoQYmm8vS5XTQk+sadtmpTC6Xpbm9+J48vZmJ5wwz87zLds6q5HBG1BeNginTZ8Po+20365LWNAebD/hSFRdFVXFxUXX7xaKZDqufluM7HW1tZe5zzzL7hReYdfAAsbY2ANK1tbSt30DbvffStmEj3U1N/cMbdreMyfFHes6OAy+9VMXxE7UcP17DieO1nDxVQyZj2lhRkWXFii7uvecSK1d2smJlJ43zkoDSlm3jQvoCl50Ut923gjf9Uj2JRJBDh+rZ98Js9u2bzV/9XSNf/VshFsuxfn07mzddYdPmKyxf1jXwiNGKJvN69zupfOkcc599lnnP/oLGb/w98//hb0nX1dGyYweXXnYDjb09LHryKebs3UPAcehZtIjjb38HF2+5ld7Fi/vqHOTauC6cPVvFgQOz2H9gFgcOzKKjw0wmqatLs3HjFV795kOErnuClthujieOURGsYEN0IXfHFlGbayLctZLM5WVcvlzJ5UtxLl2Kc/honMeeqCGb7X+ydXVp5s1LMm9ugrnzksybmzSf5yWZOzdJJDKwZb/U37qrK8yx47UcP1ZrtsdraW83k3iDQZelS7u58aYLrFzRycpVnTQt6SEU6vvlJ5wEO8+f5lTiFKeSJzmVOM2Z5GmSrnHlCRBgQWwBTdGlPPXsU0TD4xPtRnQYsVXH7KDGynMF+BVV/bov/XNe2twByq0G/h9m+LYT+CLwo+J6vLzXAU8Bi1Q1N0h7PgN8WFWv6QS2Y8cOff75AQM3DMh//fC/qAzVUFU9s4ZWJ0WUgAlmJp4zzMzzLtc5u47LlStt3P3GO4ddVkR2qeqOEZSbkn02jKzf7jrfxVPPP83yxutIeiEhc16TxIvjHpIQASlDrOtxZEK+06rEjx+j9smd1D75GJVHDwNmwmLP1u0m0syWbaSalk1IjPWhnLPrwplzUQ4f8ay1R+Mc9blZVMQd1qxOsnaNsdSuXd1LdM55zqfOcjZxlnPJc5xLnOVc4hznEudIual+9S+ILWBD7QY21G5kY+1GVlevIdlTwe49xmr/3O5qTp02ArOmOsf2rT0Ft5xlS9ODXqZgVyc1zzxN7VOPUfOLpwvhFdON82m/827aX/UakitXDel653Jw/EScXXur2L23ir37KunsMnbhefMybNvSycKtu5ElT3Eu8Dx7O/bQnDLz42OBGOtr15N0kpzpPUOv0zddJhKIsLhiCUsrmlhS0URTZROL403UpFfQ3dLAhYsRLl6McKE5woULUS40R7jYHC64K+WZPTvbz4VnwfwMC+anWTA/Q1ov0HWlyWd1r+D8BSOuRZSmJemCtX392gQrVyaJRY1GdtXlfPI8x3uOG4t79zGO9xznfPKlwrGrQ9WsrFrJyupVrKxayarq1SyvWk48GDdx5m+/gara4U2BHWqfXRbLvKq2iUgHUOzM1Qi8eI1yR4G35j97IcsA9pfI/gDwzcFuCh4vArUiMkdVW4eQ32KxWGYMM63P7s31ktUMLemWQmQZuwDTyJFslqo9uwoCPnqp2SyQtH4j5z/4YTpveiWpZcsnxQJJrmv8ow8dybvKVHDkaJxE0gj3WMzx3CxaWbz2NJVLjpCpepHzKSPYf5E4x0vHz5E62ifYQxJiYXwRSyqWcP2sl7G4YgmLKxYTDUQ42HmQA10H2Nf5Aj++9ONC/lXVq9jYuJGN79jI2z+4gVhiOc/vruH53VU8+3w1P3vcPMfOnp3l+m3dnrjvYeGCq1ecdWpqaX/1a2l/9Wshl6XqwAu0pLqI33DboNc8mxUOHYmze28Ve/ZWsfeFSnoT5losXpTm5tsuMmfTUzgLnuaks4vHO1+gN9cDl2FOZA6b67bwzqZ3saV2MyurVxEOmMmlqsqVzBXOJs5wuvcMZxNnONN7mhM9J9jZ8hiOrxuoC9fRVNdE08KlLKlYwo2VS2mqaGJhbDGdbZVG6DdHuHCx73XgYAWP/rQOx/Gf37rCu/mNGdatTfDmN14xD2BrElRVGqt+b66XEz3H+cHl4xzrOcaJ7uMc7zlOwjERbwRhScUS1tas5b4F97GyeiUrq1bRGGss2+hcOR3OHgWKnzZ2AN8rlVlEIsD1qvqUL/lW4CSwuyhvAHg38JoS9bwDeFFV/c5LC4EExvJksVgslquZMX22GbEWKkJjvBDNDCLY1UXNM09R98ROan7xNMHeHtxojK6XvZzm936AzhtvITdrdlnbmM0KFy5U8MLuOo54k1MPH62gp8eI1Ugkx/JNJ7nhlw9RueQogTnH6Qqd4qXUOf49cY60mwLPMBuWMAsrFrE4vpgbZr2MRRVLWOKJ9sZYI0Ep7RuzrX574X1LuoUDnQfY3/kCBzoP8P0L3+c750yoxdpwHRsa1rPhLRv5xP/YyOzkVg7vXcizu6p5blc1Dz0yC4AF89MFq/2ObT00zCl6Ng6F6dmync72i8RLCM9UWjhwsJLdeyvZvddMWE2njfV7+dIkt73uCLUbHifZ8AzH0rt4qPuoEd6X4brK67h73t1sqdvC5rotLIwvHFDcighzonOYE53T7xoAZN0sF5IXOOMJ/DMJI/afan2K72ceLOQLEGB+fAFNFUtoWrqUJeua2FTRxJLKJuZG56JugMst4YLQP3Mhyea1YdavTVBf7+Cqy4XkBY73HOfbzX3+7S8lzxWOURWqYmXVSu5ZcA8rqlaxqnoV11VdRzw4uSIllVPM/yGwU0TWquphEXkdMB/4CoCIfBazmMgOVU0BNcCDXv4WEWnARDz4iF7tK3QHcEFVD5c47irgPhF5p6rmvFjI7wf+skQ9FovFYjHYPttyTSLnX6L2yceoe/IxqvbtRhyH7KzZtN9xF503v3LMwiYOhutCR2eIyy1hWlrDtLSGaGmJ0NJq0lpbw1xuCdPeEQZxofoCwbkHmLvqCAtedgSZc5xE7CSXnXMccVOF1crCnUawL/EEu7GwG9E+LzZvQME+VBqiDdw+93Zun2tWF3LU4bbRSvgAACAASURBVGTPSfZ37udA534OdB3g6ZNPo95sjaZZTWz4pY28770bqe/dRsvB7ezeVc9PH6vlwR+YB6VlS1O8bHs3O7b3sH1rD7U1Tr9jJhIB9u3vE+8HD1eQzQYQUVau6OWOX/o5lWsep6vuGQ4l9vBDT+hGr0RZV7OOdze9m811W9hUt4nacO2ozj9POBCmqdK42tBwa799Pbkezvae4XSiz5p/JnGWPR17SDrJQr5YIMaSiiU0VS6lqaqJpi1NrFgX4FKwlyeaj3H8+DFO9JwouPoIwuKKxayuXs09C+7x3GRW0RibPyXmwpRNzKvqLhF5J/CPIpJfTfBu3+IjMczEqvxVTALPAj8XkbyT0m+p6n+WqP4BBo5T/F3gN4EnRSSDmdj110DJiVQWi8VisX22pQSuS8Xhg9Q9+Ri1Tz5WiPmeXHYdl97xHjpuua1kBJXR0Nsb4HKrJ9I9se4X6C2tYVqvhK7ypRZRZtXnmDWvg+iax5h3xxPE63/O5egucpLCwYRqapUwiyoWsSy+mFsrbmBxxWLPwj42gn04BCVoXDiqV3L/ovsBI2YPdR0y4r5zP89c+Tk/vPgDAKL1Udbcv5Z73rOB2Ykd9Bx9BUeeX82DP5zFd/6tARFl9aok12/roTddw9Ej8zhytALHEYJBZdXaNu54188IX/ckVyqf4VDvPo5lO8GBuq46ttRt5c2LfomtdVtYU7O24DIzkVSFqlhXu551tev7pasql9OXC9b8s4mznOk9zaGuQ/zk0qO49E2MrfSs7a9f8AZWVq1iZfVKVlStmHTW9uFQlgmwUxU7AXZ42EmRM4eZeN4zaQLsVGYk/faF0xd4fu8uFs1dPHjmacRQvtOSTlH9/LNGwD/1OOErrWgwSM/mbXTc/Eo6b7qVzKLhX7dsVmi9EiqI82Kxnv+c9133U1np0DAny9yGLA1z+l5zG7JUzGrlcvxZTjjPsa9rN4e7DuNojgABVlavYlV8FRtmbSiI9rkTLNhHi6rSnLrYZ73vPMDh7sNkXOM7Pzsyhw01G5md3Ebm1Mt56bmbOLh3HqqwZstZGq9/DBY/TXP0WY72HCSrJh56U0VTwV1mS91WllQsmRIW6lJk3AwvJc5xtPUIm+dtZX4ZrO3TcgKsxWKxWCyWqUGovY2ap58w/u/PPkMgncKpqKTr5TfRcfMr6XrFzTg1NYPWowqtV0KcOh0zrzNRbxvjypWrrbyhkEvDnBxzGzKsuC7FjTd009DQX6w3zMn2W2ioNd3Kno497GnfxX+07+bEpRMoSkhCrK/dwLua3sW2+m1sqt1Mdbh6yhsiRIT58QXMjy/g1Y13A8bn/Hj3MQ50HSiI/McSP4O5EHh9gGVvuY5ULsWB9DkOAKFsiHXxdbxtyds9Ab+Z+sis8p7YGBIJRFhedR0V2Qoa41P3b30trJi3WCwWi8XShyqxM6eo9dxnKg+8gKiSmddI6xvuo/Pm2+jZuh0Nl3azcF24cDHCqTMxTp2O+sR7rDC5FIxFfVlTihtv6GLB/MxVIr2uzrlmsBVV5ULqAj+5sIs97XvY07Gbs4mzAMSDcTbVbuID132QbXXbWF+7gVgwNqaXabISDoQLrihvWWyCSXVmOznY2Sfus7ksb1x8H1vrtrK2Zt2MuTbTFSvmLRaLxWKZyagi6RT1B/azcN8/UfvkY8TOGVHcu3otF9/7ATpvvu2qWOTZrHDupQgnfWL99Okop8/E+q3sOXtWlqVNKV5zVzvLl6ZYtjTFsqYUc+bkhhWNUlU51XuS3e272d2xm73te7iUvgRATaiGrfVbedPCN7Otfhurq1eXxad7slIbruXGOTdx45ybgJnpGjmdsWLeYrFYLJbJjOsSSKcJpJIEUikCyWTf+xJpwVTSfE6n+m/9eX1pwVRfTHQ3HKZ7+/Vcfus76bzplWTnziOZDHD6TJRTPzaW9rx4f+l8tF8c7/mNGZYvTbFjeyvLmlIsW5pm2dLUVRFUhkrOzXGs+yh7Ovawu303ezr20JntAEwM823129hav52tdVu5ruq6sVnEazjzCIc757BU/gGXc7VMK8Z5fqoV8xaLxWKxlBlJp5n7r/9E3c8eJZBMFAR3MJkikE4NXkERbjSGG4vhxGK48bj5HI+Tq63DndeIG4ub9FjMvI/FOBZt4EzTvbzYXGcs7Z8zov1ic6RQbzCoLF6UZvnSFK+6raMg2JcuSROPu9do0eCknTSHug4WhPu+jr2FhXoWxRdza8OtbKvbxtb6bSyKLxr9JMZM1vgEJRL904cVfUdGttiViBF4qRTEYjNH1Ody4LgQjQyed7qQSEBFHAZwSxsLrJi3WCwWi6VcqFL300dY+JdfJHuxk0eXvove6gbSdRWkQ3HSwQqyoTjpQIx0IEYmECMtUTISJUOUrETIECGjYbKEybhhsm6QbC5AzhGyWe+VE3K9QrZDyOYCZLNCLuele/szPteYaNRl6ZIUmzf28MZ70p6lPcXiRRnC4ZFbGdNOmtZMKy3pFlrSLbSmW7iUusSBzv0c7DpYiMJyXdUKXj//DWyt38rWum3Mjc0d9aUu4DhGREejEApB09Kxq3s4qBqh13YFslnTnikaMWZQVCGZhGAIQkFP4E7zRdm8v69bVYMbiIzr39aKeYvFYrFYykDFwf0s+tKfUHngBb7d+CE+WvsHXDo99NB1kYhLOKSEwmq2ISUcVsIhl3C4Lz0cVuJxt/C+L93tVy4YbWfz2jDLlqaZ35gZloE662ZpTbfSmhfpPsHuF+6d2c6ryoYlzKrqVbxl8VvZVreNzXVbqIvUDf3gQ8V1jYgPhqBhrhGTp9rH/jhDRQQqKyEeg45O6OqESGRcLbhlIZUGJwf19VBdY867rQ26uyAeH9N1CCYNrosmkiTj9RCvZW5tL5FxHIywYt5isVgslgkk3HyRhV/9c2Y98l8cqdvBB5cf47GTK1m1Isnv/J+TzJmV7SfE8wI9FPaEd0gJBsfe0FdqUmTOzdGWafME+WVa0/2t6vn37dmrRXFQQsyJzqEh2sCSiiVsq9tGQ7SBhmgDc7xtQ7SB2nDt+Mb9zruzAMyaBZVVk0tABoKmXRVxI3J7e6eHyM2PgFRUQP08CPvU7OzZEA7BlSvmXKeTm5HjkOpM49Q3UL+oitpaSObG95BWzFssFovFMgEEentp/ObXmPvP3yStET6+5d/50qF7CKbho//rPLe/4SDPdT5Dm7ooxpVFXYU0aBrIp+W3WvS5cKSB9hfl8+1XlMs9l0heTPWzprdlrhTKFc6DALMis2iINtAYa2Rj7cZ+4rwhNpeGaAN14bqxmZQ6GvJW4bo6qKkxwrnMOC6kU+B6lzUeh2AAiMWhcT70dBtRHwxBLFrWto6IvEtNIAjzGs0JlqKmFkJhaLlsRiOmwYhEJpEl05OjesU8Zi2IEwg6JLNJAoHAuP4WrJi3WCwWi2U8cRxm//BBFvzNXxBuu8L3tn+C/33hE5zZW8mdd7Tz4Q+d4seJr/HLv/g7kk6yrE3Ni/Q50QbW1KzpE+g+i/qsyKzJv0pqJgvZDFRVQW1tf6twmchmIZ0xLuO1dQ6hWBo3G6GjLYSq0bwSCBiRG49De7ux0k+lCbLpDOSy3sNT7eCjCxUV0NgIly+bp5yp+PCCOeVUT5Z4xGHRjnkEqgKkct2ECNFQ2UB1tJpQYPwktxXzFovFYrGME9XPPcOiP/9T4i8e58TaO/n16/6GHz23lEUL03zp8yfILf8Bv3bsT3kpeY7b597BB5Z/gOqwWU1VkKKthxSne1spyjfg/v7bPB1d7SyevWTMzr0s5HKQThsBPGc+RMu7GJKqaU7OgWAoS82sDNGYSzQUpiZaR1e6CwknySTidHeGCAZN0wlHYO48I+bbrkAmY3ZM1gmyeZeaWAzmzR3ew1M0BvPnG0Gfr2OK4DiQSguhXIr5DS7SNItsMEuMGItqFhEPxydkdMqKeYvFYrFYxpjY6ZMs/MoXqH36CRLzF/Op1z/C53feTiYjvP+9zdx2/8/50qk//v/Ze+84O67y/v995vZetnetqmXJlmXL3TLGOBiMf4TQEwKBkEC+lAAJLYEUIAEC4fsN3ZhOAgkQOsY2xdi4gY27ZKv3Xe1K224vU87vj3Pv7t3VrrRX2ibteb9e85o7Z87MnLl798xnnvM8z+G3TzzIytBKPnfx57m84YpFbXPOyC7q9c+Iqph0e5RrxyILX8dRIr5olfEFysSTkmjQR8zfSMgbwutSYrch2ECmlGHIM4TLX6CUCZLNuvB6VSzskg+QrcYjCGMiqPh0vne3R1noh4bUC8zpnmeBkBLyBYFhQKM/hSsmcZoaiQVjxANx/O6FfSHRYl6j0Wg0mjnCNTZK21e+QNMP/xfHH+CnL/kE73ryjey4LcTll6Z569uf4fbSp3n1I98m4PLzt+vexcs6X6ZnKz1dxsWkgMZGCIYWNXDUNCXpQgmJSTwO7fEgDaFWAp4AHteJf2MhBFF/lLAvTLaU5bjvOJ6gTS4VIJt1VWJDKwGyoaAKGF0qAbKTXGrmIB7BcKkXgrFRGBtTgn6x73EKUipLvG1DNFrEK4fxxOIku9cS8cem/RsvBFrMazQajUZzhohymabv/Q+tX/sirkKBPc9/De93Psh3v99BQ9LiXz+wj8J5X+ev936G0fIof9TxYt60+k0kvMnFbvrZS7GoLPKLHNzqSIdsoUShbOHzGHS3hWhLNhPyBnDNsk2GMMZFfSaY4Zj/ONmcQy4VRDqG0u4+P7S1q5SOixkgW+tS09wE3tm3wbJtyraJ3+Od3v1ECEgk1ejD0NCSihcolcC0BP5ggVioRMgyaWg9j3B7D8YiB1ZrMa/RaM46jFyOlv/5Txp++kMcnw8rnlBLIokVT2BWt6tlCfVZLqXhac25gZTE7/4VHZ/7JL7+I4xdfjW3bP5/fPzbFzGWcvPKlw5xzSvv4LMHP8rTzzzNpvhFfGrzZ1gfXb/YLT97qVqEwxGIVzKiLDC2Y1O0ShQKNlIatCajXNAUIR724zoDa7IhDGL+GBFfhFQoxfHgMGNph1w6iNtl4PcLRDSmrNbVNJYLJXhrR0HqcKmRUpItFskXTbxuL2F/gJF0DomDYUiCfg8+9xRxH46oCb0GBxc9041pqqRIwlsg3lSmwR8gacXwd3cjkkvjZVyLeY1Gc9YgTJPGH32P1q/eimdslNSV12AHg7jHxvD19xF6ehvusVGEbU97vB0KV4R+fFz4K8Gv1mZtWTyB9M2P1UuYJkaxiFEsYBQKkz+XipPWrmJlf6VM5PPEmlvhRTfMS9s0syf4zHY6Pv0JIk88RqF3Fbe/51v8w89v5pFbImw8P8cHP/Ygtzsf481P3Uazr5l/2fhhntf6vPnNqX4uUxvc2tS44MGtlmNRtktYtsQy3UQ8cVZ0hmhO+PH55vZvagiDRCBB1BclHU5zNDxEagwy2QA+r4HP51EBsvm8cr2Z7wDZanagWEwts7BEF80ymXwJMGiKxNjQHSUR8eFyCUxTki2YjKbLDIxkGMnnkMLG4xYEfG48hhfDH1CBsYPHwC4t+CiEbUOmaCNcRRoaoT0WJWoE8JYs6OmASGRB23MytJjXaDRLH8chcdfPaf/CZ/H1HyGzeQt73/Q28udvnLauK5vBPTqKe2xi8YyOTGyPjuIdOEpwx9O4x0YxrOln9LADwYrQV9b9Wou/B5OE4VMifDoxXi2rEeOuYhGjWETY9c0gIl0uHH8Ax+/H9vspyFMfo5k/PMcGaf/Cp2m44zbMRJId7/gAHzv2l/znJ1oIBhze8+495C74NO868EUsx+L1vX/Ba1e8jqD7HJ++fr6ounV4vCpI0j9D3vJ5wHRMyk5J5fu3vfhkIw3BIO3dXsJhMe8GcZfhGhf1qWiKvtEhhocF5UyQYFDgCgaVyE2l1OLxgncOrdi1LjWzyA5k2TaZQomyZRPxBzi/q4PGWICAf/IX5fEIEh4viaiX3o4wpZIkkzcZGisxnM6SsXIIl43HI/C1JPAMjWEUCjPnrJ9DHAdSeRNHlGlOuuhJNBDxhnCZljLT9/QsSDvqQYt5jUazpIn8/ne0f+6ThHY+Q2HVGvb8+6dJX3H1zBYow8COxrCjMUo9K059ASlxZbO4xyaL/erLgKf6MnD8GIHdO3GPjmCYJp01p3Dcbhy/f1xwO/4ATiCA4w9gJZI1+yr7AwEcnx87EJh8THXflDLp8Yzfr2M7DA+PTLq+ZmEw8nlavvV1Wr71DZAOA3/6Or695p382+dXc3TAywueP8zlr/pvvtj3MQ7vPcx1Tc/mHWv/hs6g/mudFo6jhKRhQFOTCm6d51ENKSWmU8Z0TCQSvxEgLFtwiwCJpJdkspIPfoEHV1yGi2QgSdQXZTQ6Rt/oCCPDBm4ZIBh0YSSSyu1lrgJkqzk14ZTfvZSSbKlIsWhhGG46G5K0N4aJhryz+p6EAL9f4Pd7aUp6se0IxaIklVXiPpXPkgmAK3Mcz9hxPOEIXpdvzke4HEeSKpQo2xZdDX5WNLUS8vjVdQqV+R96emCeRmzPBC3mNRrNkiSwawcdn/8U0YcepNTSyoF/+BAjf/D8ufcNFQI7EsGORCh19Zy6vpQY+RzDRw/Q2NKDHfAvis+uZgGxbZJ3/JT2L3wG7/AQIzfcyCMveTf/+q1LuOe/YqxcUeCDn7yDO4wP8Y97HqA31MtnL/48VyxyqsmzlqqQdBwV3BqJzGtwq5SSslPCsk0wBEF3iLi3Cafsx224iSeVZ8lS0HBuw01TuJFEMM5IfIyDx4cZHXURcAcIBPyIaoDs6Kj6zk7HNaXqUhONQSyqAm2nq2aZpPMlHAcaI1HO64jREPXjdp+ZyHa5IBQShEJe2lu8lMsRCoVWRlM9DB86Sn74KFlfHo9XNc1jePAIz2mLe1vapPJFTEvQ3RBhRVOYUO0fO59X/vsdHUsrLWgNWsxrNJolhbfvCO1f/BzJX9yOFY1x5K1/y/E/etm8+a/XjRA4oTClhgbsJeQzqZkfwo88TOenP0Fw905y51/Arg99gi9uu4Fb39ECwBvfvIPMxR/mA0f+W6WaXPtOXtb1cp1q8nQplsC2IBJVwa0zCMm5oGQXcaRD3soR8UYJByII249luvC4oKFNTSC7RJKpTMJtuGmONJIIxjjeMMqBwVGGUi7CvgCB0w2QrbrU+HzKV30alxrbcUgXCpRNh6DXx9q2VlqSoRPcaOYSlXNfEIv56O5cQel4kvy+owzZHrIlh5yTIydyeNwSYcxe3JuOSbZUxrbcdEQbWNEcJBSY8nvLZtV32da2NH8IFbSY12g0SwL36AitX/8SjT/4LrjcDLzm9Qy86s9wwlowaxaeUF8fKz/xCeL33UOppZX9H/gIv2p4MR/5WBf7DgS4dusoF73mM/zX8f9g9PAof9jxIt68+i0kdarJ08M0VRBnMAjx5rrSHdaD5ViUnCJICHnCeAwPK6KrKZcMrKLyTmltWfJzFo3jcXlojzXTGI4zkBplX/8YuTE38XAAd3OLcg8ZGjp5gGx1JERKlas/FJ5UT0pJvlwiXzQxhJvWeILOpgjxiG/BvyPDgEBLlEDUQ8ORI1i4KdJMJisZyVoUzTJ5O0fRlcPlVsFFVXFfvZeSU6JkWjimj9ZwKytafISCU1ySpIRMBhIJ5Wa0xPLdT0WLeY1Gs6gY+TzN3/4vWr71DYxSkaGbX8TA696A2dS82E3TLEdGRoh+8B959je+hvT56furt7Lzua/h/31xJT+9PUlba5m3feR7/NL3T3yqbzubYpv41OZPsz56/mK3/Oykag32zl9wq5SSol3EkRYew0PS04JXhBDSzXG5i3zOIB5XHj1LZQCwXrwuL93JFlpjCY4MD7O/P42TV6Le1dE+c4Bs9SVqmpGQsmWRKRSxbEkiGGFTbysN0QAezxJ4ywkEoKcH95EjhJ0c4ZYgrc1uymU3hWKIVBoyRZOSXaYks+TceRxpkzFzuM0oLf4YXZ1ewiF54guJ4yiLfGMjNDScFW91WsxrNJrFwTJp/MkPaPvKrXhGhhm79nr6/uotlHp6F7tlmuXMjh2EvvE1Dj7nBsbe/C6+e99aPvNnbeQLBq947ZOkLnsfnzz2U5po4kMb/5Xntz5fp5o8XYolkM601uA5Ob1ZolA2cRxByBUj5oniEz48hsDvV3rw0CFYtUq5RJ8LeF1eVja30Z5IcuDYMAcH0riFh3g8iagNkJVSrae8RDnSIZ0vUrZs/G4vq1paaEmGTnQ/WQp4vdDdDUePQi6HCIXw+cDnk8RjYNtuSmUP2VyITFaQJ0uzsYK2DhexqMQwpkkLZtvqe2lrU4ESZwlL8K+j0WjOaaQk/utf0n7rZ/AfPkRm02b2feQT5DZuWuyWaTRw1VUcu+dBfvhQni//3Ra2PR1i8yVDbHjtR/n+2Ocxj5u8bsWf8+e9r9epJk+Xk1iDTwfHURrMssC0bcp2EVs6RP0huuJNJCNBAn4Dt1vFL9Z6TBjGuSPka/F7fJzX0U53YwN7jw5x5HgGv8dDrK0dclk4MjbpJapQLpHJlzEMF23xOO2NYRIR/1L3LpkITD1+XAX9RiLjL4UuFwQDkmAAmhokh7KCtSsM3O4Zcvuaphol6uxUwRJnEefgT1ij0SxVwo88TMfnP0nome0UVq5mz8c+SfqqradlkRsecfPEUyH8PodIxCYasYlGLCIR+5x8OGsWhnQa3vfl9Xz16yHiMYs//cevck/on/iv4cM8q+lZvGPt39IV7FrsZp6dOI7y4T5NlxoplWC3bbVUEUIiPEVcQYuo30NTpJF4IIx/LvOtn6UEfT4uWNFBT3ORXUeGGBjLEAn4wOul7A+QzeYxbfXic2FvM42xAF7PUlfwUzAMaG5Wb2rHjkEodEKwqhBqmfHZUCqpH1dPj4otOMtY1EeeEOKFwD8ABcAFvE1K+fuT1N8EfAwIAAng18C7pJSlmjpjwONTDv28lPLbNXXagFuAZsAHfEtK+e9zclMajeYEArt30n7Lp4j99gHKzS0c+PsPMPK8F9SVHUBK2LErwL33R7nvgSjbnwnNWDcUtCcEftQiGjlxe7ysuh21CYfspZywYNFZDn3244/DV78e4uoX3kX5Wf/Mf6XuY4XRy2cu/hxXNlw5H5dcHhSLSszPwqVGyglLe61oNwwVFxsKKd92mzLSKOMyIOqLEvPH8Lv92u1pGqJBP1vWdjKSLrDj8BCWbZMvWnQ3NtLWECYSOstffISAZFIJ+v5+Jchnm0ayUFDH9/SoF82zkEUT80KIS4BvAZdJKZ8WQtwM3CmE2CClHJimfjtwD/BuKeWtQggf8HPgU8Aba6o+LqW87iTXNYCfALdLKf9BCBEDHhVCpKWUt87ZDWo0GrxH+2n70udI3vkz7HCEI29+B8df8nLkLKdhLxQFD/8+wr0PRLn3/ijHh7wIIdl4fp43veEol12SwZGQzrjJZFyk0y7SGRfptJt0xkUm4yKVcXHgoG+8Tqk8s9VJCEko5BCLWuPiPxKxJ21XXwhwFwlschGL2jOe71xiufTZF12e5pVffC/fOfJFfDk/f7P2b3l51yt0qsnTpepSEw6rzCBTXGqkVFVMc6KsKtojESXa3e6JxZEOBbOAIx2CngBxXyshbwjXPOahP5dIRgNceX4Xvx7cw7Mu7MXlOsdefCIR5Uff16feBE9lZa/GDXR0nNX+VovZ8r8D7pRSPg0gpfypEGIQeDPK8jOVVwMG8KVK/ZIQ4jPAfwsh/lFKOTjL694EXATcUDlPSgjxBeD9QogvSin1ROlLHcfBMzyEd6Afb38/voF+vP19eAf68fX3406Nkd5yGSPPu5n0ldeo2TM1C4prbJTWb3yZpu9/B4TB4Kv+jMFXvQ47Gj3lsUcHPNz3oBLvv38kQqlsEAraXHF5hq1XHeXqKzMkE9Zpt61YEmTSLtKZCcFf+wIwtezYcc/4tmnWvgioQN2W5jKrVxVYvarImlUF1qwu0tNdxHP2PhdmYln02Y8PPM5/H76F5yRv4D0XvFenmjxdqi41nhNdamxHzUlk2SBQaSATCcZ92qdqKiklJbtEoWTiNtwkA0kivghe19lpRV1shADDEOeekK8SCEwI+nxe/cCmIqXKWBMOq2DXJR8ccHIW83FzA/BvU8oeBv6A6R8M3cCQlNKpKetHDfVeA3yvjuvulVKOTbluF7AO2DHL82jmCylxj43iPdqP92g/vqN9FbF+FF9/H97Boxjl8qRDzGQDpbZ2cudvwAkEid13D4l77sKKxhh9znMZed4LyG248KxIMXU2YxQKNH3nW7R+82sYhTzDN72Qo6//K8zmlhmPsW3Y/kyQe++Pcu8DMXbvUQ/9zo4SL3nREFuvTrN5Uw6PZ0KzWY7Fk6kn2JbaRpOvmd5QLz2hHgKuU/vg+n0Sf5NFU1N9LwRSqheBqujfuS/D8LEO9uz1s3tvgN89HMGy1APB7XboXVFS4r5G6Dc2WmfzT3BZ9NnX9lzL/S++n+N7hxZcyEsJubwAAYYAt0vi8ZyF3VbVpSaZhHAEDGPcQC8BjxuiUaW5fL6ZdZTlWBTNIhJJxBehNdxKwB3QbjSaU1PNdDMwMCHaq1RzyCeTKof8OfB7WhQxL4RIAjHg6JRdA8DzZzjsANAqhPBKKatKrnPKmkqdbwNtQBn4Icr/sjoWvnKG61b3aTE/30iJK5PBe7QP39F+vEf7KqJdiXfvQD+uQmHSIVYsTqm1jcLqNaSueRal9g7KrW2U2zsotbYhpwZSWRbRhx4keedtNNz2Y5p+8F2KnV2M3PgCRp57E+VOHcA2lwjbpuFH36Pty7fgHR5ibOt19L/xLRR7V01bP5M1+O1DEe69P8b9v40yNubG5ZJcdGGWt7+lj61XpenpLk3qY1NmigeGHuDeod/w4NADpK30Cedt87exItRLb6iXzUJndgAAIABJREFUFaEVlXUvCU/ijAWAEBDwSwJ+k5Zmk0hyiNbExKiPaQoOHvaxe48S93v2BHjksTA/u3NCEMZiFqtXKuu9suIXWNlbJOBf2gOCy63P7on0cJyhuT7tSakK+YaEQzAgKZUFubygUBSowQcxLu6XrBHRslQgYTiME41TdjxYBWV99weUbvL7T+6W7EiHolXEdmy8Li8t4RZC3hBu49wb6tLMMy4XtLeroNjRUVVWzSHf3KzE/DnCYv13VCPXSlPKS8BMub6+Dvw98F4hxIdQD5a3VvbVOsvtAd4vpdwthFiB8tFcjxoKrl57uusy3bWFEG8A3gDQ0tLC3XffPdM9zYhpmaTtMbLTiI9zDsfBKJdxlcsEjg3iDP+WwOAgwcFBAoMDBAePERgcwJPPTzrMDAYptLSSammhcOEF5FtaKFSX5has6YbJqhTG1DKFgfWrYf3bcL/hL2m9/z7af30XbV/5Au1fvoWR9evpf/b1HN16LWZk7mYYtSyTgdGpuuMcREo82SyBwQEiBw5wzXe/Q6Svj5H169n57vcwumGDqlfzXfT1BXno4WYefqiJbduT2LZBJFJmy5ZBLrv0GJsvHiISnrCWD4xKDhcP89DY73go9RDPZJ/BwSHmjnFp7DIui13GBZELGLPGOFw4zJHiYQ4XD3O4cIRHRx+h5Ez8m0dcETr9nXQFuuj0d9FVWZp9zbjE6fnaTve3Didg86VqqZLJeDhwIMKBA2H2H4hw4ECUH/4kQbHYBCg//ba2PL0rMqyoLL29GVpa8tOLNimxsE+rLzoDzpo+G8683zbLJhJnQf+XHQdchqQwVB3IEAhACIGUIKXAKal6crxGxag4R4bF0+6/VAMBgWO4YCyPGDuG4VIvHoaAooATe+naU0j10iLAJVy4DBcCwUEOnu7tzIpsNrvQ/0tLgmV337ZNtlDg7m3b1NvkwAlhPmc1YjFcxCtWnmHgdVLKr9WU/1ulbNqpH4UQ64APooZvU8AngZ9NPc+UY14PfBFolFKOCCF+DERrA66EEOuBp4EXSCl/NlO7t2zZIn//+xkTN8zI7bfdTsgdJRyZOfvGnOM4uDJpXPk8olzCKJXVulzGKJcQ1XVp8rZRqtlXLmOU1DHVYyeta89ZKqnP1vSuC7bfT7mtg3JbO6W2dsrtHZRb2ysW9vZZ+VLPBZ7BAZI//xnJO24jcGAfjttN+qprGX7eC5R//RlGsg+MHqU10TZHrV1cjEJBjZ70900ePelXIyquXHa8bqari2Nvfgepa64bH7I0LXj8iTD3PhDlvvujHDysApFW9Ra45uo0W69Kc8GG3CT/2LJT5pHRR7j3+G+4b+he+gp9AKyLrOOaxq1sbbqWDdENGOLkpklHOgwWB9mf28+B/AEOZPdxIH+A/bn9jJRHxut5DS/dwZ4TLPndwe5Tuuycyd/acaCv36ss+Hv97NkbYPdeP4eP+JBSfX+BgM2q3iJrVhdYs6o47pcfCZkMD49w44tuqPu6QohHpJRbTuO4s7LPhtPrt/sP9PP7xx+hs3lhRvCyeUE0ZOMLjJLET9gXplgukJdlii6JdBlUxb1LuJGOC8dyky9AvmBgWoAAt6Es96ebkane37SUUM6UsUwHGYvjS4aJxAwCAaWXpg6GSSmxHAvLsbCdicBxIQQBd4BEIEHAEzjl//dccvfdd3Pdddct2PWWCsvxvu++6y6uu/JK5d91ljDbPnvOLPNCiA9LKf9+NnUrHfQY0DplVyuw9yTH7QReUXPNFZWPT53kcntRdouVwAiwD3jeNNet1l1yCNPElU7hTo1VlpTaHhvFnU6p7Zp97nQKVyaNcJxTn3waHK8Px+dFen043ol19bMVjSK9fhyfF8frQ9bsc7xepE+tj/tcBFdvoNzWjhVPLAm/NLOllcFX/zmDf/o6Art2kLzjNpK/vIP4b+7CikQn/Os3bloS7Z1PRLmMd/CoCiI+2lcR7v2VwOI+PGOjk+o7Pv/4i1j2ws2U29spt3VQau/gQDJMS2Mno2MuHvitCl598KEo2awLj8dhy8VZXvHSIa65Kk1H++R4h6HSEPcP3ce9Q/fy2+EHKdgFfIaPy5KX82crXsvVjdfQ6p/aVZwcQxi0BdpoC7RxFVdN2pcyUxzI7edATon7A7kDPJN+hl8N/hIH9T8jEBWXnQmBXxX8iTnwozYM6Oos09VZ5vpnpcbLCwWDfQd87N4TYPfeALv3+Lnr7jg/+PFEV93cVOaKSwe58UVn3IxZo/vs+SOXF4SDDr7gGI0EaVyzCREIECqVaMjnkakUVjGHJR3KwiHvcihQwvEUCHgNAjGJtFxI20O55CZXMCgUmRD37jOek2kStg1lU2CXLIRZItQUpLEzgS/sGX8xrxXtjnRwpINAIITA5/YR9UXxu/24DTcelweXcGk/eM38YxhnlZCvh7r+xSspwS4FWpg8TArwJ6gh1dnyS2Dq28YW4PszXNsLXCqlvL+m+FpUR/9opc5zgJCU8sc1dToq60OV9S+Atwgh4jUBVVuAw5UHz/whJUaxOEV4j+FKnUKo53MzntLx+bHicaxoDCsWo9DcWrMdxw6FKuK6KrprBLrPO76vWibnMNpqSVuphaCwbj1969bT9+a3E334t8q//vaf0vTD/6XY0cXojTcxcuNNlDq7F7u1p4dt4zl+rBJAPEWwH+3DM3QcUTMy57jdlFvaKLe1k7r22ePCvdSq1lYiecJvw3Fgz14/d3xf8PijHTy1PYTjCBoaTJ5z3Rhbr05z+ZYMweDEi6WUkh2ZHePW9+3p7QC0+Fq4qe0FbG28li3JLbMKZj0dYp4Ym+IXsSl+0aTykl3iUP6QsuBXLPkHcgd4ZPRRSk6x5vg4K0IraHW3clF2M+dF1rE6vGZOZgMNBBw2rC+wYf1EzIiUMDTkHrfi79rjJxg4/Ww+Z8Dy67PnmUJR4Pc5+ENjNEk/jWs3TWTe8PvB70ckk3gsC0+xSCCTIZbNgiuMLR1Mj4FpQNEukbcKGN4svojEsgSO7cIquSkWvRRyAlFxd/G4JO46EnxVJ2oqm8rdx+NyiLlyBJpdeNubkUEvpm1SdErIkhwX7V6Xl4gvgt/lx+PyaNGu0cwjsxbzQogXo3wgg0zvoVevv85HgbuFEOullM8IIW5CBUB9tnK9fwFeBGyRUhaBKPCjSv3jQogm4L3A22tSk3UBrxdC/FJKma+8fLwD+J6U8lilzu2oCUreAfyTECKK8q38lzrbPzu+9jWu/sAH8GWyeDLpE7Kw1GKFw9jRuBLjiSTFFSuxozG1HYthRePYMSXS1RKbdb7ucxnTFOzYGeCxJ0M8/mSY3Xv8JBMWHR1lOttLdHaU6ewo0dFepqnRPNEP2e0mfeU1pK+8BiOXI37Pr0jeeRutX72Vtq98geyGCxh53s2MPue52LH4otzjtFgm3qHjeAYH8Q4OTGT+qQr2wQGEPSH6pBCYzS2U2trJXHKZEupVwd7WgdnYdMrx+XJZsP2ZII8/GeKxJ0I8uS1EJqO6kfXr8vzFawfZelWK89YVJn3PBbvAQ8O/496he7lv6F6Ol44jEGyMbeRNq97M1qatrAmvXdQHvc/lY01kDWsia5S5ooJy2RkYt+Kr9X4eGL2fO4fuAJQlvzvYzbrIOtZG1o2vG32NZ9wuIaCpyaKpKcNVV2RwbIfh4RGqqTEXkOXRZy8QxSK4XDbBWJpWGSC5asP0KfRA5WoMh9UiJZRKuAoFXKkU/lKJCF7whJAhL6a0MB2LUkXgF+0cpu1QNqFUEpQKHvI5T8UnHTxuids9+T3dcVTmGctRrj1+n0MyaeKysxiUIJnEikRwXBKvlJNEu9tw4zbcWrRrNAtIPZb5j6Im+/g+auiz1odDALfVc2Ep5SNCiFcB3xBCVGcTvLFm8hE/k18cCsBDwINCiCOVsvdIKX9Sc9pfARcDvxZCFIEIcBfwgZrrOpVZDG8RQjxYuc6t8zZhVCRCobWV/NoGRGOjEuVVMR6NKXEeT2BFItRlLlnGZHMGT24L8fgTIR5/MsS2p0OUSko5dnWW2LA+Tyrt5qltQX7xqziOM/FQ8Xod2tsmxH1nR4nOyrq9vYw/FGLkphcyctML8RwbJPmL20necRvdn/gInZ/8OOkrr2HkxheQuvraM/avPylS4sqk8Q4M4D02gGdwQAn2waOV9YCyrE9xpTITScptHeTO38Doc547HpNQbm+n3NJWd879TMbFE08FefzJMI89EeLpHUHKlUmXelcUueHZY1x0YY7eNXvZsHqy+8nRQj/3Dt3Hfcd/w8OjD1N2yoTcYa5suJKtjVu5uvHqOXFZmW+Uy047bYF2rmq8erz86Eg/ImiwK7OTHekd7MruYnt6Oz8f/Pl4nQZvI+siaysC/zzWRdbRFexaUJ/guWLZ9NkLQLEIGJJwPEO7DJBYcZ6a7GY2CDFutSeRUGbzYhGyWUQmg9dx8BoGIW+YpD8BqBSPpmNStk3yVoG8VSJXMCmZKmOOmXXhEm4cB1I5CykcAoEysaDA47HxSAdvycGfSBJo7sQTCGnRrtEsIeoR86aU8n0z7RRC/HW9F68Mrf54hn3vBN5Zs51DTR5ysvMdBk7ZDillP/DCuhp7urzkJTzqDy58AOw5xPHjbh57Mjwu3nfvDeA4ApdLsm5NgZf84RAXXZhj04U5Ghsmux+YFgwMeDnS5+NIv5e+Ph9H+rz09ft49LEw+cJkS3RTY7ki8st0tLfQ2XEene/+P6wuPcPqB75Hwy9uJ37v3ViRCKPXP5eR591M7oL6/etFuYznWMWifmxgQqDXCPap6Tkdj4dycytmS6uyrLe0VpY2yq2tmM2tOGfoD3jsuIfHnlAvSo89GWbPXj9Squ96/bo8L3/JEJs3Zdm0MUciMRHANjBawpY221JPce/xe7l36F72ZHcD0BXo4mWdL+OapmvZHN98zsykKYSg1d9Kq7+Va5ueNV6eMTPsyuxkZ3aXWqd38LuRh7Cl+m0GXAHWhpXAr1rxV4VX4Xct/VG2ZdFnzzMq17okFk/TRYBY9xqIxU7/hLVW+5YWlRqyUIBUSqXgkxK3243b5yPgDhDzqWQDTtTBdExMxyJXLpIqFNh7xKGz1SES8BFwRfEabtzFMm63D7GyFUL6GabRLEXqEfNPCiESUsrRGfZ3zlCu0cwax4EDB308/mSYx59U4r2v3weA329z4UblyrF5U5aN5+cn+WJPh8c9EWg4FSlhbMw1LvSP9Pnoq6wf+n2YY8drrcbrCAb+PzraS6xoH2Bt5nHOu+0e1vzov+ls/jLhGzeSfcHzIOydmPRq4OiEQK8R7N7BATzDJ+awNhNJyi2tFHt6SV92FWZVrLe2UW5pVUHEc5hgWkr1XT/2ZIjHnwhP+q4DAZsLN+Z4w5+PsXlTjo3n5wkEJn/XRbvIwfxB9mb38Oujd/FI+lFS5hgu4WZzfDPvWPs3bG28lp5Qz5y1+Wwg4olwSXILlyQn3MvLTpn9uf3sTO9gZ2YnuzI7+dnAz/juke8AKhXfiuCKcXFfddOJe5eQW5fmjDFNKNsOiWSGbiNEtH2Fsq7PFdNZ7UslNUFONquiVw0DvF4Mjwefy4fP5SPsCdESgv7BFGsaKo/yQgFMG5paIR5fwsntNRpNPWL+e8D3hRDfB3YD+Sn734fyqddoZo1pCp7ZGahY3cM8/lSIVEr9LJMJk82bcrzypUNcdGGWNWsKeE7yizUdk73ZvezN7sHv8hPzxIl5YuOLz+WbVF8ISCRsEok8F2yc+nNWs30ePerlcI3I7+v3sqevnd8cXUHJerGqeAyM/7Tp+s/DdHv6aLN30+b008IgrQzQwiDNnlESTZJ4W4zClasnW9RbWik3tSB9vhPaMJeYFuzYWfV3V+K99ru+6MKJ73rtmsJ4ZoqslWVPbj/7R/axP7ef/bn97Mvto7/Qh6yEykTdUbY2Xcs1jVu5suFKIp65y91/LuA1vOMivYqUkr5Cn7LeV5ZHRx/h9oGJTIst/lbWhddOiPzoebR66svso1ka2BYUyg6Jxgwr3GEird3Q0DC/F3W71RIKVfJIltX09um0Eveg4mRqp2G1LCXkw2E1y9N8uhNqNJo5oR4x/53KujqeXBvwKqg/AFazDMlkDZ58KlSxuofZ/nSQUsUHu6eryHVbU1x0YY7Nm7J0dpRn9F6RUtJf7Gd7ahvbUk+xLb2dHekdk7KOTMVn+IlXhH20RuRXt+NTPkc9MTq7o/SumDpfjRpBGBr20Nfn5Ui/l6O7LY49NsqRwSgPO6s4Xo6TLde4TZioiez71SygjUmTZNIimZz43JA0aUhaNCQtkkmTRNyalIO9XvJ5gye3Tfi7P7V9cmzBtVen2Lwpx0UX5ujuKjFmjrA/t5+ns/u4bc9+9ueUeD9WOjZ+To/w0BNawYbo+dzcdjO94ZX0hnoJlP10JPXgXD0IIegMdtIZ7OT6lueMl4+WRysCX7np7Mrs5L6h+8bTZobdYa6KXsON1J9nXrM42DZkijYNjTlWeaOEG9qgsXFh098KoUS7zzfZap/NKsu9bauOzTShs1O71Gg0ZxH1SIW9wF/MsE+gJvnQaCYxeMyjhHvF8r67xgf7vHV5Xvpi5e9+0YU5komZ0+2lzBTbU9vZlnqK7entbE9tY9RUHl8+w8d5kfN4aedL2BDbyNrwWkxpMmamSJspUlOWtJlizEyxN7e3sj897s88HSFX6ATRP/4ykIgRa45x/qUxrvyzGOVCiRXJlYTcIZyyn9FRL8MjboZHPAwPuxkZdTM07GGkUrZte5DhETfF4olZZISQxGMWDQ0WDQmLhoaK6E+YNDRYJBMWjZWyeMxiLOUejyt47Ikwu/YEsG2BYUjWrinwRy8c5qILM3Sct4+0bw/7cvvYnt3HTwb3sX/ffsbMifkZA64AvaFeLk1eRm+ol5UhJdrbAx3TTqu+LGa9XSAS3gSXN1zB5Q1XjJcV7SJ7s3vZmdnJjvQzhOzwIrZQUw+OA5m8Tbwxz5pAnGC0QU0lv9iBo7VW++ZmZbXv64PeXu1So9GcZdQj5r8lpbxnpp1CiM/OQXs0ZyGOowInJ3zOvRw+4uOJbWs5dkylWgsGbC44hQ92lZJdYldmJ9vS28YF/OHCYUClAOwN9Y7PBLoxdgGrwqvOKKhSSknOzimxXx4jZaVJlcdIW2nGymPqBaBSlrLS9Bf6SJkpMlZm3M1kOtzCTdgdJuQOE/aGCXeFCfeGCLvDNLvD9LrDhCuLx45gF2JY2ThmJk5+LE5+JEl6OM7IiI/hYTeH+0IMD3vGRzJqMQw5nrXH53XYsCHNi1/7JMm1T0Hz0/Sb+3gqu4+f5PaT2z4xb0HME6M3tJJnN19Pb6iX3opob/W36iwVSwi/y8+G2AY2xDbUpKbULHUcB9I5i2iywPpQgkAoBm1tS08sV632hrH02qbRaE7JrMW8lPKfTrH/P868OZqlSqEo6Ov3KbeSGh/yI/1e+o96Mc2JB4DLJWltKbN27Qiv+ZMRLrowx5pVhWldRhzpcDB/kO2pbWxPK+G+K7MLq2Ipb/I1sTF2AX/Y8SI2xDZyfvR8wu65tUoKIcZFdUeg49QHVLClTcbMjFv/x8wUh1OHcPvcZK3s+JKzcuOf+wv9k8odZgjgDVeWbjUyUG3fOncIv4jgsaO4zAiUYjiFGFYuBr4UsnEHI65dbC8c5FGnpJIDHoRGbyMrwyu5uf3mimBfycrwShKehBbtGs08IKVK8xiNF9kYa8DvC0F7uxbLGo1mzql3BtgW4O+APwAagSHg58BHpZSDc988zUIhJQyPuCcFetZmeRkenmz5DoVsOjtKrF6p/NyrOds72su0tpRxu6efAXa4NDzuKlNdZy0ViBV0BVkfPZ9X9fwpG6Mb2Ri7gGZ/84J9B/XiEi7i3vikjCMD7tnPeiulpGAXKsJeCfyMlSVn58iaGVVu52rEf/UFYZScfYSskyUrspT8JZV5G2innd7ASi5vvHzcNaY3tFIHpGo0C4iUMJaziEZLXJhI4vMEoKPjlJOyaTQazelQzwywK4H7gQSwH9gDJIH/A7xCCHG1lHL/vLRSMyeYpqD/qPcEoa7yrnsn+W0LIWluNulsL3PNlelJYr2zo0Qsap/S5bNoF3l09BG2jfu6b2OgqOaXcQkXq8OrubHlRjbENrIhtpHeUC8usXwedkIIgu4gQXcQOP2XFtMxyVpZ/C4/AdeZ5ZnXaDRnzmjOJBo2uaCxAZ/LqwJKzySaXaPRaE5CPb3Lx4CfAe+WUg5XC4UQDajZYT8OvHRum6eZLYWCwfCICrAcHqkGWLoZGJwQ74PHPEg5ocB9PofOdiXQL9+SqUyUVKKzo0xbaxmf79QJiqSUjJRHOJQ/xKH8QQ7mD6rPuYPsz+0fdyNp97dzQexC/rj7T9gQ3ch50fO08JwjPIaHhHcOc1VrNJrTZiRbJhx02NTciA9DCfk6Z17WaDSaeqhHzF8ipeydWiilHBZCvBGV7UYzh+Tz0wl0jyqbUj51JtMqyYRJZ0eZiy/KnmBdb2ywZp1QIWNmOJw/xMGKaJ8Q74fIVdxkQAV9dgQ66Q52c2n0Mi5vuYKNsY0kvcmTnF2j0WjOfkazJYJ+2NzWiM92oKdL52nXaDTzTj1ifsapNqWUjhDi5FNxaoAJgT4uzkfdjFTSFo5/rgj1wgwCPRZT6QmTSYsN5+fHPzckLZKVtIUNSYtE3MLjmX36/6Jd5EjhCIdyk8X6ofxBRsoT2TMEahr77mAPL2h7Ad3B7srSQ5u/bTx14XQ+8xqNRnMuMpYrEvAZXNLZgM+yoatLZYjRaDSaeaYeMX9YCPEmKeXnpu4QQrwFODx3zTp3+OY34V8+dAWpVIDRMc+0+cQB4vEJgb5xQ35iUqGEmkyoOrlQPGGddBbUU2E5FkeL/RzMHeRQ4XBFuCv3mMHi4KRUiw3eBrqD3WxtvFaJ9VAPPcEeOgOdJ8ymqtFoNMuV0VwBn9vFJV1N+Mol6O6GgHYj1Gg0C0M9svD9wC+FEH8N/B4YRQXAbgF6gOec5Nhli2GA32/T2Z6hpVlOmumzOgHQmQr06ciYGXZnd7E/t18J9/whDuUPcaRwZNIESWF3mJ5gD5vjF49b2HtCPXQFu+c8BaRGo9Gca4wVCngND1t6GvGViyprTTC42M3SaDTLiHryzN8nhLgBFez6SsBAud48CPy5lPL++Wni2c0f/zHEow8TckcJR+Z+emxb2hzOH2ZXZhd7srvZldnF7uyu8awxoGZI7Qp2szq8iuubr6+xsncT13nGNRqN5rRIFfJ4hJ8tPY34y3k1IVREp4HVaDQLS132YCnlfcA1QogAyio/KqXMz0vLNCeQNtPszuxiV3YXuzO72ZPdzZ7sXkpOEVDpHlcEV3BRfDNrwmtYE1nDytAqWvwtGEJPVKLRaDRzRaqQwyUDXNLTSKCcg9ZWiMUWu1kajWYZclrOHVLKAtBXWyaE+JyU8k1z0qpljuVYHM4fYve4pX03u7O7Gayxtsc9cdZG1vLSzpeyJrKGNeG1rAyvxGvozAkajUYzn6RLOVxOiC29DQStHDQ1QUKnh9VoNIvDScW8EKIDKEkph4QQrznFuW6au2YtH1Jmalyw78nsYldmF/ty+yg5JQBcwk1vqJeL4xezNrKW1RWLe6O3UbvHaDQazQKTLmUxzCgXr2wgaGehoUEtGo1Gs0icyjL/GGq218uBr52i7uxzIC5DLGmxL7t3srU9s4tjpWPjdZLeJGvCa3lZ18tZG17LmsgaVoR6tbVdo9FolgDpUhaXGWNTTwNhJ6vcahobmfWEHRqNRjMPnErMvxFIVz4/w8zWdwHcNleNOpf45pPf5J+f/mcOFQ5RlmVATazUG+rl0uSlrA6vZW1kLWvCa2jwaeuORqPRLDWklOSsPG4rzsauJFGRhVAIWlq0kNdoNIvOScW8lPIHNZsfl1IenKmuEOLjc9aqcwi34SbqjvLi1peyoeF81oTXsiK0Ao+hp/fWaDSapY6UkqyVw2MmWNeWIO7Jgy+gMtdoIa/RaJYA9aSm/Np05UKIuJRybKb9y51XbHwF0YPReUtNqdFoNJr5QVnkc3jMJKub4zQECuD2QHu7mkREo9FolgCz7o2EENcKIb4ihHhlZXu9EOIAMCyEeEQI0TlfjdRoNBqNZmGR5KwsPquRVU0JmoIFJeA7OsA1/UzeGo1GsxjUY1p4G+ADnqhsfxoIA+8EdgP/NrdN02g0Go1mcZBAwG6mOxmnOVJEGAI6O8E9x9N1azQazRlST6+0CrhESmlXrPDXA2+SUt4ihHADj89LCzUajUajWUA8hgc3HlojMVpiRYRjQ3c3eHSsk0ajWXrUY5m3pJR25fPLgALwTQAppQWU57htGo1Go9EsOAGPH4/LoL2hhGGVoasLvDpFsEajWZrUJeaFEFcKIVqBtwI/kFJmAIQQzUDdJgshxAuFEA8LIX4jhLhfCLHlFPU3CSHurNR/SgjxKSGEr2b/SiHEZ4QQ91bqPCKEeMOUc6wQQgwIIe6esjyr3vZrNBrNcmK59NnBIHg9EpdVUkLe5zv1QRqNRrNI1ONm8yHg1yjRXgQ+AiCEeD3wbuBX9VxYCHEJ8C3gMinl00KIm4E7hRAbpJQD09RvB+4B3i2lvLXyQPg58ClUPnyANwE9wHOklGUhxCbgd0IIS0r5lZrT3SGlfG097dVoNJrlzHLqs8cT1XR2QiCwUJfVaDSa02LWlnkp5W3A+cDLgfVSyu2VXfuBD1N/AOzfAXdKKZ+unP+nwCDw5hnqv7rS3i9V6peAzwCvF0K0VOocRuXDL1fqPIF6yXhVnW3TaDQazWSWT5/t9aolGFzUZmg0Gs1sqCtRrpRyn5Tye1LKQzVld0kpvw6sr/PaNwC/n1L2MPAHM9TvBoaklE5NWT/gAq6ptOWTUspdjl8eAAAgAElEQVTfTDmugMrCo9FoNJrTZ/n02T6fziOv0WjOGuayt/rwbCsKIZJADDg6ZdcAsHKGww4ArUKI2iikzinrqdcRwOXAd6bsOk8I8eOKn+YdQog/mW3bNRqNZrmh+2yNRqNZupzUZ14I8V2gT0r5diGEg0q9OxdUp0ItTSkvATONa34d+HvgvUKID6EeLG+t7JtpBo/XA8eBz9eUFVEPmbdLKQeEEBcBvxBCdEgpPz71BJVgrDcAtLS0cPfdd5/ktqbHtEzS9hhZK133sWczlmUyMDr12X9usxzvGZbnfS/aPUuJhX1afdEZcNb02TA3/XY2m13o73jR0fe8fFiO930u3/OpAmBdTFjvB4FbZqgnqHScsyRXWU8dSvUB+ekOkFIeE0JcAXwQeABIAf8K/AwYOaFBQlyMCsy9QUpp1pxnAHhlzfbjQohbgPcBJzwYpJS3ArcCbNmyRV533XWzu8Mabr/tdkLuKOFI6NSVzyEGRo/Smmhb7GYsKMvxnmF53vdi3bNjOwwPj3A6fdEZcNb02ZU6Z9xv33333Qv9HS86+p6XD8vxvs/lez6pmJdSvrhm80Ep5QdmqiuEuHC2F5VSjgghxoDWKbtagb0nOW4n8Iqaa66ofHxqSlvWAd8AXlTr338S9gIxIUSjlHJoFvU1Go1m2aD7bI1Go1m61JPN5sVnsn8afglMzVG8pVJ+AkIIrxDi6inF1wL7gEdr6vUA/wu8ppp1oTZvsRDiT4QQl085TwfKujRc5z1oNBrNckH32RqNRrMEmbWYF0JsFEL8XyHEv00p/7gQ4obTuPZHgRuFEOsr57kJaAM+W9n+FyHENiGEv1I/CvxICNFU2d8EvBflRykrZW2oB8uXAEMIsaUyqclra667FvgbIYS7ckw7ykXo89XzaDQajeYEdJ+t0Wg0S5B6Jo36a2Ar8O9Typ8CbhFCvFtK+f3ZnkxK+YgQ4lXAN4QQBZR//o01k4/4UYFVorJdAB4CHhRCHKmUvUdK+ZOa034QWA38x5TLHaz5/B3gXcB9QogyKrDrVmbwvdRoNEuY/BR3bbcH3C6dVnAe0H22RqPRLE3qEfNXANdKKY/XFkopvyGEuAv4HjBrMV859sfAj2fY907gnTXbOeCmU5zvL4G/PEWdp4HX1dNOjUazBDFNJd5bW8Cy1HaxCIUi2BYIoRa3Wy1CnPqcmpOi+2yNRqNZetQj5uVUIV+z40jN0KpGo9HMP+UytLaCy60Wnx/CEbXProj7clkJ/GIRpFSLy62s9y6XFvgajUajOeupR8yHhRBN0wn6ii9keO6apdFoNCehWIRIFPyB6fdXBb4/ANGYEvG2BaYFpYq4LxRU3arA97iVwF8qOI5abEe10bFVue2AUU/XrdFoNJpzmXqeCN8Ffi2E+FfUlN4jQAKVzeDvgW/PffM0Go1mCratxG08NvtjhKj403sgUHkBkBLMMlj2hLgvlVS5YYDhUgJ/rv3vpZwi1CtivXa/EBMjCH6fchPyeMFlqKn78lPnbtJoNBrNcqUeMf+PwPnANzlxJtifAv80V43SaDSaGSkWobFRid0zQQjw+sALBCuTmDq2cs+xLCXuiyWwzAn/+6oFfyb3nKpId6qC3Z4Q57XXrZ7HXwnYdXvAEGpkoPoiMeM1JJTtM7t3jUaj0ZwzzPppKKUsAy8UQjwH+AOgARgCfiGlvGue2qfRaDQTlE3weiE0T159hgt8LjWvafUaU/3vSyU1OuA4KptOrVg3XEqc+7wTgbcud41Q15l2NBqNRjO31G3aklL+CvjVPLRFo9FoZqbqFtPWtrCBqzP53x/IQkuLEudVoa4DajUajUazwNQl5oUQHuCPgesAr5TyT4UQLwMellIemPvmaTQaTYVSSYlp3yInzqr63xvGzAG4Go1Go9EsELMW80KIVpRFfj1gAtWsNt3AfwghbpJSPjH3TdRoNMseu+IjXk/Qq0aj0Wg0y4B6nDf/HdiBEvN+KmJeSvkJ4FXAh+e8dRqNRgPKVz2ZVK4sGo1Go9FoxqlHzF8JvFxKuVNKKanJaCOlvBtonuO2aTQaDZTK4PdDMLTYLdFoNBqNZslRj5i3pZQny4fWeKaN0Wg0mklIqVJDJpM6uFSj0Wg0mmmoR8wPCiH+drodQog3AAfmpEUajUZTpViEeFzlg9doNBqNRnMC9WSzeR/wCyHEW4DfAh1CiC8Bm4CNwLPnoX0ajWa5YtsgDIhGF7slGo1Go9EsWWZtmZdS/ga4HugDXgY0Aa8FCsCzpZS/nY8GajSaZYoOetVoNBqN5pTUk5oyCjwFbEVls0kCI1LKwjy1TaPRLFeKJQgGIaSDXjUajUajORn1+MyPoVJTdkspC1LKPi3kNRrNnFOdYTWRWOyWaDQajUaz5KnHZ74fWKMFvEajmVcKBSXkPd7FbolGo9FoNEueeizzu08m5IUQ/2cO2qPRaJYzlgUuN0R00KtGo9FoNLOhHjH/ESHE/xVCNMyw/y/nokEajWYZUypBYwMY9XRNGo1Go9EsX+pxs/kCkADeJoQYBrJT9rfPWas0Gs3yo1hSAa/+wGK3RKPRaDSas4Z6xHwU+MEM+wRw85k3R6PRLEscBxxbB71qNBqNRlMn9Yj5Q1LK1820Uwhx1xy0R6PRLEcKBZVT3u2p6zDLUovbrRaNRqPRaJYbs378SSk3n2L/9WfeHI3mDLBt5XMtpdrWOcrPDkxTZa4JR+o+zLIgFoN8HnK5iX1uN3g82vVeo9FoNOc+dduyhBDXA1eifOT7gQellNoqr1kcpISyCZaprLrJJAQCMDSkfLD9vsVuoeZUlMvQ2lqX8rYsJeY7OsDnU392x1Fl5bIy9BcKYFrKB1AIJe7dbvVZo9FoNJpzhXpmgG0CvgdcjXo+VpFCiPuAl0gph+a4fRrN9NRa4UMhlQHF559Qag0N0NcHjjbPLmmKRWWRryPo1bLUn74q5KsYhtr2+SASmahrmqp+Lq8EviNVB+ZyKYHvcs3tLWk0Go1Gs5DUo3I+D0SAVwCrgCSwGvhjVHDs5+q9uBDihUKIh4UQvxFC3C+E2HKK+puEEHdW6j8lhPiUEMI3pU6bEOJHQogHhRCPCiHeOc15zhNC3CWEuFcI8YgQ4tX1tl2zCEgJpbLyp7AqwZJdXdDUrMRgrcnV44XGRqXeNEsT21Z/00S8rkOKJWhvB7//1PXdbjVQE49DRzv09kJ3lxoICIfV+XK5iaVcVhZ+zfToPluj0WiWHvW42Twb6JVSpmvKxoB9QoifA7vrubAQ4hLgW8BlUsqnhRA3A3cKITZIKQemqd8O3AO8W0p5a+WB8HPgU8AbK3UM4CfA7VLKfxBCxIBHhRBpKeWtlTrhynEfkFJ+WQjRCTwphDgmpbyznntY0jjOhO/42W56tG2lsqSEYPBEK/xMhMKQzWp3m6VKsaheuFyz64ZsGwpFJcoDp5m9UgjwetVSDamw7Qn3nHzFem87E9Z7HVyr0H22RqPRLE3qscwfmCLkx5FSjgEH6rz23wF3Simfrpzjp8Ag8OYZ6r8a1d4vVeqXgM8ArxdCtFTq3ARcBHyiUieFyo//fiHGld9rgQDw1UqdI8D/AO+vs/3zh5RKYVRVRqmsBGnx/2fv3uPjqu87/78+M7rffZct27KNF5oFt1xMKQmbGEhCGrrglLJLzTbBpZuwocQmCwYKaWgLjeNNN5SEDaH5tUkIlIa2JISSshDWJG0oBQLhFkJsHC7GF8CAdRtpNPP5/fE9I4/GkqyxZjSamfeThx4jnfM953yPJT7zme/5XhIh0+jvP/irr2/061AyZCTp9OjtyeSBJH+my26F7+iAxYvHboUfj1nobpMaVnPrTDOUjDLqlkkVT6XDn/5UEvnxxOOhlb+tLbTYL1sG3Uth4cKwDUa33g8OVu2fk2K2iMgMlE970yNm9n53fyB3h5l9APh/Odv+wd3PmeB87wc+n7PtUeADwGfGKL8UeMPds99GXwPiwCmE/vzvB7ZHHy6yz7kEOAp4Pirzk5zzPAp8wsya3L1/gjofvqEhGIgdSKTdQ7KZec0Wi0EsDjELTYKxWMg4Rl7j4ZjMyL5Y7MArdnAf8XQakkMhke/rC1mRe3S+GqidQaMCM63w6fTYfeHzlelu88Ybmt1mpnAPf48LF07q95pKw0B/KJ6byPcO9eLuNNQ0UBvPb1rL8WQGy9bWhgdB4w2uTUcfMBqm8OdZZqorZouIlIl8kvn9wD+Y2b8Cz0U/twFHA78GfM3M/jir/MnjncjMZgPtwK6cXbuB3xznsF8CnWZW5+5D0bbFOa8rxjlnZt/z0etPxigTA5YR7q2wYjFo74DmJrBYlHwTJeRR8p1JxDPbCn39+obw1dJ6IJlKJg/0K0inw3Uzyf10DxodHDowI01HR8ii8pxzfFyZ7jaDQ1BfV5hzyuEbHIS29vD3eAjpKJHv7Dz4s1jvYC+t9a201reyt28vicEEjbWN1MQK3ydmrMG1PXtCv/t33jnQdadSVV3MFhEpI/m8622KXj8UfeXKfeQ5UV+OzNvyYM72QaBpnGO+AfwRcKWZ/RnhjeWSaF+mU3jzOOck67yTKVNYsRi0dUDjDOm3bQZ19eGruSUk98PJ0PVhICu5h/AUoLamOP3uC90KP55Md5udO0vzQUUOSKXCa0f7IYum0+FBUmawara+oT6a65pZ0LKAmMVorm2md6iX1/teZyA5QFNtE/FYcceKmMG8eSG5f+ON8HmxsQnilfnnVV0xW0SkjOSTzP/0UAtHZTOzJybYnVneJTe7rQfGfGTq7nvN7DeAPwV+DLwDXA/cC+zLOm/bGOck67x941w3u8wIM/s48HGABQsWsHXr1jFvaCLJwQT7d/6C3lgZPYt3D1/pNPQ5oz6bTfLpwfBwkt1v5Ta6EeYGJGtwbiwGPf3Q83pBqj6uVAoSbxc1mR/3nivcpO87nQ5dx37ZM+miL7+ds93TxIhRG6/lF2OMu097mmQ6CUCM2OiJdAso0Zfg2UefPXDdFPQMh7/sYn9eHE6l2br1teJeZLSyidlQmLjd29t7WMeVM91z9ajG+67ke84nmf/jQxeZXHl332dmbwOdObs6ge0THPdzwtSYAJjZsujbp6PXFzn4qUHmGtuzyox13TRjDOKNZlS4BWD16tW+Zs2a8ao3ru/fdz/NC1fSMlNa5g9Haji03CcGoH8gtOS7TzhZ9+63dtE5a2F0fE4rfGtrcVrhJ+IOe3aHAbVF6m4z6p6ryKTue3AIauKwoHPC37t7aJGfOzf0uMrWn+ynNlbL4rbFE7a8pz1Nz2APr/e9juM01jYSs8Jm2M8++ixHn3j0qG2pVOh2s++tcKuTmT4zX+m082ZPH2tWH1n4k4+jnGJ2dN0px+2tW7dyOMeVM91z9ajG+67ke570u5u7fy+fE0+i/ANA7hzFq6PtBzGzOjN7T87m9xICfaY/5f3ASjPLTgFWA69EbyqZMsdHU6Jll/mxBlJNIB5N2D1rdlitZ/Hi0P+htXX0jDkDA2GlnozMjDTJ4cObkaaQNLtN6WS6cs2efchEvrd37ER+IDlAjdXQ1dZ1yC40MYvR3tDO8lnLmds0l4HkAL2DvaS9uL/3eDzc4tIloX99b+/o/x3KnGK2iMgMVMrenZuBM8zsXQBm9mFgIXBT9PN1ZvaMmWXattqA70Yr0WZWpL0S2Og+Mtfi94EngUujMm2ER63XZV33G0AC+FhUpgs4L6eMHEq8JiTkHbNgUVdYvKmzM2RgZiGBT6dDH/XOzpDEt7UXblDrBAYHw9eYauvCYlNaTGp6JRLhb6Nu/KdTE7XIJ4YTmBmL2xfnNcA1Hoszq3EWK2atYG7zXPqH+ukb6sOLPD1rXV2YfWfRogMLU1XA50fFbBGRGahkS6G4++Nmdj7wTTMbIAyIOiNr8ZEGwuCmTDPeAPDvwMNm9mq07YrsJwDunjazs4Cbzezh6By3ZBYficr0mtkHga+Y2e8TBlddqsVHpigWD8l9Q2NI2tNp2NEXulRMo4GBAwv8JBLjdHNobYsmDNfsNtMilQqzOLXldo0+IJPIz54dPmtlGxweBIcl7UsOe6aaeCzO7MbZtNW38fbA2+wb2EfMYjTWNmJFfELU1BQ+5+7fD2++GfrSF3qe/OmimC0iMjOVdF1Dd78buHucfZcBl2X93EdYYORQ53wNOOsQZZ4nrGgrxZKZ+34a9fWFzxKd0XI0u/eE3j9NufNdmIXmX81uMz0SidC1aoKuMX19IYkfK5FPpVMs7VhakHnka2I1zG2eS0djB28NvMVbibdCUl9TvKQ+FgtPGpqbYd8+6OkJXXBqi/+QquAUs0VEZh5lMVL23KG3L0xfuLAz9FuOx8P3jY0hUTxIbV1oBlZ3m+JKDIZPUxMs2NXbB+3tB3enH0oNMZweZkn7EurihX2CUhOrYV7zPJZ3LKe1rpXeoV4GksX9W6ithQULwpATCPedKv+uNyIiUmKHlcybWdzM5ha6MiL5SqfDIMPZs2D+/NGN7LFYSJ5aW0PidFA36da20EQ6OIQUgXsYbJzb3J6ltw/a28KDkuxEPplKMjQ8xJL2JdTXFG8WqNp4LQtaFrB81nKaa5vpGewpelLf2BiGkCyYD4OJAwsyi4iIHI68knkze5+ZPUiY9/en0babzWxDMSonMpFUNInO/PnjT5ISi4WFfWZ1hBb6UUlTZnab4WRFjE6ccRKJkMjXjt2q3tcHrS0HJ/LD6WEGU4MsaV9CQ00R5nYcQ128js7WTpZ1LKOxtpH9if0khhNFu55Z+JC5dGl47eufYNC2iIjIBCadzJvZhwhTkDUC3+LAYh1fBX7HzD5R+OqJjG14OLRodnaGLhoTyeTsc+aMMatIXb262xTD8HDoI9869qDXvr7Q82bevNGJfCqdYiA5wOK2xTTWTv9I0fqaeha1LmLZrGXUx+vZP7g/DMAtkpqa8GFmyeIw0VNv74FFckVERCYjn5b5a4HfdfeT3f0PgB4Ad38COBu4sPDVEznY0FD46loU+smPZaypB2fNCsljf39OX+VMd5uhZHEqXI0GB2HunDEHF2cGJed2i0qlU/Ql++hq7aKpNnfU8vRqqGmgq62L7vZuamI17E/sZyhVvO5Y9fWwaGH4cJpMjvEUSUREZBz5JPMd7v73Y+1w931AGc7NIOUmkQhJzuLFY0/xl/Y0+xP72T+4n+H0wav1tLeHhGmgP6sFNNN0nxxSd5tCSAyGZveGg39BAwNh4d8FC0Yn8mlP0zcUEvmW+nE+oZVAY20jS9qX0N3RjWHsHyxeUm8WPpwuXRoeFvX3h793ERGRieSTzDeY2ZhTUphZCzD+KDeRAsjMId/VFRblyZVMJekd6mVR6yKWti9lcHhwzH7PLS1hMZ+BRNbqnOpuUxjp9LiDXhOJ8M/cOUYin/m9tda3TmNlJ6+xtpGl7UtZ2r4UHHoGe4q28FQsFv75llTmKrIiIlJg+STz9wP3m9mpWSv8YWZHA38P3Fvoyolk9PWFBaAWLjywKFS2weFBhlJDdLd309bQRnNdM90d3cSI0TvYe1D5pqbQTWdwMHRrANTdphAGBsKHopyVfjMfxDoXhGlDM9yd3sFeFjQvoK1h/EWlZgIzo6m2ie6Obha3LQagd6i3aEl9ZhXZrq7wFKm3MlaRFRGRAssnmd9EWJ3vAaAXWGVmg8BTwGzCMt0iBeUeWibb2kL3mPgY6w4NJAdwnO6O7lGDJuvidSztWEp7Qzv7B/eT9tGZUGaKwOHhaCaR7O426rCcv2QyzFzTMrp1PZEIifzChQcn8j1DPcxvmc+sxvJ5sGdmNNc1UxevY27TXHqGeoo6SLaxMbTSz5sbPhTp4ZGIiGSb9Aqw7v6Wmf0G8FHgdGAu8Aahxf5Wd1dzphRUOpp6cvbs0O1grKkne4d6aaxpZFHrIuJjrDAasxgLWhbQUNPA7t7d1NfUj1qAqL4+tHzu2hWSzoaG+nCxt96acKEjGcPQUPjEldWHJpEIP46XyM9tnMvsxtklqGxhzG6cTVNtE7t7dtM71EtzbXNRVpKNxcJ4j8wqssmDHzaJiEiVmnQyD+DuQ8DXoi+RokmlwyDV+fNDq3wud6d3qJeOhg7mNc8jZhM/ZGpvaKe+pp6d+3fSn+4fNVtKXV1OQt/aFvr1DCWhTuO6JyWdDi3yWYNeBwfDB7BFiw7uGtUz2MOcpjnMaZozzRUtvIaaBpZ2LOXtxNvs7dtLfby+aAtd1dSEGZlm6NACEREpgXzmmf9JMSsikjE8DImB0Jo7ViKfSqfoGephXvM85jfPP2Qin9FQ00B3RzcNNQ0HDWCsqQlJZ20d9CdiYfJvdbeZnMwYg1kdBzZFE76MlcjvH9zPrMZZzG2aW5RW7FKIWYzZjbNZ3rEcw4ralx4gflhrd4uISCXKp2W+28z+eoL9DuwFngH+zt01/4LkbWgoDPbr6goDXnMlU0kSwwm6WrsOa+aTmlgNXa1dvNn/Jm8MvEFTbRM1sfC/QTwOCzthzx7o66+nedYsePvtMFpWRkulwi8rnQ6dumtqIB7+HTObFy2C2pwHG5mnKfOb51dMIp+tvqZ+2lrpRUREIL9kfj9wHmEQ7NvAO0AH0E5YQGofYSBsK/DHZnaGu/+yoLWVipZIhG4Z4009mRhOkE6nR1rXD5eZMbd5Lg01DbzW8xo18ZqR88ViYQ70N96A/e+00VzTh6m7TZBOH/i0VVMLHR3hg05NLfS9CYQxsJkPY7m/w97BXlrqWljQvKAiE/mMTCt9c20zu3p2FbUvvYiISD4Pa68Avg0sdvfZ7r7c3WcBS4G/Ay5y93ZgGfAT4AuFrqxUrv7+ieeQ7x/qJ0Zsyol8tpb6FpbNWkaMGH1DfSPbY7HQL3nW7Bh9DXPwoSrvbjM4FMYQDA5Cc8uB+RLb2kdNQZlMhq9Fiw7+HfYN9dFU10Rna2fVJLWZVvrpmPFGRESqVz4t8xuB93hOR1B3f9XM/gfw/4D73P1lM/sosL2A9ZQK5Q59/dDcdPCqoGF/GOjaUtdCZ0vnmDPWTEVm+sq9fXt5O/E2LXUtxCw2MktlLNbAm4nZNPW9RaylirrbDA+HVnj3MIXKnDlh6p/cX1CGh+JdXaFYtv6hfhpqGljUumjS4xsqhVrpRUSk2PJJ5hflJvIZ7p4ys6VZPyfN7M0p104qmnto8G1vD+NNc/ObzMqgcxrnFHWwZMxidLZ00ljTyK7eXTTWNFIbDy3Os2ZB/IhW9jzVR1MiSbyhgrvbZHejqasLCXxj40hf+PEkk5D2scc5DCQHqI3XVmUin0196UVEpFjyeXftNbM/NrNR2YyZ1ZrZZwl96jPbjgL0TiXjSqfDYlBz5oydyA+nh+kd7KWzpZN5zfOmpSWzvaGdZR3LGE4PM5A8sDJPW0eMhUfPZmB/klSywrrbuB/oRjOUhNbW0E9mUVeYanKCRD7zYcw9DCkYK5GPW5yutq6CP1EpR9M9442IiFSHfFrmNwHfATaa2bOEQbCzgP8INAFnAZjZtcAGQj96kYOkUmEVy87OkDvmGkoNMTQ8xJL2JTTXTe/CTZnpK3f17KJnsIeWuhbMjJY5DXT9Shuv/aKX+raG7K7i5SnTwR3CINa5c6C+YeyVucY5fHAIZs8K42B/tmf0/sRwAjNjcfvikdmCJFArvYiIFFI+K8Dea2YnAFcBvwGcAOwC7gWud/efRUVvBe4CXilwXaUCZJLArq7QgyNXpkW8u6O7ZAlOTayGxW2LR6avbK5tJh6L07iwg0X9fezam8SpPWjaxRkvezrJhobwSKSxEfJoNXcPg5Vra2HxONOHDg4PgsOS9iVK5MehvvQiIlIo+a4A+zSw7hBlNPBVxjQ4GPLI8ZLAvqE+6uJ1dLV1lTwJzJ2+sjZeS31NPY1L5tE1vJNdvbWk0wcP9pxxMt1oUsNh5pn29tASXzvGlEGHMDQUvmbPDq3xY42FHUoNkUqnWNqxdGTcgYxPrfQiIjJVBRuRZmZfL9S5pPIMDIQeHIsXH5zIu/tIl5aZ1pqbmb7SsDB9ZUMD9Qtmsai1B8xIJEpdw3Ekk6FDeyIRWt87O8PjkPaOvBP5TN/4zO9v9uzxE/lkKsmS9iXUxfP/sFCtcvvS565OLCIiMpG8siYzawY+DKzg4AGuHyxUpaSy9PVBQyMsmB/mks+W9jS9g73MbZrLnKY5M7KbQV28jiXtS9jbt5d3Bt+hpb2Nut5euuoT7HqrnkTCaGiYAclXbjea+QugoT6vbjS5Mq3xc+aERv1xZ6Z0Z2h4iKUdS9WyfJiyW+lf73udunid/i1FROSQJp3MRzPUPAB0AQ7kZl0zIJuZuYaSMBgLrZux6DX7q1L19oZBrvPmHZwIDqeH6U/2s6h1EW0NbaWp4CTFY/EwfWVtI7t7d9M4Zxa1u/ewaEENu1+P0z9gNDVO8/8C7uEPKzUcvs9dlXWKp+7vDzNULlkyfncidycxnMBxlrQvKdiCXtUqty999iBsERGRseTTMv8F4H8DXwEedvfjAMysE7gaeK7w1asM8XiY9SNOaDQdToGnw7o86XT4OpTMhwA48GEgFgMMYkX8QJB52u+e9Wkte9s430O4r1mzQreM3PoNDg8ynB6mu72bxtoxRsLOQGZGR0MH9fF6Xut5jeHWRhp7B1g4v4k9b8To65+GhCszC417+ANoaoKm2WFuyAJNsTOZ1vjB4UGSqSRmRmtdK3XxurL5PZYDtdKLiMhk5ZPMd7v7FwHM7EBe574buMTMfkBI9CfNzM4CPgMMEHLdDe7+2ATl3wdcT0gna4HngU+7+75o/7XAWsK0mSOHAe8Fjnf3J8xsGfBv0bHZPuvuD+VT/8myWEhq68f5184kwun06Nfs7ems5D+VCl/pdGiUnewHgjGvzYFHLGM9bsk8OcgkdKO+j0E8OiD7g0bm+56akDC+4kYAACAASURBVBDm6k/2E7MY3R3dZdm3urG2MUxfaTX07P8FLcM1dM6r4419xjsD4XdWsA9XqVRI3lOpcNL6+vCPWlcX+r4X8FNcZjXe+nFa44fTwySSoRW+ubaZec3zaKxpJB6L8/xB/zvJVI3XSl9K1RKzRUTKST7JfPZQv7iZNbh7AsDMYsDyfC4cTXN5O/Dr7v6cmf0WcJ+ZHR19QMgt3wHcA1zl7l+Orvlt4KvAuVlFN7r71qzjTgVudvcnssr8s7tfkE99iyk3YT4cE30gyFwj93Uy30/F7hcP3tY71EtjTSMLWxfOqIGu+aqJ1bC4Yylvdsd5Y9tTNLfNZe7sGnbtg8SgkUpDbdypyzffTqchORw+pUFYtKm1NfSBr6ubUv/3iQwNhR47c2aPbo1Pe5rEcIJUOkVdvI4FLQtoqm3STDXTKLeVvlT/9orZIiIzUz7Z1JCZvd/dHwCeAf4/M9sS7dsA9OZ57auA+9z9OQB3v8fM9gAXE1p+ch0BtAA/iMqnzexB4HNZZf4P0Jdz3AXAX+dZt7JTiA8ExZSZsWZW4yzmNc8jZjO0onkwM+bOXkz94iS7XnuB2pZ24nGnuytFYtDY32sjXW/qan3seendwyOX4eEDXWcam0L3mQJ2nRlPOg39A1Fr/OLQGu/uDCQTDKeHqYnV0FHfQWt9q7p5lFBuK32JVtRVzBYRmYHySea/CdxoZmuB64AfAedF+5LAf8nz2u8HPp+z7VHgA4z9xvAs4THrOuAzZtYE/DYwsvaku+/NPsDMWoCzgSvzrJsUUCqdoi/Zx/yW+cxqmFVxg/laO7up7xtkZ+J10p7GzGlqhKZGZzgFAwlj//6Q2JtBfWyYuOd0nZk9uyhdZyaSaY2fG/WNT6aH6B0aAoe2+jbaGtporGmsuN9XOauvqae7o5vEcEnmRFXMFhGZgfJZAfYW4JbMz2b2q8CZhCkq73f3n0/2XGY2G2gnrCCbbTfwm+NcP2FmpwN3mtlHo+MHgfMnuNR/AX7k7rnX+RUzuxuYRWgV+qa73z7Z+svkJVNJEsMJulq7aK1vLXV1iiMWo25xN0t3pNhuvfQPD5D2NGDEzKiri7GwI01qME3fQIx3EvUk6tuItdRT31ZPLD69TykyrfEN9bBoUQqPJ+gdStNY28jCloU01TaVquVXJsHMpn2wsWK2iMjMlc/UlP8Yffspd3/V3V8D/uowr9scvQ7mbB8Emsa5fitwP/A9wuPeJuBCYOcE17mAMANPtgTwS0I/zd1mdixwv5l1ufv/yuMe5BDcnWQqSXdHd+VPWdjYSHz+AmpeeZWVbcsYHhogOTjAYDJBP0MkGmpIzWqgpq6OuTW1pJJxBgdq6euNkUqEGY/q64vfKD84CIPJNK0dgzS3DBOL1zKrcS4tdS3qBy8TUcwWEZmhbLIrDZrZAPC7wD3uPjyli4ZWnjeB9e7+9aztn4+2zR/jmI2EvpazsgberiEMqDrS3d/OKX8E8K/A4kPV18z+DLjE3TvG2Pdx4OMACxYsOOGOO+7I406Dnp4e6pvqK6O7goNHc1P6IZYWGOwfpLW1FTtojpzK1bt/Py319Qem9cnMIxpxdxwn7WnSnsbdSXvoceNpACMWs8In9Q6ptIM5tTVQE48Tj8UL9rvp7e2lpaW0M61Mt3K851NPPfVxd1+d73HlFLOj/VOO2+X4+50q3XP1qMb7Lsd7nmzMzqfP/E/d/Tvj7YxaSSZqcRnh7vvM7G2gM2dXJ7B9nMOOBHZn3hQiO4B5wPuA7+aUvwD41iQ/eGwH2s1srru/kVPXke5Fq1ev9jVr1kzidKPd/+D9rDxu5YwaQJhJJkcnlemoz7fh7qNeIQzCi1ucmljNQV8xix309aMf/ojD+fcqZ1u3bmXNe9876ZHIaU+TTCVJppP0DQ6wr6ef1/cN0T/gGNDQEKOhtoaaWO1hfRhMppP0DgwylHSO6Gxl6fx2muoaCz4AeevWrdX5u66Sey6nmB3Vd8pxu5p+vxm65+pRjfddyfecTzL/oJm9191/OM7+7wHH53G+B4DcTxurgX8coyyER7PzzCzu7qlo28LotT+7YDQF2keBD+WexMzWAdvd/ZGszV3ROd7Mo/4zWiqdYig1RMpTjPX0JR6LjyTm9fH6QybmMYtVxpOF6ZDHlEIxi1FfU0899bTUtbCgFX5loTMwlOSd3iR73xjinf5+9qcHqK1PUxMLE3bXxGqosdox+7an0ikGUwmGPU06UU9neyfLFzfR1FC+U4HKjKCYLSIyA+Xz7j4MfMvMniTMUJA7FWVui82hbAa2mtm73P1nZvZhQqC/CcDMriMsJrI6atn5W8JKs58EvmRmceDTwCvAwznnPg14zd1/NsZ1jwTONrPz3X3YzBYRHsd+xSfb52gGyiTvw+lhDKMmVkNrfWsYzGhxJeZlxMxoqq+jqb6OhXOaGRqaRV8fvP7mMAODSdI2RNr6GUoPkEgPYIQEP0aMtKeosVqabA511kLXijo6OqZtghypbIrZIiIzUD7J/DXR62Lgt8bYn1dQdffHzex84JtRf/w4cEbW4iMNhAFTFpV/0czOAK43s/Oi/TujY3I/WFzA+PMUfxu4HPgXMxsiDOy6BSirgVTjJe/Ntc3Uxes0mLGC1NWFr46OGgYHa+jtbeStt9pJAxZLEa9LkvLQVacu1kgq0UBTk9HZGY4TKQTFbBGRmSnfPvPHjbfTzJ4Yb9943P1u4O5x9l0GXJaz7UeEZb4Pdd7/NsG+54D1+dW09JS8i1lYCLahAebMgYEB2L8/zv79cdwbqI9Dehg6O8O88WqNl0JTzBYRmXnySeb/+BD7L5lKRWQ0Je8yEbOwSGxTE8ybFxL7/n7o6FBrvIiISDXJZ9Go72W+j/o+zsqeRcDd/6XAdasqSt7lcMXj0NISvkRERKS65DW9hZm9D/gs8G7CLAJdZnYz8DN3/8si1K9iKXkXERERkanKZwXYDxGmn3wM+BZhnmCArwI3mlnC3b9a+CpWhrSnGUgOKHkXERERkYLJp2X+WuB33f3vAczsJwDu/oSZnQ38MyGxlxwW/ddS36LkXUREREQKJp9kviOTyOeKVgdUdjqOmlgNK2avKHU1RERERKTC5LOme4OZNY+1w8xagFmFqZKIiIiIiExGPsn8/cD9ZnaqmTVkNprZ0cDfA/cWunIiIiIiIjK+fLrZbAJ+ADxAWO3VzWwwOsfjwH8pfPVERERERGQ8+cwz/5aZ/QbwUeB0YC7wBqHF/lZ3TxaniiIiIiIiMpZ8pqb8uLvfAnwt+hIRERERkRLKp8/8n5jZmWaWzzEiIiIiIlIk+STmSUK/+BfM7C/M7FeLVCcREREREZmEfJL5v3H3jwG/BjxDWPX1cTPbYGZzi1M9EREREREZz6STeXf/bPTa5+5/4+5rgN8BjgReNbPvFKeKIiIiIiIylkkn89FMNpnva8xsLfC/gT8gDKRtKnz1RERERERkPPl0s/k/Zna8md0I7AL+EXgXcC2wzN0/WIT6iYiIiIjIOPJZNOpY4FHgHeDvgG+4+78VpVYiIiIiInJI+bTMvw78LrDQ3f9HbiJvZl8qaM1ERERERGRC+STzn3P3b7v7YPZGM4uZ2X8mDIYVEREREZFpMuluNu5+Q/bP0TzzHwPWAQsAL2zVRERERERkInmt5mpm88xso5k9ATwB/CFhzvlPAy8WoX4iIiIiIjKOQ7bMm1ktcBahFf6M6Jh/AV4GVrl7b1QuVcR6ioiIiIhIjglb5s3sJsI0lHcCpwBfAY5x9/cBb2USeQB31wBYEREREZFpdKiW+YuAYeAy4Kbcwa8iIiIiIlI6h0rmlwC/B/w34AQz+6q7/7BQFzezs4DPAANAHNjg7o9NUP59wPWEwba1wPPAp919X1aZt4Encw79irv/XVaZhcDNwHygHrjd3b9QkJsSEalQitkiIjPPhMm8u78GfB74vJmtBj5mZtcB/0AIzCPM7D+4+y8me2EzOwG4Hfh1d3/OzH4LuM/Mjnb33WOU7wDuAa5y9y+bWQz4NvBV4Nysok+6+5oJrhsDvgd8390/Y2btwE/MbL+73zLZ+ouIVBPFbBGRmWnSs9m4+2PufglwOmHw6wtm9o9m9gkz6yKsCpuPq4D73P256Pz3AHuAi8cpfwTQAvwgKp8GHgQ+mOd1P0xYzfYvovO8Q3hzucbMLM9ziYhUC8VsEZEZKK+pKQHcPenud7n7OcDHgQbgbuCYPE/1fiD38eyjwAfGKf8s4RHtOgAzawJ+m/Bmku91t7v72znXXQIclee5RESqhWK2iMgMlHcyn83d33D3v3T3E4DnJnucmc0G2gkz5WTbDawY51oJwlOB08zsJeA1YBXwyZyinWb2d2b2QzN7wMz+0MziWftXjHPdzD4REcmimC0iMnNNegXYSTgtj7LN0Wvu7DiDQNNYB5hZK3A/oe/kVVG5C4GdOUW3Ade4+y/MbBnwf4F3ceBRcPM412W8a4uIVDnFbBGRGapgyXz27AST0Be91udsrwf6xznmQkIrzLXu7kCfmT0FPGRmR2Yewbr7b2XV6Zdm9nngr8zsM1Ed+4C2Ma7LWNc2s48TuhOxYMECtm7dOu5N1dXV0dDQQG43zra2Np544olxj6tUU71vdyeRSDA0NFTAWhVXb2/vhH8jlaoa77vK7rlsYjZMPm6bGc3NzcTj8YP2VWPcVsyuHtV435V8z4VsmZ80d98XTUfWmbOrE9g+zmFHArujR7cZO4B5wPuA745z3HbACG8q+4AXgQ+Ncd1M2dy63gLcArB69Wpfs2bNmBd5+eWXMTMWLFhAbW3tqIS+p6eH1tbWcapXuaZy3+5OMplkz549uDtLly4tcO2KY+vWrYz3N1LJqvG+q+meyylmR/WdVNzesWMHra2tzJkz56BGmGqM24rZ1aMa77uS73lKfean6AFgdc621dH2sewE5uX0pVwYvfYDmNnp0TzI2bqi15ej1/uBldG0adnXfcXdf55H/Ufp6+ujq6uLurq6g94UJH9mRl1dHV1dXfT19R36ABEptoqK2QCJRGLMRF7yp5gtUjqlTOY3A2eY2bsAzOzDhEB/U/TzdWb2jJk1ROX/llDfT0b748CngVeAh6MyS4DLo1kTiOYjvhT4B3ffG5X5PmGBkkujMm2Ex7HXTfWGYrFS/nNWJv2biswYFRezo/MV4jQSUcwWmX4l6WYD4O6Pm9n5wDfNLLOa4BlZi480EAY3WVT+RTM7A7jezM6L9u+MjumNjvkBcDzw/8wsAbQS5jX+k6zrpqOWoJvN7OHoPLdo8RERkfEpZouIzEwlS+YB3P1uwhz1Y+27DLgsZ9uPgPdOcL5XgE9N4rqvAbmPdqvOsmXLWLZs2cjPDz30EEcddRSdnaE76vPPP88dd9xRsD5m77zzDhs2bOC2224jmUwW5JwiMn0Us0tPcVtEcpU0mZfSyx7ZbWZceeWVXHDBBQAjr4Xw2GOP8YlPfIIVK1YQJrYQEZHDobgtItnUua2Kbdy4ccL9a9euHdUCNBVDQ0N8//vf54wzzijI+UREqpHitojkUjJfxSb7pnDvvfdy4oknctJJJ7Fq1SpuuOGGkTKbNm2iu7ub0047jU2bNnHqqaeydOlSNm7cSCqVGin37ne/m/nz5xftXkREqkEx4/YVV1yhuC1ShtTNRib09NNPs3btWh588EFOOeUUdu7cyerVq2lvb2f9+vVs2bKFuro6Nm/ezCWXXMKWLVvYu3cvxx9/PPPmzePqq68u9S2IiFSVw43bxx13HCtWrOCyyy479EVEZMZQMl9MGzfCk0/SmErBGCsMFsWxx0JWC8xUbd68mZNOOolTTjkFgK6uLs4//3yuv/561q9fP1JuyZIlfOQjHwFg/vz5rFu3jptvvlnJvIiUjyhmA9MXtwscs+Hw4/a5557LjTfeqGRepMyom41M6JlnnmHlypWjtq1cuZIXX3yR/v4DK6l3d3ePKnPEEUfw6quvavEQEZFpdrhxe/ny5bzyyiuK2yJlRi3zxRS1tgxU4bLgIiJlJ6uFXHFbRMqFWuZlQscccwzbtm0btW379u2sWLGCpqamkW0vv/zyQWUWL15Mc3PztNRTRESCw43bO3bsYMmSJYrbImVGybxM6Morr+SRRx7hxz/+MQCvvfYat91220F94ffs2cPdd4e1ZPbu3cvtt9/ORRddNO31FRGpdocbt++8804+9alDruElIjOMutkIDz/8MFdddRUQBk5t27aN6667DoBVq1Zx1113sWHDBmKxGP39/Vx++eWjBlEBnHzyyTz11FPceOONvPDCC5xzzjlcfPHFI/t37NjB+vXr2bVrF6lUijVr1rBq1Sq+9KUvTd+NiohUiGLE7bPOOotLL710ZL/itkh5UDIvnHzyyaNWFMx15plncuaZZx7yPNdccw3XXHPNyM89PT0j3y9fvnzCa4iIyOQVI2739PQQz5rBR3FbpDyom42IiIiISJlSMi9TsmnTJm699VYef/xxzj777FJXR0REDkFxW6SyqJuNTMmWLVvYsmVLqashIiKTpLgtUlnUMi8iIiIiUqaUzIuIiIiIlCkl8yIiIiIiZUrJvIiIiIhImVIyLyIiIiJSppTMi4iIiIiUKU1NWcWWLVvGsmXLRn5+6KGHOOqoo+js7ATg+eef54477mDNmjVTuk46neZb3/oW3/jGN3B3enp6OOKII9iyZQtLly6d0rlFRKqJ4raI5FIyX+Wyl+o2M6688kouuOACgJHXqdq/fz8XXnghDz30EO9+97tJpVKcf/75fOhDH+KJJ56gvr6+INcREakGitsikk3dbKrYxo0bJ9y/du3aUS1Ah6umpoZ169bx7ne/G4B4PM6GDRv42c9+xk9+8pMpn19EpFoobotILiXzVWyybwr33nsvJ554IieddBKrVq3ihhtuGCmzadMmuru7Oe2009i0aROnnnoqS5cuZePGjaRSKQBaWlr4xje+MercjY2NAAwODhb4rkREKlcx4/YVV1yhuC1ShtTNRib09NNPs3btWh588EFOOeUUdu7cyerVq2lvb2f9+vVs2bKFuro6Nm/ezCWXXMKWLVvYu3cvxx9/PPPmzePqq68e87wPP/wwXV1dvOc975nmOxIRqWyHG7ePO+44VqxYwWWXXTbmeRW3RWamkibzZnYW8BlgAIgDG9z9sQnKvw+4HnCgFnge+LS774v2rwA+DfxaVKYZ+Kq735J1jmXAv0XHZvusuz9UkBuLbNwITz4JqVQj8Xghzzy+Y4+FrAaYKdu8eTMnnXQSp5xyCgBdXV2cf/75XH/99axfv36k3JIlS/jIRz4CwPz581m3bh0333zzmMn8wMAAX/jCF/jyl79MbW1t4SorIkVVLTEbpi9uFzpmw+HH7XPPPZcbb7xxzGRecVtk5ipZMm9mJwC3A7/u7s+Z2W8B95nZ0e6+e4zyHcA9wFXu/mUziwHfBr4KnBsV+yTQDZzu7kNm9mvAI2Y27O5/nXW6f3b3C4p3d5XjmWee4fjjjx+1beXKlbz44ov09/fT1NQEQHd396gyRxxxBK+++ip9fX00NzePbHd3LrjgAn7v936PtWvXFv8GRKQgFLPLx+HG7eXLl/PKK68obouUmVK2zF8F3OfuzwG4+z1mtge4mNDyk+sIoAX4QVQ+bWYPAp/LKvMKcLe7D0VlfmpmPwDOB/6aaZZpbenpGaC1tXW6Lz8jXXLJJXR2dnLttdeWuioikp+qidmguJ1NcVtkZivlANj3A7mPZx8FPjBO+WcJj1nXAZhZE/DbwJ5MAXf/S3f/Yc5xA4Dm0DpMxxxzDNu2bRu1bfv27axYsWKkdQfg5ZdfPqjM4sWLR7XuXHXVVQwMDIwMxHr00Ud5MvNMW0RmOsXsMnG4cXvHjh0sWbJEcVukzJQkmTez2UA7sCtn125gxVjHuHsCOB04zcxeAl4DVhEe0453HQNOIjzazfYrZna3mf3IzP7ZzNYd3p1UviuvvJJHHnmEH//4xwC89tpr3HbbbQf1hd+zZw933303AHv37uX222/noosuGtn/53/+59x333184hOf4PHHH+exxx7j7rvv5plnnpm+mxGRw6KYXV4ON27feeedfOpTnxrZr7gtUh5K1c0m87E/d36rQaCJMZhZK3A/8D3C494m4EJg5wTXuRB4HfhK1rYE8Etgo7vvNrNjgfvNrMvd/1ee91ERHn74Ya666iogDJzatm0b1113HQCrVq3irrvuYsOGDcRiMfr7+7n88stHDaICOPnkk3nqqae48cYbeeGFFzjnnHO4+OKLAXjppZdG3kROOumkUcfdeuutxb49EZk6xewZphhx+6yzzuLSSy8FFLdFyom5+/RfNLTyvAmsd/evZ23/fLRt/hjHbCT0tZwVtfhgZmsILThHuvvbOeWPB+4A3u/uLzMBM/sz4BJ37xhj38eBjwMsWLDghDvuuGPMc7S3t7Ny5cox96VSKeLTNZ1NCfzpn/7pSItNtkLd97Zt23jnnXemfJ7p0NvbS0tLS6mrMe2q8b7L8Z5PPfXUx919db7HlVPMjvYrbh/CWHFbMbt6VON9l+M9TzZml6Rl3t33mdnbQGfOrk5g+ziHHQnszrwpRHYA84D3Ad/NbDSzo4BvAmsP9aYQ2Q60m9lcd38jp663ALcArF692tesWTPmCX72s5+NO1iqp6enogdS1dfXE4/HD7rHQt13Q0MDxx133JTPMx22bt3KeH8jlawa77ua7rmcYnZUX8XtQxgrbitmV49qvO9KvudSDoB9AMj9tLE62j6WncA8M8tuNlgYvfZnNphZN/D3wEczsy5ErTSZ/evMbPQzQ+iKzvFmvjdR7TZt2sStt97K448/ztlnn13q6ohI8ShmVwjFbZHKUspkfjNwhpm9C8DMPkwI9DdFP19nZs+YWUNU/m8J9f1ktD9OWGzkFeDhaNtCwhvL14CYma02s9XABVnXPRL4tJnVRMcsIjyO/YqXos9RmduyZQsvvfQSb731Ft/97ncPfYCIlCvF7AqhuC1SWUo2z7y7P25m5wPfNLPMaoJnZC0+0kAYMGVR+RfN7AzgejM7L9q/MzqmNzrmT4GVQO56ei9lff9t4HLgX8xsiDCw6xagagdSiYgcimK2iMjMVMpFo3D3u4G7x9l3GXBZzrYfAe+d4Hz/Hfjvh7jmc8D6icqIiMjBFLNFRGaeUnazERERERGRKVAyLyIiIiJSppTMi4iIiIiUKSXzIiIiIiJlqqQDYKW0li1bxrJly0Z+fuihhzjqqKPo7Azrwjz//PPccccdBVlk4a677uKrX/0qyWSSRCLBwMAAV1xxBf/1v/7XKZ9bRKRaKG6LSC4l81Vu69atI9+bGVdeeSUXXHABwMhrIdx00038/u//PuvWrQPCm8Tv/M7vcMwxx3D00UcX7DoiIpVOcVtEsqmbTRXbuHHjhPvXrl07qgVoKjZv3sx555038vOaNWtIp9Ps2LGjIOcXEakGitsikkvJfBWb7JvCvffey4knnshJJ53EqlWruOGGA+u7bNq0ie7ubk477TQ2bdrEqaeeytKlS9m4cSOpVGqk3OrVq4nFwp/b0NAQX/jCF1i1ahWnnnpqcW5ORKQCFTNuX3HFFYrbImVI3WxkQk8//TRr167lwQcf5JRTTmHnzp2sXr2a9vZ21q9fz5YtW6irq2Pz5s1ccsklbNmyhb1793L88cczb948rr766lHnu+iii7jjjjs45phj+Kd/+ieam5tLdGciIpXpcOP2cccdx4oVK7jsslFrfylui8xwSuaLaOM/b+TJ3U+SSqWIx+PTcs1jO4/lhg/lrox++DZv3sxJJ53EKaecAkBXVxfnn38+119/PevXH1iUccmSJXzkIx8BYP78+axbt46bb775oGT+5ptv5qabbho5749+9COOOOKIgtVXRORwZWI2MG1xu9AxGw4/bp977rnceOONByXzitsiM5u62ciEnnnmGVauXDlq28qVK3nxxRfp7+8f2dbd3T2qzBFHHMGrr75KX1/fQeeMx+NcffXVdHR0cP311xen4iIiVepw4/by5ct55ZVXFLdFyoxa5oso09rS09NDa2triWtTWslkktra2lHb3vWud/Hss8+WqEYiIqNlt5Arbitui5QLtczLhI455hi2bds2atv27dtZsWIFTU1NI9tefvnlg8osXryY5uZmhoeHOfHEEw8692uvvUZXV1dxKi4iUqUON27v2LGDJUuWKG6LlBkl8zKhK6+8kkceeYQf//jHQAjkt91220F94ffs2cPdd98NwN69e7n99tu56KKLRvY/9dRT/NM//dPIz9/5znd45JFHuPDCC6fhLkREqsfhxu0777yTT33qUyP7FbdFyoO62QgPP/wwV111FRAGTm3bto3rrrsOgFWrVnHXXXexYcMGYrEY/f39XH755aMGUQGcfPLJPPXUU9x444288MILnHPOOVx88cUA1NTU8MUvfpHrrruOz33uc7g7qVSKb3/725x55pnTe7MiIhWgGHH7rLPO4tJLLwUUt0XKiZJ54eSTTx61omCuM888c1LB+5prruGaa64Z+bmnp2fk+w0bNrBhw4Yp1VNERIJixO2enp5RM/gobouUB3WzEREREREpU0rmZUo2bdrErbfeyuOPP87ZZ59d6uqIiMghKG6LVBZ1s5Ep2bJlC1u2bCl1NUREZJIUt0Uqi1rmRURERETKlJJ5EREREZEypWS+gNy91FWoOPo3FZFiUowpLP17ikw/JfMFUltby8DAQKmrUXEGBgYOWk5cRKQQ4vE4yWSy1NWoKIrZItNPyXyBzJ8/n507d9Lf36+WiQJwd/r7+9m5cyfz588vdXVEpAJ1dHSwZ88e0ul0qatS9hSzRUpHs9kUSFtbGxCWzc5t6UkkEjQ0NJSiWiU11fuura1lwYIF9+PDkQAADC9JREFUI/+2IiKFNHfuXF599VV+/vOfH7SvGuO2YrZIeSppMm9mZwGfAQaAOLDB3R+boPz7gOsBB2qB54FPu/u+rDILgZuB+UA9cLu7fyHnPL8C/J/oHE3ADe5+61Tvp62tbcwgtnXrVo477ripnr7sVOt9i1SqSovZsViMpUuXjrmvGuNXNd6zSCUoWTcbMzsBuB34mLu/F/gccJ+ZdY5TvgO4B7jD3f8T8G6gBfhqVpkY8D3gKXc/GTgV+B9m9vGsMi3A/wVui85zNvCXZnZGEW5TRKQiKGaLiMxMpewzfxVwn7s/B+Du9wB7gIvHKX8E4Y3gB1H5NPAg8MGsMh8GjgX+IirzDuGN4xozs6jMBUAj8DdRmVeBO4BrCnRfIiKVSDFbRGQGKmUy/34g9/Hso8AHxin/LOER7ToAM2sCfpvwZpJ9zu3u/nbOOZcAR2WV+Un0xpJd5t3ROUVE5GCK2SIiM1BJknkzmw20A7tydu0GVox1jLsngNOB08zsJeA1YBXwyaxiK8Y5Z2bfRGViwLJJ34SISJVQzBYRmblK1TLfHL0O5mwfJAxuOoiZtQL3Az8iBPAuwsCqnTnnHeucZJ13MmVEROQAxWwRkRmqVLPZ9EWv9Tnb64H+cY65kNBCc62Hidz7zOwp4CEzOzJ6TNsH5E4nk7lG5rx941w3u8yIaCBWZjBWr5kdPIfZoc0F3jiM48pdNd53Nd4zVOd9l+M9dx/mcWUTs0Fxewp0z9WjGu+7HO95UjG7JMm8u+8zs7eB3FkQOoHt4xx2JLA7enSbsQOYB7wP+C7wIvChMc5J1nlfHOe6aeCXY9T1FuCW8e5lMszsMXdfPZVzlKNqvO9qvGeozvuupnsup5gd1Vdx+zDonqtHNd53Jd9zKQfAPgDk/qOujraPZScwz8ziWdsWRq+Z1pn7gZXRlGjZ53zF3X+eVeb4aEq07DI/dvfxWphERKqdYraIyAxUymR+M3CGmb0LwMw+TAj0N0U/X2dmz5hZZjm6vyXU95PR/jjwaeAV4OGozPeBJ4FLozJthEet12Vd9xtAAvhYVKYLOC+njIiIjKaYLSIyA5VsBVh3f9zMzge+aWaZ1QTPcPfMTAYNhMFNFpV/MVok5HozOy/avzM6pjcqk45WKLzZzB6OytwSPXLNXLfXzD4IfMXMfp8wuOpSd7+viLc7pce9Zawa77sa7xmq876r6p6rLGZDlf1+I7rn6lGN912x92xhXJKIiIiIiJSbUnazERERERGRKVAyX2RmdpaZPWpmPzSzfzWzihxJDWBmv2Vm95rZD8zs38zs+2b2q6Wu13Qysz80MzezNaWuy3Qws24z+zsze9DMnjazx83s1FLXq5jMrN7MvmhmT5rZQ2b2iJl9pNT1ksKoppgNituK2YrZlUDJfBGZ2QnA7cDH3P29wOeA+8wsd5q1SvF14Fvufrq7/wbwU+AHZragtNWaHma2CLi81PWYLmY2F3gQ+Iq7nwb8KmEawaNLWrHiuwY4G/hP7v4+4CLgDjP7tdJWS6aqCmM2VHHcVsxWzC5ttQpHyXxxXQXc5+7PAbj7PcAe4OKS1qp4fujut2f9/BeERRo+WKL6TLcvAX9e6kpMo03AI+6+FSBaGOh/AveUslLT4FjgUXfvAXD3J4B3gNNKWisphGqL2VDdcVsxWzG7IiiZL673A4/lbHsU+EAJ6lJ07v7bOZsGotfc1Rsrjpn9ZyAJFHuGjZnkHOCH2Rvc/WV3/2VpqjNt/gH4T2a2GCCasWUeIemT8lZVMRuqN24rZgeK2ZWhZFNTVjozmw20A7tydu0GfnP6a1QSJxPmh7671BUpJjNrBq4HzqDC3wAzonteAcTN7DZgGWEhoFvc/c5S1q3Y3P3rZtYEPGNmuwgrnd4JfLu0NZOpUMweUfFxWzFbMZsKi9lK5ounOXodzNk+SJiLuaKZmQGfAa5x972lrk+R/Rlws7vvMrNlJa7LdMms2HkdcLq7/8TMfh14yMxqcx7bVxQz+wPgj4DV7r4tGiz4fiBd2prJFFV1zIaqituK2YrZFRWz1c2mePqi19xP/fUcWMq8kv058JK7/0WpK1JMZnY8cBJwc6nrMs1S0es97v4TAHf/d+AuwiqfFSlKdrYAf+Xu2wDc/SngLMKbhZSvao/ZUAVxWzFbMbsSY7aS+SJx933A20DuLAidwPbpr9H0MbONwH8E1pe6LtPgTKAReNDMtgJ3RNtvMLOtZnZUyWpWXK8TWixfzdn+ErB8+qszbeYBs4Bf5mzfQeiPKmWqmmM2VFXcVsweTTG7AqibTXE9AOTOUbwa+McS1GVaRI+zPgz8Z3cfNrMVwAp3f6DEVSsKd/8zwiNbAKJHtjuAjZkZAyqRu6fM7F+BhTm7FgAvl6BK0+UNwhti7n0vpHpabytZ1cVsqK64rZitmB2pqJitlvni2gycYWbvAjCzDxP+gG4qaa2KxMzOA64mDCxaFS228gHglJJWTIrl88DZZrYcwmIkwEeAG0taqyJy9zTwDeD3owGTmcf2p1NBg6mqWFXFbFDcrjKK2VRmzLYwzagUi5mdRRhQNADECZ/+Hy1trYrDzJKM/bTnT9z92mmuzrQzsxuA3yD0x/wp8At3P7e0tSouM1sHXEZo4agBvubuXyttrYormhXhWsIAqn6glfBm8UVXQC171RSzobrjtmK2YnalxGwl8yIiIiIiZUrdbEREREREypSSeRERERGRMqVkXkRERESkTCmZFxEREREpU0rmRURERETKlJJ5EREREZEypWRepEyZ2b1mttvMNL+siMgMp5gtxaJkXmQcZjbfzJ40s31m5tH3uV+9ZramFPVz9w8DN5fi2iIiM41itlSrsVZ9ExHA3fcCx5rZ14GPufuxuWXMbOt010tERA6mmC3VSsm8yNRcAzxf6kqIiMikKGZLxVE3G5HDYGZrzGyru/+Lu7+R3RfSzE43s38xs21mtt3MPjrG8Rea2TNm9nMz22FmN5hZc06ZDjP7ipm9ZGZPRV9fNLPlY5zvRDO7z8x+aWb/ZmZH5+w/2cweMrMnzOynZvbPZvaRwv/LiIjMPIrZUsmUzIsUQE5fyE8BH3D3lcB1wDfM7AOZsma2CfhL4L+7+1HACcB7gXvMLBaVqQMeAI4Gjnb3XwXOAc4Hzh6jCv8N+E1gJTAI/FXW9VqBe4G/cvfjgGOBp4ANhbl7EZHyopgtlUTJvMgkZQ+iAr42QdHN7j4A4O5/AzwHfDY6R3v0/d+6+8NRmX3AtcAaYG10jt8jvGH8kbv3RuV+AdwCDI9xzb9x97S7DwPfA06O3lwAjgI6gBej8zjwReDv8/03EBEpF4rZUi2UzItMkrsfm/kC/mCCos/m/Pw48OtRC87JQBPwaE6Zf49eP5DzOqqcu1/j7l8e45ovZH2/L3pdEL3+HNgDfMfMPmNmR7r7rnHOIyJSERSzpVoomRc5DO6+1d3XjLNvf86mt4BaYB4wN2tbtkwwn5v12u/ug5OsT3/Wj+noNR7t6wFOAu4CLgN+bmb/bmbvmcy5RUTKnWK2VDIl8yIFZmZtOZtmA0ngdeCNrG25Zcja/wbQZGb1haiTu7/k7p8AOgmPgxcA3zez3HqIiFQVxWwpd0rmRabAzL5kZuflbD465+cTgH939zTwMNAPnJhTJvPz/TmvJ+Rc7woz+5951nGVmf0RgLsPuPu3gEuBVmBZPucSESlnitlSiZTMi0xNK9CQs+0PzawRwMzWA+8C/gTA3d+Jvj/PzE6OyswiDKbaCnwnOsethH6b12emPzOzY4CNwP/Ns45zgP9pZv8hOo8B7wF2Az/L81wiIuVMMVsqjhaNEhmHmXUC/0bUJ9LMfjlGsbmEgJ7tLwmPQxcDRliJMNNqg7tvMbN9wF9FsxfUAd8Fro5agnD3ITN7P7AZeM7M3gJ6gfPd/emoPrcBp0ffP0l4FHsm8MnoUvea2R9H9fs68I9mliL0Bd0BfDAzg4OISLlTzJZqZWHGIxGZKjO7Fvisu1up6yIiIhNTzJZKoW42IiIiIiJlSsm8iIiIiEiZUjIvUgBmdi9wUfT9k2Z2RomrJCIi41DMlkry/7drByQAAAAMwvq3NoewpZBzn3kAAJiyzAMAwJSYBwCAKTEPAABTYh4AAKbEPAAATIl5AACYCmEodIQZmc2GAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "precision_ylim = (0.8, 1.0)\n", - "\n", - "def plot_accuracy(ax, x_val1, y1_top1, y2_top1, x_val2, y1_top2, y2_top2, x_val3, y1_top3, y2_top3, title, xlabel, ylabel, leg):\n", - " x_pos = np.arange(len(x_val1))\n", - " ax.plot(x_pos, x_val1, 'r')\n", - " ax.plot(x_pos, x_val2, 'b')\n", - " ax.plot(x_pos, x_val3, 'g')\n", - "\n", - " ax.set_title(title, size=size_title)\n", - " ax.fill_between(x_pos, y1_top1, y2_top1, color = 'r', alpha = alpha_fade)\n", - " ax.fill_between(x_pos, y1_top2, y2_top2, color = 'b', alpha = alpha_fade)\n", - " ax.fill_between(x_pos, y1_top3, y2_top3, color = 'g', alpha = alpha_fade)\n", - " ax.legend(leg)\n", - " ax.set_ylim(precision_ylim)\n", - " plt.grid(True)\n", - "\n", - "def assemble_accuracy():\n", - " fig = plt.figure(figsize=fig_size)\n", - " fig.suptitle('Average precision over training epochs', size=size_title + 2)\n", - " gs = gridspec.GridSpec(2,2)\n", - " for idx, approach in enumerate(all_approaches_path):\n", - " if idx == 0:\n", - " ax = plt.subplot(gs[0,0])\n", - " ax.set_ylabel(\"Average precision\", size=size_label)\n", - " elif idx == 1:\n", - " ax = plt.subplot(gs[0,1])\n", - " \n", - " elif idx == 2:\n", - " ax = plt.subplot(gs[1,0])\n", - " ax.set_xlabel(\"Epochs\", size=size_label)\n", - " ax.set_ylabel(\"Average precision\", size=size_label)\n", - " else:\n", - " ax = plt.subplot(gs[1,1])\n", - " ax.set_xlabel(\"Epochs\", size=size_label)\n", - "\n", - " precision_acc_top1 = list()\n", - " precision_acc_top2 = list()\n", - " precision_acc_top3 = list()\n", - "\n", - " for i in range(1, runs+1):\n", - " path = base_path + approach + 'run' + str(i) + '/'\n", - " precision_path = path + 'precision.txt'\n", - " \n", - " try:\n", - " top1_p, top2_p, top3_p = extract_precision(precision_path)\n", - " precision_acc_top1.append(top1_p)\n", - " precision_acc_top2.append(top2_p)\n", - " precision_acc_top3.append(top3_p)\n", - " except Exception:\n", - " continue\n", - "\n", - " mean_top1_acc = np.mean(precision_acc_top1, axis=0)\n", - " mean_top2_acc = np.mean(precision_acc_top2, axis=0)\n", - " mean_top3_acc = np.mean(precision_acc_top3, axis=0)\n", - "\n", - " y1_top1, y2_top1 = compute_fill_between(precision_acc_top1)\n", - " y1_top2, y2_top2 = compute_fill_between(precision_acc_top2)\n", - " y1_top3, y2_top3 = compute_fill_between(precision_acc_top3)\n", - " plt_title = titles[idx]\n", - " plot_accuracy(ax,mean_top1_acc, mean_top1_acc - y1_top1, mean_top1_acc + y2_top1, \\\n", - " mean_top2_acc, mean_top2_acc - y1_top2, mean_top2_acc + y2_top2, \\\n", - " mean_top3_acc, mean_top3_acc - y1_top3, mean_top3_acc + y2_top3, \\\n", - " plt_title, \"Epochs\", \"Precision\", ['Top1', 'Top2', 'Top3'])\n", - "assemble_accuracy()" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvgAAALbCAYAAACPGvR7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XvYpXVdL/73R2YcSTyPMNJvK5JdHfSnjoyJJDp43Ckd3LuDhzAtZaeSh8I2aVS6RVGJDJNfKl7bMJVqm+GurDQc8LwBIVNrl4iSyqAoSQPDYfT7+2PdDy6Wz8yz1nOeL6/XdT3XetZ9f57vYYDhve7ne3/vaq0FAADow+3WegAAAMDyEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAyxSVX1PVe2sqm9WVRted1bV16rqy1X1l1X1S1V1+7Ue66yq6pNj89o+ce5tVfVPVbVpDca1o6p2jL1/7PBnflNVfWENxvPsqvp6VT1wtfsG2BsBH2CRWmvXt9a2JHnhcOiFrbUtrbV7JnlQkr9MckqSf6iqH1xKX1X1hfFgu9Jaaw/Jd+Y1aXOSuyfZMGu7w4eDpTyAZfPwlSRprX1g+Gfw0SW0uU8LjPmuSe6S5HtWqn+AWQn4ACugtXZ1a+0PkzwsoxD4garassbDWi4/keQ+rbXr1qDvrcPXutBaOy3JXVprH1/rsQDMEfABVlBr7YtJXpzkezO6mr/fa619u7V2wxr1fXNr7ea16Htv1uiDDsBeCfgAK+9/Jflmkp+vqgOTpKoOqKoXVtUFVfWlqvr3qvrHqnru+A/OrTFP8p+SHDWsN99ZVX81SzsLqarHVdXFVXVtVf1rVf12kgPmqfvCPtbmP7uqLq2qrwxj2VFVv1JVm+buV0jyc0PtzrGvTVX1luHehVZVv1NVxw/zuH449jND7a7h/WF7mceDquqDwxiurqo3VtVBY+d3zDf+qvrMZNtTjPmd42OeZyxPqar/U1VfHb7+uqoeOnZ+7h6OuX63VtUfD2PfWVVvrqo7TvvPEGCOgA+wwlpre5J8Msntk2wbDh+Y5PVJ3pPk3hmtaT8lyRuq6tfHfnZujfm/JfnosMZ/S2vtSbO0sy9V9agkf53k/ya5V5IfTvL1JCfOM5fDMs/a/Kp6ZpLfS/LfWmuHJrlvkvOTnJHkXmP3K/zJ0M6Wsa8bW2vPSTIXfv9rkkOHP6v7JrkmydeGnz9tH1O5U5LXJXnWMIYnJ3lGknePjX/7fONvrd1/su0pxvy0sTFP/nmclOQdSd6Y5JAk90lyeZIPVdWjJ9qf6/e1SX53GPtTkjwryav2MV+AeQn4AKvjquH1XsPrt5L8VWvt94YlL99urZ2T0dX+E6uqpmx3Odo5LUlL8oLW2nXDMpg/SPLlqWeX/GSSf2mtfSK5ZSnNb2f0wWbWJTUHtNZ+ZwjRVyV5bpLPTfFzd0/yitbaF4YxfCjJW5I8vqp+fMYxLNrwG4BXJnlfa+2P2sjuJL+aZFeSt1TVd/12JKN/jpckSWttR5KPJ/mpVRk00BUBH2B1zP1925Kktba7tXbsPHX/kuSeSQ6eptGltlNVh2R0pfzi1trVE6c/OM0YBl9NsrWqTqqqu46N74jW2iwfFJLkgvE3rbU/aa19aYqfuynJRyaO/fXwumoBP6PfQByQ0S5Kt2it3Zjk75IcnuSIeX5uciegf8voNxkAMxHwAVbH3A46V84dqKrtVfXeqvp8VV01rPf+1eH0gdM2vMR27ju87pzn3HzH9uZ3knwsyauT7KzRMwB+tqpm3kozow8Li/HV1trkdpZzc7jvZPEKut/weuU8574yUTNu8gPWTVnEVqQAAj7ACqvRg662JrkxyUXDsZ9Icl6Sa5Mc2Vo7ZIo15vO1vSztLFVr7crW2o8m+dGMlsUcmdHa9Q/N3Vg8g28v9/imtNb/T1yreQOdWeu/zABuC56a0Q2gbx/bXvIXk1SSX22tLfaK9XK0c/nwOt8e/VPv2z/s5lOttY+21n4lyf+T5E0ZBf2nLWJcizHfcqS5OVw+dmzP8Dp5dXyqZVFT+Nfhdb7lNYdO1AAsOwEfYAVV1fdltLPLl5OcPHbqxuF1cknJvffS1HUZAmlVbaiqP6iqey+inVsZbmK9MMkRVbV54vT2adoY/H2Snx5r94YkfzC8vetY3XXJaA7D669V1WNm6Gdfbl9VR00cm9tt6L1jx+buCfhPE7UP30u7s475zzO6+flJ4weralOSxye5LMnF+/h5gCUR8AFWQFXds6qel9FOKN9I8rjW2via9j8bXl83t9d5VT0xe7/a/U9JDq+qO2QURI9PsnsR7cznJRn9FuD3q+qOVbVxGPsDZmgjSf57Vd1nGMMdkvzyMMZzJ+aRJD883Iz7G0kOyvLYleS1Y2M4OskvZXRj61+N1X0so/Xux1fVXYcPTL+W0Z/BfGYa87CLz28m+bGqekaN3CHJ72b0m5zjW2uW4wArp7Xmy5cvX74W8ZXkezK6ifObGV1B/+bw/uqMbrD86yTPTnL7vfz8Lyb5dJL/SPKZJH+c5M1DW1/LaMvHudofzGiXla9ltNzk2YtpZx9zeVxG9wdcO7R/ekYBvWX0AeVvhrovjM33Gxlt7ZgkRyc5O6PtLK9M8qWMgv1DJvq5Y5I/zehG2i8nOTOjYP2qYawto6C+M8mxYz93z+HYrrF5/WGSxw7HbxrGdvTw57Qzo738z0xy0DzzPWKo++bwZ3Z8RjcK39L2FGN+5zxj3jT2c0/N6LcjXx3q3pfkRybGcdnEnH4ryaahrd3D8Z1JnrPW/7778uVr//mq1iZ/qwsAAOyvLNEBAICOrEnAr6pnVtU/V9WOia+7jNX8RFVdWFUXVNVHqmrbPO08u6ourqoPV9X7h5vZJmteWlWfrKqPV9W7q+rgifMbq+r0oZ2Lquotc+tYAQBgf7MmS3Sq6plJ0lp7217OH5Hk/IzWKn62qo5N8kdJ7t+Gm9Sq6icz2mv5ga21nVV1QpIXDzU3DDUvyOgR5w9tre2qqtOSPLyN9mqe6+v0jPanflxGux78aZKbW2urta0bAAAsm/W6ROc3kvxta+2zSdJa+8skVyV5/ljNyRntKT23K8WbkmxO8vQkqarbJXlZkjNba7uGmtclOWpue7OquluSE5Kc3lrb00afdl6X5KlVNd9TBgEAYF1br4/AfmyS10wcuzCjq+wnD8H8iIy2HEuStNZurqpLh5q3JnlgRg8tuWis5qqqumKo+fskj0qycbwmySUZXcl/bEa7QezT5s2b22GHHTbj9FbPddddlzvecWVXHK10H+awPvowh/XRRw9zWI0+zGF99GEO66OPHuawGn2sxhyW4uKLL766tXbPaWrXMuAfW1XPSHL7jLYAe01r7cKqunuSu2S0zdq4nUl+bPj+vsPrfDWHD98fPmXN3BZkSW75oPD1sZrvUlXHZ7SlWg455JCcdtqqPhF+Jrt27cpBBy3XFtNr04c5rI8+zGF99NHDHFajD3NYH32Yw/roo4c5rEYfqzGHpTjmmGO+OHXxWuzNmVFQPzXJHYb3T8/o0eFHZvRkwZbkqRM/84oku4bvjx5qHj5Rc3aSTw/fHzfU3Gui5oIkfzl8f3KSG+cZ3xVJ/mCauRxxxBFtPfvgBz+43/dhDuujD3NYH330MIfV6MMc1kcf5rA++uhhDqvRx2rMYSmSXNSmzNprsga/tfa+1tpJbbgZtrX2joyeLHhShkeCZ/Sgj3Gbklw/fL+cNRuravLpheM1AACw31hPN9leluR+rbVvJPn3JFsmzm8ZapLRUxazQM3np6ypJIfMnayqDUnuMVYDAAD7jbXaB//VVfU9E4e/N6OlMUnygSST+95vG46ntXZNRjfG3lJTVRuTPGiuJsmnMtp5Z7zm4CT3Hqs5P6PHm4/3tTXJAWM1AACw31irK/gPT/JLc2+q6lFJHp3kzOHQqUmeUFU/NJx/YpJ7JXnjWBuvTHJcVc1dfX9Okq8neUeStNa+neRVSZ439uCqE5N8NMl5Q801Q5svrqoNw1KdE5O8q7XmCj4AAPudtdpF59Qkv1JVP5PRh4wNSX6ujfa7T2vt4qp6epKzq2p3RlfUn9C+s+d9WmvnVtU9k7yvqq5PcsNQc8NYzRlVdackH66qG5N8JcmThxsV5pyU0Zacn8joptxLk7xwxWYOAAAraE0Cfmvtb5L8zQI1703y3gVqzkpy1gI1pyQ5ZR/nb8roCbgAALDfW0832QIAAEsk4AMAQEcEfAAA6IiADwAAHRHwAQCgIwI+AAB0RMAHAICOCPgAANARAR8AADoi4AMAQEcEfAAA6IiADwAAHRHwAQCgIwI+AAB0RMAHAICOCPgAANARAR8AADoi4AMAQEcEfAAA6IiADwAAHRHwAQCgIwI+AAB0RMAHAICObFjrAQDAenLqJVdPVXfY7j0L1p60dfNyDAlgJq7gAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAd2bDWAwCAaZ16ydVT1R22e89UtSdt3bzUIQGsO67gAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0JENaz0AALgtOfWSq6eqO2z3nqlqT9q6ealDAjrjCj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI6si4BfVSdUVauq7RPHn11VF1fVh6vq/VX1ffP87Eur6pNV9fGqendVHTxxfmNVnT60c1FVvaWq7jhRc+eqeltVXTi09Zqq2rAikwUAgBW05iG2qg5N8pJ5jv9kklcleWBrbWdVnZDk76rq/q21G4aaFyQ5LslDW2u7quq0JO9J8qNjTb0mydYkD0vyrSR/muQtSZ42VvO2JNe11h5aVbdPsiPJK5K8dDnnCtC7Uy+5eqq6w3bvWbD2pK2bl2NIALc56+EK/hsyCvKTTk7y9tbazuH9m5JsTvL0JKmq2yV5WZIzW2u7hprXJTmqqh4z1NwtyQlJTm+t7WmttaHmqVV1v6HmAUmenOS1SdJauynJ65O8qKoOWu7JAgDASlrTgF9VP57k5iR/O3H8bkmOSHLR3LHW2s1JLk3yuOHQA5McPFFzVZIrxmoelWTjeE2SSzK6kv/Y4f1jk9yQ5NNjNRcmOTDJIxY9OQAAWANrtkRnWAd/SpInJNk0cfq+w+uVE8d3Jjl8+P7wKWvacCzJ6INCVX19ouaq4er+eBvjfQAAwH6hbp1rV7HjqtOTfK61dmZVHZbk8iTHtNZ2VNXRSS5IclRr7WNjP3N2koe01h5QVcclOTvJoa21K8dqLkhybWvt2Ko6OclvttZu9QGiqq5I8t7W2glV9dYkj2it/cDY+dtldJX/Ja210+YZ+/FJjk+SQw455IhzzjlnWf5MVsKuXbty0EEru9Jopfswh/XRhzmsjz7W+xx27t4zVd2mm3fnxo0H7rNmy4HffQ1qOdtfjT7Wag7Tuq3/+7oe2l+NPnqYw2r0sRpzWIpjjjnm4tbatmlq1+QKflU9JKObXk/cS8l1w+vklf1NSa6fsWZjVdXEFfrJmvnayFjNrbTW3pzkzUmybdu2tn379r1MY+3t2LEjKz2+le7DHNZHH+awPvpY73OY+ibbnZfmC1sevM+ap8xzk+1ytr8afazVHKZ1W//3dT20vxp99DCH1ehjNeawWtZqDf6TMlrjfl5V7Ugydwn89cP7jcP7LRM/tyXJZcP3n5+yppIcMndy2P7yHhM1B1dVTbSRsRoAANgvrEnAb639j9baQ1pr21tr25M8ZTj1ouHYJzK6MfaWX0NU1cYkD0rygeHQp5JcNVFzcJJ7j9Wcn+Sm8ZqMtsw8YKzm/Rl92Lj/WM22JLuTfGRpMwUAgNW1HrbJ3JtXJjmuquauvj8nydeTvCNJWmvfzmh7zeeNPbjqxCQfTXLeUHNNkjcmeXFVbRiu0p+Y5F2ttcuGms9ktHf+S5JbPki8MMnrx7bfBACA/cJ6eNDV65McObx9fVX9a2vtZ1pr51bVPZO8r6quz2gryyfMPeQqSVprZ1TVnZJ8uKpuTPKVJE+eWG9/UkYPu/pERjvqXJpRgB/3zCRvqKoL852r+7+13HMFAICVtuYBv7X2on2cOyvJWQv8/CkZbbe5t/M3JXnxAm1cm+QX9j1SAABY/9bzEh0AAGBGAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHRkw1oPAABYXqdecvVUdYft3jNV7UlbNy91SMAqcgUfAAA6IuADAEBHBHwAAOiIgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQEQEfAAA6IuADAEBHBHwAAOiIgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQEQEfAAA6IuADAEBHBHwAAOiIgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQEQEfAAA6IuADAEBHBHwAAOiIgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQkQ1rPQAAVsepl1w9Vd1hu/dMVXvS1s1LHRIAK8AVfAAA6IiADwAAHRHwAQCgIwI+AAB0RMAHAICOCPgAANARAR8AADoi4AMAQEcEfAAA6IiADwAAHRHwAQCgIwI+AAB0RMAHAICOCPgAANARAR8AADoi4AMAQEcEfAAA6IiADwAAHVmTgF9Vj6yqP6+qHVX1oar6x6p64UTNT1TVhVV1QVV9pKq2zdPOs6vq4qr6cFW9v6q+b56al1bVJ6vq41X17qo6eOL8xqo6fWjnoqp6S1XdcflnDQAAK2+truA/LcmlrbXtrbWjk/x8ktOr6tgkqaojkrwzyS+01h6Z5NVJ/raqtsw1UFU/meRVSZ7UWntEknOT/F1V3WGs5gVJjkvyyNbakUkuT/KeibG8JsnWJA9L8tAkd03ylhWYMwAArLi1CvhnJPm9uTettX9I8u9J7jcc+o0kf9ta++xw/i+TXJXk+WNtnJzk7a21ncP7NyXZnOTpSVJVt0vysiRnttZ2DTWvS3JUVT1mqLlbkhOSnN5a29Naa0PNU6vqfgEAgP3M1AG/qh5UVb9VVY8f3h86LJ/592Hpy12nbau19tnW2n8M7dyuqp6T5MYkfzaUPDbJRRM/dmGSxw0/c7ckR4zXtNZuTnLpXE2SByY5eKLmqiRXjNU8KsnGib4uSfKtYQwAALBfmeUK/olJjkly3fD+jIxC9h9lFKRfPWvnVfWbSb6S5MVJntha+3JV3T3JXZJcOVG+M8nhw/f3HV73VXP4lDVtOJbklg8KXx+rAQCA/UaNVqVMUVj1D0mObK3trqrNGQXnk1trp1bVgUkubK09YOYBVFVGa/LPTPJjSf4to6vsT2utvWus7hVJfrW1dlBVHZ3kgiRHtdY+NlZzdpKHtNYeUFXHJTk7yaGttSvHai5Icm1r7diqOjnJb7bWNk2M6Yok722tnbCXMR+f5PgkOeSQQ44455xzZp32qtm1a1cOOuig/boPc1gffZjD+uhjKe3v3L1nqrpNN+/OjRsPXLBuy4EbVrSPlW5/NfroYQ5762Mat/X/5tZLHz3MYTX6WI05LMUxxxxzcWvtuzadmc8s/8Xuaa3tHr5/cpJvJ3lrkgyh/6bZhjkyrHt/R1U9JcmpSX5qOLVponRTkuuH769bxpqNVVXt1p90xmvmG/Obk7w5SbZt29a2b9++t9I1t2PHjqz0+Fa6D3NYH32Yw/roYyntn3rJ1VPVHbbz0nxhy4MXrHvK1s0r2sdKt78affQwh731MY3b+n9z66WPHuawGn2sxhxWyyxLdKqq7lNVt8/oxtS/aa19bThxpyS3n6Gh+Wo/m+T+rbVvZHTD7ZaJ81uSXDZ8f/nYsb3VfH7KmkpyyNjYNiS5x1gNAADsN2YJ+Gck+eeMdrP54Yy2l8ywteVfJfnkDG1dPCzNGXdoki8P338gyeSvILYNx9NauyajG2NvqamqjUkeNFeT5FPDWMdrDk5y77Ga85PcNNHX1iQHjNUAAMB+Y+qA31p7W5LHJ3llkke01j46nLpTkr9PctoM/d4po98CJLll3/ufzrDkJ6OlOk+oqh8azj8xyb2SvHGsjVcmOa6q5q6+Pyejm2PfMYz32xntk/+8sQdXnZjko0nOG2quGdp8cVVtGD50nJjkXa01V/ABANjvzHTXTGvtQ0k+NHHsXUlSVfeeoamXJnl2VT0toy0pD0zya0n+v6HNi6vq6UnOrqrdGV1Rf8LYnvdprZ1bVfdM8r6quj7JDUPNDWM1ZwzLhz5cVTdmtGPPkyfW25+U0W8jPpHRjjqXJrnVU3UBAGB/sbjb4uf3F0keMk1ha+2dGT2pdl81703y3gVqzkpy1gI1pyQ5ZR/nb8pom04AANjvTR3wq+rOSX49yfaMbko9YKLk0OUbFgAAsBizXME/K8mjk3wsox1mvj12rpIcu4zjAgAAFmGWgP+jGW1jedV8J6vqz5ZnSAAAwGLNsk3m5/YW7pOktfYzyzAeAABgCWYJ+G+tql+eZ//6JElVfWyZxgQAACzSXpfoVNV58xz+oSSvqKrPJ7l+4tz9l3NgAADA7Pa1Bv+hGT0tdtw/j30/75V8AABg7ewr4H+utXbMtA1V1SXLMB4AAGAJ9hXwnzhNA1V1+4yeRvvwZRkRAACwaHu9yba1duX4+6p6/V5KfyzJfyR52jKOCwAAWIRZdtF55HwHW2vnJnlQkl9dlhEBAACLNkvA35frk9xhmdoCAAAWaZ8Bv6p+u6q+VVXfSvKgue8nv5JckeRTqzJiAABgr/Z1k22S7BheK8l/S/KH89TcnOTyJH++fMMCAAAWY58Bv7V2fpLzk6Sq7t1ae/mqjAoAAFiUqdfgt9Z+cV/nq+rIpQ8HAABYiuW6yTZJzlzGtgAAgEWYOuBX1e2q6kVV9Zmq2j3PjbYPWsFxAgAAU1joJttxL8roRts/T/LMfOeG23sl+dkk5y7ryAAAgJnNEvB/PsnRrbWvVtUTxm+4rarTk7gBFwAA1thMa/Bba18dvt0wcfxfktx7uQYFAAAsziwBv6pq4/D9tVX1sLETD0hy32UdGQAAMLNZAv4nk7yvqjYn+ZMk51XVX1TVe5J8PMnfrsQAAQCA6c2yBv+VSX4koyfXnpnke5Mcl2RTkndndBMuAACwhqYO+K21y5NcPnbopOELAABYJ2a5gp8kqar7JXlYkkOTfDnJ/2mtfW65BwYAAMxu6oBfVd+T0d73T01ywNipb1XVO5P8cmtt9zKPDwAAmMEsV/B/P8n2JL+R5OIk1yS5e5JtSZ4/nD9+mccHAADMYJaA/+QkD26tfWni+HlVdU5GoV/ABwCANTTLNpn/Nk+4T5K01q5I8m/LMyQAAGCxZgn4n62qB813Yjj+yYljb1jKwAAAgNnNskTn4owedPUXST6b5Nokd05y/ySPTfJ7VfWMsfofT/IryzVQAABgYbME/NOG11/ey/k/mHjfZh8OAACwFLME/H9K8sQpayvJX80+HAAAYClmCfhntNa+OG1xVZ2xiPEAAABLMPVNtq21N83S8Kz1AADA0s2yiw4AALDOCfgAANARAR8AADqy14BfVWdU1YVVtWk1BwQAACzevq7gPyHJT7TWbkySqnrVvhqqqu9fzoEBAACz21fAv7G1duXY+/+8QFt/sgzjAQAAlmBf++B/o6rOTvLhJDckuXtVHZfRQ6zmc/flHhwAADCbfQX85yU5J8nPD+9bkj/aR31brkEBAACLs9eA31r7bJIHVtVdktwtyV8leeJeyms4DwAArKF9XcFPkrTWvpnkm1V1Rmvti3urq6ozlnVkAADAzKbeB7+19qbx91V14L7OAwAAq2+mB11V1f2r6i+qaleSXVW1q6reU1U/vELjAwAAZrDgEp05VbU1yQVJrkvyoSTfyGjnnCOTfKKqjm6tXboiowQAAKYydcBP8uokpyU5pbW2Z+5gVR2Q5GVJXpPRw7EAAIA1MkvA//7W2nc97Kq19q0kr6iqzy/fsAAAgMWYZQ3+QrUzrecHAACW3yyh/NNV9Zqq2jR+sKruUFWvS/KPyzs0AABgVrMs0fmNJB9OcnxVfSbJNRndZHv/jJ5i+6PLPzwAAGAWs+yD/+mGw2SfAAAgAElEQVQk2zJ6Yu33JfnPSQ5P8r+TPHR48i0AALCGZrmCn9ba55L8/AqNBQAAWCI3xgIAQEcEfAAA6IiADwAAHRHwAQCgI1MH/Kq6c1XdeSUHAwAALM0sV/D/Pck/V9V9VmowAADA0syyTeZXknx/a233Sg0GAABYmlmu4P/rvsJ9VT13GcYDAAAswSwB/9VVdXpV3WMv55+zHAMCAAAWb5YlOm9KcrckL6yqryfZNXH+0GUbFQAAsCizBPw7J3nPXs5VkmOXPhwAAGApZgn4V7TWnrW3k1V13jKMBwAAWIKp1+C31rYucP7RSx8OAACwFDM/ybaq7lNVz6iq5w/vf6iqavmHBgAAzGqWJ9luqKqzklyW5G1JXjacOjHJRVW1efmHBwAAzGKWK/gvT/LIJM8fXq9OktbaLyU5J8mrl310AADATGa5yfZnkzyitXZVklTVnrkTrbXXVdUnl3twAADAbGa5gr9nLtzvxfcsdTAAAMDSzBLwv11VD5/vRFX9SJKblmdIAADAYs2yROf3k5xXVX+a5KNJ7lJVT0/y4CTPTvKiFRgfAAAwg6kDfmvtzVV11yS/leS44fDbk1yX5Ldba3+0AuMDAABmMMsV/LTWXltVf5jkqCT3yGgnnY+21v5jJQYHAADMZqaAnySttWuT/E1V3bO19rUVGBMAALBIMwX8qnpMkt9O8iNJNlbVzUk+keTlrbXzVmB8AMA6c+olV09Vd9juPVPVnrTVszJhOc3yJNvjkrw/yd2T/EmSNyT50ySbk7x/uOEWAABYQ7Ncwf/tJL/YWnvb5ImqelaS30nyjuUZFgAAsBiz7IPf5gv3w4n/maSWZUQAAMCizRLwv1RVm+Y7UVV3SLKvp9wCAACrYJaA/+tJzqqqH6mqg5Kkqg6qqocleWeSk1digAAAwPT2uga/qr413+EkTxvOTx7/iX21BwAArLx9BfKvJvnDKdupJMcvfTgAAMBS7Cvgf7K19vJpG6qqhy7DeAAAgCXY6xr81tqTZmzrhCWOBQAAWKJZbrJdyLuXsS0AAGARpr4ptqrulOQlSY5JsiXJARMlhy7juAAAgEWYZdebtyZ5fJIPJbksSRs7V0mOXcZxAQAAizBLwD8qyQ+01uZ9oFVV/fnyDAkAAFisWdbg/+Pewv3gl5Y6GAAAYGlmCfj/o6p+raruvJfzf78cAwIAABZvliU6/5jkuUm+XlVfT3L9xHk32QIAwBqbJeD/UZLtSd6X5Btxky0AAKw7swT8h2d0k+3X5jvpJlsAAFh7s6zB/6e9hfuBm2wBAGCNzRLwX1dVL3OTLQAArF+zLNE5M8ldk/yOm2wBAGB9miXg3znJX+zlnJtsAQBgHZgl4F/RWnvW3k5W1XnLMB4AAGAJpl6D31rbusD5Ry99OAAAwFLMcgV/n6rqzNba85arPYDbmlMvuXrBmsN275mq7qStm5djSADsh6YO+FX1jAVKnrjEsQAAAEs0yxX8t+3jXNvHOQAAYJXMEvD/Kd99lf6OSX4wydOSvHG5BgUAACzOLAH/Ba21L85z/LNV9b4k5yT54PIMCwAAWIxZdtHZ65NqW2u7M7qSDwAArKFZbrJ95HyHk9wtyU8luWG5BgUAACzOLEt0dmT+m2kryZeS/PxyDAgAAFi8WQL+ZUmePXHsW0m+muSy1tq3lm1UAADAoswS8N/YWjt/xUYCAAAs2T5vsq2qR89931p7/coPBwAAWIqFdtE5bVVGAQAALIuFluh8f1WdN21jrbVHL1wFAACslIUC/s4kL9/H+Xsl+b0khyR5y3INCgAAWJyFAv4n9nZjbVX9WJLfT3Jgkqe31t41badVdWyS5yXZlOSOSa5J8t9ba5+aqHt2kucm2T18/XJr7bKJmpcm+ekkNyX5cpLntta+OnZ+Y5LXJHlURtt8XpLkRa2168Zq7pzkjCT3T3JAkvcneVlrbc+0cwIAgPVgn2vwW2vftbd9VW2oqtOT/O8kX0lyxCzhfvC2JH/cWntMa+3IJP+Q5O+r6pCxfn4yyauSPKm19ogk5yb5u6q6w1jNC5Icl+SRQzuXJ3nPRF+vSbI1ycOSPDTJXfPdv214W5IDWmsPTXJkkqOTvGLGOQEAwJpb6CbbW6mq+yX5eJIXJXlTkiNba/+6iH4vaK29c+z97ybZnOTxY8dOTvL21trO4f2bhpqnD2O5XZKXJTmztbZrqHldkqOq6jFDzd2SnJDk9NbantZaG2qeOswlVfWAJE9O8tokaa3dlOT1SV5UVQctYm4AALBmpg74VfWMJJ9Mcr8kP9tae35r7cbFdNpa+y8Th3YPr5uGvu6W5IgkF439zM1JLk3yuOHQA5McPFFzVZIrxmoelWTjeE1GS3S+leSxw/vHJrkhyafHai7MaOnRI2aeHAAArKEFA35VHVRVb89oGcv/TbK1tfa/lnkcD88oZL93eH/f4fXKibqdSQ4fvj98ypo2HEtyyweFr0/UXDVc3R9vY7wPAADYL9Stc+3EyaptSd6VUdA9I8lL9nbjaVWd31p71MwDqKok5yc5t7X2u8Oxo5NckOSo1trHxmrPTvKQ1toDquq4JGcnObS1duVYzQVJrm2tHVtVJyf5zdbapok+r0jy3tbaCVX11iSPaK39wNj522V0lf8lrbXvehZAVR2f5PgkOeSQQ44455xzZp32qtm1a1cOOmhlVxqtdB/msD76MIeV72Pn7oXv69908+7cuPHABeu2HPjdeyhM0/566sMc1scc5utjNeYwrdv63xvrof1e+liNOSzFMcccc3Frbds0tQv9F/WRoebcjJa2PG2Ux79LJbnPLIMc86okX5wL94O5HW42TdRuSnL9jDUbq6omrtBP1szXRsZqbqW19uYkb06Sbdu2te3bt89Xti7s2LEjKz2+le7DHNZHH+aw8n2cesnVC9YctvPSfGHLgxese8rWzYtqfz31YQ7rYw7z9bEac5jWbf3vjfXQfi99rMYcVstCAX9XvrNs5pgFamf+yFNVL0ryw0n+68Spy4fXLRPHtySZ2ybz82PHvjBRc95YTWW0T//Ooc8NSe4x0c7BEx8C5vq91ZacAACw3i0U8K9orT1rmoaq6pJZOh72uH9ikh9vre2pqsOTHN5a+0Br7ZqquijJtiTnDPUbkzwoo2U5SfKpJFcNNR8fag5Ocu8kHxhqzs9of/xtSf5yOLY1o73u52ren9HDuu6f79xouy2jG38/MsucAABgrS10k+3PzdDW1LVV9ZSMtrg8Jcn/O6z1f1xuvWvNK5McN7Y3/nMyujn2HUnSWvt2Rst7nldVdxxqTkzy0QxX8Ftr1yR5Y5IXD/v311DzrrkHZrXWPpPR3vkvGca2MckLk7x+bPtNAADYL+zzCn5r7V+mbWiW2iRvH/reMXH85WPtnVtV90zyvqq6PqNddp7QWrthrOaMqrpTkg9X1Y0ZPXjryRPr7U/K6GFXn8hoR51LMwrw456Z5A1VdWG+c3X/t2aYDwAArAuLv219CVprG6esOyvJWQvUnJLRbwL2dv6mJC9eoI1rk/zCNGMCAID1bKYn2QIAAOubgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQEQEfAAA6IuADAEBHBHwAAOiIgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQEQEfAAA6IuADAEBHBHwAAOiIgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQEQEfAAA6IuADAEBHBHwAAOiIgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQEQEfAAA6IuADAEBHBHwAAOiIgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQEQEfAAA6IuADAEBHBHwAAOiIgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQEQEfAAA6IuADAEBHBHwAAOiIgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQEQEfAAA6IuADAEBHBHwAAOiIgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQEQEfAAA6IuADAEBHBHwAAOiIgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQEQEfAAA6smGtBwAAMOnUS66equ6w3Xumqj1p6+alDgn2G67gAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoiIAPAAAdEfABAKAjAj4AAHREwAcAgI4I+AAA0BEBHwAAOiLgAwBARwR8AADoyIa1HgDA/uDUS66equ6w3Xumqj1p6+alDgkA5uUKPgAAdETABwCAjgj4AADQEQEfAAA6IuADAEBHBHwAAOiIgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQEQEfAAA6IuADAEBHBHwAAOiIgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQEQEfAAA6IuADAEBHBHwAAOiIgA8AAB0R8AEAoCMCPgAAdETABwCAjgj4AADQEQEfAAA6sqYBv6puX1WnVtWeqjpsnvPPrqqLq+rDVfX+qvq+eWpeWlWfrKqPV9W7q+rgifMbq+r0oZ2LquotVXXHiZo7V9XbqurCoa3XVNWG5Z4vAACstDUL+EOgPz/JvZIcMM/5n0zyqiRPaq09Ism5Sf6uqu4wVvOCJMcleWRr7cgklyd5z0RTr0myNcnDkjw0yV2TvGWi5m1JDmitPTTJkUmOTvKKJU0QAADWwFpewT8oo3D+P/dy/uQkb2+t7RzevynJ5iRPT5Kqul2SlyU5s7W2a6h5XZKjquoxQ83dkpyQ5PTW2p7WWhtqnlpV9xtqHpDkyUlemySttZuSvD7Ji6rqoGWcLwAArLg1C/ittU+31j4337khmB+R5KKx+puTXJrkccOhByY5eKLmqiRXjNU8KsnG8ZoklyT5VpLHDu8fm+SGJJ8eq7kwyYFJHrGIqQEAwJpZrzfZ3nd4vXLi+M4khw/fHz5lTRuOJbnlg8LXJ2quGq7uj7cx3gcAAOwX6ta5dg0GULU9yQeT3Le19oXh2NFJLkhyVGvtY2O1Zyd5SGvtAVV1XJKzkxzaWrtyrOaCJNe21o6tqpOT/GZrbdNEn1ckeW9r7YSqemuSR7TWfmDs/O0yusr/ktbaafOM+fgkxyfJIYcccsQ555yzHH8UK2LXrl056KCVXWm00n2Yw/ro47Y+h52790xVt+nm3blx44EL1m058Lvv45+mj5Vufz31YQ7rYw7z9dHDHKZ1W/+777bUx2rMYSmOOeaYi1tr26apXa87xVw3vG6aOL4pyfUz1mysqpq4Qj9ZM18bGau5ldbam5O8OUm2bdvWtm/fvteJrLUdO3Zkpce30n2Yw/ro47Y+h1MvuXqqusN2XpovbHnwgnVP2bp5UX2sdPvrqQ9zWB9zmK+PHuYwrdv63323pT5WYw6rZb0u0bl8eN0ycXxLksuG7z8/ZU0lOWTu5LD95T0mag6uqppoI2M1AACwX1iXAb+1dk1GN8be8muIqtqY5EFJPjAc+lSSqyZqDk5y77Ga85PcNF6T0ZaZB4zVvD+jG2rvP1azLcnuJB9ZlgkBAMAqWZcBf/DKJMdV1dzV9+dkdHPsO5KktfbtjPbJf97Yg6tOTPLRJOcNNdckeWOSF1fVhuEq/YlJ3tVau2yo+UxGe+e/JLnlg8QLk7x+bPtNAADYL6zZGvyqun2Sv8vowVNJck5VfaW19l+SpLV2blXdM8n7qur6jLayfEJr7Ya5NlprZ1TVnZJ8uKpuTPKVJE+eWG9/UkYPu/pERjvqXJpRgB/3zCRvqKoL852r+7+1rBMGAIBVsGYBf3ig1PYFas5KctYCNackOWWBfl68QBvXJvmFfdUAAMD+YD0v0QEAAGYk4AMAQEcEfAAA6IiADwAAHRHwAQCgIwI+AAB0RMAHAICOCPgAANARAR8AADoi4AMAQEcEfAAA6IiADwAAHRHwAQCgIwI+AAB0RMAHAICOCPgAANARAR8AADoi4AMAQEcEfAAA6IiADwAAHRHwAQCgIwI+AAB0RMAHAICOCPgAANARAR8AADoi4AMAQEcEfAAA6IiADwAAHRHwAQCgIwI+AAB0ZMNaDwAAYC2cesnVC9YctnvPVHUnbd28HEOCZeEKPgAAdETABwCAjgj4AADQEQEfAAA6IuADAEBHBHwAAOiIbTKBLtjuDgBGXMEHAICOCPgAANARAR8AADoi4AMAQEcEfAAA6IiADwAAHRHwAQCgIwI+AAB0RMAHAICOCPgAANARAR8AADoi4AMAQEcEfAAA6IiADwAAHRHwAQCgIwI+AAB0RMAHAICOCPgAANARAR8AADoi4AMAQEcEfAAA6IiADwAAHRHwAQCgIwI+AAB0RMAHAICObFjrAbA4p15y9VR1h+3eM1XtSVs3L3VIAACsA67gAwBARwR8AADoiIAPAAAdsQYfWHHuGQGA1SPgs1fLGcoEsvVL+AaAvliiAwAAHRHwAQCgIwI+AAB0RMAHAICOCPgAANARAR8AADpim0zWjO0Z///27j3ervnO//jr7RIShoi4lgoxlCRKhSliREU9GDVKW/QmNFSHztS1aLWEGowZv1b96tZimro8/MpkqurWSt3viSCIW0IRGrQad/L5/fH97mZ12+ectc9e+5yTnffz8ViPc/Z3f/f3stZee33Xd33Xd5mZmZlVzw1862iey9/MzMyWNB6iY2ZmZmbWQdzANzMzMzPrIB6iYzbA+V4FMzMza4Z78M3MzMzMOogb+GZmZmZmHcRDdMxa4OEzZmZmNtC4B9/MzMzMrIO4gW9mZmZm1kHcwDczMzMz6yBu4JuZmZmZdRDfZGtmZmbWBp6IwfqLe/DNzMzMzDqIG/hmZmZmZh3EDXwzMzMzsw7iBr6ZmZmZWQdxA9/MzMzMrIO4gW9mZmZm1kHcwDczMzMz6yBu4JuZmZmZdRA38M3MzMzMOogb+GZmZmZmHcQNfDMzMzOzDuIGvpmZmZlZB3ED38zMzMysg7iBb2ZmZmbWQdzANzMzMzPrIG7gm5mZmZl1EDfwzczMzMw6iBv4ZmZmZmYdxA18MzMzM7MO4ga+mZmZmVkHcQPfzMzMzKyDuIFvZmZmZtZB3MA3MzMzM+sgbuCbmZmZmXUQN/DNzMzMzDrIMv1dADMzMzPrndOmz+8xzoi33i8V79gthldRJBsA3INvZmZmZtZB3MA3MzMzM+sgbuCbmZmZmXUQN/DNzMzMzDqIG/gFkvaQdK+kWyTdLmlsf5fJzMzMzKwZnkUnk7QlcCmwdUTMkrQ7cL2kURExr5+LZ2ZmZmZWihv4ixwHXB8RswAi4hpJLwGHAif0a8nMzMzM+kGZ6TXBU3EONB6is8gE4L66sHuBnfuhLGZmZmZmveIefEDSMGBl4MW6t+YBu/Z9iczMzMyWDFVeJWh0hWBJvAqhiOjvMvQ7SesCzwJfjIjLCuGTgSMiYsW6+AcDB+eXGwOP91VZe2E4UO6bPXDzcB0GRh6uw8DIoxPq0Bd5uA4DIw/XYWDk0Ql16Is8+qIOrVgvIlYrE9E9+Mkb+e9ydeHLAW/WR46I84Hz212oKki6LyLaOhtQu/NwHQZGHq7DwMijE+rQF3m4DgMjD9dhYOTRCXXoizz6og59xWPwgYh4FfgTsGbdW2sCT/V9iczMzMzMescN/EVuAurP2sbmcDMzMzOzxYIb+IucBuwiaRMASbsBawHn9GupWtcXQ4nanYfrMDDycB0GRh6dUIe+yMN1GBh5uA4DI49OqENf5LFYDL8uwzfZFkjagzTn/VvA0sC3IuLe/i2VmZmZmVl5buCbmZmZmXUQD9ExMzMzM+sgbuDbgCfpVkkhaUR/l8UGPklrSbpOUtsuT5bNQ9Jyks6UtFDS+KrTb0W782g2fUmn5P18YrvyaNaSuB0Gah4DgaSVJP3cx6NyJE3J62p8f5dlSeQGfoeRtLmkCyQ9KukhSbMk/UhSqQcjlMxjZG603J+X2bkR/k9V5VHIa29gXBvSHSFpgaQZDZahFeazt6Rb8np6WtJ9kr5SUdoXS3qyQfnnSnpH0uAK8hgr6TeF79M9kj5fRfkLefyjpJtzXeZKulbSpr1May/gTmBkD/GWlXSypMckPSzpDkmlvmdN5DEauBuYAKhUBUqmnxtUJ0mamcv/mKSrJI2pMI8VJR0r6bb8/Z2V8zpCUrf1KbuOCvHXAY4oE7fZPCTN6WI/n1BF+jnuxyVNlfRA3haPSzqjijpImihpXoPyP5IbTzu1Wof8fbowl31mTvt4SctWUYccbz1Jl0l6RtIT+bfwn0ukX+qYlr+vP87rfpakGySNqjD97YH7gS16SrM3eUjaUNJ/5XX/UI57iUqcSJRMfw1JkyXdnffnx/M22L+qOtTFHwt8sUzazaQv6d0u9ucejxnN1EHSeEk35nX0ZI5/ZNn6DAgR4aWDFuAx4JfACvn1R3LYbGBwRXkcBvwB2DC/Xgo4A/gA2KHCugwCngB+DQQwosK0RwDT2rwtDgceANbJr5cFLgUurij9i4HxDcLPA66oaB39Gfg5sEwOOyRvi89UVIcdgPeAY/JrAf+X9CTBdXuR3t3A3+d1E93EOzfvE6vl15NID7XbvMI8LgV2ASbmdfahbdXb9AvlXze/Xh64MtdhTEV5jAbeB3YvhO0BLAS+W8U6KsT/b+CavJ4mVryt5/Tyu1k2/W2BF4DtCmGHlsm35HaYCJzYIHw/4Hlg6RbTXwqYDjwMrJrDtiBNNnFmRXVYPZf1amBQDtuXdMzYvYf0Sx3TgN8AtwFD8uuTgT8CH6ko/etJU2efSJPHozJ5ANfl8te2wVDg1lyHNStIf3fgdWCrwucOy3X5chV1qIv/exbt0+OrSp9e7s9N5vE54Glg0/xawOm0uc1Q9dLvBfBS8QZNX9YN68K+lneyvSvK47PApLqwoTmP/6qwLoeTGklN/6CWSHtEO3fWnP47xR/THL42MLaiPLYB1qgLW4HUKN+pgvT/Ja/3LerC/wxcVlEdbiGdLC5VCFuJ1Lg4txfp1U5ELqbrxsbGpEbqgXXhjwC/riKPungTyx7kmqjDuQ32wZE5n7MrymN94McNwmcAD1SxjnKcLUkPFNyF5hr4ZbfDnF5+N8usIwGPAkfXhS8L7FpRHhsAmzUI/y1wcgXpb5rX++F14VOBFyuqw+Scx8Z14bcDj/aQfo/HNGDn/PpThTiDgFeBc1pNv66eJ9K7Bn5PdbgOmFAXZ6cc58gK0t+GBifmpId8XlVFHQrhn83bdiLNNfDLbIde7c9NrKe/I3Uwfb4u3lAq7MDsi2UZrNNsFhHv1oW9kP+uUkUGEXF1g+CV8t8/VpGHpGHA0aQfpQOqSLOPfQX4U9RNsxoRL7Boe7QkIu5sEPwF4GXgdxVk8X7++9ffCUki9fgtXUH6kHrE7oiIhbWAiHhd0hxSb/EhzSQWEe/3HIvPkhpmN9eF/w44RNKKEbGgxTxKx+vl5w4jnaQUld7Py+QREc/kfOqtRLqy1lL6Bf8JfId0Qlxab9dvxemPAz5G6qksfvY9Uo9yy3lExNP1YZI2IF39OrDV9Gmwnxde97ifl8xjLOlK3ey68JmkfW6jiKh/r6bMMW3vnP5thXK9K+n2/N6h3ZSt1DGzxe9bmTw+w6Jt0WU5ept+Pl78zTEjD8FannLH7VLrKad5OvBV0r5RVtvbLiXz2BMYBlxbjBQRfyJdlVhseAx+h2nw5QXYiHSGeks78pT0EdIDwR6gugeDfQ+YEhFzK0qvkTWUbgK6R+k+gktVcgxzCdsCc5TG4N+ax7beIanbA3IFDgIuiNzl0KLLST0e383jW5cCjgeWI/UgV+ENGv8OLQTWkrRSg/datVlO/9m68GdIjZpejf/vSxHxfvGkKNso/53WjjwlrSDpFNJVouMqSnNPYDBwRRXpdZPPGXn/m53HZu9RUdLb5r8rK43Bf0RpDPspquAemG5MAm6o4vcxN6wvBb5eG+8t6VOkXvGzW00/e4N0Ul1/70btO9xlQ7DkMW0z4IUGcZ8h/c6v3mL6LSmTR0S81+B3u9Q+3Zs65E60n5CGTv2gu/SbzONQYEZE3NVTmr1Mf4ikn0i6U+lejqn5/oiq8tiWdMKzlaSb8jj9+yUdJamqjq0+4QZ+h8tfyK8BP+2mh6S3aY+U9CRpiMXSwJ4R8XoF6f49qSe6xx+dFnxA6i05KyK2ZlEP092Stqog/XWBUcBRwOdJjcazgPMlfaeC9D8k32S0JelSecvyttyJ1MMzn3Rl4EBg54io4goBpLG/o1S4mU/SyqThIbDoylCVhgNvRsQHdeG17+6qbcizLxxMGmb086oTlnQb8BqpN3SviHiggjRrPX1HVnRC2pWXSZ0P40j75FRgqqRGVyeatW7+exnwg4gYRbp6NzHnU7n8m74/1T5xc39Sj+UTkl4A/of0oMeTK0p/Ounkub4DZfP8t/R+3sUxbTjwlwbRm96n23nM7EUeBwM3RsRNVaUvabCkR0mN2NHAHhFR39nRqzwkrQJ8Gzi22fTKpJ+9AfwyIrYhndjNAqapxA3bJfNYF1iZdC/YNyJiU+BIUqdjVR1bfcIN/M53Aqnh+q2qE46IpyJiQ9LOMBt4UCVnIunB6cBpEfHnCtJqKCKei4gxEXF/fv06aTjIG8CpFWSxPKmn8+iImBcRCyPiStJB/3hJQyrIo94kYGpEvFxFYpI2Bu4B5pIuWa5OGkpxlaRdq8gD+C7p4HuqpEG51/Ms0gkYpLH41gOlmVT2Ab4QEU0NdSkjIsaRvs//DvxW0jcrSPYbwCMRcVuPMVsQEVtHxOV5H3wvIs4hNWZPlbR8i8nXPv/TiLgn5/cg6TdsZ0k7tJh+I7XZyq7pNlZJeR3cDGxNGle+NjAeOK7Czogfk4ZCnCVpVUlLSTqI1ECD5vbzth3T+i1CDVUAABBdSURBVCj9UnkoTRc7inTyVVn6EfFWRGxC2p+vAu5Vmq2uijxOIN2f9aFhZRWlT0SsXzvhiYi3SFeVHwXOrCiP5UlXqU+NiCdyPtOAC4CvSVq/PpGByg38DibpAFJP+K4R8Ua78smN48OBl0hnvb2WL7WNJl067FP5x+Ih4JMVJFfrTZpRFz4dGELFw0AkDSL1HFbZq3cy6caif4uIN3MD6XLSpcxLJLV8D09uFE0gHegfyWk/DEwhnWy91moeDcwnXeatv9xa60V8pQ15to2kjwOXkHriZrUrn9w4/u+c15mS1uxtWkpT0R5H6u3rD3eTbqbrcRrFHnS3nwNUcTWw3iTgogrvQTiQdHXj6Ih4HiBfoTkTOFnS5t19uIx8jBhHGg5yF2n9jGHR1KjPlUmnm2PafNL2rNfUPt0Xx8wyeUj6NHAS8OmIeLHq9AEi4u2IOIM0U88FzfyeN8pD0kjStJgtX/VpZjvkq3/3ABtKauZKTVd5dLdPi3SVfLHgm2w7lNJc60eSZhWopEe3kPZg4O3iZfWICEkPAZ+TtFwLvYg7k4b73KtFU23XGhLXSnoXOD4irm304bLyMJC3GozJ+4BqbiB9jHT5uf4kutYzXfXJ9Z6k2W1+W2GaY4A/5BOfotk5v/Xp4WbLMnLvyLRimKRrgbsajDOvwkzSFIPrAnMK4euThm21rZFcNUmbkYZT7BsRd1Sc9iBgYYOG5IOkGUrGAPN6mfwnSev6ysJ+vmL+O1nSt0gze0zuZfrAX3+rlo4P3zRd2w9b3dcfy3/7ZD+XtBZptqEqrqDU1IbN1O/Ls0kNmq34cGOnaZFu2v6bZ4BIOgZYQNonu9XDMW0mMFbSoLrf9PWBl8ocA9t5zGwmD6XnM5wL7NLsEKHu0pe0HPB+g6GJDwKfpuTveTd5fAp4G7i5sE8Py38vlLSANCvXhS3UYUXggwbHpKb25x62Q5/u0+202BTUypP0ZVLP2ISImJfDdpd0cEVZ/IbGvdwjSGMeG93IUkpEfC8iRkbE5rWFRePedsthLTXusx+SxhP/VW7QjCGN123Vr/LfzerCR5MuRz9SQR5Fk6ju5tqal0k3utZ3BKxHuimp5d51pYfffLwubGVge9Il0Xa4mjx1W134jqQbF7ucQWcgyY37qcBXasNclB5YdF5FWRxPmsmq3oj8t9dXOiLiuohYt24/n5Tf/l4Oa6lxn+1DmqWn3pakWXtaPZm7lnTgb7SfA9xLtQ4AfhfVTj5Qa+B8tC58vfy35Stakoao8YPFdidNpvB2D5/v6Zh2FWlq0m0LnxkEbEea97yn8rX7mFkqjzzU7nzSse6xHLalpO9XkP55pB7reiNIv4evtpJHRFwQESPq9unv5Y9OymE9Ne57qsNRNB7WtCXwfMkTuZ7y6O7YHcB9PeUxULgHv8NI+hKpYXQCMKFwJr090NSlvh6cJGm/iHhFKZNvknp6Tq64kdlOR0uaFhEv5uEa/wGsRl0vUy9dQfohOkXS7hGxIA8/+hwwucrLv5LWA/4R+HJVaWZnkx6eNFnSd/JVmh2BvUgP0ppfQR47At+WtF1EvCppBdL396aIaMvMKhHxuKTzSWOMr4mI+fly7UiqX4dtoTTb029JjZcRWvS0y+Gkef6rcqikqbWhP/kem2+QhlJN7/aTA8d+ki6MPGWtpH1IV6BOafVkLiKek/Qj0nq6IiKeUJpV7BjSzZH1U7H2Wv6dPZDGJ12tuJg0xPIUSXtHxF8kfZTUmHqaEtN9lrA6cI2kbSJiutKMXEeQnguyV3cfLHNMi4gbJF1PGlK0S0S8Sbpf6AN6uKeqL46ZZfJQmrnof0n3II1VehIswCakBzJVUYdvS7otIp7Ln9uLtP6nRES3J3LtXk9NpP8NSVdGxJP5c0eRHsz2tSryiIg7JF1NOj7cGBEvKT0R+euke22quL+gb8QAmIzfS3UL6Sw8ulhOrCiP7YCLSGOlZ5Auad0OfAlQhXXZLac/L5d/Fmn6rSrSHkO68evBvDwP3ATsWGH5h5F+TOYCj5MuIx/Uhm0+GbiyTd+nXUg34D2at/dMUgNjuYrSH5vX+9y8re8njc1etpfp/UdOp7YfzMjLoLp4ywKn5O3yMGl+6O0rzmOfHP5sjvdkfr1tq+mTeiy72s+nVVEH0iX703P4g6SrTjNJPfsrVrGOctzV83tP5rjP5tfdPhCuZB3WIB3M783vzSGdmBxc4XZeOq+TJ0i/hU+Rnuzd45PDm1xPnyLdqLpMG/aHj7FoWtyZpP39HHp4gmoT22EoqbNgLuk+pwdJV2ZXL5F+qWMaaYjXOaShRY8CNwKjKkz/cBocjyjxwKsyeZCuHHcV5+IK0q8d82bmcj9K6o0+lBK/t2XXU467OY1/+9ZusQ6136TpOb3ngDso+RDPJrb1YNL3+hnSPvE4aWagLp8aPRAX5cqYmZmZmVkH8Bh8MzMzM7MO4ga+mZmZmVkHcQPfzMzMzKyDuIFvZmZmZtZB3MA3MzMzM+sgbuCbmZmZmXUQN/DNzMzMzDqIG/hmZv1I0rWS5klaLB5KImmUpN9LeljSE5LO7seyXCjpWUlReJrvEkXS2pJmSFogaVp/l8fMBgY38M2so0naODeAXpX0rqStG8T5haQncyNphqQJfVW+iNiN9FTPxcXlwHMRMRrYAdi2USRJIySd2M6Gd0RMAr5XRVqSVpA0V9K/VZFeO0gaL+nEYlhEvBARm5OeSmpmBriBb2YdLiIezw2g/wWWBS6TtFJdnC8Bk4D7ImLziLipH4o64EkaCowGboPUuATGdRF9BPD9/Hdx8D7wLPBKfxekG+NJ69TMrFtu4JvZkmQqsAHwk/4uyGJqaP77di0gIt7qp7JUKiLeiYjtI2JKf5fFzKxVbuCb2ZLkf4AfAV+UNLG7iJIOz8N2QtL4HDZB0qwcNrEQtzYEaI6k3STdnMfVXy1pJUnbSbpO0vOSrpS0chd5bi1pWs73KUlfbRDn4FyGx3OcUyUt20VZdsnpPZ/LPLQ+vcLnRku6Jn/uGUk3SPpE4f1DgGvzy8k5n9O6SOtQ4ML88sIc947C+8MknZfzmp3f36dBOuPyeP+n8/CZX0oa2VUdCp/bJN/bMCMvv5c0qZv4qzYax168P0LSVpKuz2W+S9KoHspwSOG7cqSkS3Mer+R7B1YoxN1A0s/y+9Pz3yMlLV2IcxFwSP6/Vq8fNch3f0m3SHohf9eG1r0/MecxXdJDkqZI2qKndWpmi5mI8OLFi5eOX4CLgYnAINJ45QXARoX3xwPT6j4zHghgfCFsRA6b2CD9PwMn5NerA68BU4Cjc9iaOc4pdZ89Maf5C2BwDjsgh+1ciHcM8A4wLr9eC3gC+FmDsrwO/B9AwBBgHjC0i3WzYS7XmYAKZVoAjOmp7l2k+aF1l8OXAx4Afg+smMM+DbwLHFiINy7X9Zv59VLAz3I91irEm5jzGVEIexL4buH1ocCcEmWe1uA7UNs2P8xlWCaX/Y4S6dXW1zzgEznso8BzwJRCvH2B3wHLF74ns4EjGpWlm7K/BPxLIY1XgFMLcbYnXX3ZIL9eIX/uxP7eP7148VLt4h58M1uiRMS7wBeAD4DLJQ2qMPkVgbNzPi+TxqrvB1yQw+YBtwI7dvH5H0ce8hIRFwGzyGOuc6//94ErI6I2Bv5F4D+BiZLWr0vr70iNu4iIN4FtSI3+Rk7Mf0+IiNpsPj8A3sh/q/QVYAvg+IhYABARNwDXAKcXtsdpwNyIqK3PhaQTnFWA47pKXNJwYCTwdCH4QtLJQSsuioiFEfE+8Ctgmya+O1Mj4gGAiHiWdBVpP0kb5fevB/aNiLdznHnAVcBBTZZxaeC8Qhp3kk60av6BdNL0Qo7zBnACcFeT+ZjZAOcGvpktcSLiadJNtVsAZ1SY9CsR8afC61cbhL1C6l1t5JG61/cDW0taitRAHwLcXhfnYVIv/Q4NyvJy7UVEPJMbyY1MAB6Jwnj6iHgPmA5MkKQuPtcbtRmK6md9uQcYDmwhaQipvn8TJyLmA88AO3eT/iuk9XiepDMkbR5pfP3kFss9u/D/q/nvGiU/22i7LkVqcAP8BdhH0u1K04/OIF2Z2KDJMj4dER/UlbNYxttIJ6H35KFeq0XErRFxXZP5mNkA5wa+mS2RIuJK0s22/yrpnypK9s36bLoIW5oGIqK+h/010sw/q5EavwDHFMZgzyBNsfkSqce+aEET5R6e86r3KjCYdGJRleHAmxHxToO8au8PIx2fuirT8AbhQB6/knqtzyM1kqfnsfD/3Eqh81WQmtqJUsPt2ECj7Qqwdv57CulE8+iIGB1p1qdzScPJmlH/XVtYLGNE3EU6EZwLnAO8mO9r+EiT+ZjZAOcGvpktyY4AZpLGrK/V4P1ab2ixB3uFBvEqobrpO0kN3feAPwLzc9j3I03lWVtGR8SataEsvTQ/51VvGPAWH244tmI+METScg3yqr3/Gqlx2lWZ5jcI/6uImB8RR5Ea0HuStuMvJX2slYK3oNF2hTxUBvgqcGNE3EGbRcRtEfEZYB3SMwR2Ba5od75m1rfcwDezJVYe8/wFYHngrAZRakNcVimEbdzGItXPzLIlcE8eWnMHaUz8x+s/lGdg6XZWlx7cBIzKQ2NqaS4DbA7cVBiX34z3aknl9LaXtE7OC2CruvhbkRru0/PY8DuBscUIklYF1gdu7CpTSatL+iFARLwfEVOB/Uk92Zv2oh5VaLRdF5KGJUG68bh+HTcaxvUegBbZU9LyZQsh6YuSPgMQES9FxKmk+xM2K5uGmS0e3MA3syVaRMwGvk7j8dRPAX8g9QIjaTDwpTYW59s5DyQdAGwCnJTL+TrpJttJkv4hx5Gko0n3EjzWQr4nkRqYJxfG2x9PGvbznV6mOSenuU6e7nEKaUz5z0lj+0+VtCKk6UeB3YFj803QAMcC60n61xxnKdKNt68B/95NvkOAQyR9shA2jnRydE/jj7TdhNpUlJI+ChwGXBYRj+f3fw3sLGlMjrMR8KFpQ0n3H0Dqfd+Q9FThDxrE68pGpO/YSjmfwcAnSDP4mFkn6e9pfLx48eKlnQupx30Gaez2s8CtXcS7gLopEnP4eOAh0nSUvwJ2IjVcnwXOzXFuzum/m/NaFbi6RNhI0tzy83KaE0g99U/l5asNynNALs/snMZPgdUL79eX5dCS62k0qaE5l9Q4vxHYsvD+IaRZfWp1nwFs3EOaJ+W4j5DGxNem4BwGnJ/zqtVj3waf3540JeXTOe5VwMjC+xfm9COXbRLpnoGTSCcR0/O6mgZs3005V81lWJCXGaRpTn9R2DYzgDGkE49inp/rJt0ROd5heTtNJ90E/FNghUK8VYBLcl53kobMXFLId9scb3nSsxyeznkflOtbLPvdOe7/q/sejCBd/ZmSPzsj/z0PGNbf+6kXL16qXWo/tmZmZlYhSSNIve4HRMTF/VoYM1uieIiOmZmZmVkHcQPfzMzMzKyDuIFvZmZWMUmHkO6vAJgs6Zz+LI+ZLVk8Bt/MzMzMrIO4B9/MzMzMrIO4gW9mZmZm1kHcwDczMzMz6yBu4JuZmZmZdRA38M3MzMzMOsj/B52eYs5Z616UAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# Plot data distribution\n", - "\n", - "paths_path = 'data/rnn_custom_loss/run1/paths.txt'\n", - "all_paths = list()\n", - "\n", - "with open(paths_path) as f:\n", - " all_paths = json.loads(f.read())\n", - "\n", - "path_size = dict()\n", - "for path in all_paths:\n", - " path_split = len(path.split(\",\"))\n", - " try:\n", - " path_size[path_split] += 1\n", - " except:\n", - " path_size[path_split] = 1\n", - "\n", - "keys = sorted(list(path_size.keys()))\n", - "values = list(path_size.values())\n", - "\n", - "sorted_key_values = list()\n", - "sizes = list()\n", - "for i, ky in enumerate(keys):\n", - " if i in path_size:\n", - " sizes.append(str(i))\n", - " sorted_key_values.append(path_size[i])\n", - " \n", - "def plot_path_size_distribution(x_val, title, xlabel, ylabel, xlabels):\n", - " plt.figure(figsize=fig_size)\n", - " x_pos = np.arange(len(x_val))\n", - " plt.bar(range(len(x_val)), x_val, color='skyblue')\n", - " plt.xlabel(xlabel, size=size_label)\n", - " plt.ylabel(ylabel, size=size_label)\n", - " plt.title(title, size=size_title)\n", - " plt.xticks(x_pos, xlabels, size=size_label)\n", - " plt.grid(True)\n", - " plt.show()\n", - "\n", - "plot_path_size_distribution(sorted_key_values, 'Data distribution', 'Number of tools in paths',\\\n", - " 'Number of paths', sizes)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAv8AAAMbCAYAAADaWfoCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXl4FFX2sN/DFkAgiGyySIAAssgyBBUE0oi4zQiofLKpP5wRxQURUVFRwRk3FHGZUdxmRBH3DUQdQCHu44A7Ag5bBNlFgSRCCMn5/rjVSafpTro7CUno8z5PPdV969x7T1VXnT5169xToqoYhmEYhmEYhnHkU6W8FTAMwzAMwzAM4/Bgzr9hGIZhGIZhxAnm/BuGYRiGYRhGnGDOv2EYhmEYhmHECeb8G4ZhGIZhGEacYM6/YRiGYRiGYcQJ5vwbRhkiIg1F5A4RWSYiv4nIARHZKiLvi8hUEelZ3jpWZERkqIhME5H65a1LWSMi6SKi3jK7vPU53IjIu94xaBRUnuSdA74QdR4POGbppaTHtSJybWm0FUWfnURkh4jMKqX2Qh5LI3bK4lwzjPLCnH/DKCNE5I/AWmAAcDOQBBwDnA58DdwELBeRf5WXjpWAocBU4Ih3/lU1CWhd3nqUI62BxsBRQeVJuHPAF1xBVcepqgA/laIe13rL4aQ+0AC3r6VBuGNpxEgZnWuGUS5UK28FDONIREROBeYBi4DBqnowYPP3wA0isgx4Gfenbxjxzh+AWqr6a3krcrhR1c9EpBnwWyk1GbfH0jCM4rGRf8MoZUQkAXjO+zouyPHPR1VfAT49bIoZRgVGVffFs7OqqjtUNaeU2orrY2kYRtGY828Ypc8IoDnwoapuLEb2TuBt/xcR2R8QVzpNRE4Xkc9EJCs41lREqnnxyd+IyD4R2SMiS0Tk7OBORKSqiFwpIl+LyF4R2Skin4rITSLSPEj2DBH5wItBzhCRb0Vkpoh0D9FuJxF5yZPNFpG1IjJdRBKD5IL362wRWe6VbxGRu0WkSoC8T0QU+D+vaENg/bI6Vl47GrA0E5E5IrLd6+9bEbkoWM+gZVrA9sA4fg1zDkSMiPyfiPxHRDK95XMRuTiM7Ehv+6/i5pssE5G/iUi7ILmTRGS+9ztkicgPIvKEiPSLQJ+04P0P2r5GRN4MKguUTwtxDH0BsunAUu/r1ACZ9DD6NPXOx9+8fXlPRNoUtx9e3Wme/q2AVsE6icjJQWUDROQaEVklbi5P/lwNEekgIveKyFcisltEfvc+jxMRCep3dqj98vYlsL8xInKxiKwUd62lS9DchGKO5b+Djnt7cXMDMrzr4WURaRjm2JwjIl94186vIvKmVz/qeSoi0kCcPdng7cc2EZkb4rws1LY4m/GZd97vFZF5ItIhTB+dvfNgu9fHehF5QERCPmUVkY4i8qIUXOfrRGSBiPxFRGqFqRPRuSYiLcRdT+u947deRF4XkeEiYtEXRvmgqrbYYkspLsALgAL3xljf59X/AHgP6AjUBeYC6Z5MVWABcAAYC9QBmgL/8OpOCmrzASAH50zXA44GxgEHgWkBcoO9+g967dXGzVHYAqQFtZkKZAH/BToDCcCZwA7gW+CoIvbrJaAN0BCY6ZVfH+JYzPa2JR2uY+XVSfO2fQWM9I5DS+BVr3xigKwAG4D9QIMQbd0DPB/hb5/ktT87xLZZ3rYp3u93NHCrV/b3INnxXvmNuLCyusD/AzIC2wZ6esflRZzTWxPoDaz0H78IdL46zDnX2SvPBGoGbXsx+PcGpnnyvjC/8bQidEj3ztF/4+bY1AXOAHYD30d5/aUXte8Bei4C7sPd6LcAfvAfW+/c+g0Y4p1vjYDLgGzg/mj6BcZ4/S0GHgaaAcfiriEFhhWhoy/ENsWFHr4PpHjHajTOPiwIIT8ayMNdY+1w1/nZ3v7+Gul54rXVFFgD7PR+nwSgC/CFd7xOCHM9rAE+A07w6viAn4FfgOSgOgNwdulD4HhP/lRPfi3QJIQdy/TkO+KugT/gnsoqMDTWcw035+In4Dugh9d2MvAmRdg1W2wp66XcFbDFliNtAb70DPvVMdb3efV/A+oElPfAc/KACZ7M3SHqf4Zz6rsFlP0KLA8hO4fCzv8bXrt1guT+QoDz7/2JbQZygXZBsn/22rgrzH7tBGoElFcD9gLfhNBvdlF/kmVxrLzyNK/OHUHlCd5+ZwMtAsqnEHRT4JVXB7YB/SP87ZMI4fzjnEgFXghR50Vv258Cyr4Cfgkh+zcKO//+G68uQXIDidz5b+m18VFQ+RTcDVGwbtVxjlLweTONkjn/CpwXVO6/wesexfWXXtS+B+j5flD5aOAK7/NNuJC/4LoP4pzsJpH2S4Hz/21QeROv/K0idPSF2Kbe8oeg8ndxTn6DgLJ63m+1Fzg6SH6s105E54lX53Wvzp+DypO9vj8Ncz3kcqiT/ydv27sBZTVxjnkGcEyQ/Bme/GtB8pu9/WsQJH+s91uFcv4jOtcoGEy5Oki2Ns6GJEV67GyxpTQXC/sxjNKnnrfeV8J23lPVTP8XVf1aVcd7X8d56xdD1HsJN9p9eUCZAseLSLcg2QnAI0Fy4EKXAnkB59z4GYwbgfxQVdcEyb7srceE0A3g36p6IL9DNydiDW5UMVZK81gF8nLgF1XNBt4CalD4GP0LdxNxWVD9IcBvqvpRJDtRBEXtg7/sykBVgQYiMihI9j7c04BAOYALgsJRPsSNiBaLqm7C3Wz0CQobGQJMD/jsxwdsCXHelJQ8AkLoPH701iU5t8LxSuAXVZ2rqrO8z/eq6uMh6nyPu9k9KYb+5gf1tx13Ux/Lvv2sql8Fla3CPcVqG1A2BEgEFqlq8GTkUOdiWESkKXAuzul9PnCbqq4FluPOoVD786UnE8h7OKf9TBFpHKDvsZ6+u4LkFwG7gPM8XaDAji3SoDkSqroVF5aZHkKfSM81//X1JxHJz7ykqr8D7XFPIwzjsGPOv2GUPnu8dchY0SjYFKpQROriHmcDrA4h4i/rFVD2IO4R9Jci8o6IXCQi9VX116A/vcdwYSBPiYvJv05EktRNINwcIHeit/4muHNVzcI5Jc1E5NgQ+m0JUZaJGw2LldI8VoGEmrPh/5PPnwPhOQoLcDdYgU7zZcBTYdqOBr9+ke7Dw956oRffPU5EmqhqhqruCJD7J26U9DZglYjcKiIdVfWgqkaT0nAe7ibqHABx80iScSFPvwDnSMGcjiGefGnzix46YdZ/Q1iScyscIc85cJP+ReRqcfMsdknBfIh/eiJHx9BfaV434doiqL0e3vrHIFm8m+1oJhWn4G4uVgbe/AewKUAumEOuQ1XNBdZ5bXb1isNeJ6qqwP88+Z5B8ofsn1fnDlU9xMYR+bm2GFiBe+qwQUQeEZFUEamiqj9pmGQQhlHWmPNvGKXP/7x1ixK2E+7Jgf/JQk6IPyBw8a4QkBtfVe/E5cz/FDgLl41oi7gX19QNkPsA59i/jIvFfQBY700WbB/Qh39C78SgCYZ+J8c/sa5JhPulIcqiodSOVSGlAp4mhKiTGFT+pLe+DEBEWgN9gWfD6BYN/r6yQmwL9Xs/hxthf8/TYRbwszdBsWmA3ErcTcxTuBHQvwErvYmV/hu8SHjLW/tH+AcDC1V1Py6cpAkFo92DCRrFLiWKOq8kxLay6A/vCcp84O+4uPquQBV1OeIvKYE+4favNNsiqD3/9RPqvAN34xgp/nO4RxibcZ63PZTNCHUdBuqVGLQOp2/wtVI/qDxSIjp+3vnfBxeGlY2bi5MGrJUwE/UN43Bgzr9hlD7veetinScRqSfuLcDR/IHv9tbVRaR6iO3+x8uFHtOr6jxVTcVN7LwRF3t/OW7yWaDct6o6AveSoItxk/HOAD4JyJbh1+EuVZUillCjZoeTmI6VHxGpU0SdPUHlC3GT+84XkWNwMdFvhQg/iAX/foR6aVO43/sjVf0jbpLllbib0uHA0sBjoarrVfUy3O99vrcfvYEPRSQ5EuVU9TvcpOfTRaQ2hUf3/Y7+EBH5Ay5k6otI2q2k9MZ7kZ+q3qyqm71R58qI/xwP97KwumHKQ+E/hz8txmY8FKJuqOswUC+/nkVdJ4Hl/mulOPkS4z1tuwM4DugHPI0bGHpWRC4sq34NoyjM+TeM0udlnBPYX0RahRPyYkA34EZII3YOvLCald7XjiFE/GX/DehrqD/sQlU3qer9QDdcSMZAEanvyfX1x8+q6l5VnYMbuVqMy1jS32vS77wlhdm3luJShpZ0xLVETlMsxyqI40KU+cOIvg7qKw8X1pGAc/wvoeBpQEnx6xfp7326/8ZFVX/xYtF74I7F8bhMPIjIH0QkyZPbr6pvqOqZ3n7UxE2qjJR5uFC383FPG/w3wQtxo55DcKP+b3vHKlIOt+Nc0v6SvHWoOQ0lDQU83PjnBRwfvME7v6J5QeEyXKx8UqiNInKUiJzp3TgHc8h1KCJVKZgo/K1XHPY68exfe09+eZD8Ifvn1RkjAelSo0VEjhORFHBhR6r6iaqOxSVFABgWa9uGURLM+TeMUsaLZ70Ql6FilvcnFYo7cbG/t8XQzSxvPTLEthG4P7hAx/NNoFBObFXdjYv9PYjLauHX6fwgOcVNBoSCx91v4yarDRaRUPHLjwGTS2HE0z9CVxNAREaIyOdRthHtsQreno+4F7gNwTmzL4WQ/yfud58K7FXVtCh1DUdx+xAoA25/CuXp985L/6RJ/+94DXBFiDZ/CJKLBH/oz3Tgc1Xd4/WbicvVfzwuJCraeP/gc6CmiKwQkYFRthNNfzX9X8Tlh3+kCPlg/PHpXULc/PYtqXKHmfm40fFBIa7zUOdiWLy5Jq8DzUXktBAi43ADJ9khtvUM8RTqbNyTh3dVdWeAvps9fYNvIgYBxwBvBMx7CZQvdCPj9fcvCkKfYuFU4NEQ5bFcX4ZRapjzbxhlgKp+ghvlPAlYIiKneSE+dUXkRBF5EZdp5wpVfTeGLh7D/XFNEpGx3qhZExH5B3AyzvH+LqjOv0Skl4jUEpFGInIDLh75aW+E3M9UcS/1SfT0HYwL//kO74VLXtabkbj41n+LewHSUSLSWkRm4ZyciTHsVzD+EbqB3tyEMYR2DooilmPlp4e4l2XVEpEWuCwlzbw6m4OFVXUL8A7OeSyNib7+dhfgUgmOEJEpInK0iNQXkSk45/8fqvpOULWHxL30qY4nOwb3HoZ/q2rgBMerReRCcS9fqi1uwvK1uBvDV6NQ8xNcNpVjOTSm3/+9Hi4OPhrW4hzQPt5o8yjcjUR6lO1EynKgsYh0FZHjcOd5NBNbP8ONKHcCHhGRY71jO4lDs2hVaFQ1AxcyVgd4VUSSxU1mPhs3wLE9yiavxoWfzRGR87zzuJGIXA3cBUwIM89mGfCkiHQRkRreOToL9+Qy/0Vnnl0ahbNLb4jI8Z78qbgb83WeDsHyVTz5jt7N5cm4G5V3cRP5S8KJInKPuJd9JYhIJ1zWrRxC3xgYRtmjFSDfqC22HKkLbqTpDlyISAYuk046bsJtrxDy6RTk4fYvs8O0XRV3A/ENbgRpL845/2MI2bNwOf1/xE1u24UL3bkUqBog1xU3yfdbnMOTiQsV+RtBeb49+Q44h3gbzinfgMvN3z6C/UqiIId5yP3FpUX8h9d+/ot4yvJYefJpXnt1vf63evv3HXBhMb/5eZ5swyjPlVD7MyZI5iLgc+83zAL+A1wcoq1TgMdxI4x7cTHR3wDXA7UC5NoCf8U5vDuB33HO2cNAsxjO99me3q2Cypt75W+GqOMLsd8aJDPYOw/3AeuBS73yaSHqTvO2FdlmEfvQDOfw7cZdJ3O98yApVJvBv5HXRiIuw9Y671zYjLsZvClYn4Bjdsh5HG4fwu13UccyTD9jwuxXetD+nI2zF/u982QObmLuz8D/ojxH6uOeDq31js1W3AuzTgsh69dtNm4O1Qc4O7oX9wSpfZg+OuGezO3A2dwNuHdaHPISvgD5F3E3M/tx2YJuB2oHyIQ85sX8TvWBq4Al3rHaj3sy9BqQEu31ZYstpbWI6uEOpzQMw6jYiEgakKouQ0u0dacBx6ubNG0YRyReOON+4GNVPbWM+kjCOe7PquqYsujDMOIRC/sxDMMoASLSTkSaeZ+r4UZTnyhXpQyjlPBCVsaG2HQG7slcScNiDMM4zFQrbwUMwzAqOZcDTUTkMlz88U5VXVrOOhlGaXEscJmIbMOFw1XDTSZ/FPiSwhPNDcOoBNjIv2EYhoeITBP3wqFU77t6IUBFsQEXE/0bLhPQ6DJV0jAOL4/iYtTvw8WtbwPux8X9+1S1TDLWiEg67toC+D/vWhxTFn0ZRrxhMf+GYRiGYRiGESfYyL9hGIZhGIZhxAnm/BuGYRiGYRhGnGDOv2EYhmEYhmHECeb8G4ZhGIZhGEacYM6/YRiGYRiGYcQJ5vwbhmEYhmEYRpxgzr9hGIZhGIZhxAnm/BuGYRiGYRhGnGDOv2EYhmEYhmHECeb8G4ZhGIZhGEacYM6/YRiGYRiGYcQJ5vwbhmEYhmEYRpxgzr9hGIZhGIZhxAnm/BuGYRiGYRhGnGDOv2EYhmEYhmHECeb8G4ZhGIZhGEacYM6/YRiGYRiGYcQJ5vwbhmEYhmEYRpxgzr9hGIZhGIZhxAnm/BuGYRiGYRhGnGDOv2EYhmEYhmHECeb8G4ZhGIZhGEacYM6/YRiGYRiGYcQJ5vwbhmEYhmEYRpxgzr9hGIZhGIZhxAnm/BuGYRiGYRhGnGDOv2EYhmEYhmHECeb8G4ZhGIZhGEacYM6/YRiGYRiGYcQJ5vwbhmEYhmEYRpxgzr9hGIZhGIZhxAnm/BuGYRiGYRhGnGDOv2EYhmEYhmHECeb8G4ZhGIZhGEacYM6/YRiGYRiGYcQJ5vwbhmEYhmEYRpxgzr9hGIZhGIZhxAnm/BuGYRiGYRhGnGDOv2EYhmEYhmHECeb8G4ZhGIZhGEacYM6/YRiGYRiGYcQJ5vwbhmEYhmEYRpxgzr9hGIZhGIZhxAnm/BuGYRiGYRhGnGDOv2EYhmEYhmHECeb8G4ZhGIZhGEacYM6/YcSIiNSLsV7d0tbFMIzKTQnsSS0RqVba+hiGceRizr9hRImIVBGRvwEzYmxiqYicF2PfzUVkpoisEpEtIrJXRFaLyBwRGS0iRwXIfiUiO0VEReQHEakZor3hIrJNRPaJSKb3uZ+IJHmf93j1/xVGn4c9uVwR+dX7XDWWfTOMeCTYnojIJQHXVFoETTQDvhSRTjH230tEnheRdBHZLiK7RWS5d20PEpEqnlyJbIKIjAqwNSoiF4epvyzAbm0TkXmx7FcU+3+piOwSka4Ryt/u6aUiMrssdSstRCQtwnMpXP2nAn6TaaWnWUy6TI7m+Hv/ff5z1lf2GlYSVNUWW2yJYgEeBT4D6sZYvxOwAxgWZb2zgAzgH0Bzr6wacBLwIaDAsqA6SV65An8vou3ZwLQQ5WMC6p9fRP10wFfev40ttlS2JZw98a6ptAjbGA78ArSLsu/bgSzgaqCOV1YLON/rX4H7g+qUyCZ4tkaBPUDrMHWTnHtyWI7/9cBB4OSg8mmenklh6ikwu7zPnwj3cQWwooRt+P9LpkUoP7ssf8Nojn/AOesr79+ioiw28m8YUSAiZwPjgEtVNSOWNlR1JfA34GkRaRxhv92AN4A5qnq1qm722jqoql8AZwOrgOphmkgHrhaRs2JQeQuQAzwpIs1jqG8YRghKw54AqOrLuAGA2SIiEfZ9OXAHcImq/kNVM7229qnq68Afgf2EtikltQnpQD1gTnk/KVTVGUCiqv6nPPUoY3p4i2EAFvZjGNEyFXjXc+BLwpPeekKE8g8DVYHbQm1U1SxgVhH1R+FGt54RkUaRKumxBpgCNCAK58IwjGIpLXsCcB/QBzitOEERSfTkv1bVV0LJqOoPwLthmiipTXgWeAc4Bbglyrqljmc/j1hUNUdVc8pbD6PiYM6/YUSIiLQBTgQ+CLVNRB7yYvG3ebGu74pIyNEWVc0GPgZGRtBvWyAV+FxVdxUhOhv3eDNUf5/jRvmaAE8X12cIZgCLcY7FxBjqG4YRQFH2JEjuVBH5wovH3yIid4aZ4LsM2Iu70S+OYbiR97eLkZuAG3gIRUltwiXANuB2ETkxhvqIyBUB8dy/Bs4PEJFxInJAROoHlKV7cw72eHMrXggVyy4iP+DCgQCWeTZ9m4gkh9BhmIh847X5tYhEcvNVIr0Dyk8XkY9E5Ddv+VREhgRsb+Tpnen1lRSkR7KILBCRDBH5WUReF5H+nqx/DljtEPpfKSIrPX0+DfyfE5HaIrINF4pGwLHbJiIJkeoeINdYROaKm4uyWUTmi0ir4o5xJIjjKhH5zru+tonIKyLSPkiuqri5BqtEZKuIbBSR90TkL0Fyl3rnwhbveKaJyPjA/a4omPNvGJHT11uvDrHtbOAC4AJVbQq0wcW0fuT9yYdiFdBaRFoU0+8p3vqHooRUNUNVvylC5G5caMBgcY/8I0Zd4OTFwE7gbolwcpxhGGEpyp74aQ1cC/xJVZsA1wA3AY8FC6pqHvAj0C+CviO1KT+r6oYw20pkE1R1p1e/KjBXApIVRNHGLNxcKHCx6IHO4xBcyNJZAfJJuPj301T1GVUdBfQK0W5nChI69FLVpt6yNkj0RKA3cDJuYOUn4G0RObYs9QYQkVHAv72libe8DbwlIn/26u30/o8OSU4hIg2Bj4BWQGegJW4+mf+p9Axvn38PqjoMNy+kq1e3KvBvv4Orqr97fb7sfW8asGRHqrsnlwC8D/iAvqraHPf0269jSZkF3A/c6F1fHXDz6P4rIp0D5G4DxgNDVPVYoCOwmYCBNBEZAzwIXK6qzXDX7ofAI0CR50N5YM6/YUSOfzRgW4htO4A7VPV7AFXdDYzFGckrw7S3NajdcPgNx+7IVT0Uzzm4EPgVmCkiHaKsvw03WpeA+7M+JHuQYRgRU5Q98dMcGO85yqjqa8B8YKyInBBCfiuQJCLh5v74KS2bUiKboKqLcY5pMuGfMBTHf3D2d7C/QFw65W7AAZwz7S9vhtv35TH2FUxD4GZV3a+q+3GOXk3gzLLUW0Tq4CaKf66qd6vqAW+5F/cEaHoEo82TvTZvVdWN6lgKPF9MvYOq+oA332w3zhFvjAs5K5Yodb8UOAG4T1VXAKjqt8CcSPoqRo++wOXAv1T1317be3D/10d5OvoZAnyhqv/z5LKAG3A324Ey//Pm4PlDraYCX+Hmx1QozPk3jMg5xlsfEh+qqq+o6hNBZZm4iXGdg+WD2mlYTL8atI4ZVf0ZZ1Br4/6si3MSguu/g/uT7gJML6k+hhHHhLUnAaxX1Z+Cyvxx+OeEkM/CjcQeXUzfpWlTSmoTpuCc2r+IyLkx9J+Hmz/QX9xcBnDO9yIgDTgzwM4NBhZ4Ty1Kg+WqeiDg+8/eullxFUuo9xlAfU82mGW4/5SexajwJ2/976DypcXU+yzoe8T77BGN7rHqGAnDvfWCwELvhnYZkCoFCTl2AGeLyFgRqeXJ/aaqxwdU3QH0EJGbAkO2VLWnP0FHRcKcf8OInBre+mDwBhFJEJFrxcXmbvHHOOJG7mqFac/fTo0w2/34RwaL+0OPCFV9E3gcZ2DviKGJycC3wHgROaM0dDKMOCSsPQlge4gyvz1oHWJbudgUSmATvImoI4FM4KniQmbC8DaFQ2WG4J6QzAcScWEj4Jzo+TG0H45fgr77bwQiHVSJVW//3IPrgmLqt+GOZRbFh5q0Bnb7Q3ECKOpJFJR8n6PR3X+OB+tUnI7R6LE1xLYtQTITgPW4pxw7vHkBZ4kUmug+DfgcuAfY5s2luEAq6Av4zPk3jMjxxz6GMnJzcbGDD+LyQjf14h43FdGe/w86OKYymE+9dUwv8QnDdcBKYLKI9I+movdnMRLYh8v0UdyTC8MwDqUoexIr5WJTSmoTvFj6q3BPQ54Fos0etAiXlnSw52wNBBZS4DAP8cJNip1gHSV5JaxfUr2nBsXUN1XVBqpax0vXWhaUdJ/9lIfuMaGqq3FPts4AXsXdrL0LvOG/AVDVrap6Cm4+zVO4eSAvAx/7nxZUJMz5N4zI8Y8GFBotE5GjgfOAxar6UtBj4KLwt1PkI0FVXYd7zNlHRBqEkxORqSLycSRxt6q6DxiBG7WZgxtlihhVXYWbiNiU2LIHGUa8E9KeBNEkRFlTbx1qIu7ROAf8t2L6fs2T+VNRQiLytogUlUI4n5LaBFV9DngBGOS1E03dLGAJzikbCHylqlmqugn4GhcidSbwYYiR7nKjBHr/z1sf8o4FEakhIqd58weKYgNQP8T/RdNQwqVINLr7z/FgnUpDxzXeOlS4kr9sradXVW9OxCJV/TPQAneDNhQ41S8jIqKqn6nqeE/mCdxNQCQZuA4r5vwbRuSs8NbB2XkOUPDGy3xEpAah/7z9tAByKTrbh59rcJOGQobpiEvhdj1uUtL+CNrDm5x8PXAcAZPLIkVVn8I5EUO8NgzDiJxw9iSQNiISfG390VuHStPZAvihuJh2b2LjJKCniJwfSsYr/xMuLj0iSsEmXIELrxgfQ935uFjy6RQOkZnv6TKF6EJ+/HMxqoHL5iIiF8SgV3HEovdi3M3b0KDQE3AO6UtAcTc5/vMnOEzLF5HWxZMF4A97EZFJIjKQ6HT36xg8gbo0dPS/3+KPgYUi0hSXASpNVXd4xetEJD8rlHf9POV99cf3f4DLhOSX2Y/LnhQoU2Ew598wIucjnAPeLbDQG715DzhdRIaCy3UM/B2X+SEc3YH/eoakSLxMB+cCF4vII172B0SkmoiciTOon+H+KCJGVR/F/bHE+uKuscDGEtQ3jHglpD0J4jfgcX8YjeeQnwM85c8s5sdLldkOZwuKRV3KyFtwYTpX+lNtishRIjIOeA6XwWxBUe2EIGaboKr+9xTkRlsX5ygqLgVl4I2R33E+gShuZHCpmAE6edlnbqBsUjZGrbeXTGIcLqX0ff6wEhHpjZt8fUsET6Dvw8W7/01EWnr1U3Fpq0uDwONXH7gZqBOl7v/E3STf4E+96aWUjeXmsBCq+gluZP7P/nkq3sTrx3A3LlenQEEtAAAgAElEQVQHVblDvBdkenKX4NLcLgmQmSzeOwi8JyrjcE/i5lHRUFVbbLElwgX3WPp7QILKG+AMyWbcrP+vcHH1G3FPBrYBnQPkW+L++P8cZf/NcfMK/ue1uRn4BGeIqgfJfoUzTurJzgvT5jFeO9MCypK8OnsC9J8cpn5f3ERDX3n/PrbYUpmWUPaEgpdf5eKyvpyLCwHZgQsVuhOoFqKtkV6ddlHqkAK8iJuftA1IxzmeA4PkSmQTcE79NpwzlOl97hem/s14rxKIcl+WActClG8EPg5z/P020q9TgretCi4xwnack/wyLkvaFZ6cevuyzSufEtTWj2Wld8D2U3HO5y5c1p3/AP8vYHsjT79MT6+dwOMB29vist3s9fqa450PCtweIHd30L794JU/jksdrd558X5AnaNwo+s7cP8vjwWd50XqHiDXGDenbrd3/i/Gxd8HHv8ORRyjHzzd1NP1nYBtgnPyv/f03I6L6e8Q1MY5wOu4MKStuPc5zCXgWsO9X+M5XKjQVm+f5gF/OFz2JJpFPKUNw4gAcS/s+h4Yo6qvlqCdx3GxgCmqWlS2D8MwjlBK0Z5UxWXbSVPV4BFLw4gYETkJ54hfre7JsHEEYmE/hhEFqroeN4L1D4n9lfRX4uIMzzPH3zDil1KyJ1VxI7Y7cXH8hlEsInKMiIQKg+rtrT86nPoYhxdz/g0jSlR1Hi7vcqyxkT2BE70/fsMw4phSsCftcWEIZ2gFymRjVHiq415cNdGfqcZL+3wT8LwGzSkxjiws7McwDMMwDCOO8CYx34SLZ/e/jHIHLm79XnsqfWRjzr9hGIZhGIZhxAkV8rXDRwoNGzbUpKSkqOtlZWVx1FFHlb5CRxB2jIrHjlHR2PEpni+//PIXVW1U3nocLsxmlx12jIrHjlHx2DEqmkhttjn/ZUhSUhLLly+Pul5aWho+n6/0FTqCsGNUPHaMisaOT/GIyE/lrcPhxGx22WHHqHjsGBWPHaOiidRm24RfwzAMwzAMw4gTzPk3DMMwDMMwjDihUjn/IjJYRJaJyEci8qmIpERQp5eIrBSR2WG27xaRtKBleJDMsSIyT0Q+F5GvROT6UtolwzAMwzAMwzhsVJqYfxHpiXsV94mqulJE/gQsFJHOqrotTJ3JwCDca53D8Y2q+orotwrwNvCeqt4mIonAVyKyV1WfjHV/DMMwDMMwDONwU5lG/m8GFqrqSgBVXQBsB64qos4qnPO/swT9ng10Bx7w+t0DPAHcKiJSgnYNwzAMwzAM47BSaUb+gdOA6UFly3DO/W2hKqjqfIAS+uinAetUdXdQvy2BDsDqkjRuGOHYu3cvO3bsICcnJ6b6iYmJrFq1qpS1OnKI9+NTvXp1GjduTL169cpbFcM4IjCbXfbE8zEqTZtdKZx/EWkAJAJbgzZtA84qYfNNReRl4FjgAPAWMEtVc73tbcL0699mzr9R6uzdu5ft27fTvHlzatWqFdMNbEZGBnXr1i0D7Y4M4vn4qCr79u1j8+bNAHYDYBglxGz24SFej1Fp2+zKEvbjf6NDdlB5NlC7hG2vBW5V1f7ApcA1wCNBfYfql1Lo2zBCsmPHDpo3b07t2rVL+uTKMA5BRKhduzbNmzdnx44d5a2OYVR6zGYbZUlp2+xKMfIPZHnrhKDyBOD3kjSsqn8K+JwuItOBp0TkNlX91es7+BbLr8chfYvIZcBlAE2aNCEtLS1qnTIzM2OqF08c6ccoMTGRgwcPkpGREXMbubm5Jap/pGPHx40mZWRkHNHXkmEcDnJycqhVq1Z5q2Ec4dSqVSvmsLJAKoXzr6q/ishuoGnQpqbAulLubh0guJCeX4H1wJkh+vXLFsLLAPQkQEpKisbyJjp7g13xHOnHaNWqVSV+rBevj0cjxY6Po2bNmvTo0aO81TCMSo+N+BtlTWmdY5Ul7AfgfSA4r3+KVx4TIjJQRAYHFTf31hu99WIgWUTqB/W7SVV/jLVvwzAMwzAMwzjcVCbn/17gDBHpCCAiZ+Mm6T7qfb9TRFaISM0o2mwJ3CAitb02EoGJwOuq6g+qeg/4xitHROrhwnruLPkuGcaRQ1JSEj6fL38REY4//vj8702bNi1xeMn+/ftp2bIly5Yti6regw8+yNChQ0vUdyQ8/PDDHH/88SQlJZV5X4ZhGCXBbHb82uxKEfYDoKpfisho4DkR2QdUBc4IeMFXTdwE3PxnIl78/Shcnv7jRSQNmOlPAQp8APwBWCoi+4G6wBLgjoB+87ynA4+LyOdeP0/aC74M41AC/yhEhJtuuokxY8YA5K9LQvXq1enQoUPUIVFNmzalTZs2Je6/OCZMmEBiYiLTpk0r876KQxXy8uDgQahSBapXL2+NjmByc+HAAahRo7w1MYyoMJtdcWz24aTSOP+Qn7d/fpht1wPXB5Xlx9+HqbMJl92nuH63AMHhQYZhBHDttdcWuX3o0KElHl2pWrUq778ffaTfyJEjGTlyZIn6rgz4Hf7cXLcOLDfKEFV3l2XOv1GJMJsdv1SmsB/DMCowkfyRHH300fh8PmrWrMmMGTO4+OKLOfnkkxER0tPTSUtLY8CAAfh8Pnr37s2YMWPYvbvg/XoDBw6kfv36+aM0L7/8Mt27d0dEWLBgAYMHD6Zdu3aMHz8+v86cOXPyZfycddZZtGzZkhtvvJErrriCU045ha5du/LVV18V0nn+/Pl06NCBk046iaFDhzJ16lRq1qyJz+djz549ER+bZcuWkZqaSq9evejSpQs333wzBw8ezN/+wgsv0KtXLwYMGEDv3r25+eab87ctXryYk08+OX/bNddcQ1ZWVv521YKB5+xsyMlxZVWquMXmIB4mAu+2DKMSUNlsdv369bntttsqvc2uEKiqLWW09OzZU2Nh6dKlMdWLJ470Y7Ry5coSt7F3795S0CR2AH3mmWdCbmvVqpV27dpVd+3apaqqgwcP1p9++kknT56sDz/8sKqq5uXl6aWXXqqXXHJJobqpqak6derU/O9Lly5VQKdPn66qqtu3b9eEhARdsmTJITKB9O3bV5OSknTbtm2qqjpx4kTt379//vb09HStUaOGvvbaa6qqunPnTm3Tpo22atWqyP1+5plnCsns2LFDExMT9dlnn1VV97t07dpVb7nlFlVV3bx5s1atWlXXrVuXL9+gQQNVVc3JydF69erpBx98oKqqv//+u3bo0EHXr9+gBw+qZmer7tvnlv373ffgxV8ejqLONWC5VgBberiWmG32okWqu3fHVDdeMJtdPGazi7bZqamp2qpVq0ppszds2FCkDtFQGja7UoX9GEZcc+218M03EYvXys2FqlVL1mf37vDQQyVrIwznnnsuDRo0AGDevHkATJw4kfr1XWItEWHYsGERx536HxE3btyYTp068c033zBgwIAi65x66qk0adIEAJ/Pxz//+c/8bU888QSNGzfm/PPPB6Bhw4aMGjWKOXPmRL6TwD/+8Q9q167NRRddBEDdunW54oormDhxIrfeeivbt28nNzeX9PR02rRpQ6NGjXj33XcBl4507969bNiQjirUqFGLuXNfoX79JuTkuFH9Kvb8tmJQCrm3jSMMs9lFEovN7t+/f6Ww2enp6YDLy//KK6/k61xRMOffMIxyoWXLloeUZWdnc9VVV7Fy5Upq1KjB7t272bZtW4jah9KsWbP8z3Xr1mXv3r0lqrNq1Spat25dSP64446LSJdAVqxYQdu2bQEhL8+F5LRuncz+/ftZvXotXbp0Z/ToizjttNNITfUxbNgIRo4cTXY21Kp1NDfccDOXXTaWWbMe5//9vxFcfPEYjjrKXiZU4TDn3zjCqQg2u2nTgtc9lbXNDgw7Sk52Nnvt2rV0796diy5yNtvn8zFixAhGjx4NwNFHH83NN9/M2LFjefzxxxkxYgRjxoypcC+AM+ffMCoLUY7m7KvgL7GqGmKE66yzziI5OZmlS5eSkJCQH08abXsignsCGl2d4ohExt9tbm7BBNy8PBeP7yc3t2Cdmys8/fRzTJo0mTlzZjNt2hQefPB+PvtsGfXr1+fOO+/m0ksv4/nnn+XRRx9i5szpfPjh54clE4YRBQHxwIYBmM2Oor3ytNnRIiI899xzTJ48mdmzZzNlyhTuv/9+li1zNvvuu+/msssu49lnn+Whhx5i+vTpfP55xbLZ9sDYMIxyQQMy0+TkwLZtu1i5ciXnnDOUqlUTOHgQ9u07APid5AKHOtCp9s+zjOB/Iyo6duzIhg0bCpVt3Lix0PfgfcjOdj6gqvt+8CB06tSF9PT1iGj+JNwNG9ZRs2ZN2rVLZuvWzfz3v5/TuXNn7r33fr7++ge2bt3C0qUfkJGRwaJFC0lKSuLWW6fy3XerqVWrFvPmvVm6O2uUHBv5N+KMXbuczR46dCgJCQkAHDhwoNz0icRmR0KXLl1Yv359oZuRdeuczU5OTmbz5s18/rmz2ffffz8//PADW7Zs4YMPnM1euNDZ7KlTp7J6tbPZb75ZsWy2Of+GYZQ5wU6yepkRDxxw33NzoX79BjRp0oQlS5aQk6McPAhvvfUW4GT8iwZktzlwoGDANTsb9u93aw3IcR+Y9jKSGwR/3bFjL2fHjh288spr5ObC9u27eO211wHXr7+vwH0AF4fvj8WvUgWuvPJqsrKyePHFuQBkZmby5JOzmDDhOmrVqsXatWuYMmVyfiaJvLw8VJXk5Hbs2rWLCROuys8Uoark5ubSrl37UvplKh4iUkNE7hWRgyKSFGL7pSLypYh8IiKLRaRtCJlbROQrEfmPiLwuIo3LXHEb+TfijAYNCmy231H22+zy4PLLnc1+7bXXAHdz8vrrr0fdztVXO5s9d26BzZ41axbXXeds9po1a5g8+VCb3a6ds9lXXXWozW7fvoLZ7EhmBdtymDNHHOFZEUqDI/0YrVy5UnNzVQ8cUD14UDUvL/o2yitzxKeffqapqakKaPv2HXTy5Cn5GWkyMw9qv36pmpCQoO3bd9DRoy8qlJlmyZKPtVu37tqlywl6zjlD9Morxyug/fun6k8/bVWf71RNTEzUVq1a6U03TdE331ygXbt2y5fZunWXXnTRGE1MTNTjjmulf/3rPfrPfz6XL9OvX6quWLFGzztvWH4706c/oIsWpRWS2bBhq+7bp/rqq/O0Xbv22qvXSTps2HC94467tG3b5LCZdWbMeEjbt++gCQkJ2r9/qu7alaHZ2aqffPKF9u3bT3v2TNFOnTrr9ddP1qysHM3OVv3pp6168cVjtGfPFO3fP1V79kzRJ5/8l2Znq/76a6ZeeeV4/cMfempqqk//8Ieeeued94TsO9xSmbL9AEnA58CzgAJJQduHADuApt73q4F1QM0AmWuAVUAd7/sM4NNI+i9Rtp9Vq1Rzc2OqHw/Eg80uKeVlsz/7rMBmd+jQQadMmZK/7eDBg5qa6mx2hw4d9KKLLipU9+OPP9bu3bvrCSecoEOGDNHx453NTk1N1a1bt+qppxbY7ClTpuiCBQu0W7du+TK7du3SMWPG5Mvcc889+txzzxWSWbNmjQ4bNsyz68fpAw88oGlpaYVktm7dqqqq8+bN0/bt2+tJJ52kw4cP17vuukuTk5PD7vtDDz2kHTo4m52amqoZGRmqqvrFF19ov379NCUlRTt37qyTJ0/WnJwcVVXdunWrjhkzRlNSUjQ1NVVTUlL0X//6l6qqZmZm6vjx47Vnz57q8/m0Z8+ees8995Tq71UaNlucrFEWpKSk6PLly6Oul5aWhs/nK32FjiCO9GP0ww+raNu2Y/53EfeG1mgyu2TEGD8aaBKK+xxqHWxS/CPhFY19+zKoWdMdn1D6qSq7du2iYcOG+WXTp99NWtpS3ntv8eFSs8Souv0L9/6pVatW0bFjx5DbRORLVU0pQ/WC++sC7AdaAEuB1qqaHrB9OfChqk7yvlcHfgGuU9V/ikgVYCtwp6r+3ZNpAmwDTlPVD4rqP2abvXgxvmbNoH17e5VyGI50m13UdRQpsdrseKKoYxTKZt99990sXbqUxYsrj80ujtKw2Rb2YxgViLw8+OUXF0ISGDoCBWEuZfUuIX+YTHZ2weLv0x/a4l8OHiwcUuN3+gN1rugvmfLflITTLysrC5/vFH7//XcAdu/ezYsvzmXUqAsPo5bxhaquUNW1obaJyNFAT2B5gHwO8A0wyCvqCjQOktkObAyQKRtU7UVfhlGOZGVlccophW323LlzufBCs9nBWLYfw6gg5OTAli3O6Q52Sv3fVd32atVcOuiS5nj3O+0HDxb4LZY33pGQkMApp/RlwIC+1KtXj3379nHJJZdy4YUXl7dq8Yo/h9/WoPJtgD+NRpsIZMoOc/4No9xISEigb9++9O1bYLMvvfRSLr7YbHYw5vwbRgUgMxO2bnWOd506bqQ9FCLO6fdnvqla1d0IRDu6rlo4e469LOpQqlevzhNP/LN4QeNwcZS3zg4qzwZqRyFTCBG5DLgMoEmTJqSlpUWtWOb+/aRt2gQ7dtiFFIbMzMyYjm1lITExkYyMjBK1kZubW+I2jnSKO0YPhUivmpmZWZYqHXb2799f4mvJnH/DKEfy8mDXLrccdVTkL3f0+xd+B97/JKC4mwB/xp3AzDTmqxiVhCxvnRBUngD8HoVMIVT1SeBJcDH/scSlpy1ejO/YY6FlS0hMjLp+PBAPMf8ljde3mP/isWMENWvWpEePHiVqw5x/wygnDhxwo/3Z2VC3bmyx8X7H3R+DH+omwB+K7M8/H1jPMCoR/gTeTYPKm+Iy/gCsDyhLD5JZUmaagbuoLNe/YRiVAHMBDKMcyMiA9HQ3Al+nTsknxfon1/pz5/vDefwTeP0+SeAEYsOoTKjqb7iJvPmZLLxsP92A972i74DtQTKNgeMCZMqGqlXN+TcMo1JgboBhHEby8lxY8ObNUKsW1KxZuu37HfvAF2lV9Kw7hhEFdwIXeek7AcYCu4C5AKqaB9wNXCki/vj/64HPOBwj//aiL8MwKgEW9mMYh4kDB1w2nwMHYg/ziYTAFJY2ym9UJkSkBrAIqO8VvSQiW1T1PABVnScijYD3ROR33DsBzlDV/f42VPUREakLfCIi2cAW4Fwt65faWNiPYRiVBHP+DeMwkJHhHP/q1V2Yj2EYh6KqBwBfMTJPA08XI3MXcFfpaRYBIjbybxhGpcDGBSsigTMzjUpLXh5kZcHGjS7Mp3bt0g/zqUhs3ryZAQP6kpAgtG/fmr///eFC2//616m0adOCnj278umnn4Rt59dff2XQIB916ybwwgvP55fPnDmDESOGha33978/TJcuHejYMTkqvd966w3efnt+obJ9+/bRpk0Lvv76q6jaipaHHpoZk85GBcT/KM9y/RuVhM2bN9O3b19EhNatW/Pww4Vt9tSpU2nRogVdu3blk0+Kttk+n4+EhASef77AZs+YMYNhw8Lb7IcffpgOHTqQnByd/XvjjTeYP/9Qm92iRQu++qpsbfbMmTNj0rmiYc5/RcTeFFmpyc52b+ldvx5+/tn9lPXqRZ7Gs7LSvHlzli79hPbtO9Chw/GMHz+h0Pbbb7+DFi1asnDhEk45pW/Ydho0aMDixWk0atSoUHmTJk1ISmodphaMHz+B6667IWq933rrDd55p/AfSbVq1WjXrj116pRtSrlrr70uJp2NCow/j65hVHCaN2/OJ598QocOHTj++OOZMKGwzb7jjjto2bIlS5YsoW/fom12Wlpom926dXibPWHCBG64IXr7F8r5r1atGu3bty/zNKDXXXddTDpXNCzsp6KSl3fke4tHEHl58Pvv8Ouvbl2tmhvlj8eY++HDR3LPPXeyY8cOGjdunF/+448/0qDBMTRs2DCmdkePvqi0VCyW6tWrs3Bh2c4PNY5QbODGqGSMHDmSO+8MbbOPOSZ2m33RRYfXZi9ZYjY7UuLQNakE+F+/alR4srNh505Yt86F9vhH+WvXjk/HH2D48FEcPHiQV155qVD5Sy/NZeTI0QAsXbqEQYN8DBrko3//3lx22Z/Zs2dP2Dafe242KSndqF278HjFvHlv0blze/r1O5mLLhrJzp07Cm3/7bffuPTSMZxyyomcdloqp57aj//85/P87ZMmXcsHHyzmvffeydfnwIEDDBrko1GjRO6558582ZycHG65ZTI9enShd+8UBg3yFQoLOvvs02nUKJEpU27iyisvJzW1Dykp3fj222+iPob//e8XDBzYnz59etGjRxduv30KuQE24YUXnqdPn16cfvoA+vfvzdSpt+ZvW7RoIf36nczppw+gX7+TmTRpAr//HvL9VkZZYM6/UckYNcrZ7JdeKmyz586dy+jRzmYvWbIEn8+Hz+ejd+/e/PnPRdvs2bNn061bN6pVK2yz33rrLdq3b8/JJ5/MyJEj2bHjUJs9ZswYTjzxRFJTU+nXrx+ff15gsydPnszixYt555138vU5cOAAPp+PxMRE7ryzsM2ePHkyXbp0ISUlBZ/PVygs6PTTTycxMZGbbrqJyy+/nD59+tCtWze++SZ6m/3FF1/Qv39/evXqRZcuXZgypbDNfv755+nVqxcDBgygd+/e3Hprgc1euHAhJ598MgMGDODkk09mwoTDYLNV1ZYyWnr27KmxsHThQtWsrJjqxgtLly4tt74PHlTds0d1wwbV1atV16xR3bRJdfPm0lu+/36lZmdriZY9e/aWuI1Yl5SUXtqr14mFyrp1666//Zal2dmq1147SR9++FHNzlbdvz9PL754jP75z2MLyTdv3lyfeWZO/vd3312sVatWzf++evV6rV69ur766luana26adN2bd++g7Zp0zZf5quvvtfevftoVlaOZmerLly4RBs1aqQ7d+7JPz4jR47WSy75yyH70KfPKTpt2t/yv1933Q3avXsP3bUrQ7OzVR9//Gk9+uijdcuWXwrVadOmrW7atF2zs1WvvHK8+nynFnmsZs16qpDOGzdu07p16+qzz87V7GzVnTv3aKdOnXXKlNs1O1t17dqNWrVqVV2z5qd8+YYNG2p2tmpGRrbWqVNH33//Q83OVv3ttyxt2zZZ163bFPZ8XrlyZdhtwHKtALb0cC0x2+xFi1TXr3cGISMjpjaOdMrTZh8OirqOImXv3r2loEls9OrVS0888cRCZd27d9cszxeZNGmSPvroo6qqmpeXp2PGjNGxY8cWkm/evLnOmTMn//vixc5m+1m/3tnst956S1VVt2/frh06dNC2bdvmy3z//ffap08fzcnJUVXVJUuczd6zZ4+qumM0evRo/ctf/nLIPpxyyin6t7/9Lf/7DTfcoD169NAM75p8+mlns3/55ZdCddq2bavbt29XVdXx48frqaeeWuSxeuqppwrpvG2bs9lz585VVdU9e/Zo586d9fbbb1dV1Y0bnc3+6aef8uUbNmyoqqrZ2c5mf/jhh6qqmpWVpcnJybppU9nabAv7qYioxfyXFf4XXvnn5gWm2yzuc16ey9qzZ4/7iRISXMrOw8WkSfDdd5HL5+XVKvHTh65d4YEHoq83fPgobrhhImvXriU5OZn//vcLOnfuQu3atQGYOPF6GjRoAICIcO65wxg/flxUfTz55CyaNWvO4MFDAGjcuDFDhpzL66+/mi+TnNyOl19+I3/0yecbgKqyfPky+vQ5MeK+MjMzefTRR3j44Uep46Vr+r//u4Tbb7+FJ5+cxc03F4ziDBgwMP/ReWqqj5demhvVfj366CPUr1+f4cNHAlCvXj3Gjh3HlCmTuemmKWzfvo3c3Fx++imd4447jiZNmvDmmwsA2LNnD5mZmfz0Uzr9+vWndu3avPjia4fE4hplRJUq9tTWyOfaayGaQeTc3Foljvbt3h0eeij6eqNGjWLixAKb/cUXX9ClS4HNvv76wjZ72LBhjBsXnc2eNWsWzZs3Z8iQApt97rnn8uqrBTa7Xbt2vPFGgc0eMMDZ7GXLljFw4MCI+8rMzOSRRx7h0UcLbPYll1zCLbfcwqxZswqNvA8cWGCzfT4fc+dGZ7MfecTZ7JEjC2z2uHHjmDx5MlOmTGHbNmez09MLbPaCBYVtdnp6Ov37O5v92mtlb7PN+a+o2B9IqXLgAOza5Rz34hxi1QKHP/hztWoupMdemFU0F1wwgsmTJ/HSS3O59dapvPjiXEaMGJ2/ff/+/YwffwWrV6+iRo0a/Pbbb2zbti2qPlavXnXIZLKWLY8r9L1atWrMnTsnf0JvlSpV2Lt3L9u3R9fX2rVryM7Opm3bggwPVapUISmpNStWfF9ItlmzZvmf69Spy969e6Pq64cfVtCmTVsk4CRr2zaZ33//nXXr1tGzZwrDh49k0CAfqakDuOCCEfnhVI0aNWLSpBsZO/YSnnjiMYYNG85FF40hISEhKh2MGLEXfRmVlBEjRjBp0iTmzp3L1KlTC4X8gLPZV1xxBatWxW6zV6061GYfd9yhNnvOnDn5E3r9NjvavtascTY7MCtPlSpVaN26Nd9/H95m160bvc1esWIFbdsWttnJyQU2OyUlhZEjR+Lz+RgwYAAjRozIP7aNGjXixhtv5JJLLuGxxx5j+PDhjBlT9jbbnP+KyoED5a3BEUFODvz2m5uIW726i8evrEQ7Ar9//z5q1jyMjyYCaNq0KampA3jxxbncdNMUPvoojfvvn5m//ZxzzqRTp84sWrSUhIQEPvjgfc4558wS9ytBd2UPPHAfM2ZM57PPluf/CbRp0wL3dLRsqBowdCcipd6XiPDccy8wefItPPfcbG677WYefHAGn322jHr16nH33dMZO3Yczz//LI88MpMHHpjOxx9/Qbt2rUpVDyMEIma7jXyiHYHPyNhX5tlqwtG0aVMGDBjA3LlzmTJlCmlpacycWWCzzzzzTDp37szSpc5mv//++5x5Zunb7Pvuu4/p06ezfHmBzW7RovLb7BdeeIFbbrmF2bNnc9Xht2AAACAASURBVPPNNzNjxgyWLXM2e/r06YwbN45nn32WmTNnMn36dL744gtatSo7mx2nUxIrATZ6VCIOHixIt7l3rwvPqVWrvLWKL0aMGMXatWu477576N/fl/8Yd/v27fzvfz8yePDQ/NGNAzE4TMcf35ENG9YXKtu0aWOh7x9//BE9evQsNPoT3FeVgEdB+/fvJyfEW1qTk9uRkJDAunVr88vy8vJIT99Aly4nRK17UXTu3IX169cVKlu/fh21a9embdu2/Pzzz/lhVNOnz+Crr1awadNG0tKWsmfPHt5/fzGtW7fmttum8d13q6lWrTrz579VqjoaYaha1Wy3UWkZNWoUa9as4Z577sHnK2yzf/zxR4YOLZnN7tixI+vXF7bZGzcWttkfffQRPXuW3Ga3a+ds9tq1hW32hg0bOOGE0rXZXbp0Yd26wjZ73brCNtsfRjVjxgxWrFjBxo0bWbrU2ezFi53NnjZtGqtXr6Z69eq89VbZ2uxK5fyLyGARWSYiH4nIpyKSEkGdXiKyUkRmh9jWRkT+ISIfe21+KSKXBckkicg2EUkLWlJLcdcOxf5AYiI31430b9jg1nXqWJhOeXHuueeTkJDAXXf9NT8sBaBhw4Y0atSItLSCtGyxOKdjx45jy5YtzJvn6u7cuZNXX325kEzHjp1YseI7du7cCcBnn32a/9lPo0aN+fXXXwG49tqrWbr00HRxderU4aqrruGJJx4jKysLgDlzniUnJ4fLLrsiat2L4qqrrmH37t352ZIyMjJ46qnHmTjxemrUqMGPP67m1ltv4qBnI/K8+UHJycns3LmTa6+9Oj9TRF5eHnl5ubRr175UdTTCYGE/RiXm/POdzf7rX/9aKOTHb7MDU2nG4pyOG+dstr/uzp07efnlwja7U6dOfPddgc3+9NNDbXbjxgU2++qrrw6Z4rNOnTpcc801PPZYgc1+9llns6+4onRt9jXXOJvtz5aUkZHB448/zvXXO5u9evVqbropvM2++urCNjs3N5f27cvWZleasB8R6Qm8AJyoqitF5E/AQhHprKohg8FEZDIwCAj3DOdKoBUwUFUPiEg34AsROaiq/wqQ+7eqjim1nYmEEHeyRnj8k3F37nSf4znVZkUhMTGRs876I9999y0nnnhSfnnVqlV54YVXmTRpAikp3UhKak3z5i3Izc1l0CAfzz//MhdeOJydO3dy7713kZGRQa1atXjkkQfzZZ588hnatGnD3LmvcMstNzJjxr0ce2wzRo4czcyZ9zNokI8331zALbfcxubNP9OnTwqdO59A+/YdaNSoEffeexcHDvzOmDGXcckllzJ69AWcdloqiYn1GTDgVAYN8rFixfds3ryZnJwcbr/9Dv7617u4/Xbo2/ckatWqRe3atXn33cUcc8wxAFxwwXn5derUqUuXLicwefKkfJ1feOHVQyZxPfTQTJ5++gm2bNnMoEE+5s9/jyZNmvDOO4u4+eYbeOihB9i3bx/nnDOEKVNuB6BTp84cd1wrUlP7cNRRR5GVlcWjjz5Bp06dyczMZODAQQwc2J+6deuSkZHB+PETOfPMsw7fDx/PVKlittuotCQmJvLHP/6Rb7/9lpNOKmyzX331VSZMmEC3bt1o3bo1LVo4m+3z+Xj55ZcZPtzZ7LvuKrDZDz74YL7MM884m/3KK69w4403cu+999KsWTNGjx7N/fffj8/nY8GCBdx22238/PPPpKSkcMIJJ9Chg7PZd911F6rK0KFDufTSS7ngggtITU2lfv36nHrqqfh8Pr7/vsBm33HHHdx1110AnHRSgc1evLjAZp933nn5derWrcsJJ5zApEmT8nV+9dVDbfbMmTN54okn2Lx5Mz6fj/feczZ70aJF3HDDDTzwgLPZQ4YM4fbbnc3u3LkzrVq1ok+fApv9xBNP0Lmzs9mDBg2if/8Cmz1x4kTOOqtsbbaUZRxVaSIir+H0PT+gbCXwuqreFqbOYOBtYCmQHuzAi8gE4GtV/Sig7B2gpqoO9L4nAdNicf5TUlJ0+fLl0VYjbeFCfK1bQxnf+VVm0tLS8Pl8qEJmpnP6c3Kc038kvBvt119X0b59xxK1sX9/RrnF/FcG4uX4+Cet16gRevuqVavo2DH0uSYiX6pqsU9YjxRittmLF+NLTnYpwDIzITnZRh+C8NvsI5WirqNIycjIKLeY/8qCHaPSsdmVyTqdBgRb5WW4kf2QqOp8LeLuRlUfDnT8PfYB5Z8aw9J9FktWFqSnw5YtLgtP3bpHhuNvGEYlx2y3YRgVmErh/ItIAyAR2Bq0aRvQphT7EeAk4JWgTceLyHxvbsC/RWRUafVZJPYHcgg5OW4C74EDsGmTG1yrW9c5/4ZhGBUCS9VsGEYFprK4TEd56+yg8mygdin28xdgJzAroGw/kM7/Z+/O4+Oqy8WPf55ZkpkkXbM3KZRa2cpOWK6AVgXxIgLqVRT0sghcFRdUwB31il4VvbIKVDbZvHpdfiBXLItGFq9YQEBa4CIttLRN2yRNm22SzMzz++M7pzOZzKRZZpIzzfN+veY1yTlnznxn2pzznO95vs8XLlLVNhE5BHhQRJpU9YoCvvdIicSMj2qTSTcxV1+fq9GfOUFXKZftNMbsxqzjxhjjY6USWfamnrPTccqBvkK8gYgcBlwKHK+qO0dspQYTfzDj92dE5AbgK8CI4D9VLegCgPr6elpbW8fdlp6BAVq9fJYZWKZG1T0SieHn0MwU2oGBHlatap3ytk2V6uo5xGLdk9pHMpmY9D52ZzPl+/Fy/geyu05SYrHYhI5TZhTW82+M8bGSCP5VtVNEuoCGrFUNwCs5XjIuIrIPcDtwmqqu29X2qfecIyI1qtqe1dblwHJwg8cmMsCpdcUKli1aBM3NUFm5y+1LnaoLTPr7oavLpfSIuEm5yspyX/+sWtXK0qXLprytU6Wz84VJD0adKQNaJ2qmfD+7GvAbiUQ49NBDp7ZRuzMRC/6NMb5WEsF/ykNA9gjmFuDXk9mpiOwJ/BL4V1VdnVp2QSqIJ5Xf/4qqPpHxsibcHYeOybz3LpVIvWivsp3XY+/9nP2ca1lvryvR6QUo5eUuh9+Aqo6Y/dCYQiqVam8lxWr9z1h2zDbFVqhjdikF/98FWkVkP1V9QUROAhqB6wBE5HLgNKBFVWNj2aGINOIuKq4FAhmThp1Nqvce2Bs4VUTOVNW4iCzApfVcP1oloUkrgZkik0lXYrOrK9077wXxueRaFwrZJFy5BAJhYrF+otFCDmkxZrj+/n7C4fB0N2P3ImK1/megcDhMf38/FRV2zDbFU6hjdskE/6r6lIicCdwuIv1AEDgxY4KvCG7w784wMpV/fwZwCK5iTyvwn6p6b2qTfweWAFdmvd1rGT//ArgEeExEBnGDj5eTI9+/oER8HfzH47Bpk0vVsZ76wotG69i4cQMLFjQRiUStN8kUlKrS39/Phg0bqK+vn+7m7F6CQQv+Z6C6ujo2bNhAU1MT0agds01hFfqYXTLBP7i6/cC9edZdDFyctWxn/n2e15wPnL+L91wNnDPuxk6Wj28dDwzAhg2uJ7+qarpbs3sqL3eljDZs2EgyObFAYnAwRllZpJDN2q3MlO/Hu+OWPQdGOBymvr6e2VY2q7B8fOw2xeP9HW3cuJGhCV78xWIxIpHd/5g0GTP5OyrkMbukgv8ZJRh0I199pqfHFSEKh2GG/v1NmfLy2TsvAibCDYq2gZz5zJTvZ2DA/a02Nk53S2aIQMAG/M5Qs2fPnlRg1traaoPvd8G+o8Kw4N+vAgFfBf+qLrd/82ZXgMhm0jXGmBxE3ICoZHJ4fWJjjPEJC/79yjuBjDaCdop4A3u3bXP5/ZbKaIwxu2DBvzHGpyz49zNVdwKZxm72eNyl+cRiNqOuMcaMiTdL4Qyfod0Y4092ZPKhRELo7RMqECSRmLbgPxZzA3vBBvYaY8yYeXdujTHGhyz496F4AtZvDFA2FKJ6bpKqmqmP/7u7XSnPsrL8M4MaY4zJw4J/Y4xPWfDvU7MqlWSPsrktyZYdMG8ezJnjquwUk6rL7d+yxQb2GmPMhFm5T2OMT1nw72PBIFRFkySjrtJOR4e7AJg7tzhlNpNJV81n+3Yb2GuMMRNWAjO0G2NmLgv+/Sw1WUwgABUVrle+t9cF59Eo1NS450IE6YODLs1ncNAG9hpjzKT4fIZ2Y8zMZsG/n4kMmyxGxAX74CbuWb/epQHV1LgBuaNVlUsm3bkokXCPwUG3j8FBNxO9V5iisrLIn8kYYyZJRMqB7wJvBbYDEeC7qvqbjG3OAz4O9KceH1PVV6akgT6bp8UYYzJZ8O9no0wTX17uHvG467EPBmH+fHdxkEi4gH5gwD2GhkZOGRAIuNcEg4W7e2CMMVPkq8CpwMGq2i0ihwJ/EZEjVfVZETkV+A5wkKq2icgngQdEZKmqxoreOkv7Mcb4mAX/fhYMush9FKGQy89PJt2YgGTSBfKBgHuEQhbcG2N2O4cAK1W1G0BV/yYi24G3Ac8CXwPuUNW21PY3At8GzgRuLnrrAoFhd22NMcZPbPpBP8tK+xlNIOBSdmbNcilAFRVuUHAoZIG/MWa38yvgOBFpBhCRE4FaYLOIzAMOB570NlbVIeAZ4IQpaZ1X59/KfRpjfMh6/v1slLQfY4yZqVT1NhGpAJ4XkU3A3sB/A78ADkpttinrZW3A4qlrJS74H20wljHGTAM7KpUCu31sjDE7pQbzfhloUdX9gEOBvwBJwCtbMJD1sgGgYsoaCXbsNsb4kvX8l4Jk0mbbMsYYQEQE+D5wlar+A0BVnxORq3HB/e9Sm5ZnvbQc6MuxvwuACwDq6+tpbW0dd5t6YjFaX355eI5lMgkbNljeZUpPT8+EvtuZxL6jXbPvqDAs+C8FljdqjDGeWmAe8GrW8rXA+4DrUr83ZK1vAEaU+lTV5cBygJaWFl22bNm4G9T64IMsW7LElWDz9PRAU5PVT05pbW1lIt/tTGLf0a7Zd1QYlvZTCiz4N8YYTzsuhacxa3kj0Keq23CDfVu8FSISBg4GHpqqRgI2ZssY40sW/JcCC/6NMQYAVU0CPwXOFZH5ACJyGPB23IBfgMuBj4hIfer384EO4K4pa6jV+jfG+JSl/fjdOMp9GmPMDPFZ4BvAQyLSB8wCvgBcDaCq94hILXB/an0MOHFKJvjyiFjwb4zxJQv+/c7KfRpjzDCq2gdcuottbgJumpoW5RAI7HKSRmOMmQ6W9uN31ntkjDGlZwwztBtjzHSw4N/v7ARijDGlJxCwlE1jjC9Z8O93lvNvjDGlxzt2W8EGY4zPWPDvd9Z7ZIwxpUnEgn9jjO9Y8O931ntkjDGly47dxhifseC/FFjvkTHG+NMDD7Dkuutyr1O1O7fGGN+x4L9UWPBvjDH+8/e/03zPPbBjx8h11nFjjPGhkgr+ReQUEVkpIo+IyOMi0jKG1xwhIqtF5LY86xtF5B4R+V8ReVpELs6xzb4i8gcReVREnhKRjxTg44yPnUCMMcZ/9tjDPW/YkHu9HbuNMT5TMpN8icjhwN3Akaq6WkROBlaIyFJVbcvzmi8AJwCaZ30A+C1wv6p+TUTmAE+LyA5VXZ7apgp4APimqt4sIs3AcyKyRVVXFPyD5mMnEGOM8Z8993TPGzfCIYcMXxcIwODg1LfJGGNGUUo9/18CVqjqagBVvQ/YDFw4ymtewAX/W/OsPwk4BPhhap/bgRuBr4qIpLY5G4gCt6a2eR34L+Crk/gs42fBvzHG+I8X/Ofq+bcZ2o0xPlRKwf/xwJNZy1bigvucVPVeVc3Z65+xz1dUtStrnwuBfTK2eVpVk1nbvElEKsba+EmxE4gxxvhTbS3JcNj1/GcLBGySRmOM75RE8C8i84E5wKasVW3A4knsenGefXrrRtsmACyaxHuPnYgF/8YY40eBALG6utw9/zZDuzHGh0ol578y9TyQtXwAmEzve2WefZKx37Fss5OIXABcAFBfX09ra+u4GzWQjLF6y/NAKvNIFbqAzeFx72t3FYv1sGpV63Q3w9fsOxrdTPl+VF3/wUsvTXdLdl+xujoq8qX9WKlPY4zPlErw35t6Ls9aXg70TXK/s3Psk4z99uZ538xtdkoNFF4O0NLSosuWLRt3o1b89gH2rzsACaSC/0TCncGbm8e9r93VqlWtLF26bLqb4Wv2HY1upnw/AwMQiUBj43S3ZPc1UFcHf/vbyBVeqc9k0l0IGGOMD5TE0UhVO3F93w1ZqxqAVyax6zV59knGfvNtkwRencR7j503y68xxhjfidXXw5Yt7korFyvYYIzxkZII/lMeArLr+reklk/Ug8ASEZmbtc/1qvpSxjaHpcqCZm7zZ1WdzF2HsfMG/I46dtkYY8x0iNXVuR9yDfoFC/6NMb5SSsH/d4ETRWQ/ABE5CWgErkv9frmIPC8ikXHs837gGeCzqX3MxuXrX56xzU+BGHBWapsm4INZ20wNO4EYY4zvDHjBf668f1W7c2uM8ZVSyflHVZ8SkTOB20WkHwgCJ2ZM8BXBDcD16vN7g2/PwNXy31dEWoH/VNV7U/tMisgpwA0i8r+pfSz3JvhKbdMjIu8ArheRc3EDgD87pRN8eZJJVz3CGGOMb8Tq690PuYJ/L+/fGGN8omSCf3B1+4F786y7GLg4a9nOwbej7HMjcMoutnkReOu4GlsMiQSEreKPMcb4yUBNjQvyX3899wYW/BtjfKSU0n6M5fwbY4zvaDgM+Wr920RfxhifseC/lFjvkTHG+FNTU+6efwv+jTE+Y8F/qbByn8YY418LFuTv+bcZ2o0xPmLBf6mw3iNjjPGvBQtcqc/sO7R27DbG+IwF/6XCeo+MMca/mppgcBC2bh2+PBi0Y7cxxlcs+Pebxx+n+m9PjVxuwb8xxvjXggXuOTv1xyv1aQUbjDE+YcG/31x+OW+8/ZaRy0Us+DfGGL9qanLPuQb92kRfxhgfseDfbxYtIrply8jl1vNvjDH+5QX/NtGXMcbnLPj3mz33pKx7B9LXO3y5pCYuthOIMcb4z6xZMHt27uAf7NhtjPENC/79Zs89AQhuspkijTGmpOSr9Q+W9mOM8Q0L/v3GC/7bLG/UGGNKymjBv3XcGGN8woJ/v1m0CIBQrp5/yxs1xhj/am52tf6zWa1/Y4yPWPDvNw0NJEPh/Gk/Vi7OGGMQkT1F5Oci8gcR+buIPCUib81Yf15q2WMi8qCIvKHojWpuhu3bobt7+HIL/o0xPmLBv98EAsRqaghuWp97vfX8G2NmOBGpAf4AXK+qbwMOAtYAS1PrTwW+A7xLVY8F7gEeEJFIURuWr9a/VWszxviIBf8+1F9fT6gtR8WIQMDNIGmMMTPbpcATqtoKoKoKfB64L7X+a8AdqtqW+v1GoAY4s6itam52z9l5/9bzb4zxEQv+fai/tj532k8gYAN+jTEG3gc8krlAVdep6qsiMg84HHgyY90Q8AxwQlFblS/4Dwat598Y4xsW/PtQrK6OYPtmGIgNX2G3jo0xM5yIVAKLgaCI3CUij6dy+t+f2mSv1POmrJe2pV5XPLW1UFY2ctCvV6zBxmwZY3wgNN0NMCP119YDENy8kcQeGecqC/6NMWZu6vly4O2q+rSIHAn8SUTCgDdgaiDrdQNARfbOROQC4AKA+vp6Wltbx92gnliM1pdfBhGOqqlhx6pVvLBq1fCNksnclYBmiJ6engl9tzOJfUe7Zt9RYVjw70P99angf9PrI4N/y/k3xsxsXu7jfar6NICq/lVEfgN8jlQgD5Rnva4c6MvemaouB5YDtLS06LJly8bdoNYHH2TZkiVQXg577UW0u5v6pUuHb9TT40o5l5WNe/+7g9bWViby3c4k9h3tmn1HhWFpPz7UX1sH5Kj1b7eOjTFmK64XP3tg1Gu4lJ+1qd8bstY3AK8Ut2m4ib6yq/14rFqbMcYHLPj3oYHqGjQQILjRyn0aY0wmVU0AjwONWavqgXWqug032LfFW5FKBzoYeKjoDWxuhs2bR96ltRnajTE+YcG/D2koRKK2gWBbjoo/dgIxxpjvAaeKyF7gJvwC3gNcnVp/OfAREalP/X4+0AHcVfSWNTW54/SmrPHGNkO7McYnLOffpxILFuYu92knEGPMDKeqD4jIhcCvRKQPdy67RFVvTa2/R0RqgftT62PAiaoay7/XAmlqcs8bNsCee6aXW8EGY4xPWPDvU4mGZsqeeSL3Ssv5N8bMcKp6N3D3KOtvAm6auhal5Kv1L2ITfRljfMHSfnwq3thMcMum3D1FlvZjjDH+1JgaipA96DcYtODfGOMLFvz7VKKxGUkkCG7Nyhu1W8fGGONfkQjU1Y0M/gMBC/6NMb5gwb9PJRrdreMRef8i1vNvjDF+1tQ0Mu0nGLSOG2OML5RU8C8ip4jIShF5JDWle8sutp8tIrelXvO0iHxPREIZ678hIs+ISGvG408ioiJyaGqbRSLSlrVNq4i8pZifNdGQCv6zy31az78xxvhbrlr/Nk+LMcYnSmbAr4gcjhvcdaSqrhaRk4EVIrJUVdvyvOw2oFdVjxCRMqAV+HfgyxnbXKSqrRnv81bgBlX9W8Y2v1fVswv2YcYg3uAqRozo+bdbx8YY42/NzfDQQy7QFxm+Lpl0dwGMMWaalFLP/5eAFaq6GkBV7wM2Axfm2lhEDsDVff5+avtB4ErgIhGpSm32Y2Bl1kvPBm4pdOPHrTxCorqO4KYceaOW9mOMMf7V1ASxGLS3j1xnx29jzDQrpeD/eNysjZlWAieMsn0MeD5r+yhwLICqblHVXm9l6qLgVOD2ArV5UhKNzYSyJ/qytB9jjPE3r9xnduoP2DwtxphpVxLBv4jMB+YAWaVvaAMW53nZYmCz6rAEy7aMdbl8AHhUVbPfZ18RuVdEHhWR34vIGeNo/oQlGptH5vx77ARijDH+5E30lT3oF6zn3xgz7Uol578y9TyQtXwAqBjlNbm2Z5TXnA38Z9ayGPAqbmxAm4gcAjwoIk2qekX2DkTkAuACgPr6elpbW/O8VX4DyRirtzzPG2dH2GPT66za+Jzr8fckE7B63chc0hkkFuth1arW6W6Gr9l3NLqZ8v14aecvvTTdLZlBRgv+rePGGDPNSiX491JzyrOWlwN9o7wm1/bkeo2IvAHYG7gvc3lqMPEHM35/RkRuAL4CjAj+VXU5sBygpaVFly1blqd5+a347QPsX3cAlUsOJRD/BQeG60nW1md8sl53W7k8++PNHKtWtbJ06bLpboav2Xc0upny/QwMuNLz3txTZgrMmQNVVbBx4/DllrZpjPGBkkj7UdVOoAtoyFrVALyS52VrgDqRYd3j3utzveZs4E5VHcuR+RVgjojUjGHbCUvX+s+R+mO9R8YY408iroMmu+dfxKq1GWOmXUkE/ykPAdl1/VtSy3N5EDe4d2nW9v3A45kbikgA+Ffg5uydiMgZInJU1uIm3N2DjrE2fiLyTvSlasG/Mcb42YIFuSf6suDfGDPNSin4/y5woojsByAiJwGNwHWp3y8XkedFJAKgqquA3wCXpNaHgc8AV6pqT9a+3wZsVNUXcrzv3sDnvMnBRGQBLqf/+qzBxAXnBf+hXLX+bdCYMcb4V3PzyGo/lvZjjPGBUsn5R1WfEpEzgdtFpB8IAidmTPAVwQ3kzUzzORu4RkRWprZ/CLgsx+7PJn9t/1/gLiAeE5FB3EDi5eTI9y80rawiOWde7om+7ARijDH+1dwMXV1ujFZlqmZFIODq/xtjzDQaV/AvIouANwOrVfVJEZkNXAscBDwMfCk1mVZRqOq9wL151l0MXJy1bAdw1hj2++FR1q0GzhlfSwsn3tA0MudfxHr+jTHGz7yKPxs2wN57u58DAZeymWvmX2OMmSLjTfv5Yurh1Y34T+AM4DXgFOAbBWuZAVK1/nP1/A8W7RrLGGPMZFm5T2OMT403+D8aOE5Vfysis4AzgStU9VTgKNwFgCmgxIKFLvjPHF5gOf/GGONv+YJ/VTt+G2Om1XiD/4SqehVu3g2EgethZzlO644usERjM4H+PgJdnemFFvwbY4y/1ddDKDRy0K+I9fwbY6bVeIP/kIjMTf38ceBPqroOQETKcBcDpoASDalyn20ZvUfeyaO4xYaMMcZMVDDoyn1mB/9gwb8xZlqNN/i/E1gtIquBNwE/BBCRI4HbAZtAvsBGrfVvvf/GGONfTU25c/7t2G2MmUbjqvajqleIyCZcfv/XVfV3qVX/hJs8K1+5TDNB8QULgRzBv906NsYYf2tqgj//efgyK9VsjJlm467zr6p34u4AZC67qmAtMsPo7LkkKyoJblw/cqUF/8YY41/NzdDW5mb1DaeyYkVsll9jzLQaV9qPiEREZI+MvH9E5FwRuVJErNJPMYjkLvepasG/Mcb4WVOTO063taWXBYMW/BtjptV4c/6/DLxAatIrEfkCcBPwr8AvReTsgrbOAJBoXEiozSpGGGNMSWl2Y7aGDfq1tB9jzDQbb/B/Eq7O/49EJAh8Dvh/QA1uHMCnC9w+Q2qir+y0HzuBGGOMv+Wq9W/HbmPMNBtv8C+q+nTq57figv7vqGpSVf8G2HzlRZBobCbQvR3p6U4vFLETiDHG+NmCBe45u+c/kbBSzcaYaTPe4D8sIl6Afw7woqo+OYn9mTGI5yr3GQhY3qgxxvhZNAo1NVbr3xjjK+MN1v8XuE9EbgBOB26AnQOBPwNsK3D7DC7nH7KC/2DQakUbY4zfWa1/YwqitxcGBtyzmZzxBv8XA5uAY4AbgetSy68FLgJuK1jLzE7pib4y8v5F7ORhjNmleBz6+6e7FTNYU5P1/BtTANtS3cvr18PWrfYnNBnjneSrGzgvx/IRy0zhJOfXoGXlhLLTfuJxlzcqNtTCTA2vwmwi4Z4zf04k3H/FYNA9AgH38H6f6H9T1fSE1pnvCfPGFwAAIABJREFU5f0cDkNlpXuvQovFoKvLnXS8R1eXW+59Ju8zBgLpz+999syH9z3Mnw/19VBbC2VlhWmnKmzeDGvWjHy89hp8+cvwzW8W5r3MODU3wx/+MPJYbZGLMWM2NOR6/AMBmDXLHYt7etywmvLy6W5d6Rn3JF8AIlIHvAU34Lcd+JOqbilkw0yGQIBEQ9PIWv/gTiDB4NS3yRRFZyc8/jg8+ig89pjr3WhsdI8FC0Y+L1gAs2ePPbCOx90+N21ypce9x6ZN6WXbtg0PsDMD78mMUcwOjLMvErKD+syfxyIahaoqdyHgPbJ/z1zW3t7AY48ND+qzfy52j7l3IVBXN/w5e1kk4rbv6sod4K9dC3196f1GIrDXXrDPPnDCCXDYYcX9HNNFRD4JXAO8VVVbM5afB3wcN/N8P/AxVX1lWhrZ1OSuFjs7obo6vdzu3BozZt3d6VBHxB3HBwbg1VfdMXLuXP/1g3qdRN78fn4y7uBfRL4BfBEIk67uMygi/6Gq1rdUJPFcE32BBf8lrr8fVq50wf6jj8Lzz7sAu6oK3vQmOP54F5Bv3AiPPAJbtowMhisqRl4Y1NfDyy/vgWo6uG9ry/36cBgaGtzjgANcQBoKjey1z9Wjn/2zd6GQeVcgM5gfbbm3D+99sn/PboP38+Cg6xHq7XU9QX197rm3Fzo6YN264cvTn39fwO1j7lz3mDfPxWoHHJD+fd684T/Pm+eC6+y7INmfPfPhXTgNDUF7u/t32LLF9dZv3ux+/r//cxdmuYp4eSe2bRmjqoJBWLgQFi+Go492z4sXwxve4P4PeHdCBgbSFw+7ExFZAFySY/mpwHeAg1S1LXWB8ICILFXV2FS3c1itfy/4t3KfxoyZqjv2ZR/Hysvd+WvLFndsb2jwT6Dd1+fSk4JBdwjw2zF4XMG/iFwIfAaX6/9XoBOYDxwJfFpEtqrqjwveSkOisZnwIw+MXGG3jktKIuECfC/YX7nSBWfhMBx+OHz+83DccXDIIS4AzxaPu2Bx40YX0HvP3s9/+lNmgL+Y2bPdAbGx0fUCe0G+dzehocEF+8VImfEjVdcb09sLzz33vxx++D8xa5Z/Pn8y6TqIvQuCLVvSF23xuOvN94L8PfYoXNpQiboGF+TfkLX8a8AdqupNq3sj8G3gTODmorRktEkXveD/9dfhoIPS21vwb8yY9Pe7P5dodOQ6Lw2ov9/dBWhocL9Pp95e9+cejbpzzrp1rmOuqmp625VpvD3/n8DdXn0ma/nPReR24G7Agv8iSDQ2E+xsh1g/RFJ/AV7Xo/G1tWvTwf6f/+xSNwD22w/OOssF+0cd5VJRdiUUcj3T3txBuXi9yxs2PEJLy5sL8yF2EyLugByNQn39AHPmTHeLhgsEXGXImhpYunS6W+NfIvJuYAhYkbV8HnA48ENvmaoOicgzwAkUK/j3avfn4tX6z57oy0o1GzMmnZ277uiIRt2f4IYN7u5sTc30JEX09Lg/9YqKdAdeIOCWNTbim3POeIP/QI7AHwBVfVZEfNJ/tvtJLEiV+2zbQGLRErdwtN4mM22GhlyP/oMPwkMPuZxscDHAiSe6YP+YY1yeYjGEw+4g09lp/zfM7kdEKnE9+ScC2UP99ko9b8pa3gYsLmKj8q+bN89FApkVf4JBC/6NGQNvoO9YevODQTcGbscO95rGxtx3C4qlu9v9mVdWDr/wCAZdr/+mTe7zVFdP//iE8Qb/ZSJSo6rt2StSg4BtzHWReOU+QxvXDw/+bdCYL3R1wR//6IL9P/4Rtm93PRX/9E9wzjnwlre4VI3p/oM3ZjfwLeAGVd0kIouy1nn3zwaylg8AFUVrkUj+0fAiLvUne5bfwcGiNceY3UVPz/jTMisr3Z/XunWuqtq8ecU/9+7Y4VJvswN/j5ee1NHhUpjq6qY33XS8wf8vgVYRuRx4Ejep13zgCODLwC8K2zzjSTSkav235Sj3aabFP/7hgv2HHoK//tVdh1VXu979E06AN7/ZXzl+xpQ6ETkMOAo350wu3vQ/2R1R5UAfOYjIBcAFAPX19bS2to67XT09PbS+9lreCOPA2bMpe/llnlq1Kr0wmXTRyQzR09Mzoe92JrHvaKSBgeFBcizWw6pVrWN+/auvuj/LcLh4FwDJpLvYGGuaUTLpPtN0Dk4eb/B/GXAALrc/s5tDgP9JrTdFkKhtQIPB4RV/LG90Sg0NuSD/oYdcSs/atW75fvvBJz7hAv5DD/XP4FFjdkPvAqLAH8Sdyb0aGleKSBfwhdTvDVmvawBylvpU1eXAcoCWlhZdtmzZuBvV2trKsr33dpFKrqLj++4Lv/sdyzIHcvT0uNJMM6RaW2trKxP5bmcS+46G8yrmZKb8rFrVytKly8a1n1jM9ZPW1rq0oEL+yW3f7tJ5qqrGd+7v73ftaGqanouA8U7yNQC8S0SOB96Oq/PfCTyAG3x1NPBIoRtpgFCIRP2CkcG/9fxPmqo7D3d0uIGynZ3uOfv3Z59Np/Mccwycd54rxekV8zDGFJeqfguX9gNAKu1nLXCRV+dfRJ4EWoD/Sv0eBg4Gbi9Wu5JJiIejhHp7cwf/TU3uQNLX5/L/M184Q4J/Y8ZrLAN9xyIScX9qW7e683ptLQWp8rZtm6vMNt7AH9xYhFjM3fxrbp76icomNMmXqj4EPAQ7D6xeDcqjKGZe5QyXaGwmuHF9eoHl/I9JIuFSdJ59Fl580R0AOjuHB/cD2RnCKZWVLpWnuhr++Z9d7/5xx42tMo8xZlpcDiwXkStUdTNwPtAB3FWsN0wmoXeojDn58v69HoKNG2FJasyWNzGEXwqTG+Mj4xnoOxaBgAvSEwkXsLe3u4pAE70ImEzg74lEXLrQq6+6OVsqpjB6nlDwn0lVh4C3AojI2km3aIb71a/gmSfrWPre9AxqnkRDM+VPPp5eEAi4S0ezUzLpqus8+6x7PPecq6vvzdQaiaRLKdbWupSd6mr3+/z57jnz96msFGCMGTsRuRJ3txlc2s/Lqvp+Vb1HRGqB+0WkD4gBJxZzgi9V2N4f3nXw//rr6eDfqrUZk9dEBvqOhVd5J5Fwc6h0dKQvAsY6JqCz0829Mp7X5FNW5j7n+vWuOtHs2ZPb31hNOvjPkufIZ8bq+uvh4YcPYcX9g1z22W4OOzCd059obCawtQ2GBiFclv5f540emWGSSXfF/Nxz6UD/7393vQXgAv0DDoAzznBz6xx8sKu4Y3fZjSl9qnrRKOtuAm6awubQOxAmjuQ+qXoTc2TW+ge7c2tMDqouwC7mrLjBoAve43GXs9/e7joEq6pGD+g7Olz2QCECf08o5LIJNm50dzzmzy9+daJCB/9FJSKn4GZv7AeCwGdU9clRtp8NXA0sTW3/IPAVVY1nbNMFZM9dcL2q/jxjm0bcLJJeOdO7VfUHBflQWX7/e/j8Z1bxs//al3efXc0p7+jnixf2sGdzgviChUgySXDzJhLNe6ZfNAOC/1gMXn4ZXnjBpe488cTBrFnjymuBO0jsvz+8//3pQH/Jktyz5BpjTKElkkJMyqmKx0ceeOrrXbSRXe7TxmwZM8JoM/oWWiiUvgjYsMHl3tfVuRSczABcNZ0qXMjA3+OVAt26NT04uZhh3S5DIxE5S1V/WrwmjI2IHI6rMnSkqq4WkZOBFSKyNGMa92y3Ab2qeoSIlAGtwL/jypJ6nlHVZaO8bwD4LXC/qn5NROYAT4vIjlSViIIKheCkd27gEx+o5sa7qrjhjgru/0OEc07v4+JD92IeENz0+sjgfzeRSMBrr8FLL7kg3wv2165Nf8zycli0KMhpp7lA/6CDYO+9LXXWGDN9wmHo6otSFe8ZGfyHQu6efmbPv4gF/8bk0NU19efzUMil3AwNuRScSCR9EaCaLgJSjMDfI+LasH27i3caG4vzPjC2nv/PANMe/ANfAlao6moAVb1PRDYDF+LuBgwjIgcA7wEOSm0/mMoRvU1EvqOqPWN835OAQ4DjU/vZLiI3Al8VkZ+o5kvynJyqSuXij/Xw4ff18YPrq/jJ3RX84p6TuYyL+ND6TW5mBdegkrx1nEy6P6YXXxz+eOml9DAGEdhzT5eXf8oprlrevvvCokXw0ktPj7vclzHGFEs4DH3JKImBLoK50hWamkb2/FupZmOGGRpyM+UWaqDveIXD7jE46C4ColGXl9/VVdzAP1NlZTp9uVjGEvwfIiJ+iC6PB76XtWwlcAI5gv/U9jHg+azto8CxwO/H8b6vqGpX1n4WAvsAL45xPxPSUJvkB5ft4NwP9fHtH1XyuSd+xNXXdPDFWQFOPn4AGW1mySJLJOCZZ9ygmZ4e95+1uzv9nL2spyf9yP6PXVsL++wDH/6wC/b33df15k/l6HdjjJkoESAcIhaDyjk5NmhqchOFeIJBC/6NyVKsgb7jVVbmHgMDrk1TFfhPlbEE/9uAe8ewnQDvnVxz8uxYZD4wB9iUtaoN+Oc8L1sMbM7qmW/LWOdpEJGfA43AIPD/cDn/iYxtc72vt66owb9n/zfGuevH23nmbedyafK7fOyLe3LYgYNc9rEER9RPXdqPKvztb3DPPXDffS7wz1ZW5gbNZD6qq10vfuayefNcgO9V3DHGmFIWioTZsSVAzkrATU1uZKE3JiAQcN2LxhjAxRfbthV3oO94TXX9/akyluB/naqeM5adichbJtmefLxjaXY19gHyzytQmWd7sl7zD+CrqvpyasKYB4D9cOlE49nPlDh+z3/w1/BHuOFdv+X7P67itAubOOmEQb78ddhrr+K8pyqsXg333uuC/vXrXYD/tre5dJw3vnF4UF+ISTmMMabUlFeG6O4LUZ9QAsGsbsLm5nSR8aYmF/wnEu4Auzt1KRozQf397maYn4L/3dVYgv93jGN/R+96kwnxkkSyr8HKgb5RXpNrezJfo6onZ/z8qoh8D/iJiHxNVTtT+8muvDpiPx4RuQC4AKC+vp7W1tY8zctvIBlj9ZbnGVnpHw6cW8Xs/3uJA49ayfKDA/zq13vwi18tYsVbkpx88kaOPLKT5uY+6upiky5puX59lNbWOlpb61i/vpJAQDnssE5OP30LxxzTTmWluzmi6lJ7ursn937jEYv1sGpV69S9YQmy72h0M+X78WLLl16a7pbs/kRAy8qI9QxRMSdrxKJX63/DhnTpT1Wb5deYlOkY6DtT7TL4V9WtY91ZajbFglPVzlRJzoasVQ3AK3letgaoExHJSP3xXp/vNd46waX0dKb2884c75tzP6kKQMsBWlpadNmyZaO8VW4rfvsA+9cdgARGBv+Viw8g+vhjLK3dD4JBWj41xGc/0sEP7qjnZz9r5p573AkmHHZpNnvt5R6LF6efGxry59StX5/u4V+1yp3Mjj4aLrwQTjpJqK6uBqY/R2fVqlYb8LsL9h2NbqZ8PwMDrietmJUjTFqoKkLPjgEqsvP+M2v9H3lkerkF/8ZM+0DfmaaUqqA/BLRkLWsBfp1n+weBH+Fq/D+fsX0/8DiAiLwdqFTVzDENqSM06zL280kRmZsx6LcFWK+qxetLSyYhMPKEkGhsRhJxAu2bSdYvgECAunlDfP/78MUvulr4a9e6WW6950cfHT4RcCQy/KJg8WJXL//ee+Hpp902hx4K3/gGnHyyBQ3GGDNW5bPK2f5qktrmrGweL/jPrPgDLvXHujvNDOeXgb4zRSkF/98FWkVkP1V9QUROwg3SvQ5ARC4HTgNaVDWmqqtE5DfAJcBZIhLGlS29MqPM50LgoyLykKr2pWr4fxb4lapuSW1zP24SsM8CX09NHHYBcHnRPqk3+Usod/APENr0OoP1C9zZJTVobP58OOoo98iUTLpxZmvWDL8oePFFeOCBdKnp/feHL33J5fHvsUfRPp0xxuy2AmUhkgR23nHZqaLCHaSzZ/ndjeZpMWYi/DjQd3dXMsG/qj4lImcCt4uIN8PviRkTfEVwA3Az+1rOBq4RkZWp7R8CLstY/zBwGPBHEYkBs4A/AN/MeN9kambhG0Tkf1Pvs7wYE3ztJN7MjyOHmXvBf3DT63DIke5CIZkcddBYIOA6nZqa4Ljjhq8bGkqfi4o1YNgYY2aMUIigKD29QiSSVYY5u9Y/WPBvZjwb6Dv1Sib4B0il5+QsO6qqFwMXZy3bAZw1yv7WA58ew/tuBE4ZV2MnI0euvyfRuBCA4Kb1w1dMMG80HLag3xhjCiYYpLwiyI4dUD0/q0+muRleyRgqZrP8GmMDfaeBZVj50Shl3zRaQWLufNfzn6kEZ/k1xpjdUbCinHgsPrKMf1OTu9Xq1aCwWX7NDBePu3x/6/WfWhb8+1UolDegTzQ2jwz+7daxMcb4QySCJOL09Wd15DQ1QV+fS3CG9PguY2ao7m6b5mI6WPDvV5FI3pNCYsFCghuz0n5Uc25rjDFmipWXUx5O0tWddYr1av1v3Oieg8HhpdiMmUFsoO/0seDfr6LR/D3/Dc0E2zYMD/it598YY/whGCQUgsEBhqf+ZNb6B3eHd3DQjXg0ZoaJxVzWm01zMfUs+PersrK8vfmJxmYCAzEC2zrcAhHLGzXGGL9IjV4MBKA/lpHT4PX8Z5b7DIeho2MKG2eMP2zbZgN9p4sF/34VDo8a/APpvP9AwAb8GmOMX4hAWRllwThdOzKC//nzXY5DZrnPSMSNeBwYmPp2GjNN4nGX718+sqK5mQIW/PtVMOguAHIE9fEFqXKfXt6/DRozxhh/iUQI6xCxmKRvzIqkK/5kCofTg4CNmSKJBGzdysiqVFOgp8f9Odhg3+lhwb+fRaM5g/qcPf8W/BtjjH9EIpBMIpIj9ccb8Ju57fbtlr5ppkw87q5BOzth7VrYsWPq6oaouveNRqfm/cxIFvz7WZ5BvzprDsnKWQTbLPg3xhhfCoUgmaSsTNnRnRX8Z/f8i7i7vdu3T20bzYzkBf5DQzBrFlRUuOvRtrapCSVsoO/0s+Dfz8LhvFV8EgsWErKef2OM8afUSMayMPT2SbofZ8ECaG8fWeEnGnWpPzZ+yxTR0BCsX+/+m1VUuGXBIMyeDb298OqrbiqKYonHXa+/DfSdXhb8+9kofx2JxuaRtf6t3KcxxvhDKOSiKlXITP3JrvXvEXHb7tgxte00M4YX+CeTuVNuKipcocF169xYgEKGFEND7pp3zRp33Wu1/aeXBf9+Ntqg3+xZflWtx8gYY/ykrAziccKhjNQfL/jPrPjjiUZd2U/ryDEFNjjoAn8YPdc+FHKpQNu2wWuvTb4I1dAQbNnigv6uLqisTN9xMNPHgn+/q6jIPei3oZlAbzfSncoRFbEThjHG+Elq3FZ5mUv9SSYZOdFXpmDQdeL09ExpM83uLTPwH0uPuwhUVbmfX33VXQiMdzDw4GA66N+xw+2vosKq+/iFBf9+F4nk7NFPZJf7BAv+jTHGT8rLIZFwfTMKsQGBhgY3TitXzz+4C4b29qkrvWJ2awMDLo0nEBh/qk15ueup37IlPUB4VwYHYfPmdAUhC/r9yYJ/v8sz6Ncr9xnKTv0xxhgzpYaG8kQ2oVD6x6Cyoxt3TK+vz93z771maKi4oy7NjBCLucA/FJr4ZFqBgEsDGhx0dwG6u3NvNzDgqgWtWeNuXFnQ728W/PtdOJzzr2dErX+wij/GGDPFrrkGPvrRI3PnRmcE/5Fy6O4JuD6a5ub8Pf/gIrX29oK31cwcXuAfDruhJ5MVjaYnp968OZ2QMDAAmza5C4PeXnehEI1a0O93Fvz7XZ5Bv8l51STLI+ngPxi04N8YY6bYfvtBW1uUX/86x8pg0F0AZKb+xNh18F9W5jbMLgdqzBj097vAv7y8MIG/xysJ2t3tBgNv2ODSe/r6LOgvNRb8l4JcM/2KuHKfm9bv/N2q/RhjzNR6+9thn312cOONefpfMsZthQJKb5+4Qb8bN45+zA6HXUF0Y8ahry8d+Berln5FhbsQGBhwFwM2U2/pseC/FOQK/knV+s+c6MumhjfGmCklAqefvo516+C++3JsUF6+8/hdXg7buwNoU5Nbtnlz/h1HIq6LdbK1Fs2M0dfnqvpEo8WfRCsctlr9pcyC/1KQkTeaaUTwb2k/xpjdnIicLCK/E5GHReQvInK/iByUY7vzROQpEXlMRB4UkTcUq01velM7S5bAtdfmqLtQXr5zYSAA8QQM1Y1S6z9TOOzqLBqzCz09rsc/Gs0bMhizkwX/pSBP0l6icSHBrk6kv8+dVSztxxiz+7sNuFNV366qRwPPAg+LSL23gYicCnwHeJeqHgvcAzwgIkXpqwwE4N/+DV54AR5+OGtlMDh8W4H+6jEG/5EIbN9ud3XNqHp6XPGoykoL/M3YWPBfCgKBnIN+0xV/1qcn+bJyn8aY3dsjqnp3xu8/BGqAd2Qs+xpwh6q2pX6/MbXNmcVq1CmnuFT+a67JOgxn5V9EypXOWXu4X3YV/Iu4i4ft2wvbWLPbGBhw/40qK0dcZxqTlwX/pSIaHdH7M6Lcp6r1/htjdmuq+t6sRV5JnHIAEZkHHA48mfGaIeAZ4IRitSscho9/HJ58Ep54ImOFyM7JvsAFaIOhSnTu3Py1/jNFIi71x47tJksi4QL/sjIL/M34WPBfKlLTxGeKZwf/Xu+/McbMHP8ExIB7U7/vlXrelLVdG7C4mA354Aehutrl/g8TiQzrvAkEINHQNLbgPxBwHTs7dhS2saakqbpJtVQnPoGXmbksO6xU5Bi6n6ypR0NhghszTiAW/BtjZggREVyKz1dVdUtqcWXqObtMzgBQkWMfFwAXANTX19Pa2jrudsRiPbz8cisicMope3DrrYu5554nWbKkx22QTMJQ3AXyuIBtztw5VKxZw5OrVo3tTdauLekor6enZ0Lf7Uwynu8oHnePmdbjH4v1sGpV63Q3o+iSybH1DUyUBf+lIlfdrmCQRP0Cgm0W/BtjZqTvAK+p6g8zlvWmnrMj5XKgL3sHqrocWA7Q0tKiy5YtG3cjHnywlSVLllFeDpdcAv/933D//S3ccENqg/5+V9e/snLna8JN+1H5/HMs23//sc2M1N0NjY2usHoJam1tZSLfbakZHHQB+USC8rF+R93dLt1n1qyZN6nWqlWtLF26bLqbUVSq7pCxZEnx3sPSfkrFKIN+Q5ss+DfGzCwichGwP3BO1qq1qeeGrOUNwCvFbtecOXD22a7m/yveu4XDI4oxxOubkZ6esQ/mjUahvd2KOviY11u7bl3xCjQNDKSvI2da4G8Kp6SCfxE5RURWisgjIvK4iLTsYvvZInJb6jVPi8j3RCSUsX6xiFwrIo+m9vlU6hZw5j4WiUibiLRmPd5SrM+ZV0VFzkG/wY2pWX5toi9jzAwgIucBJwEfUNV46lh+PICqbsMN9m3J2D4MHAw8NBXtO+88l6Fz/fWpBaGQ6wrOCNy1eYzlPj2hkDu+9424eWF8oqvLpeKowmuvQSxW2P3bAF9TKCUT/IvI4cDdwFmq+mbgP4AVIpLdu5PpNiCoqkcARwPHAf+esf4TwJ7A21P7PBe4WkTOzdrP71V1WdbjT4X5ZOOQMU28J75gIcH2zTA44M4227bZZF/GmN2WiHwQ+ArwbeDAVCfQCcCxGZtdDnwko/b/+UAHcNdUtLG2Fk4/HX75S9dLCwyb6RdAmpoASKwbY/Dv7aO9vYAtNYUyNARbt7o+ukjEXau99lrhrtVsgK8ppJIJ/oEvAStUdTWAqt4HbAYuzLWxiBwAvAf4fmr7QeBK4CIRqUptth64IrUOVX0WeJgi1oKelBx5/4mGVMWfzRtdz7+IzQhpjNmd3QEsAlqBlanHDZkbqOo9uAuE+0XkMeC9wImqWuC+2Pw+/nGXBrJ8eWpBVueNV6o5/uo4RvWVlbnu5P7+XW9rplR7uwv4U2O6KStzmVrr1hWmUFNHh5vMKxqd/L6MKaXg/3gy6janrCR/3ebjceXfns/aPkqqh0hVr1LVR7Je18/IgWL+kCNvdEStf29GyELfbzTGGB9Q1bCqSo7HN7K2u0lVD1PVY1X1eFX9x1S2c+FCOO00uOsu6OxkWK1/gOT8GpJlEYb+/sL40vjD4dQOjV/097vTbnZgHgpBVZW7+zOZf7LubndxUVW1622NGYuSCP5FZD4wh/HVbV4MbFYddlhty1iX630EOAr4RdaqfUXk3tTYgN+LyBnj+gCFEgiMOIEkFiwEIOTl/Yu4LoetW21gmDHGTKMLL3RpH7feiosEM4/JIsTeeRqV9/6Mrl8/PPbDdSTiuoAHsiuZmumgCps3u3+WXAIBV5Vny5aJnZYHBmDTJhvgawqrJIJ/xlm3OeM1ubZnlNd8FNgKXJ+xLAa8ClygqscBXwSuEpFLdt3sIsia6TdR14gGAumef3DB/8CAO0EYY4yZFvvsAyeeCLfcAj0D4RHR2/ZLv83Q3kuZ/aUL6XhqzdgDw1DIjS41027HDne6LSvLv42IuwDo7HSB/FiL8sXjNsDXFEep1PkfV93mjNfk2p5crxGRw4BLgeNTU8EDoKptwAczfn9GRG7A5ZNekWM/k54wZmCgh9Wr87wumXTBfyB9JJg/v5rutc+zqi0zw0lhxxp31NgNewtmykQfk2Hf0ehmyvej6oKPl16a7pbMTJ/8JKxYAXfeHeBj/xxyd25TkZxGK9j2w1uo+fA7mfXpc9l6133ULqradQ9vJOKC//nzc88BY6ZEPO569CvydSdm8C4AentdOdAFC9w1XD7eHYVkMv9dBWMmqiSCf1XtFJEuxle3eQ1QJyKSkfrjvX7Ya0RkH+B24DRVXTeGJr0CzBGRGlUdVnqhEBPGrFjRyv77L8t9AhgYgPXrhyX/SdMiqrd1s7ThgOHb9ve7o01Nzbjb4HczYaKPybLvaHQz5fsZGHDBQ2PjdLdkZjrsMHjTm+AnP4Fz3hWhPDEwrBs30biQbd9dTvWFpxP94kVsufon1NXJ6BczHgkuAAAgAElEQVQAIi5yfP11aG62C4Bp0tnp/inG0ytfWelSwdatc/90+e4YeAN8Z80qTFuNyVQqaT/g6jNn1/VvIX/d5gdxg3uXZm3fDzzuLRCRPYFfAv/qVRLKrPUvImeIyFFZ+27C3T3oGP/HmKTwyFvHiQULh6f9eLzeIRv8a4wx0+ZTn3JlGn+5YlbOUsyDRxzDjosuY9Zj9xO87mq2tMuuU4CiUdctvH69m1bWTKmBAVdYbyLVd7w7BevW5T492wBfU2ylFPx/FzhRRPYDEJGTgEbgutTvl4vI8yISAVDVVcBvgEtS68PAZ4ArVbUntawRd/FwExAQkZZUzeizM953b+Bz3uRgIrIAl9ZzfdZg4qkRCLiugqySccEtm0aeVLzBvx0dNvjXGGOmyXHHwcEHw49vjhAfzJ3w3fuh8+k76X1U33IFQ79/aOwXACIuirQBwFNG1aX75OiLG7N8cwHYAF8zFUom+FfVp3D1928XkUdwOfcnpnLyASK4gbyZfy5nA4jISuAJ4M/AZRnr/x1Ygqv/vzLjsSBjm1/gevkfS73vb3FpPV8u4Mcbn6yZfhONzUgiQXBr28hty8pc+o8N/jXGmGkh4nL/X10X4H8eyZPHIULXV65gaJ8DWPCtC+l9fs3YLgDKy9NRpNX/nxI9PS53f7K5+LnmArABvmYqlEzwD6Cq96rqEar6ZlU9RlVXZqy7WFUXq2p/xrIdqnpW6jWHqeqlqhrPWH9+nnrRizK2Wa2q56jq0an3PVxVv+1NDDYtIpFhvfw7J/ratD739tGou4eYNTuwMcaYqfHOd8KSJcq1d81Fk3ki+kiUbT+4BQ2HWfjVs9mxqXdsFwBlZe68sG6ddfQUWTI59kG+Y+HNBbBhg8veSiZHrxxkTCGUVPBvUrJKBMRTtf5z5v2D60JQtdJwxhgzTQIBuPBCYfU/yvnDY/kH6CYam9n2vZ8QWr+W5u9+kq4uxnYBEAq5iHTDhsJMKWty6upy/WijVeoZr0AAZs92p+lCXVQYMxoL/ktRVqJhoqEJGCX4B9f7v22b5YUaY8w0ec97oKkxwbW3jj6Sc7DlTey46OtE/7SCxp/9iK4dAdo7x3ABEAy6ZPGNG93x3hTU4KC7iV5Zuettx0vEXQSY/GIxS2AoFPuvVoqyZ/qNREnMrxk9+BdxFw3t7Tb41xhjpkE4DB/7aJy/Phfhib+NXp6z90Pn0feu9zP7xiuoeXIFHdvGeAEQCLg8ks2bXS1KUzDt7e76ygbiTq2hIbjmGli6FE477ThOPhkuvRRuuw3++ldXHclvkkl/J1uURJ1/k0M06v7Hp0YFJRoXEhot+Ad3weCNVLIaYsYYM+U+9EHlymtd7/9Rh47SOy9C15e/R2jNS8z72ieJ//R3dPBGIEnNfB09AA0EXIH4LVtcJ1FNjUWsk9TX5065Vnd/aj35JHzhC/Dii27cTDS6iba2Zv7nf+Cuu9Lb7bEH7L//8MfChVNzN0XVjbd/9ln4+9/Tz93d0NQELS1wxBHueb/9CpsyNlE+aIKZEK+Gf0qisZnw/63a9eu8wb/RqJUTMMaYKRadFeKj/9LF92+q5vmXQhywz8i6/ztFomy74mZqPvJO5l98DonbfkfHttmM6QLAm1K2s9N1Q9bV2QXABHmz7ZaXT3dLZo7t2+E//gPuvNNNUHjrrfCOd8CqVf9g6dJmVF1J1NWrhz8eeMD9dwfXx7nvvu5CYO+9obbWPaqr3fXwnDnj/5NQdXPrPfssPPece/z97+lwrKzMBfinneYmcXv+eXjiCbjnHre+ogIOPTR9MXD44W68x1Sz4L9UZV06JhqbiTyS+l8/2qVuMOgS57Zvd1PDG2OMmTqhEGe/r4cf/2we191WyfX/sX3UzRONzW4G4E98gHlf/xR6xS10bAsyrguA7dtdhbjGRkssn4AdO1y+v/X6F58q3HcfXHaZ66f86EfhkktGJiuIwIIF7nH88enl/f3uLsELL6QvCH7zm9ypQeFw+kKgpmbkz7W1LkzatGl4sO8NpwmFXKD/rnfBQQe5uTz22WdktSZVNwxn5Up3J2PlSrj6aheuibjXtLSk7xDssUdhv9NcLPgvVVn/u+KNzcjgAIGOrSRr60d/bUWF6w2qqrKaYsYYM8Xm1IQ56709XH/XLC79RA97LRx9FONgy5vY8dlvMOcHX2PWzT+C8z9Px7YA8bhSW53cdRpBVZVL99ywwUVLdtd3zOJxlz1VjEG+ZrjXX4cvfxkefhgOOAB++lMXVI9HNOp61g89NL1M1V1ItLfD1q1u3lPvd+/R0QGvvOLW55p1ORh0Qfo73+nadNBB7q7CWOZ6EHHpP01N7o4AuD/Hp592FwNPPunuDNx5p1tXW+suKG69dXyffTws+C9VIu4eZDwOoRCJxlS5z7bXdx38i7hL1q1b3f9GY4wxUycS4fz3b+PmX8ziQ5+Yx6fO6eX97+6nbJQxwL0f/CjhF55j9o0/YGifA5C3nEhvn9DbF6SxPkllxS5GAldWusT11193x30/JB6XgI4Oq8RTbPE43HQT/OAH7rv++tfh3HML919UJJ3ys99+o2+r6v5MMi8Kamrc66LRwrQH3J/jcce5B7ihOf/3f+mLgUK+Vy7237mURaM7J/tKLFwEQOWv7hg2AVhekYi7P5Y5r7gxxpgJGVcRtUiE2rlxbr9qGzXzklz67Tkcc2ott/0iSixfNebUAODB/Q5i3tc+SWjty1RElbKwsn5jgM1bZddlECsq3PnhtddcLouXHG1yisVcikexA7GZ7NlnXS/3t74FxxwDf/wjXHDB9F2birjAfM89XT7+O94Bhx1W/P8DwaC7wPjIR+DKK+Fznyvu+1nwX8oikZ3lPuN7vZHucz9NxW9/zrxLz0P6xxDUR6PufqadAIwxZsKCQVeOcMw1yFMTLx5zxCC//Wknd13TyYKGBF/5nrsIuOnuCvr7c7wuEqXzB7egZeXM/9zZhJ9dSSgEs6uUHd0BXns9mPt1maJRl+zc1ubyHDo6XOPNMKru9FhevvuOk1advtN/T4/L6z/5ZJeEcOONrnRnc/P0tGemseC/lIWH3yPuvvBLdF36bSKPPED1J05HunZR4zkYdGer7aMPODPGGJNfIOBS6Xt6xhhMZUzUKALL3jTI/7u5k59f38lee8T5+g9nc/QptdxwewW9fcMjz2RDE9uuuAnZ0UXtuadQ/W//QtlfH6UymiQYUF57PUh7h4zejlDIjQPwJn9cs8ZdDORKdp6henrczfHdqcLP0BD87W9www1wzjkur37JEnj72+H88111nZ//3A1ILeYUEStWwLJlcMstrqe7tdVdBOyuF1l+ZEl/pcwL/lV3/tX0nX4uydp65n3lQmrOPYXOa39GYsHC/PuoqHA9P5WVNvjXGGMmaNYsdwGwaZP7eZd1+EMh1/mSGnwrAsceOcixRw7yl6fDXHlTFd+6ajbX/bSKC87s5ewP9DGryuUWDR56NFvuW0nFr++g6vbrqfn4Bxg88HC6z/0MoWOPZ9v2AN190FibGH1AYiDgzgGqbgRiV5f7vbraPc+gaCyZdBlRiYR7bN5c+uk+/f3wzDPwl7+4ybCefDKd6btokRu8Ons2rF0LL73kymRmZg3PnQuLF8Mb3jD8edGi9Hfj9R92drrryOxH5nLv561b3WDZG25wFW7M1LPgv5R5g34TiWEJcrG3vYuOH9cw/7NnUXP2yXRcfSfxfQ/Mv49QyF0ANDTMqIO9McYU0pw57nC8ZcsYLgAiEdfTnqPyztGHDfFfP97Gk8+FueqmKr573SxuuKOS8z7Uy7kf6mPOLEWjFfSe+W/0/stZVPz251Tddi3Vn/1XhvY5gO5zP8P2Y0/i1fVB6mqSzJs7hpKg0ah7DA7C+vWuM6i62t0hmMbqQImE67EWGf4IBNI/j0UymQ7s43G3z8FB908wNOTWZ/SjEQ6X3pjo7m4X4P/lL662/LPPus8o4oLt00+HI4+Eo46C+hx1QYaG3D/9mjUuI8x7fvRR+O//Tm8n4l7vVQ3PN94lFHKlMufNc483vMH9vv/+cOaZI5IXzBQqsf/aZoSKCjdwK+soNXjoUbTfcg/zP3kGNRe8l84rbmbwqDfn3kck4u5xbtzoDvZjqV1ljDFmhPnzXSDZ3r6LC4Bo1PW2j6LloCHuuHobz64OceVNVfzgxlnceGcl536wj/PO6GX+XIXyCH3/chZ9p55B9Pe/YdatVzP/C+cza9ESus/5NFuPey/dvUEa65Jju7lbVuYeXvf3li0ucps9e0rvDg8OulPbtm3peuiQDjQzv9dAIH0x4P3sPeJxt694fPg+gkG3Phh0/xSl2O81OOgC/YcfdsH+qlXuuwqFXCnKj37UBfpHHOF68XclHHY9+4sXD6+dDy5EWLvWXRCsWQPr1rnwwwvs580bHujPm+euG0vxe50JLPgvdZFIesaJLPHF+9B+231Uf+pMqj91Jl3fuJL+k96Xez9VVe5I8vrrrvtq3rzS6/YwxhgfqK52Qdi2baNMDBUOj3m05cH7x7n1P7t4/qUQV91cxVU3V/GTuyt4zztjfPh9fRy0XxzCYfrf/QH6T3ofkYf/h1m3XMX8r3+a2U0/ZNuZF/LqCadT3xxm9qxd3AXwBIPuvKDq0oE6OtyHmTPH3XEuwvlBNV1hp7vbBefR6K7LbKoOf3i9/KruteXlxU/hSSZd7vrKlXDggS7orq4u/Pt0dcEf/uBSdFpb3fcUibiKNBdd5Hr2Dz/cBeaFVFXlPteBeZIITGmx6K7UhUKj1phL1jXSftNvmP/5c5n3tU8SaN9M70c+nvtyvKzMnZB6elyXS3W16+2xAsfGGDNmXl3xZNIdSrNnJwXcsXuc3aIH7BPnJ9/v4sV/hLjxzgp+9bsod/2mgoP3H+LD7+3j1BNjVFYEib3jFGInvJvyRx9k1k1XUvv9S5l324/oOP1Cek//ELXNkbGnXIikI8lYzJ0fvPZXVKTHi5WVTbibN5l0N0E6OtxblJWNbzbd8aT/FFp3t0uJueUW1zOeackSdxHgPSZayea111yw/8ADroc/kYC6OjjlFDjhBDj22NIfn2CmlgX/pc6rGpGZrJhFZ82h49q7mXfZp5lz1bcIbtnEjs99M3dQ7+V+JpPuSLx9uzuLlep9UWOMmQZeXnQi4eLlERcAXvA/yrE7n32XxPnRN3bwjc938+vfRbnzV1EuuXwO3/zRLN77z+5uwNK94wy8+R0MHHcC5U88QtUtV1F/zVdJ3PEjut7xfgYPPpL4oYcTbqylPNXvEwwowaBrWs4+n8yU0GTSjR7dsSP9gaNRdzEQibgIfhdjBeJx9/LOTre78nLX31QK1qxxpSl//nP373vYYfD/2TvzODmqavF/T6+zZDKTPSRkI2ENspggIJEMmwgooKAskhiePBQRBOQ9RESUpywPfILPDX0IEoOKyI7sMiqK/AKICgFZw5p9m33p7vP741ZN13R6ppfpmemZOd/Ppz7VXXXvrVO3q2+de+855154oYsLv2qVU9KfegruvRdWrHB5pk2DAw5wo/MHHOA6B9l++lTKReV5+GF45BHnjAvObv8LX4Ajj4S997ZxOaN4TPkf7oik4/33NQ0bi7Plih+RnDSFMbf+lPCGdWy5/HsQ78W+PxRyjXgy6XwBKivNH8AwDKMARGCHHeDdd52e3MMUQ8QpyKlU0Q61tTXK6Se1suxTrTz9jyi/+G0Vt91byS23V7Hvnp0sOaGNY49ogwMW03HAYmJ/e4oxN/0v4+/8GXLbjwHomjaL9j0X0jJ/Ie3v24/2Wbsh0QihEESjbhGxWNSJGglrt518KBQiFHwfqDqP0Y0b0+ZMsZjr9fgRhbyOTnu7M19pbEz3GYaDIptKwR//CDfe6ExvolH42MfcarT77ptOt3Ch284+271CX3rJRdv561/hiSfgjjtcuvHj0w64H/gAPP30BG66CR591EXECYddJ+HUU90I/6xZQ3PfxsjDlP+RQGVlVqff7QiFaPzy5SQnT6P2um8S2rKRzd+5Ca2p7T2Pb/fZ0WH+AIZhGAXirwHwzjtZOgCVlc5upJ/RdERgv7272G/vbXzjy4389v5Klv+2igu+Wcs3vlPDCce0cdon2tht3/3ZvO/+0NlB9KV/Evv708T+sZKqZ/5EzcO/BSBVVU3X/H3p2Gsh7XsupG2PBbRUj3P6vOCZmUr3vYUjEAkp0agSjcSJROKEw24WIZRIENrUSHjjZujopOXvr7KpOUZrsoJoVYTqmhgSjUAi7OpgCKMK9UVLizPtuekmePVVNxl+wQVw2mnZo+YECYdh/ny3nX66q77Vq9MzA//v/8GDD/qp30dNDRx6qJtBqK/Pz1HXMArFNLiRQB9Ov9loWfJ5UpOmUHfZl5j42ePY9L+3kpoyre9M8bgbxTF/AMMwjIIIh2H6dNcBaGsL2GfH424IvISMq1XOOLWVz57SylN/c7MBK+6o4qZfV7Nw705O+0QrH1wYIr7jB4jN2Y/Ypz5PLKJE171D7O8rif7zGWJ/X0nNzf/LWG/J4q45O9O51350ve/9JHacTXLqdJJTdkCjcVIpzwKoTdAUpFQC/YMwmoojAh2JMO80jSUeTjA22gldbbAhY0lkN93gtnjcs0UKp0Pz+CF9BonVq51pz69+5fpoe+8N3/ueW5Cq2MW/RGDOHLedfLI7tnatcxTeuvXvnHTS3rbkjjHgmPI/Esjh9JuNto98nOT4SYy/8HQmnf4xNl3/CxI77953pt78AUodVsAwDGOEEYk4h8+33nJOrRUVFNV254uIWy/ggPdv4/ILG7ntPuccfN5l2YeSI+GpxGILnO9uRIlNShHXdioSzcQ3NFFx3xYq7m5mPJuZyN+YxMOMr2pn/Dhl3MQQ46bEqduxhrpZY4nPmkpyyjRSEyZ3j+aHmqCmWoEwEEYjUVrbhE1bQoFN2LxZ2LQZ7ztsaYRwKEFFXKmIKRUVUFGJtxe3VYXcvgIqA8eicTc45Vsc+Z+De59gmvZ2uOsuZ34TDsMxx7iwme9//8D0PaZOdeZDL7ywxRR/Y1Aw5X8kEI26EZECHcc6P7CIjf93FxPO+TSTTz6Uzj32pmPR4bQvOpyu3ffqfVQ/0x/At+usrMzLycswDGM04ncA3n7bWVLGYzHXbjY3p30ABmDlo/HjlM8vaeVzp7nZgNdWR+hKCB2d0NkpdCWgo1O6P3d2Ch2dQlciQmfnODo6x9HVNYvmpg7e2QKbGyNsbqsg1RqCVuDdnterpJWJbGQi65kYa2R8dRuJSIhtofVsTIxjY0cNG9vH0J7IroLEY8r4cSkm1KUYV5cilRJaO4TNTc5foL1DemzJZOk18gkTlHPPUZacBjtMG8JwQoYxAJjyPxLoZaXffEjsMp8Nv3iQqnt+RcUTjzHmp/9DzU++Q3LCJDo+eCjtBx1GxwGL0ZosIRh8fwB/fe8tW1wHJB53nQPrDBiGMUSIyLHApUAbbrj5S6r69NBK5ZpEfwYgFAoRnT7dOcq2tzuTygHsCKRnA7r6XVYq1cjWRmHz1hBbtobYvEXYvK6Tre80s2VtJ5s3Jtm8Jcrm5h14rbWKREKZzEZ2SD7PXqxnEht6bJO9YxNjTVSNjaBj6khV15GqqEWrx6CV1WhlFVpVTaqyCq2oQquq0MoqOmNjaAvX0BKpoS1UTZtU0SbVdIYqkJCLqCQC4g3vizqHZMEt6+ur9YJCSBCBuTO6qIgrtAOvewkyVxPLtqpY8FjmssT+j5C59zfV9GpkmfkMo4SY8j9SqKx0CngRjripSVNp/ux5NH/2PEJbNhF/8nHiTzxGRcODVN37azQcoXOfD9C+6HA6Fh1KYs4uPRskf4lEH+sMGIYxhIjIAuBW4AOqukpEPgo8JCLzVXXtEItHPA4zZrj47QCRSBStjkJ1DdqVQFvboLER3dqM4joCGoluZ7IiAuFQ2iR+MAmFYHydMr4uCQRt97MtagAvrH2e+VP3BJ2KtDQTatyKNG4l1LiV0LathBq3uH3TNjr8741bibz7FtLWgrS1Iq0thNrbCpJTwxG0ogKNV6CxOBp3dkP+Z41XuPPd3yvRigqIxtBoFI3FIRJFve/+Z6JR95v4xyIRNBJ1+cJhCEfcPhJBw1FvH4ZoYD2EzNn6zk7naBAkWwcjW4fD/1H8B8HfZ+t4BD/391zmZ2NYYMr/SKGiwgVL7iepcRNoO/pE2o4+ERIJYv98hvgTj1LxxGPUXn85XH85iWkzPPOgw+hY8EFngBkkn87AmDFO5khkaN5chmGMZC4GHlLVVQCqep+IrAPOxs0GDDkVFTBzprOc7OoK6moRpLoGGVNDKJVA2tuQxm2EutziWqF4jFCFmxFIpZyJTmeXkEh4BQvgdQ7CISUUhkg4t6+svzKuKqT8z0EHXr9sL63g6aXivoRCEMoYEM+KCDqmhuSYGpg2o/CKS6VcnXidAWn3OgUZ36XNS9PZjnR4W3s70tnR/Z2OdkItTenzHelz0tlRuGx5ouEIGol0dxr8fV0IohXVEIunOxbRmOt4RJwjtEa9zkcwr+cYraEwhJyDtEqo21law+64+u9av2MSCrn0oRDa3ZEI9fweCgGChiPuB/bKVRFXvrgfXkPe54h3LT9vJAIS6paBcCgtSzgtb/egYGbnJdiJAadP+E7ywYcs+Lk/HZRs6frK29u5zON9fd+uDPH+wwPXqTLlf6RQxGqR+ZTZue/+dO67P03nXEJ4zTvE//wYFU88RuXdv6T6tptIxStIzN2VxIw5JHecTWLGHBIz55CcMYfUuAne0FSWzsDWrek3jYiTPxJJRxXyV5nxOwc2smAYRv4cDlydcWwlcARlovyDaxbnzu0rRQSocVsikV5Uq6UxrWGPcW1jSoWUColUiKSGSCR9W/4QnckQiQ4hlQKRwGhzwOnV19XCYSUagUhEiYTdvlsPFO2+lqpryhMJSKb8z0IiJSQT6VD//oVSKWhuEWIxt25A0YRCaFU1WlUNEyb1o6AceCY4kuiCzg6kqwvp6oSuTve5swMS7ph0dkLwfKIrndfbSyLhpe9ye/97YL+taSN14cp0uV3u2qHWZvfZu5YkurrloLPDlZ9M5r6nMkZFenZE/M5Jd8fBdRrGkyQSjnlpXWdEe5hbueMqWToz/iyI16EhFHLXDZpxidtr97FQuqcrAki6LKTnOUlfw+nuEkjXu/mX9kjnjkVn7gbXXjRg9W3K/0ghj5V++0tyhx1pPfEztJ74GWhvI/7sk8T/8jiR118m9vyzhB+5Bwm0+KnqMS4s3MydSMxwHYPkjNkkZuxEasKknnL68eKam9OdguC9RCLpJeSjUZemvX376U/DMEY1IjIeqAXWZJxaCxw1+BKViEjEhVceO9Zp3O3tzkzEaztDySShVIqI35Z2D+OnPyeTTklPqSAhISTardRLKNAeZ75HVCGV5b0SAnqJTuM34f7l321OMrmyicbmEM1bnXIUFiUeTRGOZCk717usv++6vkZeA99VQhCvROOVBeXLmTZLuhfWv8D8KXv2XWZvdFd20nUoUilIJlynIPg5mXRpkl6vLeXOi6bcd3U/mHjH3TRQ0r3bA2kkmfSnhtLnu/Okcn/38ye9vN3f/WtnpE0lIZlia+tmxsXHdstJyvPh6JbH8+PIdn3/ofTTJZKEglNewfzdD3AykE/TPiLB8tAeD7z4v0dwI/M76bKypd13EWDKv5GLfjj9FkVFJR0fPJSODx6aPtbVSfi9t4m8vZrIW68Tfmc1kbffIPrSP6n4/f09RiZSlVUkp80kVTeeVN04UrX+Nt7b16H+sbpxpGK17oXX0eH+dF1dbtnMzDrw16b3t3A4HQ0p0xFrkGNGG4YxKFR7+0y7jQ5gZMQljkSc6WQhqBL2tqxxLgv5ngfeOCb+kIxseJe6PXekDvea6ujwJzKUtgSgEIlCLJrHOE6+8vR1H8Gpid4+95Un1/fMeu6tnMw07e19XyMPXIkC4SgaysMqIChDoe/EbJ2wfI8VUqbHqm2vMr92XvY8kN+9luIeS03gGqrQ1hUhy12WjGGl/BcavUFExgLfA+Z76R8BLlHVRCDNDsCPgclAHLhVVa/NKGc34IdAFPfyuE5Vl5fw1kpDP5x+S0I0RnLWXJKz5tLBYT3PdXURXvsukbdfJ/y26xSE33ub0LYtRF5/mdA25+wlyUT2soFUTW13J2HfeJjqcVNJjalxkSCqxpCqHuOmgyurSfl7LzqEVo0hVeVsKbejxxSjpE2OggvLBGcWenN+6u1zb8cMwxgIWrx95p89jgtM2QMRORM4E2DKlCk0NDQUfMHm5uai8o0mmltaaPjrX7OeC84SBK1XRluwm/ZUJy+0vjk0Fy96uYmBWaeiN9pTnbzQ9tYAiDG495GLlArvNLwxYOUPG+W/yOgNNwMtqrqfiMSABuBy4KtemSHgXuABVb1URGqBZ0WkUVV/4qUZAzwMfFNVbxSRHYF/iMh6VX1o4O64CCornS19i/fu83uSwRFv335+sE1kolGSM2aTnDG79zSqSHOTF/1hM6GtW7xOgdtk2xbv2GYiW9YR2fIvQi3NSEsz0trspulyoJFoz+gOsTh0R4GIo7EKNBbrjgxBNOaOR+NoLOYcpXo4akWcI1SG4xbhSDoKRDiSdrrynaWiUQgH8kcjgegQUYi4RXCIxdP+HL1FeMgMCxc8158RHcMYhqjqZhHZCkzNODUVeC1L+p8APwFYuHCh1tfXF3zNhoYGisk3msi3jlSdNVN7u1tVt7V1+/O5LGiCnQb/tTccXMdeeKGB+fPrh1qMsmY01JGqWwl83gAO/Q8b5Z8CozeIyJ7Ax4G9vPSdInIdcLOIXKGqzcDRwD445zBUdZuI3AB8TUR+qqoKLAMqgZu8NO+IyK+ArwHlp/zPmZMePkkm03GDu3Qa/J8AACAASURBVLrSe99OFPpuSQu1bcymjGaez9Fqa81YkjVjSU6f2eetdoeN80mlXGSHlqZ0hyDwOdTShLQ0IS0tLvpDZ0ePyA940R1C2za7iA/B4/42QCtx5kLDEdfx8KM+xOIu2kPM+x78HIuhUec0vXuimdr4Dd2dAe12fvIcq7yOQmaUB0Kh7k5I5r67U+J3bro7MN75LLMj2uezEfgezhIhIhRKl+tHlPAjRPiyZounHXSgypomRLilBdm8aXvHK0g7hAVlzpQ/02ysEPvfTHJpJdmm0PPFMyFlACNHlCGPAgszji0E7hgCWYwC8C1Y43GorfVMsxPbmUpnM5/ufq0F3R58a9GOju3/NsGOwXDoHBhGqRhOyn+h0RsOxy3P8XxG+kpgEfCgl+Y1Vd2akWYGsCvwkpfmWVVNZaT5nIhUqep208hDim/3niuWvh+qIZl2iMnbtjGbTaRfhn8+6GzmlxtMk5m/UDu9VDI9w+EnkRA6ppZUjbd8fW/mObnOZeI7UieTzmkqkUjvs0Vt6OraLtqDc7AKOltlfE6575J5PpFAujpchIfODi/qhBddotPrpHjnpLnRnetwaSYmOogSTjtw9XD+y3BsChwbqk7OYLNDCcroERGiR4SJwHHJjBzhdyAAAucIHPc7Ll5a7f5ehIwKbZ85Cy7/cgnueNhwFdAgIrur6osicjTuJ//BEMtlFEgo5OI8lAK/WfWjFHV2pre2tp4B6DKD1BnGSGJYKP9FRm/YCVjnjd4H0/vn/H22Mv1zL3n7Z7OkCQGzgVW576AM8W3bh8I/INuQTW/7zGM+rW/CDjv0TBPsfGReI/NYZp7Ma2Q7rgqIG/kOhd0I+2DRWwcpeDzj8wuNr2V3jArmhe3L9aMkJFNeRIik68T0iBgRiByRTLjoDP5Mk9+h8DtNvi2lsr0THOnfIVvnRHp8V3edYJQH/7tquvyMqAriH0v1jLqwrnU9UypdqEAJypVN5szjvrzBDq5uLy8auC/VQOQIV3j6utvL11P+gBwFkkykSNXWFZV3uKKqz4jIp4FbRMT3ETuyHBb4MoaOXONiwc7B1q0uquqYMTYjYIw8hoXyT3HRG6p7SU8gT6nSdFMK57GOjmZWrSo832iivbOVF974f0MtRm5KNoheYEHqO49lcYwq9Jphb+uB4JqPCBDPIl6JbjyvYoq7VntXG29GB3hob7BnUXS7D65PGAkTHWUOqap6D3DPUMthDB+CnYOKCjfjsH696wDYwvTGSGK4KP8FRW8I5MmWnkCeFmBsHmlyldNNKZzHHnqogT32qLfRhj4YDU4//cXqqG9GS/10dDhFZodS2DkZxihBBCZMcJGi33vPmQBF+7M4mWGUEcNiVSRV3QzkHb3B43VgskgPFdrP/1ogTbYy80mTAlbnkt0wDMMwjOHJ2LEwa1Y6ApFhjASGhfLv0Vv0hkd7Sf8Izrl3fkb6NuDPgTTzRKQuI83bqvqvQJr3e2FBg2n+UnbOvoZhGIZhlJTKStcBAOcYbBjDneGk/F8FHCkiuwNkRm8QkW+JyPMiUgGgqi8AdwL/4Z2PAl/CLdDV7JX5APAccL6XZizOXv9bgev+HBc16DNemunAyRlpDMMwDMMYocRirgMQi0Fzc+70hlHODBeb/3yiN1TgHHCDZj7LgP8VkZVe+keBrwfKTHmrBv9YRJ70yviJv8CXl6ZZRD4M/EhE/g3nAHx+2S3wZRiGYRjGgBEOw/TpsGEDbNkCNTX9jwSk6syJEgkXFKy5GaqrLcKQMbAMG+Uf+o7eoKoXAhdmHGvEG7Hvo8z3gGNzpHkJOKQgYQ3DMAzDGFGEQjB5spsBWLu2+EhAXV3OGV/ELWZWWwtr1sD48bBpkys/PojRpI3RxbBS/g3DMAzDMIYSERg3zi2Ts2aNU9TzWYgsOMofi8HUqW6UP9h5mDjRdSjWroWmJnc+NJwMtI1hgSn/hmEYhmEYBVJT48J/vvOOWxistxWBE4l0pKCxY6Guzo3q92baU1Hh/Au2bnUmRrbasFFqTPk3DMMwDMMoAl9Rf/ddaG2FqsDSn+3tzrwnGoUpU9wofiRPrcufXaiuhnXr3CxAVZUtNmaUBlP+DcMwDMMwiiQahRkz0qY6oZBz3q2pcYvrVVQU78Abi8GOO7py161z5QQ7GIZRDKb8G4ZhGIZh9INwGKZNg82bnfI/ZkzpVgQWceZCVVXODGjbNltx2OgfpvwbhmEYhmH0ExGYMGHgyo9E3EyCHxmos9N1CCwsqFEo5kNuGIZhGIYxTKiqgtmzneNwU5PrBBhGIZjybxiGYRiGMYwIh2HSJNcJANcJSCSGVCRjGGHKv2EYhmEYxjDEjzY0bZpT/hsbXYShgSSZhJYWtxqxzToMT8zmv0xJJvMPCWYYhmEYxuhExEUWGjPGhRtdv97NBMTj+S0+li8dHU7Zj0TcYmThsFuLoKnJnS/19YyBw9TLMiQadX+wri5b2MMwDMMwjNyIuHUBZs92nYANG5xiHos5xbwYUiloa3MDkmPGwOTJPZ2Mx451Mw6tremOgIi7nkUjKl9M+S9DQiH35/VDelVV2SyAYRiGYRi58TsBVVVOcd+40ZkDxeP5dwI6O91IfzgM48e7mYXeRvUjEdcJGDvWDVq2tsKWLc4sCKwjUI6YSlmm+CG9xo7tGdLLMAzDMAwjF/6CYDNn9uwExGLOVyCTVMqtSpxMOquDHXd0+1AB3qHRqAtFWlvbsyPgL34Wj9tgZjlgP0GZU10Nc+a4P+2WLTYLYBiGYRhGYVRWulWI29udPtHU5HSJyko3uNjZ6ZTzujo36FgK2/1gR6Czs6dpUGWl6TJDiVX9MCAchilTnL3d2rXuT1RZaQt7GIZhGIaRPxUVbkS/vd2tRuwr4tOmucHFQkb5CyEWc1tdnYsU9PbbzpTI9JihwZT/YYTvyOPPAtjy3oZhGIZhFEpFRTo86GCPwFdXO8fh9evdLIMx+Fic/2GGPwswc6b707a0gOpQS2UYhmEYxnBjqExvxo1z5kCtrUNz/dGOKf/DFH9579paN2030It6GIZhGIZhlAIRN/ofibioQsbgYsr/MCYcdn+eWbOcd35zs80CGIZhGIZR/oTDzvSoq8tZMhiDhyn/I4DKSjcLMG6c6wC0tLiQXcboJZWyjqBhGIZR3sRiMH26mTAPNubwO0IIhWDSJOdJ39TkHIITCVtuezSRTLrp02QyHbEhOBsUiTgHcQuvZhiGYZQL1dXOl3HDBhcByBh4TA0YYUSjbjW+ujrnSOOH8opEnHe/hdUaHFTTU5nJpKt3Eff7RKOl+x0SCafwq7rfuK7OhYSNx+Hdd2HePCdHV5db5KWlxT0P4GQIh61DYBiGYQwt48a58KOtreW1oKn/Hh9p+pO98kcooZBTAseMccrhtm1ucQ1wD7Epe6UjqOj75jahkGvAamvTy6l3dDjlu7XVpStW+e7qSiv8sRhMnOiuFYtt3zj5KyrG4+5ZmDTJXdvvELS2Opna29N5wmGXz++wBDfo+dkwDMMw+ouIG/1/6y33fvPfm0NB8B1bUeFmJrZtc+/qbCsjD0dMBRwFxOPOMXjCBGcGsmmTGwUeSQ/yYKHqlPyurp4j+hUVLl5xRUVamc9UkKuq3OiG31kIKt/Nzel0kYhT5H3THVW3sFtXl/tcWekaycrK4ky6MjsEkO4Q+Ksw+s5XqZTbkkl3bd+XJNOnRLXn/YbDTrZwuHD5DMMwjNFHOOzs/1evdp8Hc5DSn0VPpdy7ccoU987211IaN86tS9DYOPBrLA2G74Mp/6OIcNiNRI8d65T/zZvdgxwOu4d5oFb2G66kUq5B8E13wNVRRYVrCHxFv1AzHpH0aofV1enReH+J9dbWtALuK9VVVS7dQM3aBDsE+dpcqqY3/3sy6ToRLS1ua2tLz4SU2uRpoPFncfwOUPA7pF9O2Tp6hmEYRuHEYi4C0DvvDPwKwMmkm/VOpdy7aeJE907ONqgWj8OMGe69tm6dy1ddXVq9KZl070xw5tsDiSn/oxBfmayqcspmY6NzEA72Nn3Tj0hk4EZvM5WroDIZHFnOHFX28zY19TRFCYfTW6F/yOBovk8o5DpFtbWuMRhI5dXvVPgzCL5MiYS7ZjmOoGcz/4lEes4oJJPuGfNtOYs1ecp8NoJ7/3xv+Xo7lkr1nHHJTOM/S/5MjK/o+8p+0IzLl81PP5w6OcMFEYkDnwVOApJALfAscLGqbgykiwJXA4sBBf4GnKeqLYMutGEYBTNmjLNWGAgH4GBgDF/hr6rK38youtpFV2xsdPKJOD2hP+19R4d7T0ajbsahunrgZz1M+R/l+DbjEyaklc1EIq2wdXamR2/9hzsUSis5QaU0OEIa3DLxywp2MHwFN6hwiaRtz0Ohnp/few922sn9gX0F0986Otw9BP+Mfv5wOG264yuP/kh8TU16Os9X8oaScpChv/izSpWVPU2e/Oequbmnv0GQ4DPnPy8irk7839P/DNk7fL11AkMhN7I0bVq6rMxnLFdjPmaM+98EzbiCnRy/kxF8xq1D0C92Bq4C9lPVf4lIBfAAcAdwcCDd1cC+wP64TsJtwE+BUwdXXMMwimXcOPeOKIUDcCqVHuGPRFzZY8Zk95PLh1AoHVxj82a3RaPuPVeoTMlkOtpRfzsRhTBsVAsR+SpwItAJvAucparrc+TZDfghEAWqgOtUdXng/CLgPGCilyYJfE1V/xhIswz4CrA2o/jjVHVbP2+rbAhGosnEV5aTyXTHoKPDPbjt7T1DSQZHc/29r+RnU7L6Q1De6uqe53w7dV9mX+Hs6HAyDcZovrE9QZMn3wHZNxXylf3MTt9AORj7TvH9JdOMy+8Q+M+dP0PQ1pb2EzGfiKJoA25Q1X8BqGq7iPwQuE1EZqjq2yIyDvgicIKqJgBE5BrgKRH5uqq+OmTSG4aRNyIwdSq8+WZxDsCpVHogMDMSXqneJ5GIm6GorXWzAPn4AyQSTm8ScZ2QsWOHJhz7sFD+ReRcYAluxKdZRK4F7gQO6iPPGOBh4JuqeqOI7Aj8Q0TWq+pDXrLrgDtU9Qovz+eBh0RkgaquChR3lareXPo7Gx7k6hgElbZywe9gDKRTjlEa/NmekUTwPxN09PY7z62tzmyttdU6A/miqq8B/5Fx2LOQxVcNFuMGcp4OpPkbbmDncMCUf8MYJvgOwG++mZ8JsqpTrBMJ9/6vrXUz+gMdpjMehx13dO352rVOhqqqnvK2t7vBoFjMdWqqq4e2vS975V9EQsAlwLdU1bfQvQZYKyKHqepjvWRdBlQCNwGo6jsi8ivga4Cv/K8CvhfIcwNwLXCCd87IQbkp/YZRrgQ7BL6jtx9hItgZgLSfgXUGcnIg8GxgRH8nnJ1/90ytqnaJyCbvnGEYw4h4vKcDcCa+wu/Pqo4dm468N9i6SVUVzJnjZgDWB+xSUikn+w47lM96AWWv/AN7AZMJjOSo6joReQs4AuhN+T8c91IIWp2vBD4nIlWq2qqqS4MZVFVFpJ30KJJhGMaA4ft1ZHYG2trcC8T3twn6xZTDi6McEJHJwBnAcYHD1UCX6nau3h04089s5ZwJnAkwZcoUGhoaCpalubm5qHyjCauj3Fgd9U7a7LiZF15o6BFpLmha/O67QytnEN/3sBRmzqVmOCj//mjNmozja+l7JGcnXCSIzDwhYDZZRvZFZGdgPPCbjFMfFZGlQMwr42pVXZmP8IZhGPkS7AxMnLi9mVBnZ3Yn+r7wV6csV0TkW7jZ3b44RFUbAnliOEfeS1T1r4F0LUBURCSjAxAHWrMVrKo/AX4CsHDhQq2vry/4HhoaGigm32jC6ig3Vke9o+oCffzznw3MmlXPmDHOrMfClBfHcFD+fVfOjozjvY7kBPJly0Mf+S4DfqCqfw8cW4ezE/2G52D2aeBJEVmU8dIBbBRpsLA6yo3VUd+MpPrpK6QpuLjU//rX4MlTIP8N/DhHmg3+BxEJA78E7lfV/8tI9zogwBQ80x8RiQATgNdKJbBhGIOL7wD8r3/B3LlmEtlfhkz5z3e0BzeSA9ub4vQ6kuPR0ksesuUTkc8B04DTg8dV9QFcODn/+wrPMfgrwPGZ5dgo0uBgdZQbq6O+sfopD1S1EWjMJ62ICPAz4AVVvcY7djjwuqq+DvwBFxFuIXCfl21fIAw8WmLRDcMYRHzzHlP8+89QTpb8NzAjx/YkbiQHYGpG/qn0PZLzei95UsDq4EERORFYigvf2ZWH7K8B8/JIZxiGYZSO7wM7APeIyEIRWQh8CpgJoKpbgB8A54tIxOssXAj80osWZBiGMeoZspH/fEd7ROQfONObhcBfvWOTcY19XyM5jwCXiUgo4PS7EPiLqnaP/IvIUcBFwIdVtcmLE324qv7GO38l8F/BPMB04K387tQwDMPoLyJyEPAF7+sRGadvDXz+Cm6hr6dwkX+eA7404AIahmEME8reTcJT3K8AviAivv3/hcBfgN/76UTkDyJycyDrz4F24DPe+enAycC3AnkWAzfibP3neqNIi4BjAuUciFtSPpjnUNziYYZhGMYgoKp/VlXpZWsIpOtU1fNVdYGqLlTVM1S1pY+iDcMwRhXDweEXVf2eiNQAT4hIB/Ae8PGMaA5VuLj+fp5mEfkw8CMR+TecA/D5gQW+AP4PN4V8f8Ylfx74fBVwjoh8EtdZigAnqep9GIZhGIZhGMYwYlgo/wCq+m3g232c3y/LsZdwTsO95dk5j+s+CDyYp5iGYRiGYRiGUbaUvdmPYRiGYRiGYRilwZR/wzAMwzAMwxglmPJvGIZhGIZhGKMEU/4NwzAMwzAMY5Rgyr9hGIZhGIZhjBJM+TcMwzAMwzCMUYL0DJVvlBIR2QC8WUTWicDGEosz0rA6yo3VUd9Y/eRmlqpOGmohBgtrswcUq6PcWB3lxuqob/Jqs035L0NE5GlVXTjUcpQzVke5sTrqG6sfo1TYs5Qbq6PcWB3lxuqoNJjZj2EYhmEYhmGMEkz5NwzDMAzDMIxRgin/5clPhlqAYYDVUW6sjvrG6scoFfYs5cbqKDdWR7mxOioBZvNvGIZhGIZhGKMEG/k3DMMwDMMwjFGCKf9lhIgcKyIrReSPIvJnETGP9gAiskxEXhKRhoytdqhlGypEJCYiV4lIQkRmZzl/hog8IyJPiMgjIjJ38KUcWvqqIxH5hog8l/E8PTA0khrDEWu3e8fa7OxYu9031mYPPJGhFsBwiMgC4FbgA6q6SkQ+CjwkIvNVde0Qi1dOXKWqNw+1EOWA1yj+EngZCGc5fxxwBbCXqq4VkS8CD3vPVPtgyjpU5Kojj/NUtWGQRDJGENZu54W12QGs3e4ba7MHBxv5Lx8uBh5S1VUAqnofsA44e0ilMsqZMcAS4KZezl8KLA8oITfgFkj59CDIVi7kqiPD6A/WbhuFYu1231ibPQiY8l8+HA48nXFsJXDEEMhiDANU9XlVfTXbOREZBywg8EypahfwHKPomeqrjgyjBFi7bRSEtdt9Y2324GDKfxkgIuOBWmBNxqm1wE6DL1FZ81ER+b1nC3m7iOw31AKVKXO8vT1Tufk3z270zyKyXER2GWqBjPLH2u28sTY7f6zdzg9rs/uJKf/lQbW378g43gFUDbIs5cw64FXgaFVdBNwJPCkiBwytWGWJPVP58Rbwd9wI7iJgFfCMiMzpM5dh2H8sH6zNLgx7pnJjbXYJMOW/PGjx9vGM43GgdZBlKVtU9QFV/Yrv9KSqK4Anga8MrWRliT1TeaCqP1PV76hqQt2iJ1cBm4EvDbFoRvlj/7EcWJtdMPZM5cDa7NJgyn8ZoKqbga3A1IxTU4HXBl+iYcVrwLyhFqIMecPb2zNVAN7L5A3smTJyYO120Vib3TvWbheItdnFYcp/+fAokBkfeqF33ABE5EoRyZz6nI6bBjQCqOoWnNNY9zMlIlFgb+yZ6kZErs9y2J4pI1+s3e4Da7MLw9rt3FibXRpM+S8frgKOFJHdAUTkaGAH4AdDKlV5cSDwWf+LiCwGDgV+OGQSlTffApaIyBTv+78Dm4AVQydS2XGsiBzrfxGR04DZwE+HTCJjOGHtdt9Ym1041m73jbXZJUDcjIlRDngP9KVAG25xi/NUdeXQSlU+iMhHgHOAGlzHNQJcq6q3D6lgQ4SIxICHgTrcyNBTwHuq+olAmjOAL+DsRduBz4+mMGq56khETgXOwD1PMSABXKaqjw+NxMZww9rt3rE2e3us3e4ba7MHB1P+DcMwDMMwDGOUYGY/hmEYhmEYhjFKMOXfMAzDMAzDMEYJpvwbhmEYhmEYxijBlH/DMAzDMAzDGCWY8m8YhmEYhmEYowRT/g3DMAzDMAxjlGDKv2EYhmEYhmGMEkz5NwzDMAzDMIxRgin/hmEYhmEYhjFKMOXfMAzDMAzDMEYJpvwbhmEYhmEYxijBlH/DMAzDMAzDGCWY8m8YhmEYhmEYowRT/g3DMAzDMAxjlGDKv2EYhmEYhmGMEkz5NwzDMAzDMIxRgin/hmEYhmEYhjFKMOXfMAzDMAzDMEYJpvwbhmEYhmEYxijBlH/DKBIRGVtEnpqBkMUwjOFNMe2Jl69SRCKllscwjJGLKf+GUSAiEhKR/wKuLSL7+SJyg4jE8rzWriKyVkSaRURFZLP3fa2ItInIyyJynYiMy8h3t5dGvf2kLGV/MFB2m/f5VBEJe583e/kfFRHJkv9CL12niGzzPs8uok4MY9SSb3vi/af9/+SywKlpwDMiskcB13xQRDZ4Zfn//bUi0ujtHxSRD2TkOTXQ7qiILO2l7JWBsteKyN3e8e9735Mi0ioiu2XJO8NLs81rV9aKyEX53lcxiMjNIvKiiMTzTP9gL79DWSIiU0XkPRH5Zj/KeMH7TVRE6ksoXjGy9PY/yJbWf3+2iYgOkojDA1W1zTbbCtiAHwB/AWqKyBsF7gbuAkIF5PsGoEB94FgM+KJ3/J9ANEs+9bZ7cpR9c5bj9YH8X+4jfwOwbKh/F9tsG45bIe1J4D+5LOP4ScBGYOcCrjvbK+vmjOPvB94AEsCHsuS72cu3DZjTV9m9nFvt5X8mW5vlpVkGNAxS/d8HrAOqM443AKsL+R3KcQNmAS3A9/tZzrLMd1CO9KsH6jcstP79Z3aof4ty2mzk3zAKQESOBj4PnKGqTYXmV9Uu4EzgCOCM/siiqp2q+n3cS2pP4KO9JF0NfExEPl/EZbZ62xUisncxchqGkZ3+tic+qvpr4A/Azdlm6Qos61ncgEAYuLCXZKuBscByEQkXcZnVuE7GfxWRt9QcC8xS1ZahFmQgUNU3gUnAOUMti1E+mPJvGIVxGfA7VV1VbAGqug64BbikyBdnJn/z9rv2cv4MoAn4joj0lqY3tuE6KzFghYhUFCeiYRhZ6Hd7EuC/gQ8Ch5egrFxtys+B+4GDgK8WUf6XgXeA/xCRxUXkLxmqmlLV9qGUYaBR1Vb1hsANA0z5N4y8EZGdgA8Aj/Vyfqpnz/+OiKwTkVdF5LciclyW5I8CM4FFJRDN/x9v7OX8a8AXgCqcAh8tpHBV/Q1wIzAfp2AYhtFP8mhPFojIH0SkSUTeEJHvAZV9FLkSaAROLYF4udoUgNOBtcDXM/0D8mAzcJr3+RYRqSswPwAisjzgg9DDP0BEfiUiKwPf3x/wOdjg2YOvzrRl9+3EcR0p3wdhrYj8I4sIIRG5zGvrt4rIQyIyZ6Dl9o6LiJwjIs97NvAbROROEXlfIO9xkvbLWp1FjiNE5Blxvh5viMj/iMjnJe1f9mAW8StE5Hsi8qaIbBKR34jIxECZh3v1NwPw/crWisj9gTQ5ZQ+kLfR/kDciMlZErvWeg3XePX1XRGoz0k0UkR95118jIq+JyC9E5NBAmioRuVJEXvHSrBaRO0TkE6WQtdSY8m8Y+eMr6i9lnhCRycBTwN7A/qo6BWfaMws3SpbJi97+QyWQa1+cTefvekugqr8AfgEsAC4v4hpfAv4FfFFEPlKMkIZh9KCv9mRX4HEgibOfnwv8Cbiyt8JUNYX7j5aqTQG4rY/rbQCW4syDVohIdSEXUNU/AFfgBkF+VIyQqrqEtOnQh1X1agBxARWOAhaIyDQv7bPAbsAmYJqq/ktVZ+PatmCZ/1LVqTg/jLdVdaq37ZVFhHOBl4FdcKaX83D+XAMqt5fvR7jn4SJggieDAk/6SrSq3h24lx6Im3H5He6Z2cHL/zrO5AvgE6qara3/Bs6HbBZwMHAYbnDIv7dHvWu+DfwlUH/HBMrIKbsnY8H/g3wRkUqcyezHgCO8d/bhwNHAH0SkKpD8dmAn4P2qugPO52AX4OuBND/08i720izAzZj/T39lHQhM+TeM/NnF26/Ncs5/iX1WVd8FUNU3cC+HbKzJKLNgRKRGRC4EaoGjVPW9HFm+gJsF+E8RObiQa3n2sKcAXcBNwZEewzCKoq/25FtADXC+qm7yTFN+Azydo8w1wGwpcHbPR0QiIrIIF0jgGzhn5F5R1UdwUYrmAdcXcclvAk8CJ4vIabkS98I93v7YwLF63ICIZBw/CnjM870qBW+q6i+93+cdYAWwVz6j//RDbu83+hxwvarer44twL/jOmPfzuP61+IU7nNVtUVVuzwfsudz5HtKVR8FUNUXcA7TR0n+EewKkb3Y/0E+fBnXyb1EVV/x7ucV4BLcIN5/evLWAYuB+zw5UdW3gUuBtwLlHQc86r+HVXUT8BXcO7fsMOXfMPJngrfv4RgmIiHgROAdrzEM8lfghCxl+WUUqkTf4U2hbsFN8V8IfFVV/5Qro+dQeApuFGV55tRmHvn/hhupmQr8X4FyG4bRk97akzBO2Vurqn/PyPN4jjJbcArUuBzpgpzktSnrgTbgj8ATwLdUNZlH/ktwythnReTjBVwXVU3gzJS2AT+QIkIFq+rzuOhEQWX5OFznpSnL8bsLwMaW2gAAIABJREFUvUYf/Dnj+zveflqujP2U+yRv/3BGmZtwo/eHSx9rP4jIFGAh8IyqZpp25XrGst1zFOdUnA95yd7P/0EhctyfcfxeXKfoU973Vtzvcb6IfNh736OqD6lqMNzteuAzIvJJv/Otqs+r6mElkLXkmPJvGPnjj2wkMo5Pwo2+bzfy7o1UZLPp9cvIa7QkwCe8KdUJuE7FOOC3eY40oaorcSMWxU61Xw88ABwnImcWkd8wDEdf7Uk12WcEsh0LUky78mvPLGMybgT/OdyM5X/mk9kbjT4FaAZ+KiI7FHBtVHU1biTYjx5UjF5yL7AwcO1jgDuAh4BDRWSMp5Adhmu/SkWm4tzp7fOdeSlW7nne/vaATf1az9Z+RyAFjO/juv77ophnrL/3nK/s/fkf5CvHVlVtCx5U1Q6cT8o873snzrytFve7vC1uzYpMM7DTcZ3n24C1InKTiBxUAjkHBFP+DSN/Wr19b41cIS9cP21rn6l6wetU3IGbuq3AjcjnyzU4J8NTCp1q9yJGLMPFxf6uiBRttmQYo5xc7Ukx9LddeRPniJsALszXjl9VXwXOxg1K/BxntlLIdX8N3ITzgygmetA93jU/JiILcLOwG73jceAjOJOav6vqtiLK741UP/P3V+4jAjb1/larqmNUdX0/ZeuN/t6zz1DIXhSqehfOgXkp8HfgLOA5EbkgkOYvOL+AE3Dv11OBJ0TkusGXODem/BtG/vgj+5lT6htw09bbjXiJW71zxyz2kH4Z7/ZTpv/GxeH/jOd0nBPPMXAJbgTnBzhHqrzxGualuIgLt1Ja5cUwRgt9tSctOPO6TLIdCzION/q4pVih1IUd/QVu9PXfCsh3C649OAI4r4hLn4Nznr0MFwWpEP6IawePBY4nbSJzP87M8VhKb/JTCoqV+2VvPz2zQBGZIrlX4X3D2xfzjPWXfGXvz/8gH14B6jzH36AMcdyz/0rgWFhduNTlqno0zgH7NeAq8cJfi0jE85u4Q1U/hXuv/hX4kojMLYG8JcWUf8PIH98RasfgQU+Zvh2YIiILM/IchmvsMuPj+2Xkcq7qE2806Dqv/C8WkG8NbppyLE6RL/S6DwPfwUU0OLDQ/IZh9NqeJHFRWKbK9gvr1ecoc0fgBW+Grj98C6d8ni+FrUVyFs5uu+AFpQJBBVK4hc8KydsFPIhrbz+F50yrqptx/gvH4KK63NNbGVloAbrt5kXk2yKybx/pC6Yfcv/a22cLI3kZzpm1r+uuw4WGXZAleEN9/nfQJ93159nwf19EZpKn7P38H+SDH8nqmIzjH8PNxtwG4PmhbBNJL57nOQbfjRv48mfHukRkUiDNGpwDOEBRoWwHElP+DSN//oiLdpNtpduv4jz/r/dDtInIzjjF/Duq2piRfh9v/0gJ5LoeN/PwhYzwZH2iqvcB/0uBU/QBLgGe6Ud+wxjN9NWeXIqzof8fEZngzSCeAHy4t8I8E52dKUGboqqv4Ub/55A9YEFv+fx1BvJxFM6W/1ngYoprU+7BG2TRdDhM//h4nH33mwWU9yIw2YvxPgfnA1Eqk5cgBcvtmZj8AFgiIid7z0dYRE4HPk3PEJS98R+4er5eRKpFJCoiXyDLiHyRvAjs5I2MH4hbLLKtQNkL/h8UwHdwi9l9y3tXIyLzcB3fv+PMY32qgf/yZgX8NTr86D6bAumuFpEaL80UXGf2Ja+88kJVbbPNtjw33LT2PwHJcm4q8BOcKc9aXON3Xi9pHwL+mMf1dvXKasZFINjsfZ+Rke4b3vlNuDjId3vpFDd9+mwv5cdxDdPNgWNhL+9m3Et8LfD9XvLvjIuEsGyofxvbbBtuW472ZAHwB+//9RbwM+Dj3n96G26EP5jej+S1cx7XfdBrFxRnJrQWuDAjzTyc7X+rd/6r3r7Na4/WAh/qpfyL8VyEAse+7+VJBtqxcJa8gnNubSiwLutwnalrMo7P9e7zv7LkWe3Vpd+23h84twMuIs0GXMz6r3nHl3tp/d/hQe/4/Rll3TRQcgfq6fNe+70JeBPnQLwgkOY4r547A2350sD5I3CRmhqBV3Ej72d41z04kK4h495+6h3/B+l30wbg8kCe3XDrC2zAmRmdUYjsxf4PMvL67882L/1aXGhP//xYXCdgNc6P7S3gu0BtIE0MFyb7ce85WIMzCboSGBtItxQ3U/GWl+YNXOz/qUPVvvS1iSe0YRh54PX4/4lTdn9TZBkH4KZ0F6nqX0spn2EYw4dStCdeOWGcItWgqnmb/xlGJuJWG74K2FO3D11tjBDM7McwCkBVX8dNa39fCl/S3p9WvA34oin+hjG66W97At2K/3LcCGuftt6G4SMiR4rIN7OcOhAXs367laeNkYMp/4ZRIKp6Ny4Kw9FFZD8K+Jyq/ri0UhmGMRzpZ3sCbqXgN4Ej1cUoN4x8GAd8WUQOARCRmIicgXN4vUTzW+DNGKaY2Y9hGIZhGMYoQkRm4Zx+D8ctYFWNG+2/pj8maMbwwJR/wzAMwzAMwxglmNmPYRiGYRiGYYwSIrmTGMUyceJEnT17dsH5WlpaqK7Oa1X1UYvVUW6sjvrG6ic3zzzzzEZVnZQ75cjA2uyBw+ooN1ZHubE66pt822xT/geQ2bNn8/TTTxecr6Ghgfr6+tILNIKwOsqN1VHfWP3kRkQKWRRp2GNt9sBhdZQbq6PcWB31Tb5ttpn9GIZhGIZhGMYowZR/wzAMwzAMwxglmPJvGIZhGIZhGKMEU/4NwzAMwzAMY5Rgyr9hGIZhGIZhjBIs2o9hlCmNjY2sX7+erq6uovLX1tby4osvlliqkcNor59oNMrkyZMZO3bsUItiGCMCa7MHntFcR6Vss035N4wypLGxkXXr1jF9+nQqKysRkYLLaGpqoqamZgCkGxmM5vpRVdra2nj33XcBrANgGP3E2uzBYbTWUanbbDP7MYwyZP369UyfPp2qqqqiXiKG0RciQlVVFdOnT2f9+vVDLY5hDHuszTYGklK32ab8G0YZ0tXVRWVl5VCLYYxwKisrizZRMAwjjbXZxmBQqjbblH/DKFNs9MgYaOwZM4zSYf8nY6Ap1TM24pR/ETlWRFaKyB9F5M8isjCPPPuJyCoRubmX81tFpCFjO6nkwhuGYRiGYRjGADKilH8RWQDcCnxGVQ8GrgQeEpGpfeS5yEunfRT9nKrWZ2y/LqnwhjHMmT17NvX19d2biLDbbrt1f586dSoNDQ39ukZ7ezszZsxg5cqVBeX77ne/y/HHH9+vawfRXlqL66+/nt12243Zs2eX7FqGYRgDwWhqs3tjtLbZIy3az8XAQ6q6CkBV7xORdcDZwKW95HkR+G/g8cER0TBGLsEXhYjwla98hWXLlgF07/tDNBpl1113LTjSwdSpU9lpp536fX2AZBK6uiAUgkjE7X2+9KUvUVtbyze+8Y2SXMsYJiQS0NEB8fhQS2IYBTEa2uy+GK1t9khT/g8Hrs44thI4gl6Uf1W9B8xWzzD6y3nnndfn+eOPP77foyvhcJhHH3204HynnHIKp5xySr+uDZBKOcVfxI3+d3RAOLx9J8AYhaRSQy2BYRTEaGizjeyMmNeViIwHaoE1GafWAv3tPk4VkV97fgSPisgXRSTczzINY0SRz4tk3Lhx1NfXU1FRwbXXXsvSpUs54IADEBFWr15NQ0MDhxxyCPX19Rx44IEsW7aMrVu3dpdx2GGHUVdX1z1K8+tf/5p99tkHEeG+++7j2GOPZeedd+acc87pzrN8+fLuND5HHXUUM2bM4D//8z8566yzOOigg9hrr7149tlne8h8zz33sOuuu7L//vtz3HHHc+mll1FXV8GHP1xPY+M2wmHXCejsdFtv+t/KlStZvHgx++23H3vuuScXX3wxiUSi+/ytt97KfvvtxyGHHMKBBx7IxRdf3H3ukUce4YADDug+d+6559LS0pLz9zAGmWRyqCUwjIIYbm12XV0dl156ad5t9vHHH89ll11GRUUF9fX1bNu2Le+6Gelt9kga+a/29h0ZxzuAqn6W/SrwNVV9RURmAw8Du+PMiXogImcCZwJMmTKlKHu55ubmftvZjXRGeh3V1tbS1NTUrzKSyWS/y+gv7e3tPWQIhULce++97Lnnnvz85z/nvvvuY/z48Zx88sm0trZyzz33cNRRR3HWWWehqpx77rmcc845/PCHPwTgrrvu4uijj6ajo4OmpiaOPvpoampqOOaYY/jb3/7GihUr2LBhA3vssQcf+chHOPjggzn++OOZMGECxxxzTLcst912G0cddRS33XYbjz32GJMnT+biiy/m3HPP5YEHHgDgrbfe4pOf/CQ33ngjxx57HBs3buKwww5hypQp3Hvvvd79pe/N9wNoa2tHVbuvtXHjRo444giuvvpqTj31VJqamjjyyCNJJBJ8/etfZ82aNSxdupRnn32WOXPmsHHjRhYsWMBXv/pVEokEJ554IitWrGDx4sW0tbWxaNEizjzzTGbNmlWy32gk/5cGBdXeHUEMYxhTW1tLQ0MDs2fPZvny5Tz++OOMHz+e4447jlAoxIMPPsjHP/5xzj33XFSVM888kwsuuICf/exnADz22GPU19d3l3fSSScxZcoUDjnkEFatWsU999zD+vXrmTlzJp/4xCc45JBDWLJkCTNmzOCQQw7pzvfAAw9QX1/PXXfdxVNPPcWUKVO44IILOP/88/nDH/4AwJtvvsknP/lJbr31Vk444QQ2btzI/vvvX7DvwoYNGzjiiCP43ve+x9KlS2lqamLRokWEQiG+/e1v895777F06VJefvlldtppJzZs2MBuu+3GlVde2d1m33nnnRx66KG0tbWx7777csEFF1BdXZ374oPESFL+/W5VptFlHGjtT8Gq+tHA59UicjXwUxG5VFU3Z6T9CfATgIULF2rwoc+XhoYGisk3mhjpdfTiiy9uv4rheefBc8/lXUYimSQS7ucE1T77wHXXFZ29oqIi62qMIsIJJ5zQrcDef//9AFx00UXU1dUR92ynTznlFJYtW9ajjHA4TDwe7z5WVeX69n66mpoa9thjD15++WWOOeaYHmmC5YgIhx12GHPnzgXgwx/+MMuXL+9Os2LFCiZPnsypp55GZydMn17DKaecxq23LqeiovcVJiORCkCIx2uIRODaa6+lqqqKM888ExGhpqaGs88+m/PPP5/LL7+clpYWkskkGzduZK+99qKmpoYHHniAmpoatmzZQmNjI+vXr+++t9tvv525c+eWLKZ4RUUF++67b0nKGtUERgUNAyi4za5MJp0dYX/oZ5vdFx//+McZP348AHfffTcA559/PnV1dYBrU0888cS8fQV8s57Jkyezxx578Nxzz/VQ+LNx8MEHM2XKFADq6+u58cYbu8/dcMMNTJ48mRNOOAGAiRMncuqpp7J8+fL8bxL4/ve/T1VVFUuWLAHce+Oss87i/PPP52tf+xrr1q0jmUyyevVqdtppJyZNmsTvfvc7wK1A3NjYyOrVqwEXl/+2227rlrlcGDHKv6puFpGtQGZkn6nAayW+3GuA4MyJNudIaxhGFmbMmLHdsY6ODs4++2xWrVpFLBZj69atrF27Nq/ypk2b1v25pqaGxsbGfuV58cUXmTNnTreNvwjMmDEzZ5l+Wt8c6B//eJ65c+f2mMKeN28e7e3tvPrqq+yzzz4sWbKEww8/nPr6ek4++WQ+/elPAzBu3Dguvvhi/v3f/50f//jHnHzyySxbtswWEypHTPk3Rjjl0GZPnZpW8Xprs4PMnJm7zc7k+edHfps9YpR/j0eBzLj+C4E7ii1QRA4Dqn3HYI/p3v6tYss1jIIpcDSnrakp66h7uRDOMsJ11FFHMW/ePB5//HHi8Xi3PWmh5YkImocZRmaeTFIpp8T7zryFBAbwOwF+OZ2d2R2DRYRbbrmFiy66iJtvvplLLrmEa665hpUrV1JXV8cVV1zBmWeeyc9//nOuu+46rr76ap588slBiYRhFIAp/0Ym1mbnXV6p2uxMBiKYy0hos0eMw6/HVcCRIrI7gIgcDewA/MD7/i0ReV5EKgoocwbwHyJS5ZVRC5wP/FZV15dUesMYxWzatIlVq1Zx/PHHd5v9dHZ2DoksqrDzzruzevUbPZT1t98uvL8/f/6erF79OqmU0tnpIgS9/PJrVFRUMG/ePN59912efPJJ5s+fzzXXXMMLL7zAe++9x2OPPUZTUxMPPfQQs2fP5rLLLuOll16isrKSO++8s4R3a5QEU/6NUUY5tdkAu+++O2+88UaPY2+9VXibveeee/L666/36Iy89trIarNHlPKvqs8AnwZuEZE/ApcAR6qqPwdVgXP+7e4KisiZItIA7AN8xFu999hAsY8BfwMeF5E/4NYDaABOH+DbMYxRxfjx45kyZQq///3vuxvdu+66a9DlUHXhPD/72c+xYcN67rjjdsC96O6887cFl3fWWV+kpaWFX/1qBaGQc1a/4YYfce65FxAKVfLSS69w0UUX0dXllMdUKoWqsvPOO7Np0ybOPvvs7kgRqkoymWSXXXYp3Q0bpcGUf2OUUS5tts/nPvc51q9fz+23p9vs3/628Db7i190bfaKFSsA12b/6Ec/4oILLqCyspJXXnFtth/9Z1i22apq2wBtCxYs0GJ4/PHHi8o3mhjpdbRq1ap+l9HY2FgCSQrnL3/5iy5evFgB3XXXXfWSSy7pPpdIJHTx4sUaj8d111131SVLlvTI+6c//Un32Wcffd/73qfHHXecnnPOOQro4sWLdc2aNXrooYdqbW2tzpo1Sy+55BK97777dO+99+5Os2nTJl22bFl3miuvvFJvueWWHmleeeUVPfHEE7vTfOc739GGhobuNAcfvFjfeGONdnSo3n773brzzrvoBz6wv37ykyfp5Zd/W+fOnacdHZp1u/ba63SXXXbVeDyuBx+8WDdtatKODtUnnnhKFy36kC5YsFD32GO+XnjhRdrS0qXt7apvvLFGlyxZpgsWLNSDD16sCxcu1Btv/JmqqjY3N+s555yjCxYs0Pr6el2wYIFeeeWVJf29+nrWgKe1DNrSwdqKbrMfflj1lVeKyjtasDY7N9Zm526zZ86cuV2b7V9LVfXuu+/WXXbZRffff3896aST9Nvf/rbOmzev13u/7rrrdNddXZu9ePFibWpqUlXVp556Sj/0oQ/pwoULdf78+XrRRRdpV1eXqqquWbNGly1bpgsXLtTFi12b/bOfDa82W1xaYyBYuHChPv300wXnG+mRbErBSK+jF198kd133x3VtN14oTSVuf1okP7cZ7Fk1o+qG7xNJp1dvqqyadMmJk6c2J3m6quvoKHhcR544JEBkSm4TkA47OQIhQa2bvxnLRsi8oyqZvpRjViKbrMfeYT6mTNhl10G/0EeJoyWNrs/DKc2e6joq46ytdlXXHEFjz/+OI88MjBt9lBQijZ7RJn9GMZIwVdEOzrc1tXllFLfAXUkkEq5e/Lt4Ds63PehuL9MxR+gpaWF+vqDaG11kYK3bt3KL3+5glNPPW3A5PCV/VDIydLV5eqls3Po6sbIk1TKVvk1jCGkpaWFgw7q2WavWLGC004buDZ7uDLSov0YxrCmsxO2bnWKaCKRVkSTyZ4LiAZHhAd6ZLhUqKb1o2Anxr8H9WztIR0VJzMyzkDh13cwmEU8HueggxZxyCGLGDt2LG1tbZx++hmcdtrSQZEpeO/BuhFJzwoEIwoZQ4z/YPc3TrthGEURj8dZtGgRixal2+wzzjiDpUsHp80eTpjybxhlQHs7bN4MTU1Od/AVYp9MJdgfqfbx05eTQqi6vcLvk63DEpTbv7dQyHUEBvKesin+ANFolBtuuDF7pkEmeP/B397/3f1nphx+91GL/7AbhjEkRKPRHot+Gb1jyr9hDBGq0NYGmzZBSwtEo+CbMra39503m6Lnm9EEv3d29lS0g/kGQlEMKvtBWTI7M7nw06q3UJZIejaglHInEm5EfTgN1mb+9sFZIb8jMFxmg0YcpvwbhjEMMOXfGPH4I7u+ohcKQTwOsdjgmZUEUXXK/saNzp47FoOxY/tfbrYOQeYMQbb0mVs2eTP32Y5lUoq6Da6W65u9hMNpBTdfMmX2t+Gm+GfDzIPKCFP+DcMYBpjyP4LwldtIJG0qMVpIpXoq+O3tbuvsdOf8uvBty/1jsRiMGQOVle7zQNZbKgXNzU7p7+qCior0SP9A0JdC7xNUhAstO/M6A0nwGslk2kwn2AnIptz35SCtOvwV/0x6Mw8Kh93MkjHAmPJvGMYwwJT/EUAyCdu2OaUySDTqFMyKirRiG4kMb4XHH9lMpZy5THu7Gz3PtH/3FcOqqr4V00TC1d2mTe67n6e6uvjZgaDS6e9bW901Uqn0b1IODKQJ0EARVPb9Ue5sBDt8fZ0fqQRnTSxK0CAgYgt9GYYxLDDlfxij6hxE1693SmVVVU9FJ5l0ynFLy/bOlvG4U0DjcddJ8B0G87lmJr499v9n777jo6rSx49/zkwmyaQQOgmg0hUIIhIsqBBU7GJZV0UWl92furZFXUVEFFfXhm3VXXeVr7sign0VuxQlKupiW1CqgIUiPYHUybTz++PkZiZDElJmkjuT5/16zWsyd9rJZHLuc899znNiOSGzstL8HsXFoRKIe/eadicnNz2Ytg6ILMFg6L0izw5Y72GNPFtnG6xrqxRnXYN/kX8f0TySyiJsxeGQ4F8IERck+I9T5eWwY4dJa0lLq3003xr9jmSlA1iBdPj2hh4A1FapJTXVtCU11RxQWBM0G8sKwCsqTBu93tDvk5oaqmrjdjf+tQ/EOjBKSQltCz87YAWc1u8VXm4zOVkCUiHaLAn+hRBxQsYh44zHA5s3w6ZNZl+Tmdn4NB6lTHDudpsRbeuSmVnzdl2X2h6XlmYOJIqKYOtW+Okn2LDBXO/cac5QeDw1DzYsVkWX4mLYssU8b/NmU/rS4Qi9h9vdOiPnSUnmva3fOz3d3Ha7Q6lBsahEE2+2bt3KmDHHk5KiGDCgN3/722M17r/rrjvo06cnw4cfzqefLq3zdQoLCxk7Np/MzBSef35u9fZHHnmIiy++oM7n/e1vj5GbeygDB/ZrVLvnz3+Nt956s8a2iooK+vTpyf/+902jXquxHn30kSa1WYBS6hCl1EtKqQ+VUt8ppb5WSo0Ju/+yqm1LlVKLlFJ9Y9wgCf5FXNm6dSvHH388Sil69+7NY4/V7LPvuOMOevbsyeGHH87SpfX32fn5+aSkpDB3bqjPfuihh7jggrr77Mcee4xDDz2Ufv0a1/+99tprvPnm/n12z549+eab2PbZjzzySJPabDcy8h8nfD4TDBcVRa86TDRZ6THJyTW3+/0m8N+7N5QyZB14uN1mhL+kxBwUWAcl6eltO4iOVz169GDJkqUMGXIYvXr15o9/vK7G/TNm3MnixQt57bW3aiy/Hqljx44sWlRAnz49a2zv1q0bvXr1rvN5f/zjdaSnp/Pgg/c3qt3z579GamoqZ589rnpbUlIS/fsPICMjhjOygeuv/xPt2rVrdJvbOqVUZ+BD4P9prQuUUgp4GRgMLFFKnQPcCxyutd6ulLoWWKiUGqy1PkAh3SaSkX8RZ3r06MHSpUs57LDD6N27N9ddV7PPvvPOO1m4cCFvvXXgPrugoICePffvs3v3rrvPvu4602fff3/j+r/XXjN99rhxNfvsAQMGkBnLKhrAn/5k+uzGttluJPi3OWs0fc8eM8Jvt6D/QCJz6sGk9Xg8pvKNwxFK5RGJ4aKLxnPffXezc+dOunbtWr193bp1dOzYqd6dSH0mTJgYrSYekMvlYsGCD1vs/USj3Qws01oXAGittVLqRkJns28HntNab6+6/RRwDzABiM0qQErVfmpTCJsbP348d99de5/dqVPT++yJE1u2z/7wQ+mzG0pCLpsKBk2e+Y8/muDfSq1JBFZevZU+I4F/Yrnookvw+/28/PKLNba/+OI8xo+fAMCSJR8ydmw+Y8fmM2rUsVxxxe/Zt29fna85Z85s8vKGkpZW80jyjTfmM3jwAE444RgmThzPrl07a9xfVFTEZZdN4rjjjuLkk0dz4okn8N//fl59/403Xs8HHyzivffeqW6P1+tl7Nh8unTJ4r777q5+rM/n49ZbpzJsWC7HHpvH2LH5NdKCzjjjFLp0yWL69Fu4+uo/MHr0SPLyhrJixfJGf4ZffLGMk04axciRIxg2LJcZM6YTCAssn39+LiNHjuCUU8YwatSx3HHHbdX3LVy4gBNOOIZTThnDCSccw403Xkd5eXmj22BzvwI+Dt+gtd6ktf5JKdUBGA58FXafD1gOjI1ZixwOE/xLaSURZy65xPTZL75Ys8+eN28eEyaYPvvDDz8kPz+f/Px8jj32WH7/+/r77NmzZzN06FCSIkb/5s+fz4ABAzjmmGMYP348O3fu32dPmjSJo446itGjR3PCCSfw+eehPnvq1KksWrSId955p7o9Xq+X/Px8srKyuPvumn321KlTyc3NJS8vj/z8/BppQaeccgpZWVnccsst/OEPf2DkyJEMHTqU5csb32cvW7aMUaNGMWLECHJzc5k+vWafPXfuXEaMGMGYMWM49thjue22UJ+9YMECjjnmGMaMGcMxxxzDddfFvs+WkX8bCgZNrrzPV/dkXiHsqn///uTljeDFF+dx7bWTq7e/885bTJlyCwDvv/8uv/rVhVx55dVorbniit9zyy1T+Oc/Z9X6mpdeOokePXpy9tmnVW/78ccfmTDhQp5//hXGjTuHnTt3ctJJo2o875dftrJhw3o++ugzkpKSKChYwgUXnMPq1RtITlY8/PCj7Nmzm9TUVJ588unq5y1aVMCYMcfXeK0ZM6bz4YeL+eST/5KRkcEzz/yL008/mVWr1tOpUyfefXchY8Ycz2uvvcpHH31G165dueGGydx8840lHvzmAAAgAElEQVQsWPBBgz+/HTt2cMYZY/n735/k4osvobi4mNGjR5KUlMSMGXeyefNmLrtsEmvX/sDBBx/Mjh07OPLIXO688268Xi/jx1/A/PnvcMIJoygvLycvbyh/+tMU2rdPjNEDpVQ60AdwKqXmAb2AcmCW1voVwMoz2Bbx1O1Vz4tl40wHLp22iCP9+/dnxIgRzJs3j8mTQ332W2+9xS23mD773Xff5cILL+Tqq02f/fvf/54pU6Ywa1btffakSZPo2bMnp51Ws8++8MILeeWVVzjnHNNnjxpVs8/eunUr69ev57PPTJ+9ZMkSzjnnHDZs2EC7du2YOXMmxcXFpKam8vTToT67oKCA44+v2WdPnz6dxYsX89//mj77X//6FyeffDLr15s+e+HChRx//PG8+uqrfPaZ6bMnT57MjTfeyAcfNK7PHjt2LE8++SSXXGL67JEjTZ99552mz540aRI//BDqs3Nzc7n7btNnX3DBBbzzzjuMGmX67KFDhzJlyhTSYjjiK8G/DVmrjtqlFrywhxtvhG+/bfjjg0F3s8+qHH44PPxw45930UWXMGXKDWzYsIF+/frxxRfLGDw4t7ozu+GGm+jYsSMASinOO+8C/vjHKxv1HrNm/ZPu3Xswbtw5AHTt2pVzzjmP//znlerH9OvXn5deeq169Ck/fwxaa7766ktGjjyqwe9VWlrKE088zmOPPUFGRgYAv/3t75gx41Zmzfon06aFRnHGjDmp+tT56NH5vPjivEb9Xk888Tjt27fnoovGA9CuXTsuv/xKpk+fyi23TGfHju0EAgF+/vknDj74YLp168brr78NwL59+ygtLeXnn3/ihBNGkZaWxgsvvEqXLl0a1Qaba191fTdwktb6G6XUUcBHSikXsLnq/sqI51UC++1NlVJXAFeAyVEuKChodINKPR4K1q83o/5bt8qkpVqUlpY26bONF1lZWZSUlNTYNnVqCt991/BOWGs3SjVv3siQIUFmzoz86h/Y+eefz7Rp01i+fDl9+/blyy+/5NBDDyUQCFBSUsKVV15Jhw4dqn/HM844gxtuuKHG76y1pqKionqbNXpt3X7sscfo3r07J554IiUlJbjdbs4880xef/316sdkZ2czZ84cKioqAMjLyyMYDPLRRx+Rn59PIBDA5/PhdDr3+7wDgQCVlZWUlJRQWlrK448/zsMPP4zWmpKSEi644AKmTZvGo48+ys0331z9nFGjRuF2uykpKeHoo49m7ty5+712OI/HQzAYrH7MQw89RFZWFmeddRYlJSUopZg0aRJ33HEHkydPZuPGjQQCAVavXk2HDh1IS0vjpZdeoqSkhN27d1NaWsqaNWsYNmwYAM8++yypqal1tsHj8TT7f0mCf5uKzJMXIp5ceOHFTJ16Iy++OI/bbruDF16Yx8UXT6i+3+Px8Mc/XsXatWtITk6mqKiI7du31/OK+1u7ds1+k8kOOujgGreTkpKYN+853nnHVIZwOBwUFxezY0fj3mvDhvVUVlbSt2+owoPD4aBXr96sXPldjcd27969+ueMjEyKi4sb9V6rVq2kT5++qLAAsm/ffpSXl7Nx40aGD8/joovGM3ZsPqNHj+HCCy+uTqfq0qULN954M5df/jueeuofXHDBRUycOImU8Nq18c86l/621vobAK31F0qp14E/URXIA5G/dArmDEENWutZwCyAvLw8nZ+f3+gGFSxaRH6/fmbk5pBDatYKFoAZmW3KZxsv1qxZs99k0+Tkxp0ECgT8OJ3N2/knJ0NmZvKBHxhh0qRJTJ8+nTfeeIM77riD+fPnM2nSpOrfac+ePdx8882sWRPqs3fs2FHjd1ZK4Xa7q7dZgz3W7Y0bN9KnT58az+nXrx8Oh6PGc2bPnl1dzcfhcFBSUkJxcTGZmZmUlJTgcrlwuVz7fd5Op5OUlBQyMzPZsGEDlZWV5Obm1nhcnz59+P7776u3OZ1ODjnkkOrbXbt2paSkpN6Jw6mpqTXa/P3339OvXz/ahU3KzM3Npby8nJ07dzJ69GjGjx/PGWecwZgxY7j44ouZMGECaWlpZGZmcvPNN3P11VfzzDPPcNFFFzFp0iQ6dOhQ7/tbBwpNJSGmEHGisSPwHk8FqamxrXxQl+zsbEaPHsMLL8zjllum8/HHBTz44CPV95999mkMGjSYhQuXkJKSwgcfLK6R0tNUKmLE9eGHH+Chh2by2WdfVZdm69OnJzqGednOsL29Uirq76WUYs6c55k69VbmzJnN7bdP469/fYjPPvuSdu3ace+9M7n88iuZO/dZHn/8ER5+eCaffLKM/v0PiWo7WtEuzCj+lojtPwOnAj9W3c6OuD8b2BjbpiE5/6Lao4827vElJRUxr1ZTl+zsbMaMGcO8efOYPn06BQUFPPJIqM8+7bTTGDx4MEuWmD578eLFNVJ6miqyz37ggQeYOXMmX30V6rN79oz/Pvv555/n1ltvZfbs2UybNo2HHnqIL7/8sjqV6corr+TZZ5/lkUceYebMmSxbtoxDDoldny1TLYUQMXHxxZewYcN6HnjgPkaNyq9OvdmxYwfff7+OcePOrR6R9loruTXCYYcN5Mcff6ixbfPmTTVuf/LJxwwbNrxGTebI93KE5UZ5PB58Pt9+79WvX39SUlLYuHFD9bZgMMhPP/1Ibu6QRre9PoMH5/LDDzVj1B9+2EhaWhp9+/Zly5Yt1WlUM2c+xDffrGTz5k0UFCxh3759LF68iN69e3P77X/m22/XkpTk4s0350e1ja1Jax0APgVyIu7qBmzSWhdhJvvmWXdUpQMNBRbHvIFS8UfEqUsuuYT169dz3333kZ9fs89et24d557bvD574MCB/PBDzT5706aaffbHH3/M8OHN77P79zd99oYNNfvsH3/8kSFDottn5+bmsnFjzT5748aaffayZcvIzc3loYceYuXKlWzatIklS0yfvWiR6bP//Oc/s3btWlwuF/Pnx7bPluBfCBET5533K1JSUrjnnruq01IAOnfuTJcuXSgoCJVla0pwevnlV/LLL7/wxhvmubt27eKVV16q8ZiBAwexcuW37Nq1C4DPPvu0+mdLly5dKSwsBOD6669lyZL9y8VlZGRwzTWTeeqpf1BWVgbAc889i8/n44orrmp02+tzzTWT2bt3b3W1pJKSEv7v/57khhtuIjk5mXXr1nLbbbfgr6opHwwGAXP6fNeuXVx//bXVubbBYJBgMED//gOi2kYbmAmco5TqDWbBL+A84PGq++8GJiqlulXdvhzYAzRuAkZTyMi/iFO/+pXps++6667qKj8Q6rPDS2k2JTi98krTZ1vP3bVrFy+9VLPPHjRoEN9+G+qzP/10/z67a9dQn33ttdfWWuIzIyODyZMn849/hPrsZ581ffZVV0W3z5482fTZVrWkkpISnnzySW66yfTZa9eu5ZZb6u6zr722Zp8dCAQYMCC2fbak/QghYiIrK4vTTz+Tb79dwVFHHV293el08vzzr3DjjdeRlzeUXr1606NHTwKBAGPH5jN37kv85jcXsWvXLu6//57qiWGPP/7X6sfMmvUMffr0Yd68l7n11pt56KH7ycnpzvjxE3jkkQcZOzaf119/m1tvvZ2tW7cwcmQegwcPYcCAQ+nSpQv3338PXm85kyZdwe9+dxkTJlzIySePJiurPWPGnMjYsfmsXPkdW7duxefzMWPGndx11z3MmAHHH380brebtLQ03n13EZ06dQLgwgvPr35ORkYmublDmDr1xuo2P//8K/tNvH300Ud4+umn+OWXrYwdm8+bb75Ht27deOedhUybNoVHH32YiooKzj77HKZPnwHAoEGDOfjgQxg9eiTp6emUlZXxxBNPMWjQYEpLSznppLGcdNKo6vzYP/7xBk477fSW+8O3AK31QqXUNcB/lFLlmH3ZFK31M1X3v6GU6gK8V3W/Bzg1Zgt8WaTWv4hjWVlZnHnmmaxYsYKjj67ZZ7/yyitcd911DB06lN69e9Ozp+mz8/Pzeemll7joItNn33NPqM/+61//Wv2YZ54xffbLL7/MzTffzP3330/37t2ZMGECDz74IPn5+bz99tvcfvvtbNmyhby8PIYMGcKhh5o++5577kFrzbnnnstll13GhRdeyOjRo2nfvj0nnngi+fn5fPddqM++8847ueeeewA4+uhQn71oUajPPv/886ufk5mZyZAhQ7jxxhur2/zKK/v32Y888ghPPfUUW7duJT8/n/feM332woULmTJlCg8/bPrsc845hxkzTJ89ePBgDjnkEEaODPXZTz31FIMHmz577NixjBoV6rNvuOEGTj89tn22imUeVVuXl5env/rqqwM/MMKCBQXk5uZLwYh6rFpVwODB+a3djJgpLFzDgAEDm/UaHk9Jq+X8x4O28vloHVqBuzZr1qxh4MDav2tKqa+11nm13pmAmtpnV0/4DQahfXuoCi5ESFuY8FvX/1FDHWiiqZDPCKLTZ0vajxBCCBENSoG/eaUahRAi1iT4F0IIIaLB4ZDgXwhhexL8CyGEENEgwb8QIg5I8C+EEEJEg8MhE36FELYnwb8QQggRDTLyL4SIAxL8C2FTVi1gIWJFvmMxIp9rmyT/TyLWovUdk+BfCBtKSkpn+/at+HzemC5rLuKIDgLR+S5orfF6vWzdupX09PSovKYII0Fgm5Oens7WrVvxeqXPFtEX7T5bFvkSwoYyM3tSUbGbn3/+mWCwaWkEXq+H5OTUKLcsccTd5+P3m7QSR+PGbKw6/05nze1JSUlkZWXRuXPnKDZSABL8t0E9e/Zk927TZ/ubmPrl8XhITY2jPqkVtOXPKJp9tgT/QtiQUg7S0rqSlta1ya9hFkIbFsVWJZa4+nx8Pvj5Z/Nzz57QiJ1fZaV5eE5OjNom9ifBf5vjcDjo2rUrXbs2vc8uKChg2LA46ZNaiXxG0SFpP0IIYXc+nxm+T0mBHTskuLQ7+fsIIWxMgn8hhLC78nKTt+NymfSfoqLWbpGojwT/Qggbk+BfCCHsrqzMBP4AaWkm+K+oaN02idopJbX+hRC2JsG/EELYmd9vLtaMXaVMEv+OHRJk2pHU+hdC2JwE/0IIYWc+3/7bkpJMGZ/du1u+PaJ+SknwL4SwNQn+hRDCzjye2st7ut1QUgKlpS3fJlE3Cf6FEDYnwb8QQthZeL5/JLcbdu6s/eyAaB1OpwT/Qghbk+BfCCHsKhg0hfqT6liSxek0ZwV27zZpQKL1yYRfIYTNSfAvhBB25fUeOKhPTTVnB0pKWqZNon4y4VcIYXMS/AshhF15vbXn+0dKSzPpP15v7Nsk6qeUuZZa/0IIm5LgXwgh7Kq+fP9wDod53K5dkv5jF/J3EELYlAT/QghhR1qbhbzqyvePlJJiHr93b2zbJRpG8v6FEDYlwb8QQtiRle9vpZE0RHo67NljyoOK1iUj/0IIm5LgXwgh7Kgp5TuVMmcAdu6UnPPWJp+/EMKmJPgXQgg7Ki9veMpPOJfLHDhI+k/rkuBfJDCv12QZivgkwb8QQthRQyf71iYtDQoLZe/cmiT4FwmsslIWF49nEvwLIYTd+HxmwmhDynzWRilT/3/nTpl4Gmtz5zJ0ypSaOf5S618kOL9fKgvHMwn+hRDCbpqS7x8pKcmMPhcVNv+1RN327KHDihVQVBTappQE/yKheb3R6aZE65DgXwgh7KYxJT7r43bDvn1QJufnY6ZHD3O9Y0dom4z8iwTn9cpXPJ5J8C+EEHbTnHz/SC6XJOfGUs+e5nrbttA2Cf5FgvP7zUWmtsSnhAv+lVLjlFJfKqU+Vkp9qpTKa8BzRiilViulZtdxf45S6g2l1OdKqW+UUjdFveFCCAEmR9/nA6czOq/XmHUCROPJyL9og3w+8zWX4D8+ReG8sn0opYYDzwNHaa1XK6XOAhYopQZrrbfX8ZypwFig1hVZlFIO4C3gPa317UqpLOAbpVSx1npWbH4TIUSbJbPo4kt2NtrhQG0P28U4HDLRWiSsQCC0/mAgEJ0MRdGyEm3kfxqwQGu9GkBr/TawA7imnueswQT/u+q4/wzgCODhqtfcBzwF3KaUDKkJIaLM42l6lR/R8lwuvO3bQ3jwr5QZEpVVfkUCCgZDJxTlGDc+Jdoe5mTgq4htX2KC+1pprd/Uut4e+mRgo9Y6fMWcL4GDgEOb2lAhhKhVeXn08v1Fi6js0qVm8G+RnAiRgMIDfvmKx6eECf6VUh2BLGBbxF3bgT7NeOk+dbymdZ8QQkRHMGhG/uU8elyp7NSpZs6/RSIjkYCstB+HQ8p9xquECf6B9KrryojtlUBaM1+3ttekma8rhBA1eb2SKhKHZORftCVW2o/DIVOU4lUiDS+VVV2nRGxPAcqb+brtanlNantdpdQVwBUA3bp1o6CgoNFvWFlZyurVjX9eW+LxlLJqVUFrN8PW5DOqny0/n0AQ/D4ojVKlH0AHg6gyB+v2ro3aa4qavJ06QXGxSdlKCxsTkuBfJCCv1xQjk6JW8Sthgn+tdaFSai+QHXFXNrCxGS/9A3BaLa9Jba9bVQFoFkBeXp7Oz89v9BsuWFDAoEH5UqGvHqtWFTB4cH5rN8PW5DOqny0/n23bzHn05OSovWRlqZfUdsnkHBHZNYpoqezc2fywbRv07Ru6Q4J/kYC8XjPy73TKyH+8SqS0H4DFQGRd/7yq7U21COinlGof8ZqbtdbrmvG6QggRorVZ2Vcm+8adGsF/OAn+RQLy+2XkP94lWvB/P3CqUmoggFLqDCAHeKLq9t1KqZVKqdRGvOZ7wHLghqrXaIdJ67k7mg0XQrRxPl+oeLaIK9XBf2Stf4mMRAKy1iBUynRZcowbfxIm7QdAa/21UmoCMEcpVQE4gVPDFvhKxUzSrd67VuXoX4Kp5X+YUqoAeERr/WbVawaVUuOAJ5VSn1e9xixZ4EsIEVVSNiNuVXbqZH4IH/lXSoJ/kXC0NtV+wpciibwt7C+hgn8wdfuBN+u47ybgpoht1Tn69bzmL8C4aLVRCCH2U1YmJT7jVNDthnbt9l/oS4J/kWAi166zDgYkWzG+yLGaEELYgeT7x7fs7Joj/5L2IxJQ5Iq+1mLWIr5I8C+EEK3N5zOBopw7j1/Z2fvn/EdGSkLEOWuBr8htIr7InkYIIVqb5PvHv9pG/iUqEgnGWuDLIgt9xScJ/oUQorVVVJjyGSJ+desGu3aFDuSs4F9WbBYJxO/fP/iX7Lb4I8G/EEK0trIyyfePdzk5JtDfubPmdgn+RQLx+WpmJ8pCX/FJgn8hhGhNgYDZe8rIf6Mppa5VSmmlVH7E9suUUl8rpZYqpRYppfrW8RLR062buZaFvkQCiwz+HQ7JWoxHEvwLIURrkmGzJlFKdQem1LL9HOBe4Eyt9fHAG8DCRi7u2HjZ2eY6fNIvSPAvEkrkOIXTKdlt8UiCfyGEaE2VlTLq3zR/wwT5kW4Hngtb3PEpoDMwIaatsYJ/GfkXCay2omSyym/8keBfCCFak+T7N5pS6mzAByyI2N4BGA58ZW3TWvuA5cDYmDaqfXtITZWRf5GwalvdN3y7iB+ynKQQQrSWYBA8HkhPb+2WxA2lVDpwD3AqkBJxd++q64jhd7YDfWLcsP3LfYIE/yJh1JXeIwt9xR8J/oUQorVIvn9T/AV4Umu9TSnVK+I+6yiqMmJ7JZBW24sppa4ArgDo1q0bBQUFjW5QqcdDwfr1HNGuHWzcyPJVq8wdwSBs3ixpXUBpaWmTPtu2xO6fkdamy4oc+Q8GYcuWllmj0O6fUbyQ4F8IIVqL11uzaLaol1LqSOBo4KY6HlJWdR15RiAFKK/tCVrrWcAsgLy8PJ2fn9/odhUsWkR+v37Qty98/TX5gwebOyoqTDpQp06Nfs1EU1BQQFM+27bE7p9RRYU5ls3IqLm9tNQUu8rKin0b7P4ZxQsJ/oUQorWUlUGSdMONcCbgBj5U5qDJquDzqFJqLzC16nZ2xPOygY0xb11Ojsn519oc1CklKyCJhFFXXr/TKV/zeCMTfoUQojVobYbSZLJvg2mt/6K1PlJrna+1zgcurrrr+qptyzCTffOs5yilXMBQYHHMG5idbc7mFBaa27L8qUgggUDtJyodDslgjDcS/AshRGvw+UyyrKT9RNvdwESlVNWqW1wO7AHmxfydc3LMtTXpV4J/kUBqy/cHWegrHsn5ZiGEaA2yt2wWpdSjwDFVNx9VSq3XWv9aa/2GUqoL8J5SqhzwAKdqrT0xb1R4rf/cXBkSFQmlruDf6ZSvebyR4F8IIVpDebnk+zeD1vr6eu57Gni6BZtjRK7yKyP/IoH4/bUXrrK+5tZUF2F/kvYjhBCtobxc8v0TTdeuJhKSWv8iAfl8dVetlVV+44sE/0II0dL8/rqH0UT8SkoyBwCyyq9IMMFg3RN+wWyXVX7jhwT/QgjR0iRBNnHl5MjIv0g4DalNIMF//JDgXwghWprHI6P+iSo7W0b+RcJpSGAvX/P4IcG/EEK0tLIyyfdPVNZCX+EkKhJxLhAwef11kfXs4osE/0II0ZICAaislJH/RJWdDcXF5gDPIsG/iHMHSvuRqrbxRYJ/IYRoSbKHTGyRC33JTEiRAHy+2mv8W6SqbXyR4F8IIVpSZWX9e1ER38IX+gLJhxAJweerf+RfFvqKL7LCjB3JKWIh7K2iwlw7naa8Y2OCecn3T2zWyL+V9y8j/yIB1FfjH8x9Vrco7E+CfzsKBMxIkUv+PELYTiAAv/wSuq21CeZdLkhJgeRkc0BQ24FBMGgq/aSltXy7RcuIHPl3OEzkJEQc83rrX5BcKdO9ySq/8UGiS7uS4F8Ie6qsNNfp6aFt1go4JSWhshjWHtDhMAcEKSmhoTPZOyYutxvatw+N/DscMvIv4p7fb7qxAwkE6j9IEPYgfyI70lp2FkLYVWnp/ue/HQ5zqS2dJxg0l9JScy0pP4kvfKEvGfkXca6hI/pW6CLBv/3Jn8iuKishI/3AjxNCtBytTRDvdjf8OdaBgewR247wWv8Oh8zjEnGtoWORVuqPsD8pOWFXVmqBEMI+Kisbts69aNuys2tW+7GGToWIQ41JRJCkhfggwb9dSfAvhP1UVMjiXOLAcnJg9+6atQ9lSFTEqYZ+dZWSDLd4IcG/Xfn9cggthN2UlDRs1pto27KzzUj/zp2hbRL8izjV0FBEFvqKHxL825n8FwlhHz6fGcmVkX9xIJHlPkGCfxG3DrS6r0UW+oofEvzbmYz8C2EfHo/k+ouGsRb6kuBfJICGBv8OhwT/8UKCf7uS/yIh7KWkRMp0ioaxRv6tij8gwb+IWw094el0yphlvJDg366cTpn0K4RdBINmsq8E/6Ih2reH1FQJ/kVCaOjIv1XYSr7q9ifBv10lJUnwL4RdVFbKuvWi4ZSqWe5TZkKKOKW1+eo2dKqTrFEaHyT4tytrVUg5hBai9ZWVySJdonHCF/pSSoJ/EZcaG4LIQl/xQYJ/u5MdhhCtS2sp8SkaLydHRv5F3GvKKL6M/NufBP92JufPhGh9Xq/5P2xI0qsQlpwc2LHDDINK8C/iVFNG8SVssT/Zm9mZLJcnROurqJDAXzRedrY5cCwslOBfxK3GBvLyVY8PksRqZzLpV4jW18iUH63NaJk/AMEA+AOKQNDsRBXQob2WecNtgVXrf/t26NRJhkNFXGpK8C9Vyu1Pgn87k+BfiNbl95v/wYwMAAr3Km57oB3//ToZfwACAUUgUBXoB1X1tvr0OcTPafkeTs2v5Mhcn5xUSFRWrf9ffoHcXHNEKBWjRJzx+Rq3qLlVq0TYmwT/duZwmJQD2WEI0ToqK6v/9z5elswNd2Sxp8jBuFM9pLs1TqfG6QSnA5KcGocTkpzgdGicSWa79ZikqqU7Pl6Wwqy56fzj2Qy6dApwyuhKTsv3cNwILykypzg+ORz7D5GGj/xbgsHGRVJCtDKvt3FZj06nBP/xQIJ/u3n1Vbp/8jlMHGKCDmvSr5QZFKLllZTg1UnMfDSTJ59Lp18vP88+uofcw5qe1HrlpeXsK1F8uDSF9wtSmP9+KvNeSyM9LciJx1VyWn4lJx5XSbtMHcVfRMSUUvsH/126mEjIqvgDEvyLuNPQBb4skvMfH6IeUSqlegGjgNVa66+UUu2AvwOHAx8A07TWkhFWl7lz6fPV1+ydeFNom88nwb8QLS0YZMNqL9fc3Z2V61xM/FU5d9xQjNvd/JfOytScd7qH80734KmET79MZkFBKgs+SuGtRW5cSZqReV5OG+PhlNGVZHeRwtm2ptT+Z2edTujaVVb5FXHN729clWNrzNIqciXsKRZ/mluqLlXnPHkEuAT4GRgH/DkG75k48vJI37oFVVoc2iYTxYRoUVrDc7P9nHpZT7Zud/Lvh4u4/9boBP6RUlPgpOO9PHBbMd+8v4v5/97DZZeU8fNWJ9Puy2L4aV0567cdeXJOGoVFkv5nS3WlZYav8gsS/Iu4Yq3u25QgXsIWe4vFcPIxwAla6z1KqUxgAvCg1nqaUqoj8DFwawzeNzHk5QHgWvsdvqOON6NHYRMOReIrLITXXoMXX4QffzSFQjp3rvvSqZPJMOjYMf5OEO3eDatXw65dcMwx0KNHa7fIfP433QQLFiQzakQFf/1LSYuNvDudMGKojxFDfUyfXMr6H528X5DK+0tS+ctj7Zj5j0zOGuvh0gvKyTvcJ1OB7CQlxURK4f+EOTmwfn3otgT/Io405+saCIDLFb22iOiKRagQ0Frvqfr5bMAF/BNAa12olJKUn/pUBf/Jq5eb4D8pCTyeVm6UiLVAAD75BF54ARYuNJOshg2DSy81weiePbBzJ6xaZX6ua0JVhw6hg4J27Q4lLw/69jWXgw9uvUVq/X744QcT6K9aZa5Xrza/U7iBA+Gkk8zlyCNb/mDm44/h+uuhqAhm/LGQyydU4HC1To62UjCgT6ib3NoAACAASURBVIABfcqY/Psy1m1M4rn/uHn1bTevvetmYH8fv/11Oeef7iE9TeYHtDq325SFjQz+P/44dFuCfxFHmjN6LyP/9haLXWuSUqq91novcBXwkdZ6E4BSKhlzMCDq0rkz5V274VrzrbntdErwn8A2bYKXXoKXXzYVATt0MAH/xRebQLg2WkNxsRkt37PHjJ6H/7x7twmqly3rxIIFoec5nXDQQaGDAevSp49JTY7WKPK+fbBmTc0g//vvQ19jlwv694fRo2HQIHNp394c/HzwAfzzn/D3v5tt+fnmQCA/35zZiJXKSpg5E556yrRtzr995GYUgss+Z9wO7evn7ptLmHZtKa+/n8qcV9O45d4s7n4skwvOrODSCyo4tK/MtGs1bjfs3VtzW04OlJaai1IyE1LElUDA7G+aQo5z7S0Wwf9cYLVSai9wKGb0H6XUUcCfgHUxeM+EUtxvAJ1XrzA3lDL/RYGAVIlIEB4PvP++GeVfutT8iUePhhkz4JRTTPZAfZSCrCxz6dev7setWvUZPXvm88MPsHFj6PLDD/DppzWPKTMzzUFA374mXgkGTZxiXfv95itoXcJvW4/zeuGnn2DLltDrdupkgvvf/jYU6PfrV/sZiNxcuOoqc/Dw0Ufw4YfmMn++yTkdNix0VmDw4OgdrKxfD9dcYw5WLr3U/B3cvgrYbc/Zaulpmt+cX8GE8yr4+jsXc15N44X5acx+OZ1jjvRy6QXlnH6ih2QZZmlZLtf+kZJV63/7dpPTJsOhIo4Eg03rZ51OWejL7qIe/GutH1RKbQOOBu7QWr9bddexQAXw72i/Zzil1Djg9qr3cgLXaa2/qufx7YDHgcFVj18ETNda+8MesxdYHvHUf2qtX4py8wEo7t+f7M8+Qe0tRLevGu70+yX4b4LycqqD3x9+MCPiffqYUfWBA01w2lJWrjQB/+uvmwD3oINMbvmFF8Yu1z0rywTNw4bV3B4MmjMNkQcFy5aZz8jpNNkLTmf9P1u3k5JMgD58OEycaIL8wYObdkYhKwvGjTOXYBBWrDBnBD74AB54wFyys0MHAgMHQlqaubjdDX8/rWHOHLjzTvPcZ54xB18AFJbYPmFVKcg73Efe4fv48w3FvPSWm+deTePqW9vTuWOA8edWMPH8cjpntnZL24javi/hC3317CkF0EVc8fubFvzLSS77i0lGrdZ6LuYMQPi2x2LxXuGUUsOB54GjtNarlVJnAQuUUoO11tvreNpsoExrPaIqLakAuIuak5KXa63zY9fymvb1OxSA5NUrqBw5xmz0+w88JNxGBQJmtLm2Ee7wQhtKmRHu4rBCSl27wmGHmQDysMNCI9OpqU1vj99fM/1m40Z49VUT/KekwOmnm7Se445rvVJoDoeJRXr2NGcd7Moa8R82zBwo7dwJS5bA4sXwxhswb17NxytlDgDS00MHBGlptd/+5pshfPml+f3/+lfo1q3qRQIBs7heHE2y79hBc9Wl5fzhN+V89N9k5ryaxhOz03lidjpjjqng2ssqOPeI1m5lgnM6zQFAeI3D8IW+alsITAgba+wCXxYZ+be/WNT5TwW6AsVVef8opX6PqfP/odb6zWi/Z5hpwAKt9WoArfXbSqkdwDWYswGRbc0FzqtqG1prr1LqUWC2UuperXVpDNtap+K+JpfDtaYq+Hc4zH9Senqtj/f74fPPzbwyh8OMnGZmQrt2oZ+zssztdu2aF9i2ltJSM3i2bZu5/vLL3hQXmwD/p59MzrYlK8uM7h93XCiVpW9f6NXLBIa7d5ucdOuydi08+2woDcbpDJ0dsA4MBg40H//Oneaya1foYt22gv3Cwv3P/g8eDHffDeeea/L6RdN07QoXXWQuXi989ZU58CsvD13Kyva/XVZm/kbh2yCLO+6Ayy6L2MGFreobbxwOGDPSy5iRXrZuczD39TTmveZm1To/57Z249oCt9t0JNZAjXVEuW2brH4k4k5Ty3xK8G9/sRj5vxW4EbgN+KtSaipwH7AXuFopdYXWenYM3hfgZGBmxLYvgbHUEvxXPd4DrIx4vBs4Hng/Bm08IH9GBv6D++Cy8v5rmfTr9Zp88XfegQULTHUSK+X0QPuX5OTQgYB1ycoyKTCdOpmJlVYJSevSvn3sso5KSkJBffh1+M8lJTWfk5R0EL16maD+pJNqBvkdO9Yfu3XuDCecYC4Wv98cRIQfFCxfDm8e4FA1NdWU2ezSxVTTGT7cBKjWti5dzOCfHUpYJprkZBg5sunPX7VqKYMH5+9/R2lp/NVMrUWPnCBTry7l6vGFJGckA+1au0mJLy3NfH+s4N/tNkf71si/pP2IOOL1Nm2/b53k0jpux1ESXiz2cGdg6vx/o5RyYib5zgcuAIYC/8Kk2kRV1RoCWcC2iLu2A6fX8bQ+wA6ta4zTbg+7z5KtlHoJs3CZF/P7/FNrHbNzuN6BQ0n533/NjaQk8HqpqDATId95x6Q9FBebzISxY+GMM2DMGBOMVlSYnPKSEnNdXHzgn7dsMSPWkcUqLA6HOQAIPyCwDhSsExN+v9m3WT97veZ2+M/Wxe83+8ht28x1OKVMAJ2TY1JwTjjB/Ny9u7nOyYGiok84/PDo5askJZn36tcPzj47tL2kBNatMwcDXq8J5sOD+8xM6dwSitbmCxmL1bxaSbLLLCQmWoCV9hPOWuhLIiIRZ3y+pmcKWKv8ylRFe4pF8K+01t9U/TwG6Azcq7UOAv9TKma9npUTUxmxvRJIq+c5tT2eiOdsAG7TWq9XSvUCFgIDMelENSilrgCuAOjWrRsFBQUNa314A4IeNh/UlUMXbGPFN5/y6cb+LF3ahWVfBfB4nGRm+jj22N0cf/xujjyykORkc+zyww/7v5aV42zNOzsQv1+xb5+r+rJ3b3LVtYt9+0I/b91qbhcXm0luTmeQpCSNyxXE6dS4XJqkJLPNuo68r1u3IIMHV9KlSyWdO1fStauHzp0r6djRi8tVd32x4mLw+UpZtaqgsR9tk7jdpuZ8OI8HNm9ukbdvMo+n5T6jeFTr56O1OcorTpw9lg4GUWUO1u1d29pNSXy1TfrNyTEj/xYJ/kUcsIL3ps5L01qKFNpZLIJ/l1JKVY2m/w5YG1FtJ1ZTHMuqriPHuFKA8nqeU9vjCX+O1vqssJ9/UkrNBP5PKXW71row/Mla61nALIC8vDydn5/fmN8BgP+88CGLA5czldNYcPVZeHxJdO7g54Lz4cyz4dhjXbhcOZgTEa0rEDCdg1LWn7Vl/tNXrSqoPWVDVJPPqH61fj5FReb0VwKN/FeWekltl0zOEQ0cARBNZ5W9Cg/wc3Lg229Dj2lORCVEC2nu3HSrSrmwp1gE/58DbyulNgMXATdA9UTgPwBFMXhPa/XgvUDkHi4b2FjH034AuoYdrFiPp57nWPcpTGpQYT2Pa7TLL4fZs/Px+x30oBu/HfA5Y68bxFH99+I8qLvtghI5qhcJpaSk9ZZBFvFPKZMn4feHzgLk5JhqANYMSImIRBxozgJf4a8h7CkWww83YfLujwOeAp6o2v534HpikO8fZjGQF7Etr2p7bRZhJvcOjnh8BfApgFLqpKq1A8JZ0zc3Nau1tejbF845exNv/Hs3G/uM5dH2d3LscB/OJCWTxYSIJWvCihzRiuZIS6tZdcHKudyxw1xL8C/iQFMX+Aonxa3sK+rBv9a6RGt9mdZ6iNb6mqpcf6q29Y5hpR+A+4FTlVIDAZRSZ2ByY56oun23Umpl1VkItNargNeBKVX3u4DrgEfDynweBExRSqVVPSYLczbjP1rrndH+BW65BS7/3fcMH+IjMOhwXGtWmMPvWir+CCGiyOORXGzRfCkpNYc8w2v9gwT/Ii40d9Te6ZTg385iVs9OKdUVGI2Z8Lsb+CgWwXI4rfXXSqkJwByllLXC76lhC3ylYibyhu/hJwF/U0p9WfX4xcCMsPs/AI4EliilPEAm8CFwZyx/FwDv4CNIe/tlHDt+Idglu2YxeyFEdJXYf1VfAVWLN16NmZ+Vjkklnaq1/jbicZcBV2HO5FYAV2qt60vnjI7I71D4Kr8DB0rwL+KCz9e8sRCrCqCwp5gE/0qpPwO3AC5CgbZXKXWf1jqmQXPVImK1VmfXWt+ESUsK31YM/Lae19sMTI5mGxvKN3AoAMmrl+M58UwzMimVIoSIvmDQ1MhNq6swmLCR2cBkrfXzAEqp+4EPlFK5WusdVdvOAe4FDtdab1dKXQssrFrtPbanUK0FVyzhI/9KSSK0iAtNXeDLIsG/vUU97UcpdQ0mdeYJ4BLgVGB81e3JSqmro/2eicrXfyDamRRa7KshK3gJIRqvslIOrOPHx1bgX+VhzBnmU8K23Q48F3bW96mqx0yIeescDjNp3Ary27UzhRqshb6kDxdxoLnTn5xOOc61s1iM/F8NjNFaL4/Y/pJSag7wPPCPGLxv4kl14+93WCj4V6pmFQkhRHSUlSXEqr5tgdb6/IhNFVXXKQBKqQ7AcMxBgfUcn1JqOWa193/FvJFpaeY75XSafjsnxyz0ZfXhQticz9f8kX+/X8ZU7CoW1X4ctQT+AGitV8ToPROWd9BQktd8GzqNLDsOIaJLaynxGd+OBTyE0j17V13Xttp7H1qC211z2DM7W0b+RVzx+5tf+Mxa6EvYTywC8WSlVOfa7qiaBCwLzTeCb9BQHMV7cW752fwnShKdENHl9YZWqxNxpWrF+NsxK7BbBSWastp7dCUn75/3v22bBP8iLgSD0Sn1KQt92VcsznO/ChQope4GvsJUYugIjABuBV6OwXsmFofDnHNLSa6e9Otas4JATk8p9ylEtFVUSOAfv+4FftZaPxy2rVGrvSulrgCuAOjWrRsFBQWNbkRpaen+z6usrP5e9U5K4qDt2/l4zRoTEf34Y6PfI97V+hmJGuz0GYV9fZssGIStW6Ob9mOnzyiexSL4nwHkYnL7w9eHU8A71CyjKWpjTZNPScbX7zB0cgrJq1fgGTtOgn8hok1SfuKSUup6YBDwq4i7rMi6Qau9a61nAbMA8vLydH5+fqPbUlBQwH7P27DBrPbrcMDhh8NLL5GfnW1SggYMaPR7xLtaPyNRg10+o8pK+PlnyMho3uuUlECPHs1/nXB2+YziXdSDf611JXCmUupk4CRMhYVCYCHgA44BPo72+yaU8MNkVzK+/oNwrV4eKhPn98vkRCGiwe83e7po7p1EzFXV8D8DOFtr7VdK9QH6aK0Xa62LlFJfYVZrf7Hq8S5gKDCnxRrpdlcN4qSEav1v3w69e5shUTnbJGwqWnn6Dofk/NtVzCJIrfVizIJZVse7sOquo2mpvMt4pZSp6BMIgNOJb9BQ3O+8Ekqek+BfiOiorJRSFHFGKXUxMB2zQOMQk/bPcMxq7ourHnY3MEsp9WBV7f/LgT3AvBZraFqaSSmDUPC/bZsE/8L2ohn8yzRFe2qRCFJr7QPGACil2l6yY1NkZkLxPnC78Q46gvRXZpP080b8XbvLobQQ0VJSIgfS8ec5zL6rIGJ79QKSWus3lFJdgPeUUuWYakCnxnyBr3ApKaEBG2uhr21VBYhkFqSwseYu8GWR4N++WmOvpw/8EIHbDXuLAFPxB8C1ejn+nIPMaGV6en3PFkI0RFmZrOobZ7TWDVroRGv9NPB0jJtTt/D1WDp3NtXaJPgXccDrjU7w73RKcSu7kvOOdpVSVahCa/y9+hFMdZvFvpxOE/wLIZonqGUFGhE7SUnmu6W16be7dTM5/yDBv7C1aI38O52mcKGwn6gE/0qp30bjdUQYh8OM7vt8kJSE77AhZrEvCf6FiA4dlJQfETtKmSpS1tBndraM/Iu44PU2f4EvCNX515LvYTvRGvm/LkqvI8JlZFQnzPkGDSVp7XfmPykQkLx/IZrDWnpSSnyKWEpLCwX/OTmhkX/pv4WNRWvk3yJfd/uJ1p/3CKVUoCEX4JAovWfiSwmtUeMbOBRHpYekH783gYsk0gnRdB6P+T+SiisiltzuUORjjfxL/UNhY9ZIfTSzIeXrbj/ROuddBLzZgMcp4PwovWfic7mqS356Bx9hNq1egT/nYPlvEqI5Kiok11/EXvik3+7dzQTz0lJo16712iREPWIRWkiWm/1EK/jfpLX+XUMeqJQaHaX3bBsyM2HfPgIH9SaYnkny6hVUnHKuSQeSKiVCNJ7WsG+fBP8i9sKDf6vW/65d0LVr67RHiAMIBKKfoy9jlfYTreD/lEY89pgovWfb4HZDURE4HPgGHm5W+pVJv0I0ncdTtTeKk+A/ECDz6b+SuuQ9tDuNYFo6Oi0dnZZBMD0j4ucMdHo62p1efTtAMsqV3dq/RdvkcJhJ5YFAqNb/jh1w6KGt2y4h6hAMRndcxOGQij92FJXgX2u9qxGP3RGN92wzwkp++gYNJf35/4OAHyT2F6JpKiripsqP2ltIh1uvInXZx1QOPxaSXDhKS1A7t6HKSnGUl6HKS1EHGForuWoKHPtAC7Va1OB2m++cNfK/c6fM2RK2Fe1ReqXk625H8bEHbMuskp9eL95BR5Dh9+H6aT2+g/vJEvFCNJaV8hM2md6uXGu+pcOU/4dz90723vYQ5edNqP2BWoO3Ekd5KarMHAw4ykrNQUFZGYGivTBsGJkt23xhSUszK0l362Zub98uSdDCtqK1wJfF6ZRVfu1Igv94kJEB27eHrfS7wgT/fr+UKhSiMayUH5sfNLvfepn2900l2L4ju5+ejy93WN0PVgpSUgmmpEKHzvvdXVnqJbWd9BOtxuqjU1OhY8dQ8C8LzAkbinaZTwn+7cnee0BhVI1SBrofRCCrA65VK0J1yoUQDVdebu+UH5+XrPtuocOfr8M7ZDi75i6oP/AX9hc+6TcnRxb6ErYWrQW+LFLZ1p5svBcU1aySn8EgvkFDSV6zwowY+Xwmn1QIcWBaQ3GxbVN+HDu30XHqFSR/+xWll15N8TXT7H2gIhomKclEQFqbvH9roa9gMLpRlhBR4PPVPF5tLmuVX8lSthf5U8SLzEzwes1KvxvXVk36lVm/QjSYjVN+kr/5nC6/OZWk9aspvH8WxdfdLoF/IklNNVGVjPwLG7MSCqJ9TCqJCvZjv72gqJ3bbUb+Bw5FBQK4Nq6T4F+IxohSyo8qL8NRuDsKDQK0Jv35/6PTlb9GZ7Rj97Pv4hl7dnReW9iH222SqbOzYc8ek1shwb+wGWsqSrRZo//CPiT4jxdVqQreqkm/yWu/NTuQWPynCpForJSf5k6Qr/TQ+f+dQ/bYIXT59WjaPXAbqQXvo0qKG/1SqqKc9rddQ9bDM/AcfzK7nn0Xf1+p/56QUlPN0Gf37ub2jh0SDQnbaegCX1rD22+bCraNeW1hHxL8x4uqkp/B9p0IdOqKa823ci5NiIaKUspP1qN34fp+FaUTriDQNYe0+fPoeOPvyD5xIJ1/eyaZT9xH8hdLodJT7+s4N/9E50ln4V4wn+Krp1L00L/Rme2a1TZhYy6XGf60av1L8C9sqKELfC1aBH/4Azz9dMNfW0IVe5Gk0niSkQGlpfgGDcW1ZoXZ5vNJbrCwB7/fpNa0s2EQG4WUn9QP3yX95WconfAHiv/0Z7PRW0nyd1+T8sVSUr5cSsazT5D578fRKal4h46gcsTxVB51Ar6Bh1cn0qYs/YAOt10DSlH4+DwqR45p5i8nbM+aQSkLfcWPNliKtaEB+nPPmet58+Dqqw88R8DhkK+73UjUGE+qU3+OIHPpYlR5KVoOp4Vd7Ntn8plTUuxVUScKVX6c27bQ/q4/4R14OMV/vDV0R3IK3uEj8Q4fSclVN6NKS0j+5r+kfPkJKV8spd0T98ET9xHMaEfl8GMJdu5K2mtz8Q8YTOGD/yLQ4+Ao/ILC9pQyKWddupjbO3ZINGRnFRVQWAg9erR2S1pUQ76SmzbBkiUwZAh89x0UFMBJJ9X/HIdDav3bjQT/8aSq5KfvsFyU1rg2rsXbvac5IyBEa/L5oKjIfEf37g2tZmoHzU358ftpP/1qCAYouu9JcNU9b0BnZFI5aiyVo8YC4Nizi+SvPiXli09I+eITkj5aQPmZv2bftPvR7rSmtUfEp7Q0E12lpUnwb3d79ph+rGPHNlVO2+8/8Cj+vHmmK501C8aNM2cBJPiPPxL8x5vMTHx9DwPAtW4V3hHHt3KDhMDsKJ1Os6MsKYH27e0z+t/MlJ/MWQ+TsuJLiu5+gsBBvRv13GCnLnhOPRfPqecCoEpL0BmZTW6LiGNut/k/ycmRtB87q6yEsjJzkLZnD/Ts2dotajFeb/1jJJWV8MILMHYsHHwwXHwxPPEEbN1a/0kSp1O+7nYjE37jjdtNsH0n/N2647Iq/gjRmrxek/KTmmpuJyWZU+Z20MwqP8lfLCXj349RPu5iKk4/v/nNkcC/7XK5ai70JdGQPe3da/qw1FQoLW1TJbUPFPy//745Hpo40dz+zW/MV3revPpfV3L+7UeC/3hTNZrqG3QEyWu+NdPzJe9ftKaiIrOztCbHpaaakTNP/RVvWkQzUn4cRbvpcPu1+A/uw76b74lB40SbYlX8yckxwb/02/bj89UcyHC5TP/WRhxoga85c6BXLxg1ytzu2dOk/Lzwgvno6mLV+ZevvH1I8B9vHA5IS8N3aC5Jm39EleyTQ2rReiorTZqPtbO0uFz2GP1vaspPMEj7O67DUbyXovufkvx80XxOp/kudusWyvmXdVrsZd8+s48NH8jYt6/+yDZBaG2+knWNk6xbB//9rxntD3/MxIkmi23BgvpfXxb6shcJ/uNRZia+fgMBcK1bKcG/aD2FhbUH1ykpJvBuzCow0daMlJ/052eR+umH7LvhDvwDBsegcaJNcruha1fTZ+/ZI9GQnQQCZpQ/fCBDKRPp7tvXeu1qIQda4GvuXNOVXnhhze1jxpgzAHPmNOw9hD1I8B+PUlLwHjYEgOR1KyXvX7QOj8ek90SO+luSk1t39L+JKT+u1ctp97d7qcg/jfJfT4pN20Tb5HbXLPcpwb99lJSY6Deyv0hLM/1Ygkeu9S3wVV4Or7wCZ50FnTrVvM/phAkT4NNPYcOGul9f1iS1Fwn+45HLhe7YGX/PQ3B9v9IeudWi7dmzJ7R4UW2Sk83If2uN/jch5UeVltBh2lUEOnVh74xH2twiPyLGkpPNyD+YvH8J/u0hGDT9WW1lPa0+oLi4ZdvUwuoLzOfPN8dG1kTfSOPHm6527ty6X0PSfuxFgv94lZmJ79AhuNZ+JyP/ouVZQf2BynmmpJidakvnNjcl5Udrsu6bivOXTey95x/orA6xa59om1yu0BoYMvJvH2Vl9c92dbsTPk2rvrSf556Dww6DESNqv79LFzj9dHN2oK6xHqdTQhU7keA/XrndeA/NJWnbFhy7ZSciWpDW5jR4QwJrl8ucmWrps1NNSPlxv/Uyae+/TskVN+IddnQMGyfarKQkEyklJUnwbxdaw+7d9Q9kOJ2mPyktbbl2tbC6usvly+Hbb82of30nQi+91FRJfeut2u9XSoJ/O5HgP16lpOCryvt3rZVJv6IFeTxmeKeho+opKWbn2pKj/41M+Un6cT1ZM6dROXwkpb+/LoYNE22aUiaH3Kr4I8F/66uoMFXL6kthBDP639L9WAuqq8b/c8+Zr+yvflX/8489Fvr1M4+vjSz0ZS8S/McrhwPf0BFopXCt+05m0oiW0ZBRskgul9m5tlTuf2NTfio9dJh2JTrVTdE9Txx4fXshmsMK/qXWvz00tD9LSjIlP8vLY9+mVuDz7R/8791r8v3POw8yD7A+oVLm7MA338DKlfvf73S2iYqpcUOC/zimu2XjP7gPyWu/k/8q0TIaOkoWKTUVdu1qmVGzRqb8tHvsL7jWr2bvnx8j2CU7xo0TbV5Kipn0u3OnDIW2No/HBPMNHcxISTH9WALy+fYf93j1VfMRXXppw17jggtMV1/b6L/DceByoqLlSPAfz1JTzaTfdd9JxR8Re1qbHV9dpT3rY42alZVFv12RGpHyk7rkPTJe+jelE66g8oSTY9wwIQhN+t2+XQZtWlthYeMGMpKTW/YsZguKDP61NkH8sGGQm9uw12jfHs45B157zVQHiqS1ZLrZhQT/8czlwjdoKM7dO3Fs+bm1WyMSXVmZ2UM0ZcVcCFXMiOXQTyNSflJ37qT9XX/CO/Bwiq+9NXZtEiKcywXZ2eYgde/e1m5N2+X1mr6itvKe9XG5TD+WQKygPHxC7+efm7r9DR31t0ycaL7ar71W+/2S6WYPEvzHOe/wYwBwffeNnE8TsVNfHeyGspI+Y1kxo6EpPz4fuQ/dB34fRfc9CcmNmMMgRHM4HNCjh/l58+bWbUtbtndvvQMZdQapqammD6usjE27WkFtv+tzz5mR/LPPbtxrHXEEDBlinh8ZksjIv31I8B/n/EeMQDudJK/9VvJHRexYo/7NnQwb63rZDUj5cezZRadrLqLDqpXsmzaTwEG9Y9MWIepyyCHmetu21m1HW+X3m+C/jsGMwiLFT1ucdWdluVxQVBS79rWwyOB/1y547z349a8bP95jTfxdswa++mr/+2Tk3x4k+I9zun0H/L36S7lPETvRGPW3WPXeYjH634CUH9eKL+ky4RRcK//HyhtvpuKMA9SvEyIWevUy17/80qrNaLOKi00kWkvh+pJSxc49Dghqtm531B6spqbCvn0JM2cjcizmhRfMr/ab3zTt9c4911QHmjOn5nalJEyxCwn+453DgXfwEWbSb4J0RMJmSkrqX/2ysdxuM9Eu2qP/9aX8aE36C0/T+fLz0Smp7H72HbadODa67y9EQx18sLnevl3yIFpaMGj6n1oGMyoq4JftDtLdGrcb/H7F9p2O/TNqlTL94b59LdPmGAs/wAkEYN48OO44U7e/KdLTzboAb79tPmqLwyHBv11I8J8AfEcejXNfEc6fpkWo4wAAIABJREFUNrZ2U0SiCQTq3FE2mbVaZm3lIJqjjpQfVVFO++nXkPXQ7VQedyK75r6Pv/+g6L63EI2RkQEdO8pCX62hpMR85hGDBF4vbNnmJDVFV49zpLk1peWK3YW1LG3rdpvUnyjlsQQCrVcK0+cLnQRZsgS2bGn8RN9IEyeaz/Tll0PbHA5Z5dcuJPhPAL4jqyb9Lv+ilVsiEk4dO8pwjl07aPfYX8geNYDOE04h9YO3DxzQpKaag4poJYDWkfLj/HkjnX97Bu5Fb1B8zS0UPvwMOjMrOu8pRFMlJZmKPzLy37K0NimMEeWK/X4T+Ccl6f0qf2akafYUOSjaG3EAoFSo32kmn8/M/fb5TCZYS38l/P5QFz9njlmG4tRTm/eahx0GRx1lJv5av4/TKcG/XUjwnwB8ucPQSS5cK//X2k0RieQAo/7OzT+Rde/NdBt3NOlzn6Ty6BNwlJXS8ebL6XJhPu53Xqn7HK/TafYI0Rr9ryXlJ/XDd+ky8TQce3ax5+8vUPr76xq88JcQMde9u4z8t7Ty8v3KFQeDsG2HAx3UpNQyXUgpcwCwY5eD0rKIA4AoFDDwek3gb2VWlpfD1q0tOzHW6zXvvWULfPghjB/f+HUca3PppfDTT7B0qbltLfQlWp/sCRNBSgq+QweTvEYq/ogosvJZIwLmpO9X0f7Wq+l6/nGkvfkS5Wf9mp2vLaXowX+x8z+fUHjvP8GZRIcZk81j/jMHvLWUxbNy/6OxNwhP+fH7yXz8HjpO+X/4e/Vj99wFeI8e1fz3ECKaDjpIgv+WVMsihVrDjl0OKjyq3sxGhwPS0zS/bHfUXE/TSmFsYgEDjwc2bTIHGNb7p6ebKqJbtrTc7twK/ufONW2ZMCE6r3vGGSa7zZr4a+X8S1Xy1pdwwb9SapxS6kul1MdKqU+VUnkHeHw7pdTsqud8o5SaqZRKinhMjlLqDaXU51WPuSm2v0Xj+Ybm4Vq3Us6piejw+00+a9geMfl/y+g4+Td0HX8yqZ8spGzCH9jx1jL2TX8wVC7T6cRz6rnsemExex6ZTbB9J9rfO5Vu444hfd5TqIry0HtYBxXNPW0elvLjKNxNp2suJvPZv1P2q4nsfno+gZyezXt9IWLhoIPM/1h5+YEfK5rP4zFRddiQ9p5CRXGpIiM9FI2qslLSXn2W5K8/q/F0pxOSkzVbt0eUAHW7YffuRke0FRUm8E9KgpSIZUbS0kwXvGlTy9TxCATM+734Ipx8cmgZiuZK+f/t3XucpFV95/HPr65dfe+eHuaODA4g4gXCcEcFRY3G9ZLsZlUkxojGGGN047rRaCTGGNTdREFRYYOoIW42rpEYNSDiKAjKXW4BI6MDDMwwl57pW12f5+wf53m6amr6PtVd1V3f9+v1TN2eqjr9dM95fuc85/xOFl7/erjhhmpWW+fU+98KVlTwb2anAv8AvNk590Lgr4HrzWztDG+7Bkg6504DzgReAHy05jMTwLeA+5xzZwHnA39gZm9fnJ9iYcqnnE5ifJTM7bccGmCJLMTBg5PBefaW77Pqra9h6OLXkn7wHkb+4P3s/vadjLznzwlXT/NfK5Gg+KKXs/fL32bvFf9I5ehj6fubSzjqVafR/XefxkajgD8e+38kXVzRkJ/0A3ez+sKXkbn/LoYv+QwHP/hJLd4lrWvTJn+7c2dzy9Eu9u07JPA/OGLsHU7Q3RkF7eUSnf94NUe99iz6//pPGXr7bzH47jeR+o9/n3xPJg1QlwI0lfIR+jwacWNjPrDv6Jg+M3Hc7/LYY7OsJ+ac//4FXkEKQ79df72/MHLRRQv6mGldeKEP9r/2Nf/YTBe7WsHMq+EsPx8ArnfOPQTgnPtXM9sN/CHw4fqdzew5wOuA50X7l8zs08A1ZvZx59wY8ErgZOCCaJ+DZvZF4ENmdpVzrXEBq3Tq2QAMXehn6YS5TsKBIcJVqwlXrSYYOopwcltDOHQUwVFr/f3BocYM8JOVoVyGvXvpuO0mer78OdI/f5DKmvUcfN9fMvHaN+JynXP/LDNKZ7yQfWe8kPTP7qDn7z5D7xWfoPvLVzD+X9/C+BvfRpjt9D33g4MLK+/4OJ3X/QN9l32MYM169nzpW1ROeM7CPktkqcTpPh97DJ7//OaWZaUrFn3E3dsLwETeeGp3gu4uh7mQ3PXX0XPFJ0jt3EHx1LMZ/uRVpO+/m56rL2P1G15C/lW/zcg7/jvh2g3kOvz7dz2dYP3a0GfJyWZ9739X16xFGRnxk3q7umbPntzR4Yv+2GOwaaOjIx34+rlc9p0e+by/2h+GvhGyerVPsD/F+gXTiTMMfeUrvj163nlzfuucHHOM/8xrr4V3v7v6ndJcKy34vwD4RN1zdwAvZYrgP9q/ADxQt38OOBf4t2ifR51zB+r22QScADzckJIfocoJJ7H3q98lef89JA/sJzG8l8TwPhIH9pN8Ygfp++8mcWA/Fkzdwxp2deOyHbiO3OQtHblDHvst3ieHy0X7ZDK4ZArSGVw6DckUpNP+fiq6Tcf7pHGpNKRS/nG80Mo0m7PElM93PPUUye7t1fXCw8DfRo8t7s5wzr/mqOZSg+ol2jhjg3PVCtOFgFX3i+8mU9VjkstBrhOX7fANp2TSbwudUBqXIQx9L3i5jJWK4BwulfLHNJXynz/TMZvts+NrruUyVixAsYAVi1hhAgoFrFggc+dtdH/186R27qB8zBaGP/Jp8q94HaSnXzxrLsrPP439l/09qYfvp+fqy+j+0uV0/cNVTLzuTYy/+vWEzzwu+jn8z+jgkMdMPrbJ35tNjNP35++m84brKJx7AcN/eTmut/+IyikyH7ffDt/4xgYSCdi61Q/ZmJO453/HjkUrm0SGhyc7uIpFeHxngs6cI3f7D+m57GNkHnmA8nHPZt/l11I863zfaXHKmUy85g30XH0ZXf94NbkbrmPs9Rcz9pZ30dnTx+i4TwG6epXz3fejoz4Yn2HywPCwn+bR3T3LqaJSmdyyxSKJsQI7tpfZtLZMZ0eUfS2R8OeEzs7q0rlPPeUbIWvWVJ+fRRjC9u1w223wgQ8sTk6Eiy6Ct74VbrzRrx+g4L/5Vkzwb2aDQB9Qv176LuAV07ztWGB3Xe/9rprX4tupPjN+rSWCf4DS+S+Hc86vBnlxoFepVAO+A/tJ7H2a5N6nfeNgeC+J/XtJjB7E4kCwmMdKJf/44AGsVIgeF/39YhErFbFK8xYVW9O0bz6cM5ts+Lh0xt/PZP39bNY3foIAK5ehUsYqlei2DJXA3wYV3zCrVHzDZbrvihoZLpmqua25n4puE0nOLk+QDfDfWy5h5RJWKWNzmBdSevbz2f+eD1M47xUNPxtUnvVchj95Falf/pzuL32Wrv97Nd1fu2ren+PicjnHyB+8X9l8pCm+/W24/PLjuPxy31P7nOf4FIfnnOO3o4+eJgaLB1Zrld/FVS77YYzd3ZTLPqVnz/Z7WPX5j5O9/WYq6zcx/JeXk//134SEX9DriSeTDPaHdPUNMPLejzD++t+j5/OfpPsrn6Prm9cy+nvvxv2Xt7BvuINUMmSg3/nGxf79Uw6YjzOM7tnjO+YPqaaizh4KBX+7ffuh8weSSdKpFNaf5fGDOTZ0hofMUajdj56eat7QXM7n7JxljZYg8GP902k/Pn8xXHCBz2z71a84XnBakWBvHhJZX7Z5XKWQxlkxwT8QX2+rHx1XBKbri+maZn9q3jOXfVqD2eEzh+q49esJgACqg/1qe8nh0NvJnvUoIK3pXadcxgr5KLCMAttyFMiWSlHPRRmLHweB37dS8ftUKoCrfo+Lv9s/ttrvr9tvZ3EPG3JHRb3C0c/Oob3Dzmz6nnLMf6Z/Q91krcMrVouvKJSKUIoC6XLJ3y8Vq8F1uex708sl/zOXSlilBMmUD9xT8ZWPJC6VgXSqeiUk5a+aTF49SaVwlsBC34CzIGrEBRUsvo2OpX+99rmA0TCPda3CZTJTNE4y/vuz/tbvk8alMgRHraN88mmLXilXNh/PgY9exujvv4+OH90QpYEID/3dOzf5HKH/27DJxq2/LZ75oslhbyIxM3s1/opvHkgCf+ycu7PR33PJJXDCCbexe/dZ3Hcf3HsvXHUVXHGFf33DBn9F4Kyz4Nxz/f1sFj8EpbcXPv1p+Na3YPNmv6Tq8cdXbzduVIP2SEXzl4LQ2H3HDo76wifo+f51BH0DHPyTjzL+n3+HfJDl1lsz/ODWLDfdkmXHzhSZtOPsrSUueEGRC15wDJs+ejljb3oHvZd9jL6//Qu6/s/fkXvH/2D3C36LdNro7urwvf/F4iHnYefg6ad9r39vd+jPEaWSv0qQz0O5TKUCjzyWY2clx7OPymGJw+veFNCZcDzxpB9u1NszzYjjdNpvpZIfL9TVBUNDh61tEBsdhW9+E37jN/xuiyEVFLnwN0P+1xU5Hr97N/0nVKAYLS4wMOAvhWSzaggsoZUU/I9Ht/XRbxaYbibO+DT7U/OecaB3ln0mRROB3w6wZs0atm3bNmOhp1IsjvHQQ/N/X1MZkI42wM8lz0Rb4xXyYzzVUTe+0k3+c/jj+P5MUzTq3z8jm2xr+Ic2xfN1+8y1rJPPzXM6SV3FWSjn6Ujn5vc58b5P3b90QUfSwYumaGzMp9y77mf6gz21QiXPg7semH3HZc6FITae4JEDLXORctHVJH843Tn3kJm9Cp/84STn3K5Z3j7P74L164u87nU+3hofhwMH4L774Gc/842Bn/4UrrvO75/JwPOeB2eeCee85d844effYtXenzN4z4N0ffs7vrEfy+X8pYNjj/UNgi1b4Ljj4IQT4BnPmH3QeLuL1ipxY+Pk/+zjbPjG3+PSaUYvfi8PvuSP+P49q7jpfVluvTNDoWh0ZB3nnl7krW+Y4Imnktx4S5YPfbKXD30STnhmmQvOPYML3vp1zrzwBwx+9qMMfuSP6D7+izz9+x8m9dpz6Uil/C9/jb82HZYq7H6ixMieEr2JcdhTAOcYzye4++dd3PHAAHf8LMtd96cZn0gAG1i9KuC0k8uccXKJ008p8ezjKpNZjJNJ6O5yPLk7QRBEVxymk8n4rVDwyfb7+mDVqsNmGP/TP/l5CI2e6Eup5CdBHzwI5TJvuCDNp794NP944ypOeM4Y9ESdigcOVCdjDwz4xsp0s6ClYaxF5qs2hJkNA59wzl1a89yXgeOjTD31+78H+DjQFQ/9MbPNwHbg151z10cTgH/dOfesmvedD9wEPMs598h05dm6dau78875dzRdf/02nvOc89QInsGDD27jpJPOa3YxWtqCj1EY+q6q8fE5TWA7IkHge7/WrZv+u+qvRNU/Nzrqu9XmWdYHdz3ASWtX/sTg4liJjt4M606eKenZ1MzsLufcjOmSW5GZfR1/fvutmuceAv6fc26q+V/Awuvsbdu2cV7dTMl4NEccA23fDnfd5RsD99wDDz10eGbmdMrR31VisCPPYGqEQfYxWNnNqvyTDI7vYFWwh0H2s4p99CdGyXUauZ4Uue4kub4Mub4M2YFOrK/XB3u9vdDf7+/39VXvd3f7nuBs1t/GaWcW8aQz1TFaFGHo65Uw9GPgP/Upwi9dQ6kI3zvnEr419Lt8/+4Btu/wEfXmoyu8+JwiLzmnyBm/VqKjrjtw+2NJvn9LlhtvzvKTuzJUAqO/N+T8swq8svcWXnPzn7B61wNMnPYi0h/5AOktx0BfH8HoBE/tDJkoGKOFNHc81MWd92W5/Z4UD/0iSxAaZo5nbzjAGZt2cca6x3hq3zD/vvtZ3LbzaB4b9QkQupN5Tu9/hLO77+Oc3N2ckbqbrtIwLp8nVZogUcz7q70bNvjZtbXb5s1+Mblk0tezlYoPsAcHJ9dFOeUUX9X/4AcN+PWXy/57Dh70V0ASCf83lkyCc1z83m5+em8Hd37uNjafMujLEn9pEPiGShj6Rm9//5Szopfs72iZmmudvZJ6/gFuBOp/6K3AN6bZ/3vA3wInUZ30uxV/mfjHNfu8y8z6ayb9bgUenynwF1m2Egk/VnTPHp8hY7EaAHMJ/OHQyb5T6e/3Z69SST1GEptv8oeGS0Vz9HM5H2+vW+d7+6PRgBw44BsBO3f6+8PDcOCAcfBAmgPDaUYO9vCLkY0cPAgHS0Y+qPv7D4GxaKthhHRQIEd+8vbQ7Wk6eIwMpcO2dDIgkwzJpipkUo5s2pFJh2TS1Y7kZMp8foOUkUgl/ON03W0mQTKd9PukkyTTCUb37OK+635JIhk9F70/kTISyQSJdDJ6XHM/nSSRND9XqZD3gW4h2ooF/zg/4bf49VJxcnv8rqf57sjZfGvoJra5rUzcnCSb8cN53vLbE5x/TpHNm2aefXrs0QHHvnGCt71xgpFR40c/zXDjzR3c9OMs/zz8Mt6RvI8zNj7Gq++/mle/6j0c/8J1PFB8Jj966nhuO3Ait40/n18FfnJ3J+Ocwa18kFs4hx9zpvsJfU+MwBOHf+/j6WO5OXUeP+Zcbh45k7/a9yYcv0PKKpzc/QvOGnyEMzY8yrlH7+DowXFs5xO+h/+HP+SQlcjSaX/1KG4QbNjgJ5uffDJ3lZ7LvfdmueSSBQb++TzJXTtJPPk4icd3kHh6F8mDwyRGD5I4sM/PJ9y/1ych2b+X95ZfyMv4Hrf9zhfYzNd82YaG/Plm9erqNhg1DIaG/BWuLVv880s9BC6eN1nbSR6XofaAzXaOakErref/VGAb/lLvv5vZK4G/B57tnNtlZh8DXgtsdc4Vovd8Axh1zr3ZzNLAD4AfOec+GL2eAG4Hvu2c+4iZ9QJ3AZ9yzl05U3nU87941PM/uyM+RvFg1dFR31PYSHHgv2HDrBPS5qRY9JPcOjvnfIJQz//slmPPf5T8YR/wFufcNTXPfyJ67qjp3tvInv+5qp92VXs/ztcQhr59u38/7N8bsH9PyPD+kHweCnnntyIU845CHopFR6EAhYmA0nhAcSKgVAgoFv1/lVLZKFcSlAO/lYIE5TBJKUhSDlOU3crqF9y0vsJLzi1y/tklztlabEiVE4Zw74Npbrw5y423ZHnwET/mNUuRYjQyeG16H2cOPMJZRz3KGRsf57kbD5Ds7sR1dRF29eA6u3Hd3YSd3bjObh4ee5zjjz7FZ5FLHfo7ODhq3HVfmp/ek+GOezPc+2CaYskHCUdvqBy6UFmlPHnZKVEu+TlpcavThUS51NjDag7Qz+O9z6Y/MRrNu4vm99UOlT3sPlgY+IxxUx2bbAfh4JDfBvxtMDBEpX+IU7/6x4wVM5ywak+UjKK6WVTWWnFZSSQgnSHEkVxQI6BmLlntzzLT4/oyLEg8/HeW20MaEMbWZ+7nEw/+p/l/Wzv2/Dvn7jKzC4GvmFk8yevlNWM8O/CTdGvD6t8FLjezO6L9bwT+vOYzw2ji2BfM7LboM66cLfAXWfbMfI9MIjGZLaMhGh34g7+0PDTk09w1uqEiy81Ckj80TZy1cTarV/uOW3+a8kMhpsvRMO1953ChwwU+wHOhf8HPn4/vVwiDMsWCo1SGYiFqWBShWACfnMxRCSAoO4IoO3FQcT4fQdkRujizsiOoOMJShZ37d7C2ayNhOSCsBD4DcxASVkJ/GzrCwOEq0W3oCMOQsOwIEwlcIkVoSUJL4RJJwkR0awkcNhmzhTVxXF+34/TTQp57YtDwpWwSCfi155b5teeWef87x3hyd4Lrt2V5+D9SnLglz9mnlzluc4DZscTJA6cOlatKu8ZwXVPXX309jhefU+LF5/jguFiCnz2Y5ta7Mtz/cM0P58DPucviXPbQpx1YuQjj41h+gg0Te7lg4HoyW17AxHTz1uDwXu5oC3v7fWC/ajXh6jWEq44iXLV6xrVgPrTJceW1ScKk74yo7392jsnkIT6pRk2joFwmcAGhTTHXpfZzpug4dYf9LLVBdzUQd7VJQQyfbvywAs6g7nWrfW7ytZoGVf17ovsT6cVdCW1FBf8Azrl/Af5lmtfeB7yv7rkR4M2zfOaTwKsbVUaRZcOsmgKiEQ2ASsVHEY0M/GN9fb57tFCYNrOFtIV5JX9oRJKGsbGxBb1v2Un57bD8DnOwbmyM7u6x2Xecr6mCsZpgKyxWeHhvEtzijRqJk5Gd/kLH2eeFYEa5Ag/sBAwSFneXTxGA1phPEoIwhNwaeOl/gle81s08UqC+R98Mkr7VWa5s5lZ38RTvn0NvdxzATl62OgjDB2A4ev2Q7HrephPhL/4Sspn6qJ9DW6yxOGtfwq/5MjY+RvdCz0PT/khTlGU+5jxKYx7DOYxFrVNWXPAvIg1W3wDo6lrY2MY48F+/vvGBP1SvVDz2mO92VCaUtuSc229mB4D6cU5rgUen2P9K4Erww34WMnxHkxBn17RjNDxM+NRuDoS97B1Okky4hlU/YQjjeSOdhjWDFbrCUZ+etbvbpyHOhxzYF3BwOCDhQjqSZRKVUnUmeO1qV2Y8ePAXnNS/pSbgTVTTVRNdNC34+4P9IX29buorGkHgP79S8e9NpXyZurr8VdKaIUXDwz7ZzpwXp5uJc9UFysplX99H6UzjhTSLZSPTkWDDmuDQnz+V8p02uVy1jOn0Yeca/V9rDAX/IjK7uAGQSFQz68ynAVDb47+YvfLptG8AxMtoSruab/IHWakGBkhUKgzu30/P0T3s3Z/g4KhP65lZ4FAg53wQ7hysGQrp7QpITIz5jo243jEj25lkTWeSwbW+32R4GFzGx7fJJNXMRHF2ovEdPkNTHLxHt5ViQKHsGy6r+wJ6e5x/fzkBQdRAiD/HOV8P9vRU02bOMOYpm23girtm1XUGaltY8cr1QUBlf5H+7gL0p/2Xp/06N+qsWVoK/kVkbsx8FgaYXwMgntC12IF/rKfH51bM5zX8p31dCmwzsxNrkj+sAz7X5HJJMwwNQRCQHhlh3Zpu+nth994Eo+NGZ4ebV9xZKEK5bAz0hwz2O1JJB6NjPrd/b/2SQF6c1GZgwCdQ27vXx8IdHQnS6UQ1OE8mqnUsTE7QzqRD1g2GdOVCEi6ozgqfXEyz4oPtuGd/HhMcGj0XYkqJxGQmNteXo2MTsAgXf2XuFPyLyNzFDQAzn3pktgZAHPivX7+0gfiqVT77j4b/tKU5JH+QdhIPCQwCmJgg19nJMzaGjI4ZT+9N4Bx05mYeN1+pwETB6Mo5NqwN/CK+zvlofvVqH9nPIpn0U5N6evz0pL17/QJb2ewhiwJPjpTp7PRZOnO5BFY/8bRB0unJNPxLkmEwvjAhzaXgX0Tmp/YKwEwNgHLZnzE3bDj0zLYUUilYu9YnUV/oHAVZ1mZK/iBtKJHwdcITT0A+j+Vy9PY4ujoDhg8Y+4YTpFKOXF0fRRjCRN5IpWDT+vDQRsLYmK8La3rr51qUnh4/QiifrzYCwtBnVu7t9W2JpeovyeX8RYTFrqbD0Dc0Uoo8m26JV0wQkRVjcND3sI+NHZ6hIb4cvX790gf+sXiVyHy+Od8vIq0lmfSdEWaTC2ElkzC0ynHMpoCOLIyM2eT81Im8MZE3Vq8KOWZTQFdnXeDf2+vH8yywc8Gs2rt/zDE+KN682S8It5QXSjs7fXW92MrlxV80XuZGwb+ILFy8CuP4eLUBUCr5Lp5m9PjXGxz0Z/dyubnlEJHWkEr5FW7jMfORbBY2rAvZtD4kCI3RMaOnO+TYZwQM9LtD04SOj/sods2ahl1V7OjwVVUzFinv6Jg9fX0jxEOZpPl08UVEjszAgD8B7t1bvZ67fn1zzmL1Egl/gn7iCV82Df8RkXTaNwB27PB1RM04lK5OfxWgUpmmCosTCaxbt3gLByyxdHppgn/nWuO0IOr5F5FG6O+vpgJtlcA/1tHhhyeNj8++r4i0h2zWNwDy+cNyXdYkpzlUPu+759evXzGBP1QzbYaLu6gsZq11amhnK+evV0Saq7/fn0xbsXbv7/eNgGKx2SURkVaRy/nhiePjs0e+hYKPXjduXJEZxDo7F3d0ZBAonX8rUfAvIo3TqsNq4lR/lcrid2+JyPLR3e2H8EyVuCAWz2PauHHFpqrp6lrcSb/l8uIs7C4Lo+BfRNpDJuPzcU9MNLskItJK+vp858BUDYBy2Qf/rXpVs0EymcXtFwkCTfZtJQr+RaR9xEveR2n+REQAn7ggXoI3Vqn4oYKbNjU/c9kiS6cX98Ktcyv+EC4rCv5FpH2Y+YnJYQgsQXoLEVkezPyVwd5e3wCIVgNm48a2GK+SSvltsXr/tbJva1HwLyLtJZ32l/g19l9Eapn51MC5nF9qd8OGthqrEq/022hB4KtdTfZtHStz5oqIyEy6u/2ZaGzMDwNq1YnKIrK04nTFxWJbBf7gf9zR0cZ/rlb2bT3q+ReR9pRKVfP/L0Z3l4gsT8lk2wX+sHhj8iuVthg5tawo+BeR9jUw4CfzJRL+KoCGAolIm1rMlX5XcKKkZUnBv4i0t2zWj+0dGvIT/JQJSETaUDLpGwB1Cx43hIL/1qLgX0TEzK8CfPTR/uwXZ/sQEWkjXV2NXem3UvFVakLRZkvRr0NEJJbJ+Ml+a9b4CX+6CiAibSSXa+xKv5rs25oU/IuI1DLzi4EdfTR0dOgqgIi0jUymseP+tbJva1LwLyIylVQK1q71W6kE+XyzSyQisqgavdKvFvdqTcrzLyIyk+5ufy18/344eNBfDUip6hSRlad20m+jFuVS8N961PMvIjKbZBJWr/ZZgYLArw2gtKAisgJ1djZm6ZNKxSdT02Tf1qNfiYjIXOVysHGjXx+gVPLzAYrFZpdKRKRhOjsbM81Jk31bl65di4jMRzIJg4O+AVAo+KFA4+P+tY6Oaa+VOwcTeSN0kEo6shn1iIlI62lUTv4g0Mq+rUrBv4jIQpj5M1ucG29iAoaH/cTgVMpf7zbDOcgXjDCEwf6QXA7GxmFkNEHoIJmAbMY1bHytiMiRaORKvxrv35oU/Iu5NyxDAAAWlklEQVSIHKlUCnp7fYrQYtEPBxoZIT/hqKSyDAwlGex3k/OEuzrhqKGAQgHGJ4yRsQT5gsPMyGac5hOLSNMkEr7volI58twGWtm3NekUIyLSKGbQ0UHedVBJDdC3doJBhskE41BMQCI3OdaneuHAsWowoFTyw4IOjCbIj/nXMxlHRj1nIrLEurpgZGThwX+5PHnxU1qQgn8RkQYpFv3W0wNDG5Nksz1Aj58cPDoKBw746+l1q96Y+RNlNusY6A8ol31D4OCIMTpmmEE67ecJiIgstji78UJVKtDX17jySGMp+BdZgRq5QqPMrlTyQX8uB894xhST3DIZWLXKnw0ffdT/gmboEkunoS/t6Ot1VCpQKBoHDhojo0Ym4+jILu7PIyLt7UgX+9Jk39am4F+kRQWBDyrD8PBgfpbYkUTCv29szO+bSPjLt+m0Msw0UqXi5/dms7Bp0xyWsU+l/GWBQsFnBpqDVAq6U47uLkehAHv3JxgdNzK6EiAii+RIJ+pqZd/WpuBfpIWUy74HOa44e3t9p3Ei4YP92m2q5+LnAZ54AjZvrn5mPu9jzkql+n3xao7NnGAahn5LJJZPwyQIqkl9Nmzw42Pn3EvW3w+PPz7n4L9WRwdsXB+Sz8OefQlGxoxc1ukkKyINFU/6LZfnH8THHU6ql1qXgn+RJisWfQXrnK9sV6/2PciZzJFPlkqn/dbZ6dPSgw9cy2W/TUz4IHZsrPqe6RoVMP1ztZyrBvS121RDkcx8AySZ9Fc5ahsm8WupVHMbJzHnqo2ndBrWrvWd+PP+HcVrAcQtngXI5WDThpCJvLFnnzEyZnR2KEuQiDROV5dfxmS+QXyl4qs5TfZtXTpViCyx2iDSzAfmq1b5gG4pekriYLujwwev4OPQSsU3CAoF30CYKoh37vDXphIPMcpkqg2QZNLHuvFtvNWeIOJyxGXJ56tXLGqHOtU2Chb7BBM3zsz88errO8ITWyLhe/8PHJjDOKHpmUFXp6Mz5xgbN/bsS1AoQq5DawaIyJFb6KTfcrna2SStScG/tJW493mpeySCwAeRQeBjv54ev82wIOySSiR8oJ7JLGw5dueqx/ZIhu7UlgOq2SKcO7RREA9jyuf9MY2vRMQNjSP9/VYq1QZHV5e/GpPLNfB31dMD+/Y15KPMoKfb0dUZTDYCggJ05tyyGUYlIq1noYt9heGCRjXKElLwLytSEPgALggO7Z1OJA4NVGNxb3gqtbDgNe4Rj78vCKrPm/nP7e/3geRKvBxaOwxosT4/DuzrM0hUKtVsO+PjfihTGFaHDc11TkMYVq96ZDKwZo3vmF+UqzHZrP+SRqyiE0kkoLfH0d0VMDJq7N2fIAwhGa6wPzYRWRJxR8psCSamosW9WpuCf1lycRabeNhLrHYISP2E1tr7sXiISBx01/bqp9M+yO7o8JVQPEQk7rmtbRyUy748hYK/jYd4xBVe7VCVeKhL/H215U2l4lzt/jtrGxSt0Lu/UsW/23heg3PV32k+7xsE8ZyGuEEQn5hqh2DFDbSeHv87XHSDg7B7N3R3N/RjEwno73P0dAccHDH2PLXyGpsisviiNQsn5znNRW2Hl7Qu/XpWiDggjXu5a3u3a2+nu4QXPx8Hqo0YOhGLJ5fGveHptI934gwpcbkqlWpwXXs/DtRrx5iHoe/pzWb9Z2Wz1SBwLuPA48B8KrXfGQ/XKZX8Fjcm4uA+Pl4K7luHXxnXb93dfshOGFZ/h+PjvlEQhv4qQUPG8S/EQsZXzUMyCYMDjt5MhTCjql5E5q+rC4aH5x78l8v+6qw6HFqbzggtLJ5UGQf1tZMua/9j1WZFidNC1m9w6ATL+uwtUA1047HUtd811wmWca9ruVwdepHN+h7ZXK7aC38kx8Q5ePJJeOYzF/45M4mPU1zZNbhjVpogkaheCert9c899hgce2wTG26plD+zxq3YRfwadAleRBago6PacTcXWtl3eVDw34LMfO9kfOkslfKBc21wX585pVGt7NpANx4SE09+rJ9gCf77zaopGuPsNQMD1eEvjZx0uNhjy6W9NP2KTX+/X5BhScYZiYjMz3xHAQSBqrPlQMF/C8pkYMuW5i94VDucpbZRUJt1pVDwPfxxXvpG5KYXaRtxCqEjyPkvIrJYFjLpV4t7tT4F/y2qleOA+GpEbZ54EVmARMJfIx8ZOTyNkYhIk8WTfsvl2TP4OFedMyitrYVDTBGRNtDTc+jSxiIiLaSra25VVDzZV1qfgn8RkWbKZn1XmRoAItKCOjqmX829Vrl8RIuWyxJS8C8i0kxmsGqVz/ojItJi5rrSr3Na2Xe5UPAvItJsnZ1z61oTEVli8Xo2c2kAaLz/8qDgX0Sk2dLpas5/EZEWYubH8pfL0+8TJyzTyr7Lg4J/EZFWMDDglyAWEWkxnZ0zB/8a77+8KPgXEWkFuZzvOpvLtfX5KJU0EFdEjkg2O3PVVKn4i5eyPCj4FxFpBXHO/0KhcZ+Zz/vuuP7+xn1mk5hZ1szeaWY/NLObzOwuM7vKzIbq9kub2d9Er98Z7aOwROQIzJbjPwxn30dax4oK/s3sg2Z2t5n9xMz+n5kdNYf3PCs6kdwcnSwuqnv9PDP7lZltq9tOWLyfRETaUm9v41J+Vir+jLx27UpZdvs44FLg7c65FwPnAFuAb9Tt9wngFOAM4DSgH7hqCcspsuKkUr5/Yrq8BGaa7LucrJjg38zeDVwEvNA5dybwS+CfZ3lPN3ADcK1z7gXAa4DPmNnL63a9xjl3Xt32yCL8GCLSzuKc/0FwZJ/jHExMwPr1K+mMnAe+GNe9zrkCcAXwAjPbBGBmA8C7gL9xzlWccw74FPAGM9vSpHKLrAjTTfoNQ9840GTf5WNFBP9mlgD+DLjCOTcWPf0p4Gwze8kMb/1dIAd8CcA59wTwf4APLV5pRUSmYeYn/h7p0J/xcRgaWlGDcJ1zjzrn/nvd0/noNhvdvghIA3fW7HMPEAAXLG4JRVa27u6pL0yWSlrZd7lZEcE/8DzgKGoqfOfcbuAx4KUzvO8C4G7nXO2FrDvwjQbNWxeRpdfdfWQ5//N5fwVhcLBxZWpdZ+Hr8F9Ej48FHLAr3sE5Vwb2Ra+JyAJlMlNXTZWKMv0sNyvlIk1cqT9V9/wuZq7wjwXunuI9CeAY4KHoubPM7HqgCxgGPuucu/5ICiwiMqV02nejlUrzn0EXBP7svH69H6C7gkVzui7GD9eMdQHlaLhPrSIwZXhiZm8H3g6wZs0atm3bNu+yjI2NLeh97UTHaHbL4RgVi4dXLWEIO3cuzdSi5XCMloOVEvzH17brV8iZtsKved9U76HmfQeBHcD7nHMjZvZi4DtmdpFz7p/qP1AnkqWhYzQ7HaOZtfTxCUM/uHa+AXwQ+AbDzp2LU65FYGYfww/bnMn5zrltNe/JAP8X+DPn3E9q9hsH0mZmdQ2ALDAx1Qc7564ErgTYunWrO++88+b9M2zbto2FvK+d6BjNbjkco+3bfRVTWzWNjsKWLX4V4MW2HI7RctDSwf9cTwr4Ch+q4z6peTxlhR8Zn+Y9xO9zzt1DFMxHj28ys3+KynVY8K8TydLQMZqdjtHMWvr4BIE/y3Z2zr07bXzcp/RcvXpxy9Z4nwS+MMs+e+I7ZpYEvgZ82zn3v+v22w4YsIZo6I+ZpYBVwKONKrBIu8rl/JSkbBQpBYG/WLkUgb80TksH/8z9pHBidH8t8Kua19YCN83w3u3RPrXWAmHd59R7FHjdLOUSEVmYZBJ6enxAP5eZdIWCPwOvWrX4ZWsw59wIMDKXfc3MgKuBB51zn4qeuwDY7pzbDvwQKAFbgX+N3nYKkARubHDRRdpOZ6fv6Y+D/3J5ReUVaBstPSjUOTfinHtilq0I3Afsxlf4wOR40KOZucL/HvBrUbag2FbgVufcRPQ57zGzzXXv24CfTCwisjj6+uaW8z8I/H5tMM4f+CywDvgXM9tqZluB38bX9TjnhoHPAe81s1TUWHgf8DXnnHr+RY5Q/TSkSkWZfpajFXGmiLL1fBx4Z81Kju8DbqWm5z9aGfKamrd+GSgAb45e3wC8HvhYzT4nA38YnUQwsxOB/4rPLy0isjg6OmbP+e+cvzqwbt2KX17TzM4B3onP4HZHzfa2ul3/FN8h9NPo9dEp9hGRBaivZpxb8VXPitTqw37mzDl3mZn1ALeYWRF4Enhd3aSvTnxe//g9Y2b2MuDzZvZ7+AnA763L5PMF4L8BPzazIHr/+4EvLu5PJCJtLc75v2/f9Hn0xsf9Pj09S1u2JnDO/Rg/nn+2/UrAexe/RCLtJ5n0i3kFgb+vlX2XpxUT/AM45/4K+KsZXj9tiucexk8anu49P8FfVhYRWVpdXfD001O/Viz6LrflN8FXRJaxzk6/gDhosu9ytSKG/YiIrEiZTDXnf60g8M+tW9cO4/xFpIV0dlarIC3utTzprCEi0soGBg4P/uNx/tn6TMUiIosrXuk3CBT8L1cK/kVEWll8do2nL8Xj/Ht7m1cmEWlb6XR1+RFN9l2eFPyLiLSyZNIH+oWCH+efTMLQULNLJSJtKpn0DYAw1GTf5UrBv4hIq+vr80N/SiXYsEEz7ESkqTo7fTZiTTlanlZUth8RkRWpo8Nvg4Ma5y8iTdfZqT6I5UzBv4hIqzODTZt8gm0RkSbr6tJk3+VMZxIRkeVAgb+ItAgN91ne9OsTEREREWkTCv5FRERERNqEgn8RERERkTah4F9EREREpE0o+BcRERERaRMK/kVERERE2oSCfxERERGRNqHgX0RERESkTSj4FxERERFpEwr+RURERETahIJ/EREREZE2Yc65ZpdhxTKzPcCOBbx1CNjb4OKsNDpGs9MxmpmOz+ye4Zxb3exCLBXV2YtKx2h2Okaz0zGa2ZzqbAX/LcjM7nTObW12OVqZjtHsdIxmpuMjjaK/pdnpGM1Ox2h2OkaNoWE/IiIiIiJtQsG/iIiIiEibUPDfmq5sdgGWAR2j2ekYzUzHRxpFf0uz0zGanY7R7HSMGkBj/kVERERE2oR6/kVERERE2oSC/xZiZq82szvM7Edm9mMz04z2Gmb2u2b2sJltq9v6ml22ZjGzjJldamYVMztmitcvNrO7zOwWM/uemT1z6UvZXDMdIzO7xMzurft7+m5zSirLkert6anOnprq7Zmpzl58qWYXQDwzOxX4B+B059xDZvYq4HozO8k5t6vJxWsllzrnrml2IVpBVCl+Dfg5kJzi9dcAHwee55zbZWbvAm6I/qYKS1nWZpntGEXe45zbtkRFkhVE9facqM6uoXp7Zqqzl4Z6/lvHB4DrnXMPATjn/hXYDfxhU0slrawbuAj40jSvfxj4ak0Q8kX8AikXLkHZWsVsx0jkSKjelvlSvT0z1dlLQMF/67gAuLPuuTuAlzahLLIMOOcecM79YqrXzGwAOJWavynnXBm4lzb6m5rpGIk0gOptmRfV2zNTnb00FPy3ADMbBPqAp+pe2gUcu/QlammvMrOborGQXzez05pdoBa1ObrV39Tsfi8aN/pjM/uqmR3f7AJJ61O9PWeqs+dO9fbcqM4+Qgr+W0NXdFuse74IdC5xWVrZbuAXwCudc+cC/wzcZmZnNrdYLUl/U3PzGPAzfA/uucBDwF1mtnnGd4no/9hcqM6eH/1NzU51dgMo+G8N49Fttu75LDCxxGVpWc657zrn/jSe9OScuxa4DfjT5pasJelvag6cc1c75/6Xc67i/KInlwL7gT9uctGk9en/2CxUZ8+b/qZmoTq7MRT8twDn3H7gALC27qW1wKNLX6Jl5VFgS7ML0YJ+Gd3qb2oeopPJL9HflMxC9faCqc6enurteVKdvTAK/lvHjUB9fuit0fMCmNlfm1n9pc8N+MuAUsM5N4yfNDb5N2VmaeD56G9qkpl9Zoqn9Tclc6V6ewaqs+dH9fbsVGc3hoL/1nEp8HIzOxHAzF4JrAM+19RStZazgLfGD8zsRcCLgSuaVqLW9jHgIjNbEz1+G7APuLZ5RWo5rzazV8cPzOxNwDHAVU0rkSwnqrdnpjp7/lRvz0x1dgOYv2IirSD6g/4wkMcvbvEe59wdzS1V6zCzXwf+COjBN1xTwP90zn29qQVrEjPLADcA/fieoZ8CTzrnfrNmn4uBd+LHixaAd7RTGrXZjpGZvRG4GP/3lAEqwEeccz9oTolluVG9PT3V2YdTvT0z1dlLQ8G/iIiIiEib0LAfEREREZE2oeBfRERERKRNKPgXEREREWkTCv5FRERERNqEgn8RERERkTah4F9EREREpE0o+BdpE2b2HTPbZWbK7ysi0uJUZ8tiUfAv0iBmdpSZ3Wtm+83MRffrtzEzO68Z5XPOvRL4QjO+W0Sk1ajOlnaVanYBRFYK59zTwMlmdg3wZufcyfX7mNm2pS6XiIgcTnW2tCsF/yJL60PAw80uhIiIzInqbFlxNOxHZAmY2Xlmts05d4tzbm/tWE4ze4mZ3WJmvzCzR83sd6Z4/1vN7AEze8TMfmlmnzazrrp9+s3s82a2w8zui7a/NbPNU3zeaWZ2vZn9ysx+YmYn1b1+lpn90MzuMbOfmdm/mdnrGn9kRERaj+psWckU/Is0Qd1YzncDL3XObQE+BnzZzF4a72tm7wc+A7zNOXcCcCrwQuBfzSwR7ZMBbgROAk5yzj0P+C3gQuA1UxThTcArgC1AEbiq5vt6gO8AVznnTgFOBu4D/rgxP72IyPKiOltWEgX/IoukdtIY8L9n2PVS51wewDn3JeAh4CPRZ/RF97/mnLst2mc/cAlwHvDa6DMuwp9gPuicG4v2+w/gSqAyxXd+yTkXOucqwLeAs6KTEcAJQD+wPfocB/wt8PX5HgMRkeVCdba0CwX/IovEOXdyvAEXz7Drg3WP7wJOj3qIzgI6gTvq9rk9un1p3e0h+znnPuSc++wU3/nzmvv7o9s10e0jwG7gm2b2YTM73jn31DSfIyKyIqjOlnah4F9kCTjntjnnzpvmtZG6p4aBNLAaGKp5rlZc+Q/V3E4454pzLM9EzcMwuk1Gr40CZwD/DLwPeMTMbjezc+by2SIiy53qbFnJFPyLNJmZ9dY9NQiUgT3A3prn6veh5vW9QKeZZRtRJufcDufc7wNr8Zen1wDfNbP6coiItBXV2bLcKfgXWUJmdrmZvb7u6ZPqHp8K3O6cC4HbgAngtLp94sffq7s9te77/oeZ/ck8y/hcM/sggHMu75z7e+C9QA9wzHw+S0RkOVOdLSuRgn+RpdUDdNQ99y4zywGY2VuAE4G/AHDOHYzuv97Mzor2GcBPHtsGfDP6jK/ix53+VZxOzsyeA7wHuGGeZVwF/ImZHRd9jgHnALuAf5/nZ4mILGeqs2XF0SJfIg1iZmuBnxCN6TSzX02x2xD+BFDrM/jLsxsBw680GfcK4Zz7pJntB66KsjtkgOuAP4t6mnDOlczsAuBS4CEzGwbGgAudc/dH5bkWeEl0/178peHfAN4ZfdV3zOzPo/JdA3zDzAL8WNZfAi+LM1yIiCx3qrOlXZnPCCUiS83MLgE+4pyzZpdFRERmpjpbVgoN+xERERERaRMK/kVERERE2oSCf5EmMLPvAO+I7t9rZi9vcpFERGQaqrNlJdGYfxERERGRNqGefxERERGRNqHgX0RERESkTSj4FxERERFpEwr+RURERETahIJ/EREREZE2oeBfRERERKRN/H+YZOn6BuOe8gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvMAAAMbCAYAAADAZRqMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXecXFX1wL9nZrZveoWEkAChJEAIhIAIGBClCKGo9BKQXgSpKipRAaX+kB8IAmoQQUDBnygdNViQGlqKICQRUneTbLbvzs7M+f1x7+zOvp3ZndmSzWTPN5+XN3vfufee1+47775zzxVVxTAMwzAMwzCM/CPU3woYhmEYhmEYhtE9zJg3DMMwDMMwjDzFjHnDMAzDMAzDyFPMmDcMwzAMwzCMPMWMecMwDMMwDMPIU8yYNwzDMAzDMIw8xYx5w+gGIvKmiKiI7NPfuhj9i4jcIyIVIrJLN/MXisjbfinsbf0Mh4hcJiKXbeI6p/hr455eKu8ZEVkuIqN6ozwDRORe35ariCzvb30MozuYMW8YOSIiuwJ7+T9P709djM2CicBwYFg38xcA4/1S0Es6GR25zC+bkqG4a2NiL5U3CRgNlPVSeQMeVT1fVQX4b3/rYhjdRWzSKMPIDRG5FTgT95DeAGylqtH+1croL0SkABimqhU9KGMwgKrW9JpiRjuSva6qOnET1zsaqFLVll4oqwQoUdUNPdfMSKW/rg/D6A2sZ94wckBEwsApwFU4Q344cGS/KmX0K6ra0hND3pdRY4b8lomqVvSGIe/LajRD3jCMIGbMG0ZuHAYMAh4DfuvTzkgVEJG5KT6YyWWW3zYxkD4/JV9ERC4VkXdEpFFENorIiyJySKD8bwbKKBeRO0VkpYjEfdocL3uQiPxCRP4tIg0pZR6caQdF5CgRec3rsEFEfi8iO3pf3WSd8wJ5PiMif/LyTSKySES+LSJF2RzUYNkicoSIvCIidSJSIyJ/EJGdAnn+Hcgzw+9bTTI9IH+6iLzqy6wVkX+KyAkZ9AmLyNe9H3uDiKwTkbdE5A4R2S3DuZwTKGO4iNwkIh/6Mj7xPs9niUipl5kTKGNiGl2misijIrJWRJpFZKmI3CYiw7s4HvuIyN9S9P+Z79nNGhEZISK3i8gyX/dar8uUFJngPrQ7FoH05bmeExE5MVDGZBH5vtcp5tPmdrIPc/21sC2wbaCsWSKybyDtIH/ul4hINPV6F5GdROTHIrJA3L3U4H+fLyISqHdeuv0WkbHBY+WPw2J/jJdLwLff69mhPfHbnktJny/uXn3GH89qEXlMREZmODY53+udHOfhgWtljYg8LCKTA3I53+spebO6F1LkdxGR33j5JhH5WFw79TXJcC/48/OoiFSJSL2IPCsi26WRGy/unlrqj99SEXlCRE4QkUg2x8wweg1VtcUWW7JccAb8Q/73/oACUWBkQG4Hv+3VDOX8Ezgv5e8Q8AcgDlwClANbAz8HEsDpacqY7+v4A+6FYiiwL9AIzPEyC4G3gb2BYpxB87++nqPSlHmKr+/PwGSgCDgCWIT7ErE8TZ4TgRjwDM43uAQ4CWgAXgBCWR7biX5//gO8Auzm658FrADWATtkyPMK8DfcWIZy4CbXvLXK3eXlbsD5to8Arvdp3wmUmTwXUeAcX94o4GK/n+8E5Of4cuakpAnwhtd7f39MxgP3etlZgTLm+fSJgfSDgHrgZWBnfzwO9uV+BIzJcDz+CTwL7OKviyt8+l05XOtbAR/7ug72de/ij3MdcGCK7GCv50ognKash4EfBdKyPieBY/Ss359R/pisBeZmsT/LSXP9pmyf68t/AbgZGOfP2SJgXorOVcDRKdfFuUAzcEsu9aZcNy8CP8Hd71sBj/r0r3Si46w02xR4H3gJmIHrdDgFaAH+1Bv3eifHbizuvq0EDvVl7Qq85o/Xbr1wr+d6L3zOX6cv467bYmBP3L2hwDFpztMq4Dlf1yC/LxuB9wOyZTgf+/eA6b7sHYDfk+Y+tsWWvl76XQFbbMmXBWdwNAFf9H8LsNQ33l9PI/83v21KIH1H/1AakpJ2iZf9VUA2DCwDaoDhgW3zSW+M3gB8zv/+HTAjjW4L0jygBvsHVw3OBzx12zm+ruWB9LH+gVkDDA1s+4HPc06Wxzf5gI+neZAf6bc9kyFPDNg2JX088Kj/fZSX+VuGcxQDdk5zLm5II38X2Rnzu/u0WwOyyYF2swLp84JGgDcQVgG1wIiA/KFe/ncZjkeUjsbNEpzvdrbXe9Iw+WIgfYTXaQVQlJL+Ky9/REB+CO7FbseUtJzOSeAYPRBIv4w0hm+acpcHr9/A9rm+/JcC6acAF/jf3wTOT5P3f3BG85hs6025bt4NpI/x6f/XiY6z0mxTv+wZSH8GZ7QPT0nL+V7v4tg+4fOcFUjfwdf9zwzXaVb3eq73gpdfSfp2cyt/rtIZ8wocF0hPvnTukZI226ddHJAtxb3YTUxNt8WWvl7MzcYwsuckXI/Vn8F3+7oeRwi42nh+6ddnBdLPAn6vqtUpaRf49QOpgqoax30NGAR8OYNejwfyXKuqL/vfX1HVN9PkWQjsKn7gpedonOH1gqpWBeR/k6Hu03G9VL9T1Y2BbY/69ZwMeTPxlqp+FEh7FvdgPkzcgMIgr6tqazQKVV2hqif6P9Me2xQdw8BpKWlJ+XT7/HPgyS70B/egBzhEREak6KXAfrgey644Gmd4vKCq6wPbXgDWA8eJyNg0eV9T1bWBtMXAUMkirKGIbOXrX4/rOW7F6/Iiruf66JRNma73k4AFqvphSlqu5ySV4PV+h6r+LoNsdwiW/7Cq3uN//1hV702T530gAnQnVO1TgfrW4tqZyenFO2WFqi4IpC3BvURun5LWnXs9Lf76OxZnxP46dZu/j98E9gu623iyvddzvRdm4750vKCBMQaquhr3BWh5Gn0SwB8DaR/4dar+yfv7SBFpjSykqg24zpoVaco2jD7DjHnDyJ45uN7eeEpa8uG1p4hMDcj/FtcDf2rSh1LcANrTaDN8EJFBuM/AAO+mqfdTv56RQa9PM6QjIqNF5BZxPux1SV9V2gyl1HCK0/36AwKoah3OwAgy06/f6USvPUUkl7bmkzT1x3EuH4Lr9c5UVzqy0XEGgIiU03Yu0h2Ht1X1B53UlWQhzt1hGrBMRH4uIoeLSIGqrlTVxizK2Nuv/51GDwU+xB2PvYLbcb2YQer8ujSLuvfyZX/g6wqS1GnvlLT5OAPpqICP9pmkXO+erM9JJ9v7is7upyIRuVhE3hCR9Sn308+9SHfCk2Y6V9mcp2zLIlBed+71TMzAXSuLNX1Ur87OZ7b3eq73QlK+w/75PN9X1XTX3jrtOFg53fF7EXePH4q7v+8Ukc+JSEhV/6uqsXT1GkZfYca8YWSBuAF/e9Ox5+kDnG80BHrn/UPxt7jP5smIN4fiPvH+JUU0tXd8Y2CgmwJ3+m1j0umWyTD0PbALgIuAG4EJqirqYio/mBRLo0d9uvJwn7iDDPHrn6TROxmdpTiwj11RlyE9qdeQNNs6M46T8u+m0THZKzomINuS5qGeNd7AOAL4BrAa11v9DPCpiFwh0n6wZBd6ZzofyfShabalOx5Jo7xP6vb7PA8oBE6F1vtmKoHebnI7J0GyeRHqCZnuJ8Hp9r+4F7XdceNBBPfCAtkd22zq014uC3p+r2cieS6nB8+lP5/H+e3pzme293qu1+PQQHq2ZHX8VLUJ94VtLu6LxCW4l9mPRMTmHjE2OWbMG0Z2JA31t9I8rJK9QKf4nvdUfuHXZ6WsHwz0dibdUxTngywZlmNy1PkcnCvEvd5VoKvetqTbT6YJaQalSUvqfk4neksaF5zOKM+QntSrOsP2TCTrntyJfnsEZAvExY/vNupCVt6hqjvhBt7djtu3W4Frc9A70/lIpgfdJHqD7tY9D3cdJ43bs4AnVDVoHOZyTjYXPgN8EXhbVb/lv7Ck+2qRD3TnXs9E8lz+s4s24I40ebO913O9HruS7zGqWquq3wcmAAfgXMbGAw+KyKl9Va9hpMOMecPoAm+gn4ob7NThIYWLNd+I89FsF0ZSVf+Oi7RwuHfDORJn8KTK1OMiSAjuwZBOh4My+Jx2xkS//k+abenCsiV9bXdOU385bj+DJH2/J6bZhrgwd7M6UzINHY6BPwfJwXTpXJE6oysd9xWR3aH1XCz2m9Idh53FhQ8t7qxCERkpIgcm//buOVfgQpsCfCULvV/3612CG7zb0o6445FuTERPedOXvVOGrwhJnV5PTfTjFv4C7C4i++Lum1/QkazPSS/SU8N7ol9nez9tznTnXs/EG7hrZWK6jSJSJiKHpY4dSSHbez3XeyEp32H/fJ453WiXUvNPEJEZ4L5Iqeo/VPUc2jptsrm/DaPXMGPeMLrmi7jP0r9Kt9EPIEu6EaT7xDoPNzjud8ArqrosjcxP/XpOcIN/aPwFNwAsF5L+qO2MIt/jPLOjOE/herS+ICJB39+TMtTxK9yn8lOCsZX9Q/lx0h+TzthLRHYIpB2B6y18RlUrcyyvs2M7Dvd5PLUX+B6/PjEoD3wbOMN/Zu+MXYFH03ypWeTX2biKPIWLyPGFNIbQF3BRZZ7UHk5YlQ4/CPP3vo4vpm7zunzB6xYcLAht/vG/xLk5/C2NTK7npDeowrl8Jeu5TUTu7EQ+SPJ+2jXNC87+PVVuE9Odez0t/vp7AhgngTkxPOfj5uVoTrMt23s913shVT44H8MOuBfMXFz/ghwM3J0mPZf72zB6DTPmDaNrzgAeTuMqkEoywsWxgQgx4AzeBK6XKDgQMDX/k8BVInKluAlJBonIkT59nqqmM4o6Yx7ugf01cZOkDBGRCV6HbYPCfv8uxH36/q2I7OAH/B2B62ENRkdJPsjPxH1efkpEpolIqfeVfhw3IPC6HPV+A7hPRHYVkUIR+RzOwF6HC0OYE6r6DHAHcLK4SZy28zp+Dhc542XaR/D4Kc4YuEpEzhE3KdcoEfk2cHwOOmwF3C8i2/vjuB0uzB24uOJd6d0MnIz7YvOk/ypQKG7Cr5/jBglenKUu3eEiX8fPReRgX/fOtEXzOdnrGORJ3HiJnXHXbYce8W6ck97gTWC0iOzu74NkdKpseQXX4zsFuFNEthI3UdIVpH/x22zpzr3eBRfjBqE+JCLHicgwf89cjAuVe6kfQxQkq3s913shRT7k5XcRkWL/tegJ3PiVP+W4j0FmisiPfFtd5Nu8m3FjotIZ+obRd+hmEB/TFls2x4W2WMitSwa5eUE5/CQzKTLP4wyc0k7qC+MesG/h4nJX4YyHc0iZeIm2+NTBZWKaMifjvgisxvWM/Rv4LvBISr75gTxH4NwgmnCTwDyEG7y2Avgwg+57A/+HCxHXiHNFuBMY143jPQ/35eDPuIF4NbhJnHYMyM9Pcwzmd1L+ScA/aIuL/y5wJVCS4Vx8HRdtpdEfh2eBfTu7PpLnAed2MQdnNCz3x3KVL+PzXZzL5QFdpuDCNVbg4scvw/nfZ5p3IHWZ5Zesj1OgzOHAbbj5FKJeh0cJzJ2QJt/PcDHEJ3Qh1+U5yaC/kibWehd1bY0z4Db66/RhXA9wpvM4J00ZQ3Ax5T/G3U8rgftx8efbtRN00i6kq8+nz02zbW6mY9BJPXMy7Ffw2sr5Xu/k+A7FTdb2kT82q3ETMB3S03s913shIP8b3MtJE679+x4p7XCmY97FeRqKe9n9iz9WTbgvN2nn9bDFlr5eRLVDp4lhGEY7vLtIE/B3VT24j+qYiHs4P6iqc/qiDsMwOsfudcPIP8zNxjCMVvxn43PSbDoU5/ff00/ThmFsBti9bhhbDpGuRQzDGEBsBZwrImtwbhsRXNi1u3HuP/dkzmoYRh5h97phbCGYm41hGK2IyN7A2cCBOB/jYpzP9xPAjZp+EFtv1LucjoNyz1TVeX1Rn2EMdOxeN4wtBzPmDcMwDMMwDCNPMZ95wzAMwzAMw8hTzJg3DMMwDMMwjDzFjHnDMAzDMAzDyFPMmDcMwzAMwzCMPMWMecMwDMMwDMPIU8yYNwzDMAzDMIw8xYx5wzAMwzAMw8hTzJg3DMMwDMMwjDzFjHnDMAzDMAzDyFPMmDcMwzAMwzCMPMWMecMwDMMwDMPIU8yYNwzDMAzDMIw8xYx5wzAMwzAMw8hTzJg3DMMwDMMwjDzFjHnDMAzDMAzDyFPMmDcMwzAMwzCMPMWMecMwDMMwDMPIU8yYNwzDMAzDMIw8xYx5wzAMwzAMw8hTzJg3DMMwDMMwjDzFjHnDMAzDMAzDyFPMmDcMwzAMwzCMPMWMecMwDMMwDMPIU8yYNwzDMAzDMIw8xYx5wzAMwzAMw8hTzJg3DMMwDMMwjDzFjHnDMAzDMAzDyFPMmDcMwzAMwzCMPMWMecMwDMMwDMPIU8yYNwzDMAzDMIw8xYx5wzAMwzAMw8hTzJg3DMMwDMMwjDzFjHnDMAzDMAzDyFPMmDcMwzAMwzCMPMWMecMwDMMwDMPIU8yYNwzDMAzDMIw8xYx5wzAMwzAMw8hTzJg3DMMwDMMwjDzFjHnDMAzDMAzDyFPMmDcMwzAMwzCMPMWMecMwDMMwDMPIU8yYNwzDMAzDMIw8xYx5wzAMwzAMw8hTzJg3DMMwDMMwjDzFjHnDMAzDMAzDyFPMmDcMwzAMwzCMPMWMecPwiMjgbuYb1Nu6GIaR3/SgPSkRkUhv62MYxpaLGfPGgEdEQiLyQ+DWbhbxVxE5rpt1jxOR20VkiYisEpEaEfm3iDwkIqeISFmK7AIRqRQRFZFFIlKcprwTRGSNiDSKSJ3/fYCITPS/q33+X2TQ5ydeLi4iG/zvcHf2zTAGIsH2RETOTLmn5mdRxNbAWyIypZv17y0ivxaR5SKyVkQ2isib/t7+goiEvFyP2gQROTmlrVEROT1D/jdS2q01IvKH7uxXDvt/toisF5Hds5T/ntdLRWReX+rWW4jI/CyvpUz57085J3N7T7Nu6XJNLsffP/uS1+ysvtcwT1BVW2wZ0AtwN/AKMKib+acAFcBXcsx3OFAL3AWM82kRYB/gZUCBNwJ5Jvp0Bf63k7LnAXPTpM9Jyf/lTvIvB2b197mxxZZ8WzK1J/6emp9lGScA64DJOdb9PaAeuBgo92klwJd9/QrcEsjTozbBtzUKVAOTMuSd6MyNTXL8rwRiwL6B9Llez4kZ8ikwr7+vnyz3cSGwsIdlJJ8lc7OUn9eX5zCX459yzc7q73OxuSzWM28MaETkCOB84GxVre1OGaq6GPgh8ICIjM6y3mnAk8BDqnqxqq70ZcVU9TXgCGAJUJChiOXAxSJyeDdUXgW0APeJyLhu5DcMIw290Z4AqOpjuBf6eSIiWdZ9HvB94ExVvUtV63xZjar6BPAloIn0bUpP24TlwGDgof7+kqeqtwJDVPXV/tSjj5nuF8MAzM3GMK4DnvEGeU+4z68vzVL+J0AY+G66japaD9zTSf6Tcb1PvxSRUdkq6fkPcC0wnByMBcMwuqS32hOAm4H9gEO6EhSRIV7+bVV9PJ2Mqi4CnslQRE/bhAeBp4HPAt/OMW+v49vPLRZVbVHVlv7Ww9h8MGPeGLCIyHbATODP6baJyB3el32N9xV9RkTS9oaoajPwd+CkLOrdHvgc8C9VXd+J6Dzc58R09f0L1ws3BnigqzrTcCvwIs5Q+EY38huGkUJn7UlA7mARec37s68SkeszDHh9A6jBvbh3xVdwPeN/7ELuUlxHQjp62iacCawBviciM7uRHxG5IMUfekOqf72InC8iUREZmpK23PvsV/uxCY+k8wUXkUU49xuAN3ybvkZEdkijw1dE5B1f5tsiks3LVI/0Tkn/ooj8TUSq/PJPETk6Zfsor3edr2tiQI8dRORPIlIrIitE5AkROdDLJsdQlabR/0IRWez1+Wfqc05ESkVkDc71i5Rjt0ZEirLVPUVutIg8LG4sx0oReUpEtu3qGGeDOC4Skff8/bVGRB4XkR0DcmFxvvpLRGS1iHwiIs+KyNcCcmf7a2GVP57zReSS1P3eXDBj3hjI7O/X/06z7QjgeOB4VR0LbIfzCf2bf2inYwkwSUTGd1HvZ/16UWdCqlqrqu90InIj7lP8bHGf2LNGnePh6UAlcKNkOVjMMIyMdNaeJJkEXAYcqapjgK8D3wR+GhRU1QTwAXBAFnVn26asUNVlGbb1qE1Q1UqfPww8LCmD93Mo4x7cWCJwvtypxuDROBehw1PkJ+L8xw9R1V+q6snA3mnKnUpbgIO9VXWsXz4KiM4EPgPsi+so+S/wRxHZqi/1BhCRk4Hn/DLGL38E/k9EzvL5Kv3zqEOwBhEZCfwN2BaYCmyDG4+V/Gp8q9/nhkDWr+DGVezu84aB55IGq6o2+Dof83+PTVmas9XdyxUBLwGzgP1VdRzu63RSx55yD3ALcLW/v3bCjUN7XUSmpsh9F7gEOFpVtwJ2AVaS0jEmInOA/wHOU9Wtcffuy8CdQKfXQ39gxrwxkEm+ra9Js60C+L6qvg+gqhuBc3CN3oUZylsdKDcTyYZgY/aqdsQ/7E8FNgC3i8hOOeZfg+tNK8I9fDtExzEMI2s6a0+SjAMu8YYvqvo74CngHBHZLY38amCiiGQaO5Okt9qUHrUJqvoiztDcgcxfALriVVz7OzuZIC787zQgijOOk+lb4/b9zW7WFWQk8C1VbVLVJpzhVgwc1pd6i0g5buD0v1T1RlWN+uXHuC80N2XRG3yNL/M7qvqJOv4K/LqLfDFVvc2P19qIM6xH41y8uiRH3c8GdgNuVtWFAKr6LvBQNnV1ocf+wHnAL1T1OV92Ne55XeZ1THI08Jqqfujl6oGrcC/PqTIf+jFsSdem64AFuPElmxVmzBsDmRF+3cG/UlUfV9WfBdLqcAPFpgblA+WM7KJeDay7jaquwDWQpbiHb1cP/WD+p3EP3V2Bm3qqj2EMYDK2JyksVdX/BtKSfuxHpZGvx/WUDuui7t5sU3raJlyLM1K/JiLHdqP+BM7//kBxYwHAGdMvAPOBw1LaudnAn/xXhd7gTVWNpvy9wq+37ipjD/U+FBjqZYO8gXum7NWFCkf69XOB9L92ke+VwN9Z77MnF927q2M2nODXf0pN9C+obwCfk7YAFRXAESJyjoiUeLkqVd05JWsFMF1EvpnqIqWqeyUDVmxOmDFvDGQK/ToW3CAiRSJymTjf1lVJH0Fcz1pJhvKS5RRm2J4k2XPX1QM6K1T198C9uAbz+90o4hrgXeASETm0N3QyjAFIxvYkhbVp0pLtwaQ02/qlTaEHbYIfmHkSUAfc35WLSgb+SHvXlKNxXzCeAobg3DTAGcVPdaP8TKwL/J007LPtJOmu3knf/csDPulrcMeynq5dOyYBG5OuLyl09qUIer7PueievMaDOnWlYy56rE6zbVVA5lJgKe4rRIX3qz9cpN3A77nAv4AfAWv8WITjZTOd0M2MeWMgk/QdTNdoPYzzvfsfXFzisd5v8NNOyks+cIM+iUH+6dfdmhQmA5cDi4FrROTAXDL6xv8koBEXyaKrLwuGYXSks/aku/RLm9LTNsH7ol+E+1rxIJBrdJwXcGE0Z3vj6fPA87QZwEd7944uBxznSKKH+Xuq93UBn/SxqjpcVct9eNG+oKf7nKQ/dO8Wqvpv3JenQ4Hf4l6+ngGeTBr0qrpaVT+LG49yP24cxWPA35O9+ZsTZswbA5nk23q73iwRGQYcB7yoqo8GPrt2RrKcTj/BqerHuM+K+4nI8ExyInKdiPw9G79VVW0ETsT1qjyE6wXKGlVdghuYN5buRccxjIFO2vYkwJg0aWP9Ot3A1GE4g7qqi7p/52WO7ExIRP4oIp2FvG2lp22Cqv4KeAT4gi8nl7z1wF9wRtbngQWqWq+qnwJv41ySDgNeTtMT3W/0QO8P/bpDjH8RKRSRQ7z/fWcsA4ameV6MTSfci+Sie/IaD+rUGzr+x6/TuQcl0z7yeoX9mIIXVPUsYDzuhesY4OCkjIiIqr6iqpd4mZ/hjPpsIkxtUsyYNwYyC/06GH0mStuMiK2ISCHpH8ZJxgNxOo9mkeTruEE0ad1ixIUcuxI3SKcpi/Lwg3WvBCaQMtgqW1T1fpxRcLQvwzCM7MnUnqSynYgE760v+XW6sJLjgUVd+YT7gX5XAHuJyJfTyfj0I3F+3VnRC23CBTh3hku6kfcpnC/2TbR3SXnK63ItubnYJMcyRMBFKxGR47uhV1d0R+8XcS9jxwRcPcAZmI8CXb20JK+foFvUrKy07pp6gKSbiYhcISKfJzfdkzoGBxT3ho7J+RW+lJooImNxEY7mq2qFT/5YRFqjHvn7537/Z9I//s+4SD9JmSZcdKBUmc0GM+aNgczfcAb1tNRE37vyLPBFETkGXKxd4H9xkQ0ysQfwum8YOsWP5D8WOF1E7vTRDRCRiIgchmsgX8E1/FmjqnfjHhTdnQjqHOCTHuQ3jIFK2vYkQBVwb9JtxRvYRwH3JyNnJfGhHSfj2oIuURfi8Ns4t5gLk6EhRaRMRM4HfoWL0PWnzspJQ7fbBFVNxsmP55oXZ/gpLmRi6otO0hDejRxeTHChgwGm+OgqV9E3IQZz1tsHVzgfFwL55qQbh4h8BjcY+dtZfCG+Gecv/kMR2cbn/xwuzHJvkHr8hgLfAspz1P3nuJfeq5KhIn0I1O687LVDVf+B6zk/KznOww9E/inuReTiQJbvi59w0cudiQvL+pcUmWvEx8D3XzzOx30p+wObG6pqiy0DdsF9Bn4fkED6cFzDsBI3qn0Bzi/9E1zP/Rpgaor8NrgH+Vk51j8O55f/oS9zJfAPXMNSEJBdgGts1Mv+IUOZI3w5c1PSJvo81Sn6X5Mh//64gXez+vv82GJLPi3p2hPaJlOK46KaHItzuajAueZcD0TSlHWSzzM5Rx1mAL/Bje9ZAyzHGZKfD8j1qE3AGelrcMZNnf99QIb838KHss9xX94A3kiT/gnw9wzHP9lGJnUq8ttCuEABa3FG72O4KGAXeDn1+7LGp18bKOuDvtI7ZfvBOGNyPS6qzKvAV1O2j/L61Xm9KoF7U7Zvj4vmUuPreshfDwp8L0XuxsC+LfLp9+JCHav/A1fBAAAgAElEQVS/Ll5KyVOG6/2uwD1ffhq4zjvVPUVuNG5M2kZ//b+I819PPf47dXKMFnnd1Ov6dMo2wRnt73s91+J84ncKlHEU8ATO7Wc1bj6Bh0m513DzO/wK55qz2u/TH4A9N1V7kssiXul+wbst/ADnGrCDqi7vQn4wLu7rVFy4rheBa1U1liKzFe6CHI2LlfuIqt4aKGdn3IVYgLtp71DVHsc5NfIPcRNAvQ/MUdXf9qCce3G+dDNSr0fD2JKwNrtzerE9CeOiycxX1WCPomFkjYjsgzOsL1b35dbYAuk3NxvvE/wy7jNXOMts84Cwqu6NM5wOwD1YkmWGcJ+13lPVzwAHAReIyLkpMuW4EecPq+oBOF/An1hIvoGJqi7F9TDdJd2fgvxCnJ/ecWbIG1sq1mZ3TS+1J2Fcj2olzg/eMLpEREaISDq3o8/49d82pT7GpqU/febLgdOAX2YjLCK74j5P3gygzgfrDuAy39iD8w3bA7jNy1TjXCW+kzIwYw4uTvgvvcwK3ACN7/R4j4y8RFX/gIv7213fwr2Amf5BbhhbKtZmZ0EvtCc74j77H6qbUaQWY7OnADcR0jeSkVh8mOJvAr/WwJgMY8ui34x5VV2oLhZtthyCi9+6MCXtDVwjv3+KzMfqpiROldkG2ClFZoG62dpSZfbzgxyNAYiqvqaqc7uZ92uqmm6iCsPYYrA2O3t62J4sUdVvafYhcQ0D3ODqucApOP/uKlxI0btw4zaMLZh8imazHbBW2zv5r0nZllwHjapsZUK4AUGGYRhGz7E22zA2EararKrfV9UZqrqVqg5V1R1V9Xpz/9zy2Synpc1AGR3jrCb/Lu1lmVa87+a5ACUlJXtts802uWkNJBIJpIuoXkr/DUTuK1SVjmFnt2wG4j7DwNzv/txnVQiHc++L+fDDD9ep6qg+UCkd/dJmQ++126FQPvV39Rzb54FDd/c7kVDXAOVhc78lt9n5ZMzX4yIdpJL8uyFFZnAWMl2V04qq3gfcBzBjxgx98803c9MaeOnZl5hYvBOlQzrO8t0Ya2BF40rKImWEZMtqUNZUrWbssL4I47v5MhD3GQbmfvfXPifiCdav38ChxxySc14R+W8fqJSJfmmzoXfa7fnz5zNr1qyc8+Uzts8Dh+7s97J3V/PR8oUMHzkyLztv+vM5VVmxns8etA/lQ8q7Fk4h2zY7n6zHpcDowAxjySmAP06RyTRNcFcyCVw83l5HgXC4Y897NBFlVdNqSsIlW5whbxjGgCdv22zDMNpT++lGPl22nNJhZXlpyG/p5JMF+SJu4NTUlLQZuEkG/pkis4OfnSxV5lNV/SBFZk8fEi1V5hVVTdvL0xfENc7axjUUhAqIhPLpA4lhGEZWbFFttmEMVOIba/nk/ZXEy6OURDbLMecDns3WmBeR60VkoZ9CF1VdBPweNwUzIlIAXIqbPKTOZ3sWeAf4hpcZjPObvD6l6AdxERbO8DLjgBMDMn2KqlLRVEFM4xSGCjdVtYZhGH3GltxmG8aApaGBdQtXsz7SQHFRcX9rY2Sg37qE/UyCLwDJHplHRWSVqh7n/y7GDW5K/Z4zB/hfEXkDN2nJS8D3khtVNSEis4F7ReRfvoz7vP9kUqZORL4I3CMiZ+EGV31DVZ/vi/1Mx4boBhriDZRFyjZVlYZhGD1iILfZhjEgaWqi8T8rWNUURgubKAoP6m+NjAz0mzHvY+jO6mT7lbgpw1PTavC9M53kW4WbsKMzmX/jZhrc5NS11FEV3UBZJLdBEIZhGP3JQG2zDWNAEo2S+GQFq6uLqQ+voThivfKbM+asvQlpijexpmkNJZFSG0BiDHgUJVQkhML5eS+MLR5DOLTpdQ9pmFGlI1iyZEm79IKCAkaPHs3gwcHgMIZhGDkQi8GKFWysL2BjrAWNtFAQMk+CzRkz5jcRsUSMyqYKisJFhCXc3+oYRr8jERg0eBBjxozJyzjPsVgLkUjHcLN9jiqxWJwhwwanJCmNjY2sXLkSwAx6wzC6RzwOK1YQbVbW1hTSEF5NUSgYGdbY3Mi/J2heolREK1CUglA/PPwNYzMkXBBi5MiReWnIb26ICKWlpYwbN46Kior+VscwjHwkkYBVq9BYnLV1ZTRRjRK3iHt5gD1FNwFxjdMcb6IkXNLfqhjG5oNAJGIPid6kpKSElpaW/lbDMIx8QxXWroXGRmrjpdQ0JKiXDZREzG7JB8yY3wSoKhHrkTeMDtjYkd7FjqdhGDmjChUVUFNDrLictZUhYpEqAJvQMk+ws2QYhmEYhjFQWb8eqqpg0CAq14eIaQs18Y3mTZBH2DduwzCMLJgydRcmTNi29e9//OPvTJ68I2PGjAHgww8/YN68BznwgAN7pb7q6mquvvoqHnv8MTZWVfdKmYZhGO3YuBHWrYNBg2hoFKprhWikilA8ZF/68ggz5g3DMLLkuWefa/1dPqiMKy6/nFNPPQ2A8847t9fqWbBgAV+/9BImTpyEqvZauYZhGK3U1sLq1TBoEAkV1lSECBU0UR2ttkkt8wxzszEMw8iCiy68qNPtRx55FNum9Nz3hGg0ypNP/p5DPn9Ir5RnGIbRjkQCVq6E8nIIhdhQJcRiUJvYQEGowHrl8wzrmTcMw8iCiy66uNPtRx11FADPP/8cN9x4A6FQiIaGBs44/YzWvN/5zrU88eQTTJo0iT2n78lbCxawbNlSZs+ezY9u/DHhsJuDYt999+3bnTEMY+DR0gKNjVBdDdEolJZCOExTE6yvChEubqChsZ6yApuhPt8wY94wDKOXWLhoISeedCJP/+kZ9ttvP1atWsUBB+7P4MGDOe2007n++hsoKCzk9ttv4/zzLuD662+gorKC/ff/LOO2Hsell17W37tgGMaWgqoz2hsanAHf3AwiUFgI4TBEIqjCmsoQBQUJKqOVFIZtgqh8xIx5wzA2CwqvuYrQe+9v0joTu+9G9KZbeq2822+/jRkz9ma//fYDYOutt+aE40/glltv4bTTTm+VGz9+PLNnzwZg9KjRHP/V47nn3nvMmDcMo2eoQlMT1NdDTQ3EYs6ALyqCQYM6iFfXCM1RQQrriLa0mK98nmLGvGEYRi+xePFi9pi2R7u07bbfnmXLltHQ0EBpaSkA22wzoZ3MpO22Y8WKFdTX11NWZg9TwzByIB53BnxtrVsSCdfzXlQExcUZs7W0QMW6ECXFcVY2racoZL3y+YoZ84ZhbBb0Zg+5YRjGFk0s5gz46mrXC68KkYjzg89y8GrFuhDhkNIQryOWaKGowIz5fMWMecMwjF5iypQpfLx0abu0ZUuXMmnSpNZeeYAVKz7tIDN+/HjrlTcMIzPRaNsA1sZGZ7QXFEBZWdYGfJJEAmrrhbKyGGsa1lMcsQmi8hkLTWkYhtFLXH75Fbz55hu8+uqrAKxevZrHHn+Mq668qp1cRUUFTz/9tPtdWcHjv32cC86/YJPraxjGZkzS/33DBli6FJYtg4oKlz5okAsrWVSUtSEfi0F9g7C2UmhpEUqLlZqWGhKaICzhPt4Zoy+xnnnDMIwceO2117hu7nUA3Hb77Xy8dCnXfc/9vevUXfnNI49y9TVXtYamvOzSy9oNfgWYOXMmCxct5J57f8pHH33E0UcfzcUXX9K6ffny5Zx/wfmsXbOGeDzOYYcfxtSpU7nt1ts23Y4ahrHpSSRc1Jmk/3ssBqFQl/7v6VB1RTU2uZldm5sFEQiHlVAINNTChqYNlIStVz7fMWPeMAwjB/bZZx+ee/Y5YrEWIpGCDtsPO+wwDjvssC7Luebqa7jm6mvSbps4cWK72WYNY5MRj7t1cuZh1fa/u7NOJLJbBxHJ3OucTM+0PdSJ40FqufG4c1sJhdrSU7cH0zKl94TkANaaGmfAJ/3fi4qgJDdDu6UFmqNCbR3U1YdQQIDCAmVQefvZpKujGwlJiJCYk0a+Y8a8YRiGYQxEYjHfddsIdXXu98cfZ5ZXdYZrpnUmgoZ3UDZTXtX06V3RWb7gtlgM1q7NLJtOt3TpwZeBUKhtSZeWfNmor3dx4MEZ8Dn6vyc78hsaheq6ELGWZFFKaYlmPrQkqGrZSHnEJojaEjBj3jAMYxORnAG2traWE044nscee7y/VTIGCqqu2zYadQZkfb0zZMGFMSwocAZm+QAz7nprn4NfMFSdpR2PZ/7KoeqOe471R6PQ1CzU1AoNjYIC4ZDrfS/uYgy9qtKiLcQ0TnmoAOnpVwVjs8CMecMwjE3E9dffwPXX39DfahgDgUTCWX3Nza7XvaGhzZ2loMDNApqjD7bRCb3hbpOBeNy5ztQ3QG1diJaWZCAbpaw0c+87OOM9mogSTURpiDfQEGsgTpyEJigO2/nfUjBj3jAMwzDynVjMd9k2OeO9qcn1/IZCWcUfj8WcrV/f0H89tSIgaFr39d5yT88HVNt636trhKZm1/seCSlFRUpxJ+Hgk8Z7c7yZ+ng9jfFGFPc1ICIRisJFhCREndRump0xNglmzBuGYRhGvpF0mWloaIt6As54z9J1Ixr1kU5qhMYmF65w5er+GQyZ6skugndHSW+5t7qihyAkSqjVHV3bXNJ9WjgccGdH270YqLYdunTjWzcVsVj7gavxhNuHwgKlvCzzGICEJlzPezxKXayOxngjoIiEiIQilIRLzJVmAGDGvGEYhmFsziS7apub2/zd43F8nMGsXWaSoQrrG4Tq2hCxWJu7xqByJVSnlJbGO+ajmwNRcyREKGB4pq836W7ezjU9AaqSki7tXNRbkfYFRaPC0v+GM451TY5TTb48QNsLRDI9FNKU366K1PGurfnTvCg0N9MaNhKBgohSXKQZg/EkNEFzotn1vMfqaYo3ueMkQmGokNJIqRnvAxAz5g3DMAxjcyIeb3OZSUY7SVqbkYgz3DsLvRgoqqnZ9fjW1oVIqBssWVTo3DVUlaZ4I2ubamlORFlWvyxtOUmDXjL0lvcKCiEJEZEwIQkTCUWISJiwRIiEIq3GfggXTjEUChHu8AKQUlgWhGrptOc709jVRMLVkPoS0Sqf/E0gPQ0i7lwEw0YmiWucaCJKU7yJ+lgdzYmoPwNCQajAjHcD6GdjXkRmA98FGoEwcKmqvtmJ/DTgZqAEGAb8FbhKVZv99rnAMcDG1GzAgcCeqvq2iEwEXgX+HSj+OlV9ued7ZRiGsWVibXYfkfR3b2x0LjPRqEt33eY5hytsaXHuM6nRTiLh9qEKo4ko1dE6alpqiGuciEQISYiySBfhUPoYVSVBorUHulETKEpCE8kOaFDQ5OHwLwBhCbW9ABAmFAoTIUI4FCaEID6eeuuLQJax1bsKZ9/F3uScI5aI0ZKI0phINd7Fv+RE+v38GJsn/WbMi8hewCPATFVdLCJHAs+LyFRVXZNGfmvgZeBqVb1PRIqAF4A7gfNSRC9T1fkp+Q4C7lXVt1NknlPVOb2+U4ZhGFso1mb3Iqnx3WtrnfWt2uYyk2OowqT7TDLWeLTZGZ+Fhe39reMap6GlgY0tVTTFmwlLmOJw8WY1aZCIECZMWMJZ50l9AYgmojRpAo27FwBVRcR9T1D8f94wj0iElkSUlQ0rWw188f9C4l4AwLn/JL8KuLKk9QuFOKX975T0oJyk5hGkuQmJNtNSWkqUGI0+0kxUXaD4kIQokAKLA29kRX/2zH8LeF5VFwOo6p9EZC1wEa7nJ8hpQAh4wMs3i8hdwG9E5Huquhb4KVAfyDcH+EXf7IJhGAOFKVN3YcKEbVv//sc//s7kyTsyZswYAD788APmzXuQAw84sEf1JBIJHn30Nzz8yMOoKnV1dUyatB3X//B6ttlmmx6V3UOsze4uqfHd6+pojS2YjO9e1El4kgwkEs59pq4eamqd+4yQdNlok0u60dTEaqmL1YFCYbiQQQWDem//+pnuvACA8z8HWl8EVBX1/jDq/yVRbf9360+BUEsL4ZpqCjdWU1BdTaR6o1+3/S4I/A43NbliQmFahg6lZehQYsNGEB8+nNjQYcSGDafFr2PDhhEbOoyWYcNJlJUPjJA+Rk70pzF/CHBTIO0N4AukfzBMANapauq8z6twn3r3B55Q1YrUDCJSDhwNfLO3lDYMY+Dy3LPPtf4uH1TGFZdfzqmnngbAeeed2yt11NTUcOFFF/Lcs8+z7777Eo/HOetrZ3HMscfwyj9foaiwsFfq6QbWZmdD6uRMyfjuqcZ7D+K7J91nauuE+oY295l0AyajCRfdJNWNpjRs/tWphMSNSi0IFbQlxuNEapzhHd64kUi1XzZW+XVqmluH6+sy1hErLyc2ZBjxIUOJjRxD/fY7ERs6lNiQoSQKCpyRX7XBlV+1gaIliyioqspYZqKgoNXYTxr4saFDvdGfmuZkEiUlZvwPAPrFmBeR4cAQYHVg0xrg8AzZlgNjRaRQVb1DIeMD6yDHA39X1WA9O4vIUzgfznrgV6r6SA67YBjGAOOiCy/qdPuRRx7Ftik9990lEolw/FePZ9999wUgHA5z4QUX8vlDDuadd95hn5kze1xHrlib3QnpIs0kJ2eKRHpkvCeLbmiU1ognnU0WFNc4DbHN241mc0CaGilbsojy995h6/ffpryuvs0wr61BMoxWjZeUEBviDPHY0GE0j5/gfw9NWQ9r/Ts+eAhaUJC2rC51jEZbDfzIxioKUgz+SFUVBUnjf8UnRKo2EG5sTFtOoqjY9/oPb/cSoJMmwOHHZj2Q2ti86a+e+eQIjuZAejNQmiHPg8C3gW+KyA9xD5ZL/LZM39bmALcH0ppwD5nLVHWNiOwBvCgi41T1lqz3wDCMAcVFF13c6fajjjoKgOeff44bbryBUChEQ0MDZ5x+Rmve73znWp548gkmTZrEntP35K0FC1i2bCmzZ8/mRzf+mHA4THl5Offdd3+7sktKnDHYHA02mZsMa7OTtM7o09TW8540/nKMNJOOpPtMfYNzn4nFXbzxTBFPkm401bEa6mP1W6QbTU+JVG2g7L13KH/vbcrfe5fSD5YgcRdcvm7cOBJjx9E4ua3HPJ1hHhsyBC0u2WQ6a2EhLaPH0DJ6TFby0tToDfw2g7/1JSDlRaB42ccUVG1gTDRKw+OPs/rs86nef5b13uc5/WXMJ30kg46CRUBDugyqWiEi+wI/AF4BqoEbgGeADUF5Edke2BH4U6CcNcCJKX+/IyL3AtcCHR4MInIucC7AmDFjmD9/ftd7F6Al1kJNfCN1sZqc8+YzsVgLa6qCHWxbNgNxn6F7+z22eAyxWEsfabRpiCfi7fZh0aJFnHjSiTz1h6f4zGc+w6pVqzjo4IMoKy/j1FNOZe7cuUQiEf7njv/hnHPOYe7cuVRWVvK5WZ9jq7Fbcckll6St51//+hdbb701e8+YQSweQ1Fqa9PP4NjU1NStdqoL8qbN9mX1uN2uq6try5eMRZhc2irqVSMokYBYTFrnSwp1UrR6P++4xlvHdEoPe+C3iPZLlbIVKxi2ZDHDFy9i2OLFlK1aBUC8oIDqyTuy5thjqZoyhapdptBYUkwk0lXvuULjRrdszhQJjB3uls6Ixxkz/y/s/NhjbP/Ny6nefgc+PPVUKmfsvUUb9f15fceI8fqbrxMK982XkH4x5lV1g4hsBMYGNo0FPu4k3wfACcm/fcgygPfTiM8Bfq2qsSxU+hgYIiIjVXVdoM77gPsAZsyYobNmzcqiuPY8+/SzlEUGUz5oYIWUWlO1mrHDtupvNTYpA3GfoXv7HQ5Ju4fo1dcU8N57m/aT7+67J7j5pu6/UIRD4Xb78JM7f8KMGXtzgB8EO2HCtpxw/AncfvvtzDnjTAAkFGL8+PEce8xxAGy11dYc/9Xj+dl9P+Mb37i8Qx2NjY3cdfdd3Hbr7ZSUlIIqsVicQYPS97wWFxczffr0bu9TOvKpzfb19qzdjsWY//LLzNpuO9cDr9o2s2pBQa8bPPE4rK8SNmwMUVKkZPLM6Gs3mnxsvyQapfSDxZS99y7l771N2cJ3KdjojO7YkKHU7TaNFcccT/3u02jYaQrqx5yEgBHk5z73Bms+/wXkmJMZ/vwzbDXvPvb+/lzqp+zKqrMvoHbmZ7ZIo74/z3VlxXpmzphJ+ZC+iU7UnwNgXwJmBNJmAE+mExaRQmBvVf1nSvKBwFJgQUA2BJwOHJamnJOBj1X1tZTkcbjepfU57oNhGEYrixcvZo9pe7RL22777Vm2bBkNDQ2UljqPlG22mdBOZtJ227FixQrq6+spK2t76VdVzjv/PE488aRWN55+ZOC02Y2NbeEicwwT2Z2qVleEicdhUFlHP3hzo2lPuKaasvffpfy9dyh/7x1K/72IkI/L37TNBGr2O5C63fegbvc9aJ4wsc+MUlUfTaguTH19mLr6MPX1Ifd3Q5i6ujB19SHq6sM+LdRBtjkaoqgwQUGBUlSYoLDIrwuVwsIERcl1kVsXFrZtLypMUFCorTLtthW1/zu1jKJCJRJpcwvb8KXZbDj0cEY880fGzrufyZdfRN1u01h99gXU7jVzizTqt0T605j/MTBfRHZR1SUicgSwFXA3gIhcj5tMZIaqNgGDgT94+UoRGYWLeHCZaofRKgcDq1R1SZp6dwSOFpFTVDXmYyGfC9yTphzDMDYRPekh31K54sorGDNmNNd++9r+VgUGWpudnLCpj0gkXG/8+g0hSordbKypNMebqY/XD+xoNKoUrlrpetzff5fyd9+mZPlStykcoWGnXaj88gnU7bYH9btNIzZ8RE7Fx2KwfHk5K5eXtRrZqUZ4fX2YurpQq3HuZEKtsvF41+eipCROeVmcsrKEX8cZPbqF8rI4hYUJWlpCRKNCc9Sto80hmqNCfX0BzVEhGk3Z3uzW2dTbFdN2H89NP1zDqJExiBSwfvZxbDj8KEb86f8Y++ADTL70fGr32JPV51xI3R579bg+o2/pN2NeVd8SkVOAX4lIcjbBQ1MmHynGDaxKXrWNwOvAv0RkhU+7RlX/mKb4OWSOU/w4cBXwDxGJ4gZ23UcG30vDMIxsmTJlCh8vXdoubdnSpUyaNKm1Vx5gxYpPO8iMHz++Xa/8ddd9j6bGRu6++6cAvPXWWxQURNh9t937cA8yY21279HUBKsqwsRaYFB5+974+pZ6NrSsH5jRaGItlP7nQzdY9X3X816w3nlRxcrLqd91Ghu+eAT1u0+jfpepOQ9IbYnBkn+X8tbb5bz1djnvvldGQ2P6sdiRSILy8jYDvLwszlZjo5SXxykrjVNeHqe8PNH6O2msl5f5v0sTlJbGiaRYWarKxpYqKpsrqWyupC5WR0m4hNJwGaXhEkoipZSFy1xapDRj3PxYDFpaQu2M/dQXgqThH422ybTKNgu1dWEee2IEp5w1hJt+sJzpe7ghMVpQwLpjv8r6I2Yz8qknGfvQL9jxorOpmTGT1WdfQP1ue6TVx+h/+rNnHlV9Cngqw7YrgStT/q4Hjsiy3FM72bYYODM3TQ3DMLrm8suv4IAD9ufVV19l3333ZfXq1Tz2+GNc973r2slVVFTw9NNP86UvfYmKygoe/+3j7UJf3nLLLbz055f4yR138vbbbiLUp595mh0nT+43Yx6sze4piQRsqBLWV4UoKlLKA8OoNkY3sq65kqJw8YBxo5GmRkb/7lEGvf4qZYvea51MqXmrramZsQ/1u02jbtp0miZul3OUoJYWYdGSpPFexnsLy2j0xvv2kxr50uEbmLjdSrabUM6gpNHuDfSiotw++tTF6lqN9P80V1KxvoLKVZU+rYLK5krWNa+jRbP/AlkUKqbUG/alYbc4g7+UknBpx/Rynx4uoSxSxkj/uzRSRmm4tN2L4T77fciPfzyT876+A5ddtIqTjq9sfanUoiIqv3oS62Yfy6jf/44xv/4lO51/JtX77Mfqr51Pw9Tdcjo2Rt/Tr8a8YRhGvvHaa69x3VxnnN92++18vHRpq7G+69Rd+c0jj3L1NVe1hqa87NLLOO2009uVMXPmTBYuWsg99/6Ujz76iKOPPpqLL3aRbD755BO+/4O5AMw66HPt8j1w/wN9vHdGX9HUBGsqXc9peRrf+KpoFeub11EaKRswPfGDX/k729z+Y4pWr6Jhp11Yf9SxzmVm9z1oGTU65/KiUWHR4lLefLucBe+U8+77ZTQ3u2O5w/aNzD5iA3tNr2PPPeoYNiwOdD0oMpqIthrplc2VVDZVtP6uaK5gnf/dEO8Y1KksUs6oolGMLhrFnkOnMzIygtEFIxhVOJJRhSMpLxhCU6yeBm2mIdxCQ6yBhngjDfF6/9stjfFG6mP1NMYbqIvVUdG0tl16LKsx4yAIJeESSsKl7DV4T35+/w3ccONkbrtzHO8vKuW73/yU0tK2aE1aVEzFiaey7ugvM/LJxxn78Dx2Pvd0qvc7gFVfO5/GnafkcHaMvsSMecMwjBzYZ599eO7Z54jFWtKGtDvssMM47LAO4zg7cM3V13DN1dd0SJ8wYQJ1tfVpcnhsaE9ekUjAxmqhYl2I4mKlvKz9+VNVNkQ3UBWtoixSPiB84gsqKxj/k1sY9teXaJw4iQ/vup+66cGx1V3T3Cy8v6iMBe+U8eaCchYuKqM5GkJEmbx9E8fOXs9e0+uYPq2OYUPjHfLHEjE+bviYD1o+6GCcV/h1dUvHcJSFoUJGFY1iZNEoJg/akc+O3L/179GFoxgVGcaoyHBKJWWysMJCKCqGoiKIhN14jFAYos1QXe0mGwtHoKgw50GnLYmWVmO/Id5IQ6zevwi0/U59IVgXXc/za56jKrGRm39wG088th0/vW8rPvq4mFtuXM7EbdtPJ5EoKaHilDNYd8xXGPXEo4x55Ffs8rVT2HjgQaw+6zwaJ++Uk75G72PGvGEYhmH0Ac3NsLrC9cYHfePBGfLrmtdRHaumLFK25RvysRijnnycre+7G4nHWXnuxVScfHrWs6Q2Njnj/a0Frud94eJSot5433FyI2I3E5UAACAASURBVF85dh17Tq9j+rR6hgzuaLyrKssblvP6+td4bcOrvFn1FvWxutbtIUIMLxzO6OLRjCvZmmlDpzG6aDSjikb5xf0eUjDEnatEAmJxiMfcS3YyhGly1t+iYme4hyOZXYQKi2DUaBgahZpaqK2BcNgZ/VleDwWhAoYWDmUoQ7OSB9i1ZCp3LP8J5y84mzuPv4upuzTwresmcvrZO3Ldtz/h8wdVd8iTKCtj7elfo/K44xn9298w+tGH2OVvf6XqoENYfdZ5NG23Q9b1G72LGfOGYRibiOQMsLW1tZxwwvE89tjj/a2S0QeotvXGFxZ27I13MkplcyW1sVrKwlu+IV+6ZBETbrmB0g+WUL3vfnx6+beIjhvfaZ7GxhDvLWwbsLpwcSmxWIhQSNl5x0aO//I61/O+ez2DBnU03gHWNa/j9Q2v89r6V3l9w2tUNFcAMK5kPIeOOZQdinZg15G7MbpoFMMKhxMJZTCL4nE3gjYWh1ijSwtHoLgIiga5nvZIxKV151wWFMKIETBksDPqa6qdUV9Y2KMZhTNx8IjPM3HoJK5+7yrOemMOd02/m4d/0czV35nI1d+ZxOknr+Wi81a3G8CbJFE+iDVnnkvll09k9GO/ZvTjjzB0/p+p+vwXWX3WeTRvO6nX9TU6x4x5wzCMTcT119/A9dff0N9qGH1INOp645uahbJSTWuHJTRBRVMF9bF6ygq27MkEQ3W1bP2zuxn1+8dpGT6CpT+8mY0HHZLW4G1oCPHO+2Us8Mb7oiWlxONCOKzsvFMDJx9fyV7T65i2ez2DyhNpaoOGWAMLqt7i9Q2v8eqG1/i47iMAhhQMYe/hM9ln+D7MHL4P40vdi8SaqtWMHZLiM6/qDPdYHBLxtrSCQigtdcZ7JNLmJtPbRApg+HBn1NfWOhccEddT38tG/X4jP8vP9rqfr799MWe+MYc7p9/FA3fHuO3OcfzqkTEsWlLKj37wX0YMT++THx88mNXnXEjF8Scz5jcPMep3v2HYX15kwxcOZ82Z59C8zba9qq+RGTPmDcMwDKOHpPbGFxQog9L0xoObxXVt01oa441btiGvyrA/v8D4O28lUrWByi+fwKpzLyJR1n4SrsbGEL9+dBT/eGUwSz5oM96n7NzAaSdVOON9t3rKytIb77FEjMU1i3htw2u8tv5V3qt+n7jGKAwVMn3odI7Y4Qj2GbEPOw3aOf3AYlU3c1ci4YxmEdcbPqjcucBEws7A7oPe8U4JR2DoMBg0COrqnFGv6oz6cO+9REwdMpVf7j2Pi9++iPPeOoebd7+Vb125H7tOqedHt2zDqWftyE3XL2f3XTsO8E0SHzKUVedfQsUJpzDm4QcZ9eTjDH/pOdYfdiRrzji7yy8wRs8xY94wDMMwekA0CmsrQzQ0Ze6NB2fIr25cTUuihbLIlmvIF634hG1u+zGDX/8X9Tvtwsc33UHDLlM7yP3rtUHceMt4Vq0uYtpudZxxylr23KOeabvVt4uqkkomv3dB2HnQzpy67ansM3wfpg3dg+JwcdoyADfDbzQKCgwd6gz4nrjJ9BXhCAwZ2t6ob27uVaN+Qtm2/GLveXz97Yu57J1LmTt1Lkcd8SV23KGJq66dyDkX7cAVX1/FV49b1+mhiQ0bzsqLv8Hak05jzK/nMer/fsuI555m/Zdms+aMrxEdu3Wv6Gt0xIx5wzAMw+gGqlBTK6yp6Lw3HlwP8uqmVcQ1QUkkt8mO8gWJRhnzyIOMffABNFLAp9+4hspjv9rB6NxYHeb2O8fx9HPD2XZCEw/c/Z/WiYvSkdnvfRyHjjmUmSP2YcawGQwrHNa1ktEWaIk6433MWFjdAIOH9Gi/uyKecGNk43H3AQDcO4T4dTjkPgKEO+v8D4WdnuWDoKEeqja6eKfFxb1i1I8sGsl9Mx7gynev4LsLv8O65vWcvuPp/PrnH/LdH07gptvH8/6iUr591QpKStK/aCWJjRjJykuvpOLk0xnz0C8Y+dSTDH/mKdYfdSxrTv8aLaPH9Fhfoz1mzBuGYRhGjrS0wJqKEPWNQnknvfHgQgeublxFnAQl4S3TkC9/6w0m3HojxZ8sp+rgL7Li61d0iBWvCs+/NJT/Z+88w+OozjZ8z/a+WvWykizJvXcDxsYGQjUmdJJAIBAg9ITQOwHTDDbFYDBgIASIAUMCOGA+HAyhudCMKS6Si3qXttc5349RL7Yky0Vm7uvaa3fnnJ1zZtcePfPOe573oUey8Hh1XHheBReeV9mpQFNv8957RCisKGqTCZLSFaeZforAC9FkbBNTnmW5VaxLkhLwNxqV6weDQdHeGo1ASDHkmI5gUMLjgVBcyebZZXq8RqMIeotVSQ+qr1dEvbEpl38PsOlsPDbhcW7feBuPbllITbiaPw/9Cwsf2MbSv6fx1LPpbN5q5qF7t5Htjux2f9GUVEquuZHK351P+t+fI+mdt0h6918Eho8knOUmnJWtPNzKI+5wHlh3RQYQqphXUVFRUVHpIUKA16dE47VagcO2a9//iByhLFjWUrDnYENXX0fWooUkvf8u4Uw3Wx9ehOeQ6Z36lVfoue8hN5994WTUSD+LbyxkSIFS7bWnee9D7cPQSr2IQguhpKTE42C1giNFEfF9oHldbPOjudyDADRSGzdKY6sBjU6nCHdJUtKDIvEIMTlGDOXDJq2JmAigt8qk2nVIMRPBoERjoxLN1+3KzEajUY7JYlHEfH2d4lVvMCiLc/uIQWPg3jH3kWhI5OWd/6A2Usudo+7ij+dXMnJEgFvvzOWcC4fxt1t3cMQMT4/2GU1Lp/i6W6g85w+kvPYKli2bsH/zFUnvr2jXL2azEc7KJtIs8LPcTc/ZRJOS9/26hQGEKuZVVFRUVFR6QDQKVTUafAEJi0nsNrshHA9TFipDK2kxaAz7ZpL7Clkm6d1/kfXko2iCAcrP+yMV512I6CCW43F4/c1kFj2tOMb89eoSzjqtpuW7+6T6E+b9eDc1kRokJIb1Ju+9O5pFvCyD3aEsZtXv/vtvjqo3R9iFaI2wazSKRrZYWoPgWm3ro2NAOS7HicQjhKKKI45G0mDRW0jSJ2HUGdFr9WgkDbKQCcVCeEIePMKD3ipIt+sRUSOBgBKxl4Ui7Lu0npckMJvBlAnhkBKp9/uV4zX0TdRrJA3XDbueZGMyT2xdRH2knvnjHuKwafCPpZu57pZBXHNjPheeV8ElF1b0OMsnkpFJ6dXXtk49HMJYVoqxtARjSTGG0hKMpcWYN/9EwserkOKtdqOy0dQUzXe3Cv2sHMJZbiJp6Xt8V2Kg88s+ehUVFZUeMnLUCHJyWq3WPv30fwwZMpS0NCX/c/PmTbzwwovMnDFzj8d6++23Wfr8c0SjUcKhMMFQkL/85RpOP+30Pd63St/weCUqqzVopF3nxjcTiocoC5ah1+jRa/oeKT0QMRVuIWf+PGzff4d3wiSKr72Z0KD8Tv22Fpm4+75sNv5o5dBpHm6+roTMDCU9wxfzsWDTQ/y77N8MsQ3hr8OuY0rilJ7lvXeHLCtRagCnE2w2xYmmG5rTY/xN6fqaptx1m601wN02wr4rovEoUTlKvMnOUq/VYzfasegtGLQG9Bp9l7UEmkW+RW8hVaS2CHuv8GK0y2Q4FWHv90t4vbsQ9pIEJjNkmCEUhIYG5cB0eqWqbC+RJIkL8i4k2ZjCPT/+jUvWX8RjExeRmZHI0sVbeGCBm+deTGfjjxbm3bmjywq7u0MYTYTyCgjlFXRujEUxVFQoQr+0WHmUKA/Hmi/QRFqr1AqtjnBmZqfUnUiWm3BGFsJo7PXcBhqqmFdRUVHpIe+/937La5vdyl+vuYZzzjkXgEsuubjfxlnyzNP8/tzfc+aZZwGKuD/n3N8xcuRIRg4f0W/jqOyeWExxqvH6Jazm3UfjAYLxIKXBUowa40El5DXBIBlLnyZ12T+I2e1sv+Uu6o4/qVO4OBKReO7FNF74RypWq8zdt+/g+GPqW7qtq1vHXT/cQWWokgvyLuTi/Ev27HuKx5VIvEYDLpeixnfhAS+EovmbU1mysxXB3tMsjuaUmagcRQiBhIRRZ8RlcmHWmzFoDd0Xn9oFHYV9MBqkMdyIT/ZhdoDNqUfEDPh8Ej6fIuz1OuXCo91PYDJDulmJ1Dc2KqK+ucBVL5mbOReX3sUNG67nD2vPZ9HEJ8i2ZHP7TcWMGeXnwYVuzrlgGA/O28aoEcFe779bdHoi7mwi7my8HNq+TZbR11S3CvwWwV+C7fsNaP2tVX2FJBFJTSOSlU1SWgrRI4/DO+WQHlcdHiioYl5FRUWlB1x+2eW7bJ8z5yRyc/qnSMrf7rqb8ePHt7yfMWMGsiyzY/sOVczvQ5pz4yWJ3ebGN+OP+ikPlWPSmvok6A5UnJ9+jHvB/RgrK6g56RRKL72KuDOhU79vN1i5+/5stu8wccKxdVxzZSkulxK1DcVDLNr6OK/ufIUcSw7PTVnK2IRxfZ9ULKaIeK1OqZ5qse5WkYdCyscSEpTg/eY6RQzvClnISr57XCmeJEkSFr2FRHMiRp0Rg9bQtYf9HqCRNFgNVqwGK3FrnFAspAh74cPsFNgTDIiYEY+n9c6CXq88WoS90QSpJoiEweNRrC21ul5H6mekzODpSU9z9bdXcUFTcakRjhGcMreO4UODXHdLHhdeOoTr/1LKKXNr9/4aVo2GaGoa0dQ0fBMmt28TAl1DPYbSEkylTak7JUpkP/Pj1ejf+w8xh5OGI46k/uhj8U6Y3K++/fuLg+dMo6KiorIXufzyK3bZftJJJwGwcuX7zLt3HhqNhkAgwHm/P6/ls7feegvL31xOXl4eEydM5Kuvv2bbtiLmzp3Lfffej7bpj8rEiRNb9huJRHj0sUcZNWoUM2fueQqPyu6Jx5X8+JJyDTZLz6LxAL6oj4pQBWaduXcLNQ9g9JUVZD/yIAmffEQwr4BNTy7FP25Cp34+v4bHF2fyxlvJZKRHePzhQg47xNvSvrFxI7dvvI0dge2clX0WVw65uu8Lgps94nV6SElVcsZ3I+LDYYjGwGZVCqzuSsDH5BjReGvKjE6jU4S11brLlJm9hVajbSfsg7EgDcEG/MKLLVHCmWhAxAwtwl6gpMu3HKPBCMkpytWLxwteT6tHZg8ZkzCW56Y8zxVfX8bF6//IQ+MeZlrSIYwYHuQfSzdx6125zHswm+9/sHDDX0swGXt28dvvSBIxVyIxVyKB0WPbNVVW7WTIlu0kfrgS14crSX7nLaKJSdTPOpr6o4/FP2bcgF1kq4p5FRUVlX5i4w8bOfs3Z7Pi3f9w2GGHUVZWxoyZh+NwODj33N9zzz3z0BsMLFjwMH+65FLuuWceVdVVHH74dLIys7j66j+3299VV1/F8uVvMHLESJa/8SZWq7XVRkNlrxEMQlyWcNp7/l17Ih4qw5VYdJaDQ8jHYqS+8SoZzy5GkgWll11N5Vm/6zIH/eP/Obj/YTfVNXp+e2YVl15U0VL0KSpHeaZoCS9sf55kYwpPTlzMtKRD+jancARiUSVhPC1dsY/ZjaiORhUhb7ZAWprykY5E4hGi8SiykJGQMGgNOI3OlpQZvfbAScnQarTYDDZsBhsxOUYoFqIh2EAAH7ZEcCYakKMGGhvB51cW77YY3OgNyh0MpwMKG5UvpxfpJnnWPF6Y8iJXfHMFV31zJX8bfTfHph9HgjPOo/OLWLI0nWdfSGfTFjPz520nK3P39pX7EqHX45k+E8/0mUjhEM7PP8W1aiXJ7/6L1DeXEUlNo/7IX1F/9HEEho8cUDaZqphXUVE5ILj+o+vYUPX9Ph1zbOoYHpw9v9/2t2DBw0yePIXDDjsMgMzMTM468yzmPzSfc8/9fUs/t9vN3LlzAUhNSeXMM85k8VOLO4n5xx59jIULFvLwgoeZNfsIPlj5f+Tn5fXbfFW6RgiQ6LmQb4g0UB2uwqqz9Xu6xf7AsnEDOfPnYdm6mcbDZlB8zY1EMjpX76yp1TH/kSw+/K+LwQVBHpy3nTGjAi3tW31buX3jbWzy/sycjJO4dth12PX23k+o2SPebIbkJCUnfDfE48pFmdEIWVnKRzsSjoWJy3G0khanxYlJZ8KgNaDdRb79gYROo2sn7AORAA3hBoLCiyNJwoWRWESvZNi0E/Z6JbUkEum1jWWKKZVnJz/HNd/+mZu/v4nacC2/zf0dWi1celEFo0YGuP3uHM65YCj33LGD6Yd6d7/T/YAwmmiYfTQNs49G4/fj/OwTXB++T8ob/yTtn/8gnOmm/qhjqD/qGIKDhx7wwl4V8yoqKir9xI8//sj4cePbbcsvKGDbtm0EAgEsFgsA2dk57frk5edTUlKC3+9Xou9t0Gq1XH/d9Sxbtoz58x9k8ZOL9+5BqPSKunAdtZFabDr7Pk292BvofF6yn3mO5LffJJqcQuG9D9M4c3YnISMEvL0ikYWLMgmHNVx+cRnn/q4KfZOiiIs4L+/4B09ufQKbzsZD4xYwO3V27ybT1iPeZgOHQ0kX2Q1xWRHxeh2kpytW7F3ZRgaiAUw6E0adkWxndu/mdgCi0+hwmBw4TA6i8SjBaJCGcAMxvDiTJRI7CHsZjXKXJR7vdc64XW9n0cQnuXXjzTy8+SFqIjVcOfgqJEli5nQPLz27metvyePq6/K56A+VXPSHigM6e0W2Wqk/5njqjzkerceD838fkfjhSqWa8UtLCeXmUX/UMdQdfSzh3AMzmKKKeRUVlQOC/oyQD3Si0agSPWvDsGHD+Onnn/bTjFQ6IoSgLlJLfaQBm8424IW889OPGXXfnRg8HqrO/C3lF16K3OHCEqC4xMC8B7NZ95WdCeN83HpDMYNyW20CiwPF3PnDHXzb8A2zU4/k5hG3kGhI7PlEZFmJGMfj4HD2yiM+GFRSnlNTmgxtuhCQwWgQWchk2DKwG+1sY1vP5zZA0Gv16LX6FmEfiAaoD9YTM3hJSNGQKIx4KyDucKGtq1KueHqJUWvk/rEP8sDP9/Pi9heoCddw28jb0Wv0ZLsjLH16M/fNz2bJ0nR++NHC3XfswOnovX3lvibucFB34snUnXgyuvo6ElavwrXqA9KfX0LG0qcJDB7aFLE/lkhWLyoQ72VUMa+ioqLST4wcOZLCoqJ227YVFZGXl9cSlQcoKSnu1MftdmO1WonFYsw8YgZffP5luz4V5eVkdJHqoLLvEUJQE67BE/Ng1VkHvJA3bSsk7/Yb8WZlUrRwMcGhwzv1icXg5WWpPP1sOjq94Obrijllbm2LYBZCsLzkDR7ZshCtpOVvo+7mhIwTe/7dNHvES5IShbfbFeeV3dBsMynLysJWh6PrQHMkHiEUC+EyuUiyJB1UTkO7Qq/V49Q6cZqcROIRgtEg9cF6kOKEtWYsWl2fovMAWknLTcNvJsWYwlOFi6mP1PHA2PlYdBbMJsFdt+5k7Gg/8x/J4pwLhjL/3u0MH9qP9pV7mZgrkZpTzqDmlDPQV1eR8NGHuFatJOvpRWQ9vQj/iFHUH30s9UceQzQ1bb/O9QC+8aGioqIysLjmmr+yfv06vvxSEeLl5eUse20Z1117Xbt+VVVVrFihlDKvqq7itddf49I/XdrSvnHjRt5/v9XT/p133mHd+nWc9/vz9sFRqOwKWchUhavwRBsPCiEvRSIMuvNm4mYT6+/8W5dC/qdNZn5/0VAeezKTQw/x8MbLP3Par1uFfFWoiiu/uYL7fr6Xsc5xLDv0dU7MnNPz7yYcUaLxLhe43ZDg6pGQD4XAH1BMWnJzlY931KSykPGGvSAg15lLmi3tFyPkO2LQGnCanAxyDUKn1RCWY+BKUNKZ+ogkSVyUfzG3jLiNL2u/5E9fXUx9pK6pDU4/pZZnn9xKPC5xwSVDeHtFL+7SHEBEU1KpPvO3bH76RTYuX0HJZX9GkmXcjy9gzCnHMfTSC0hevgxdXe1+md8v81+0ioqKSh9Zs2YNd9x5BwAPL1hAYVERd9yuvB89ajSvvvJPrr/huhZryj9f/ed2i18Bpk6dysYfNrL4qSfZunUrJ598MldccSUAOp2O++9/gAcffICHH34IIQTxeJy///0ljjvuONXNZj8iC5nKUCWBWACr3ra/p9MvZD71GJatm9n64KOEE9sLrWBIYslz6by8LJWEhBjz523jyFmNLe1CCN6reI8Hf76fqBzlhuE3cYb7jN5d4MRiIMchM3OX1Vrb0mwz6bArfvHd2UwGo0HicpxUayoJpoQBf+HVn+i0WpCixE1WtJp65dbGHiS2n+o+lUSDi5u/v4kL1v2BJyYuJtOs3EkcMyrAy0s3cdMdg7jr3hz++UYyM6d7mDm9keHDggd0Pn1XRNIzqfrdeVT97jyMxTtwrfoA14cryVlwP9mPPIh34mTqjzqWhllHEXc498mcVDGvoqKi0gumTZvG+++9TywWRdeF+DjuuOMU0b0bbrj+Bm64/oYu2y6/7PLdFqlS2bfERZyKYAVhOYxV3/sc4wMR+5ovSFv2MlWnnoVn+kyoL29pW7vexj0PZFNaZuSUuTVcdWk5jjY5z/WReu776V5WVX3IOOc47hx1FznWXhZNk2VFmaen90jIRyIQiYLVonzE2M162OYFoE6Tk2RL8gFlLXmgoJE0WBwyYZ8Gi9MJ9fXQJhWwL8xKnc2Tk57iL99czflrz2PRxEUMtQ8DwOWKs2hBIa+/lcz//TeB515M45nn00lOijJjeiMzp3uYMtmL2TSwghXh7Fwqzr+IivMvwlS0FdeHK3GtWknuA3eT89B9eKYeouTYDx+7+53tAaqYV1FRUVFR2QUxOUZFqJyoHMOi2zPBc6Cgq69j0LzbCeYVUHpFqyVqo0fLwsczeec/SeRkh3j68a1Mnuhr99lPqj/mnh/vxhP1cOXgqzh30O97760vBAQCkJKyW6vJWExJqTGZICuza5tJZZcCf9SPTtKRk5CDRX9w/FZ7AwkJq1lLjUdWVgs3NOxxdB5gfMJ4np2ylCu/vpw/rv8jC8YtZHKiUqVVp4PfnFHDb86oob5By2dfOPjf5w4++NDFW28nYzTITJnsZeZ0DzOme0hNifbHoe4zQvmDKb94MOUXXYZ5888kfriShFUrGfTFp7hNJkJbt4Fz79zRU8W8ioqKyj6iuQKs1+vlrLPOZNmy1/b3lFR2Q0yOUR4qIybimHV9rFh6oCEEuffdhdbrYeuCJxBGE0LAJ5+k88wzw2n06PjDuZX88Q8V7Sp5+mI+Ht70EG+X/ZuhtqE8MXExQ+xD+jaHYFDJkbF17zvf1mYys0nEd5cpE4wGickxUqwpJJgSDgq//71Nks1GdVUAGRMahwO83q6ravWSAlsBS6e+wJVfX84VX1/GPWPmcXTar9r1cSXEmXN8PXOOrycalfj6WyuffObkf585+PRzJ8yH4cMCirA/bICl40gSwWEjKB02gtJLr8L64/fE139Fjm3vpebtVzEvSdJc4DYgCGiBq4UQ63fRfxzwIGAGXMBHwHVCiHCbPg3Atx0+ulgIsaxNnwzgKSAVMAKvCCEe6peDUlFRUemGe+6Zxz33zNvf0+gzv7RzdlSOUhYsQyAwaw8SIQ8kv/kazs8+ofjq65SCOMADC7J4/c0URgwLsGhBEcM6uI6sq1vHnT/cTlWoigvyLuTi/EvQa/qYvhIKKzkyCa4um5ttJrVaSEtVAsfdifiYHCMQDWA32EmxpmDQ7t7GUkXBbrJhtnqIhMBktyvReSH6pUBSuimdZ6cs5S/f/pkbN9zA9cPrODP7rC776vWCaVN8TJvi49qrS9m23cgnnzn55DMHz76QxpKlAzgdR6PBP3oc1alucnbfu8/sNzEvSdIk4BVgqhDiR0mS5gArJUkaJYSo6KJ/JvAxcL0QYokkSUbgA+Ax4JI2Xb8VQszaxbga4B3gPSHEbZIkOYGvJUnyCCGW9NsBqqioqBxE/NLO2bIQlAZLkZAwafc8WnmgYCoqxL1oIY2HTKf6jN8A8M13Vl5/M4UTT9zB7dfXo2ujDILxIIu2PM4/i18l15LL0inPMyZhD/J/I1FFLKakdFmMKth0DZGUpNhMdheNFUIQiAbQSBrcdjc248GxIHlfYtKZMFsEjX7ApFN8/f2+fonOAzj1Tp6cuJibv7+RB36+n5pwDZcWXLbLhciSBPl5YfLzqjj/nKqDMh1nb7A/I/M3ASuFED8CCCHelSSpErgcJfLTkXNRrDSfbeofliRpEfCqJEm3CyEqezjuCcB44Oim/TRKkvQ0cKskSc8IoVpFqKioqHTBL+acHYlHiIooGkmDQXPwRHqlcJi8O28ibrWy45a7QJKIx2H+I1mkpUa44A+b0OlSW/p/3/g9d2y8jR2BHZyVfTZXDrlqz+5QxOMQi0JGRifryWBQSatJdClWk7uyPQ/FQkTiEZLNybjMLrSa3nukqyhVY+0WA/Uihizr0Nht4Gnst+g8gElr4sGxD3Hfz/fy3LZnqQlXc9OIW3p8V+egTsfpR/anmD8aeKDDtnXAr+j6D0MOUCOEkNtsK0O51Xs4sLwX4xYKIRo6jJsNDAN+7uF+VFRU9hAhhGoX14/s5VjEL+acHY4rWUAHk5AHyFr8GObCLWyd/xixxCQA/v1uEps2W7jvru2YTIpbTVSO8kzREp7ftpQUUyqLJz7F1KRpezZ4c3WntHQwtLeh8fuVVJrERNDvQuPF5Tj+iB+LwUKWPQujrhs7G5Ue4zQ6MFnqiUR0mEwGZQ1DMAim/vtudRodt464jWRDMs9ue4ZPaz7jhIwTmJN5EoNtg3u8n4M6HWcP2S9iXpKkRMAJlHdoqgCO7+Zj24F0SZIMQohI0zZ3h2ea+iwDMoAI8C+U/MtmT638bsZtblPFvIrKvkBALBZDv6u/3iq9IhgM7pXvUz1nD3wcX3xK6uuvUHX62XgOmwGAx6Nl0dMZTBzv41dHNVDZAFt9W7l9461srJRCKQAAIABJREFU8m7ipMy5/HXotdj13S9S7TGBgKLWO1jRhEJK+nxKyq5TaoJRJf8m056J3WhXgwD9hEVvwWSpwdu8RMJhB58XZWlK/yFJEpcOvoyxCWNZXrKcV3a+wks7/s5w+wjmZM7huPTjcRm6XkPR9f56n45zMFu+7K9Dazbp7Vh2LAx05yX1InAzcKMkSXej/GG5sqmt7T22rcCtQogtkiQNQsnRHIFyK7h57K7GZRdjq6io9DPxqExNTQ1paWlofon3RfsRIQTBYJDS0lLS0vZKWXH1nD2A0dXVkjvvDoL5gym9rNWG8qnn0vF6tVz35xJk4rxR/jr/KPsHdr2dh8ctYFbq7P6ZQCCgRHztjnab43ElYJ+W1r2QD8fChGNhEi2JJJmT1JSafsaoM2I2afAIgRASksGo+M2HI2Ds/ztT05MPZ3ry4dRH6niv4n3eLXuHhzbNZ+HmhRyefDgnZc7l8OTDe724uifpOAUFbmYcGmLaVC/jx/gxGA6eqP3+EvP+pueOl35GINDVB4QQVZIkHQL8DfgcaATmAf8B6tr0m9Pm9XZJkh4AnpEk6TYhRF3T2O3PKK3z6DS2JEkXAxcDpKWlsXr16p4cXzuisSieeAO+mKfXnx3IxGJRKuo7BtQObn6Jxwx9P+5wLITH0wgDMMi2P1OEhBCdLoCEEPj9fkpLS/fGkAPmnA17ft6ORqII5IPj/7IQTL7rTjQ+L+vuvgdfoA4CsH27jdffTOK443biSN7GdV8/wMd1H3NYwmFckXslTr2zf45flpUwatwPnspOTXo9bK7p7qMykiSh1+qpoNMa637B5/P16e/6QKftcUfjUSJRgRdJSZUXAqJRCOzdIMuR9tkcOWw22wPb+LB2FR/VfsTH1atx6BwckTiLo5KOYrBlcJ/Os7mD4dzBcM7vobjYxpq1qaxdm8xLr6bwwj/SMBrjjBpZx/gJtUwYX8OgQd69mmsfI8ba9WvRaPfOIP0m5iVJulcIcXNP+goh6prsyNI7NKUDhbv43CagxduoKYoD8P0uhitEkQr5KH9AioCO5RnT2/TtOOYSYAnA5MmTxaxZs3YxVNe8t+I9rDoHNvvBUTWwp1TUl5Puytjf09in/BKPGfbwuDvGXAcIlfvpt5bjMrW19Rz766P32ZgD6ZzdNO4enbfLtpex/tuvDor/yymvv0rq+nUU/+UGbBMOxYai1e58vgCbVeavV3jYISr5uO5jzkw/k+tH39h/F6mxmPLIyOhU4dXng+RkxWq+I4FoACEEqdZUHEbHXr1oXr16NX35uz7QaXvcjaFGtldX4am1Ym2WKRXlyopkw95Pg0x3ZXBI1mHcKN/El7Vf8G75u6ysfp93qt6mwFrAnMyTOD7jBFKMKX3af0YiTB0XpOL0tdgNWXz1rY016+ysXWdj6VJln4muKFMm+zhkipdpU7ykpfavQ051VS1TJ0/FdiAUjWqyBJsCpNH+NinAb1FuqfaUD4HJHbZNBt7sZmwDMEUI8VmbzTNRTvRfN/U5CrAKId5u0yer6Xln0/P/AVdIkpTQZkHVZKC46Q+PioqKikpn1HP2AMNUuIWsJx+h8bAZVJ/W6vH939VO1n1l54a/FuN0xHh8/WMkGZI4K+Ps/hPO8TiEw10K+WAQ7HbFtaYtkXiEUCxEgjGBZGsyOs1BnOR8AGHSmTA0FQdrMbJJSICKin0i5pvRaXQcnjKDw1Nm4Il6+KBiJe+Wv8OjWx7h8S2PcUjSIczJPIkjUmb12S7WapWZOd3DzOlKpkRVtZ4165rE/Xo7K/9PydsflBti2hQv0yZ7mTTRh80q72q3+50e/0+RJOlUlBxIC13fFO9t8tH9wGpJkkYIIX6SJOkElAVQTzSNdw/wa2CyECKEcpv13039qyVJSgFuBP7cxposG7hQkqQPhRCBpouPvwDLhRBVTX3eQylQ8hfgDkmSHCi3Y+/p5fxVVFRUfkmo5+wBhBQOkXfHTcRtdnbcfGeL1WAwJLHg8SyGDA5y6txaPq/9jG8avuGG4Tf1n59+s3NNSgoY2+8zElHy45OTW90PhRD4o350Gh25zlzM+oOnQNdAwKA1oNdpMJpkolENBgPK72YwKHdWdPv+osqhd3B69hmcnn0G2/3bWVH+LivKV3Dz9zdh09k4Ju1Y5mTOYaxz3B5dgKamRDnphHpOOqEeIWBrkYk16+ysWWfnX+8kseyNFLRawehR/pao/cgRAfQH2HVmb6ZzP0qxjzdRbn22vUyRgBW9GVgI8ZUkSb8D/i5JUnM1wWPbFB8x0f7CIQisBb6QJKmkadsNQoh32ux2FTAR+EiSpBBgB/4L3NVmXLmpiuFTkiR90TTOErVglIqKikr3qOfsgUXWE49g3lbI1ocXEXMltmx/6ZVUKioN/O22LWi0Mou2PE6W2c0pWadQ29hN8npvCQSUyK61fUpBXFZqRmW72/vIeyNeki3JJJoT0UjqYvh9jSRJ2A12gjYfDTVmRcxLErgSobJiv4j5tgyyDuLywVdwacFlrK9bx7vl7/Cf8hW8WbqcHEsOJ2bM4cSME8kwZ+7ROJIEQwpCDCkIcc7Z1UQiEt99b2XteiVyv2RpOk8/l4HVEmfyRJ8SuZ/iJTcn3F+2/H2mN79QVAhxS3eNkiRd1dvBm26tvt1N27XAtW3e+1GKh+xqf8XAbuchhCgD5vZqsioqKiq/cNRz9sDA8fn/SF2+jMozf4fnkOkt28sr9LzwUhrHHFXPpAl+3itfyWbfZuaNvrfX7iHdEgopbijO9snwQkAwAOnpihVlM8FoEKveSpI5SbWb3I/YDDZq9A3tN5pMSopUPL7rKl77CI2kYWrSNKYmTeOG4TexqvJD3i1/h8WFT7K48Ekmu6YwJ3MOR6UejUW350ZXBoNgyiQfUyb5uPySCho9WtZ9ZWuJ3H/8qZInlpYWYdpkb0tajssV382e+5/eiPkNkiS5hBD13bS7u9muoqKioqKisg/Q1daQO+8OAoOHUPanK9u1LVyUBRJcfXkZUTnK4sInGWobyjHpx/bP4OEIaLTtc2iaCATA5VKKQzUTk2PIQibdlq4K+f2MUWdEp1X0ezTaVLxLksCVANXVtK6MPTCw6qzMzTqZuVknUxosZUWZkoZz5w938MDP93NU6tHMyTyJSa5J/Xa3x+mIc/TsRo6e3QhASamhRdiv/sTJ2yuUQmzDhgSYNsXL1Mk+Joz3YTLufQvM3oj55cCbkiS9CWyhsyXYLSg59SoqKioqKir7Glkmd94daAMBttx5H6JNCHzdVzZWfZTAn/5YTnpalNeK36Q0WMJjEx7vH7ETj4McVxa8dvCCD4XAZFbEfDNCCALRANmObPRatXDc/kan0WHUGjFbY9TX6lor8ZotoNUdMNH5rsgyZ3FxwSVclH8x3zZ8y7vl7/B/lf/Hu+XvkGHK4ISMEzkp8yT09O+/M3dWBHdWLaf9upZ4HH7ebGbNWjtfrrPzymsp/P2VNAwGmfFj/YweYWPSoWBz7n6/faE3Yv61pucjmp7bXmpI9H4BrIqKioqKiko/kfL6qzjXfM7Ov95EKK+gZXssBvMfySIzI8y5v60iEAvwbNEzTEyYyGFJ03exxx4iy4piT08HfftCQ7FYU2Go1PaFofxRP0nmJKyGAyvi+0vGYXIQjNQh2kpDjUaJztfWKulTBzCSJDHBNYEJrglcN+x6Vld9xLvl7/L8tqU8t+1ZhltHMDt9NlMTpzLSMapf3ZK0Whg1IsioEUEuOK+KYFDD199aWbNeidy/+XYOCx+N7H5HfaQ3R1II/LGbNgl4Zs+no6KioqKiotJbzFs2kbX4URqmz6TmlDPatS3/VzKFRWbm37sNk1HwXNEr1EZqeWjcw/2T3hIMQlKSEn5vQ7PGz8pqv4YyFAth0BhIsiTt+dgq/YZZZ0arlTEaOgTiLRaoq1N+0AFSrdukNXFcxvEcl3E8VaEq3qv4DytK323Jr7dqrUx0TWJq4lSmJE5lsK1vxam6w2yWmX6ol+mHegHYsaMBjaajs2//0Rsx/4oQ4uPuGiVJeqIf5qOioqLSM2IxzNuLCOXmIfTqbXqVXy5SOMSgO28m7nCy86Y72uWr1zdoWfxsOtMme5k9s5GGSAMv7niRI1JmMTZh3J4PHgiA3aE8OjYFlfR5cxuNH5fjRONR8lx5qnPNAYZRZwQJbDZBfb3UGojXaJWiAI2N7X/MAUKqKZXzBp3Psc5jMVpNrK9fz7raNaytW8v/aj4BINGQyJTEqUxNnMrUxGlk7qEzTkcs5r27KLbHYl4Iccdu2h/Z8+moqKio7BpdfR1J77xFyr/ewFBZQcxmo3H6ETTMOgrPtEMRxn7yylZRGSC4Fy3EvL2ILQsXt7OhBFi8JINAQMu1fy5BkuD57UsJxPxcPviKPR84FFasadomwzcRCIDd1rkwlD/qJ9OWiUFr6PQZlf2LRtJg1VvxGiPIwti+0WaDhoY2VaUGJi6Di1+l/Ypfpf0KgPJgOevq1rK26bGy4n0AsszuJmE/lSmJU3AZEne12/1ObyvApgE3Ab8CkoEa4APgfiFEZf9PT0VFRUXB8tMPpLzxT1yrVqKJRvFMnkb5+Rdh3biBhP+tJmnlCuJmM55DD6fhiKNoPGwG8gGe46misqc4/7ealDdfo/Lsc/BOPaRd28+bzbz5dhJnn15Dfl6YilAFrxUv48SMORTYCrrZYw+JRhVRl5LSKfUiElHcUDqa2vgjflwmFw5T5yi+yoGB3WDHH6lArzMSl0Hb/NNqdcqVmcczIKPz3ZFhzmhxxRFCsM1f1CTs1/BB5Qe8VaoUuB5iG9Ik7Kcx0TURq+7AWuvRmwqw+cBngAvYBmwFEoFLgbMkSZouhNi2V2apoqLyi0SKRHD99wNSli/D+uNG4mYLNXNPpebUMwkNygegdu6p7IxFsX/zFQmrV5HwyUe4/vt/yAYDnmmH0TDrKBqnH0Hcbt/PR6Oi0r/oaqrJuf8uAkOGUXZJextKIWD+wiyczjiXXKjU9VpS+DRCCP5U8Kc9GzgeVxR7ZqYi8to2yYrOz85ub34SiUfQSlqSLcl7NrbKXsWkNyEQOBxQX99hzavNpqTaDPDofHdIkkS+rYB8WwFn5/yGmBzjJ+9PLZH710te5+WdL6OVdIx2jm6J3I9xju2/Og19pDeR+QeB/wDXCyFqmzdKkpSEUh12PnB6/05PRUXll4i+soKUf71B0ttvom+oJ5QziOK/3EDt8XOQO1SVBECnxzvlELxTDqH4mhuxff+tIuw//i8J/1uNrNPhnTxVidjPmNUpFUFFZcAhywy653a0wRBb7rwXYWiftrLywwS+3WDj1ht2YrfH2ebfxjtlb3N2zm/2rFKmEMqq1pRUMBg7NQUDijtl2+nIQiYcC5ObkItWc2DaG6oo6DV6dBodWpOMLDqsadDpwWZXcqhMxq53cBCh0+gY4xzDGOcYLsi7kFA8xIaG71pScp4repZnipZg0piY4JrYsph2mH3YPl8P0hsxP0kIkddxoxCiVpKkS1DcblRUVFT6hhDYvvmKlDdeJeHTj0EIGqfPpPq0s/BOntYuEhQOK2W2f9pkYVBOiLGj/a1V97RafOMn4Rs/iZKrrsXy0w+4Vq8iYfUqch+4GzF/Hr7xk6iffTQNM2cTS07ZTwesotJ3Ul97Gce6L9l53S0td6maCQQ0PPpEJiOGBZh7Yh0AT25dhElr4oK8C/Zs4ObqT10UEfIHIDGxc5Mv7CPNloZJp65nOdCRJAm70Y4HLzqtubOBjcMOXg9w8Iv5jpi0ppYKtADeqFdZTFunLKZ9dIuydNSpdzLZNZkpiVOZljiNbEvOXp9bb8S83F2DEEKWJKnbdhUVFZXu0AQCJK5cQcryZZi3FRJzOKn8zbnU/PoMIhlKBFEI2LrVxJfr7Hy51s4339oIR9pHPtxZYcaO9jNmtJ+xowMMzg+i02kIjBpDYNQYSi+7GvOWTSSsXoVr9SpyHr6P7AX34x8zjoYjjqJh1pFE0vvXwaA/kUJBjGVl6EuKlYWHvz56f09JZT9h3vwzmYsfo2HGLGpOPq1T+/MvpVJVbeD+u7ej1cLGxo38t+q/XJL/pz1byBcMKqkWjs6Vb0IhJZW641rYQDSA3WgnwZTQ93FV9ilWvZWGYAMOh5Iib2p7DaY3KFdrofAvIjq/K+x6O7NTZzM7dTYA1aEq1tWva4ncr6paBUCaKZ2x5nFMjL2EjS7uLPcDvRHzxZIkXSaEeLJjgyRJVwDF/TctFRWVgx3jzh2kvPkaSf95G63fR2DYCLbffBf1Rx+DMJqortGx5j2l4Maa9XZqa5WcxLxBIU49uZZpU72MHuFn2w4TGzZa2bDRypdr7fxnpSJWzOY4I4cHGDs60CLyGTqc4NDhlF98OaZthUoqzupVuB9/GPfjD+MfPpKGWUfRMOsowtm5+/YLkWX0tTUYSkswlpVgLCvFUFba8lpfW9PStW7UWLjzhn07P5UDAikUJO/Om4k5E9hx4+2dcpeLSwy89GoqJxxbx7gxAYQQPL7lMVx6F7/LPafvA4cjill8YlKnMWMx5TkttX1TNB5FQiLNltavHt4qe5dmi0qzGerqu+jgcIC/nF9idH5XpJhSOSHjRE7IOBEhBMWBnS3CvshbiEm79+5M9UbM3wp8KEnSVcB6oB5lAexkIBc4qv+np6KiclARj+P48jNSli/DueZzZJ2OhiOPoeq0s6gtGMs339n5cokSfS8sUhwTXAlRpk7xccgUL9OmeElLjbbbpcvlZ+J4P6BE8EvLDGzYaOX7jRY2/GDl76+kEo8rQiLb3SZ6P8pMwbkFVPzhYowlO5X8+o8+JOupx8l66nECg4c0ReyPJpSX3y8LvjTBIIbyUoylJe2EuqGsBGNZGZpIuKWvkCQiqWlEMt00HjqdSKabcGYWofQsys1Wjtzj2agMRNyPPYxx53a2PrKYeEJnS8iFi7LQ6QRXXVoGwJq6NayvX8e1w67ruwNHLAZChtSMTs41zYWh3O72haGEEASjQXIScvq10qbK3ken0WHQGJC0MTSSrnOqjdGkKP1wBIyqxWhXSJJEjjWXHGsup2efQXVV7V69oO2Nz/ynkiQdjbLY9WxAg5J68wVwgRDis70zRRUVlYGO1tNI0op/k/Lm6xjLSogkp1By4WV8Nvo8Pt3kZs0SO99usBKNajAYZMaP9XPicWVMm+Jl6OBgj4sOShK4syK4syKccKwSUgoGNfz4s7lJ4Fv5/Es7K95vjd6PGhFg7Oh0xowezZiHLiQ1VELCx//FtXoVGUufJvO5pwjlDKJh1lHUzzqK4NDh3Qt7WUZfU42xrARDaUexXoq+rrZd97jFSjjLTSg3D8+hMwhnZRHOdBPJzCKSnklE0lNfr6e2VkdNnZ66Oh01X2kxGRs48vd9/jlUBijOTz4i5d/Lqfzteco6kg58vsbOx/9zcuWlZaSkxJCFzONbHiPDlMFp7j76U8gyhMOQnq4sgOxAIACpqR1SMQBfxEeyJRmLXrWHHYg4TU5qAjXY7Tr8/s6/L04nVFSoYv4AoVeXy0KIT4HDJUkyo0Tl64UQgb0yMxUVlQGPefMmUt5cRuIH76EJh/hp5PG8PXUJH3mmsma5k4bnlFPQ4IIgZ51ew7QpXiaM82E2iU77koVMZaiCQl8hRf5tFPkLKQ+Wk2xMxm1247a4cZuzcVvcJBuSW6IgZrPMpAl+Jk1ojd6XlBr4/gcrGzZa2LDRyosvp7VE73OyhzBm1DTGHXsVEy4sYdL2d0n65EPSXn6B9L8/Rzgzi4YjjoRcN6n+SItQN5aWYKgoQxOJtMxZaDRE0tIJZ7ppnD6zKbLupsJZQLkxl6qIi9o6RazX1uup3aCjdnWreG9s7PoUPWmCenv7l4a+uorc++4iMGwEZRdf3qk9GpV46JEsst1hfntmNQAfVn7Iz96fuGvU3zBo+iC6hFDy5FNSwNTZWzwQUDSdo4NtfDAaxKK3kGRJ6v2YKgcEZr0ZWcjYbErefCdMZqVgWDSqFBVQ2a/06d6XECIIlLbdJknSk0KIy/plVioqKgOXWBTX6v+SsnwZbNjMKv0xrMh+g1XBGRT96IAfISkpyvRDPEyb4mXqZC8pybGWj8tCpixYQZGvkCJ/EYW+Qrb5iyjyFxGMB1v6JRuSyTRnsqHhOz6oWIncZo2+WWsmy+xuI/LduC3ZuM1uMkwZZLsh290+ev/DTxY2bLTw/UYrn33paIreZ2O1TGXUyBsZd0Yth8U/Zda2l8l5/VXSmhKF41YboUw3FdljKRlzNmW2fMoMuVRoMqmMJVFbb6CuTk/NJh21n+upb9C1XDi0xWiQSU6OkuiKkZ0dZvw4P8lJyvukpBjJiVGSkmIkOMP4fbWAugD2F4Msk3vPbUiRMNvuuBfRhXhatjyZHTtNLHywCINBEJWjLC58ggLbYI7POKFv4zar9S7sYMNhRcMlddDrcTmOLGTSbelqnvwAxqA1IEkSBoMApK6t5RNcUFmhivkDgF2KeUmSsoCwEKJGkqTd3dTt49lCRUXlYEBXU43rX2+xc/lW/uOZykrDk6zRTCYa1WEslZk43sfc00o5ZKqXwfkhBDLloXJ+9hXxn+2FFPmKKPIXss2/rZNoL7AVcHLmryloKuiRZ83DqW911IjKUcqDZZQESygJllAcKKYkUMzOwA6+qP2csNyai66VdGSYMlpFfrPQH+LmN+PcXKA1t0TvmxfWfr/RwnOv5fKMPAg4h0HuABmOSrzxJGobjdTu0BPZ0jkXSKsVJCVGSUqMkZwUZfjQYMv7pKSm56bXVovco7R8OS7w+/bkl1IZaKS++hKO9WvZccNthHMHdWqvrdOxZGk60w/xMOMwJYz6dtm/2RnYycLxj6CV+uDtHgoredFd5OXH40oafXZ2+1xqIQT+iJ8sRxZ6rSrwBjIaSYPNYCMcC2O1GgmHlUB8O0wmxd0mFmu/YEJln7O7b/8blGqv04AXdtO3831xFZWDGF19HebCLZgKt2Iu2oK5cCsjaqoQriSirkRiCS5iLhexptdRV2LL65grEXmglsSWZbR+P1KjB39VmIYdATb+u4LntwxiFfdQj5KPPiw3wG+n1TJ1ciNpQ7ZSHN3KNn8RL/kK2ba2qJNoTzGmkG8t4NdZp5BvLSDflk++NR+Hfvel3/Uafctio07TFTI14RpKgsWUBEooDipCvyRYwgeNP+CJtb+HnGxIboniu4e6GT8umzkWN0nkULIlk40/WPn+ByvFpUmkpkBunr8pet4q2pMSYyQmRnE64rvM9xdCEBdxoiKKNxYlIkeIylGicoSoiBGRI8Tkpu0iRlSOEo6FkYISx6qR+V8E5k0/kblkEfVHHEntSad02eeJpzMIhyWuuaoUSYJgPMiSwqcZlzCeGckzez9oJKqEYVNSOoVjmzNvMjPbF4YC8Ef8JFoSsRvVassHAza9DV/Yh8NhpLy8CzEvSZCQANVVqpjfz+zu278EaP5L9xPdR98lYEV/TUpF5UBCEwxi2l7USbjr6+vwYGcjo/nOPI3vbL+hhHRcDT4SampJiFaTGCrHFa0hgR04aSSBBpw04qQRmzEMLoci8NsJfleL4G+5KEhwITqdSfuIEGhCIbQ+L1qvF63Xg9zox1cdw1Mdp7FOorFBQ4NHT4PXQEPARF3QSn3ERl3UQa3sopYc6khE0KpU0801TD7iR9IP2YQhayMV8hbW+opY5tlGaF2opV+qMZU8az6nZJ1KnjWfAls+eT0U7X1BI2lINaWSakplomtSp3ZP1NMi7ttG9dfWreHd8nfa9bXpbLiHZeOe4Ga0MGMwGIjJUWrkKOUi2irE62NEajsKcUWoN79vbhN9iINMsE3kOv7a5+9EZWCgCQbJu+MmYq5EdnZhQwmw8UcL/343id//tpJBucodqGU7/0lNpIb7xz7Y+1SXeBxiUaWMaxfVWpsLQ1k6rGsNx8IYtAaSLcm9G0/lgMWkN4HUKuK7TLWxWJSF0fE4aNXqvvuLXYp5IcRbbd7OF0Ls6K6vJEnz+21WKir7g1gMY2kx5sKtmAu3YC7aiqlwK8ayEkLCyM8MZ4N+At85LuZ7/Th+shdQ6m26BR0EC3ESk4JEIwa8QS2B4G5ObGGwVgdx1nlx4sEp15MQryFBNLQR/SUtr+3GMFa7wJ4AlkQt1iQ9xmQLsURF8KPRoPV5iTYE8dTKNNZpaGjU0ujV0+AzUh+wUB+2UhtxUCdc1JJEDQXUkkQj3Rd0MUkhEvUeEo0+nE4/ea5i8tM+QU7ZSSixBJ+jlJqE7VSKYv5PbhLtpYpoz7cVcKrrNPKt+RTYCsiz5mPXH1hRO4fewUjnKEY6R3VqC8VDlAVLFaEfKKEkWExxoJjN3k3UhmsxaAwYNAZ0Gj0GjR69pEevMaDX6DFoDNi01qY2ZZvS3vpeJ+la2zQG9F28b32tfE4rtMR88f3wTansa9yPzsdYspMtjz5NvItCTbIM8xdmkZQU5cLzKwHl4vSF7c9zePIMJrgm9G5AIRSfybR0MHQOHoRCYLV0LgwlC5moHCXXmbvPy9ir7D0MWgM6SQdSHLNZSzTa+W4MkgSuBKip6XyFp7LP6I015QtdbZckKUEI0dBdu8ovD8tPP5DxzJPkNdShSUoh5kwg5nQScyQQS0gg7nC2bnMmEHcmdLmga68hBPqaakxFW9sL9+1FyJE4WxnMV9JYvrPPZYNxIj84hrHdk4IsNBAFvUcmLzfM2PFBTskvoyA/xOD8EOlpEaoay0l3ZQBKGqE/oMXnUx5enxafX4PXq8Xn17Y8K+3J+Hxp7PRp+NGrwefV4A3oiMbaXBCEmx6ttYPQEsOBhwQaiKOlliT8u6gwZ9UFSbT4cFmCOK1hRjvCOJ3FOBN34EyUsKdosadqkRJq8RuLaNBupyK6k5JAMcXBYjYgCqs4AAAgAElEQVQEivHGvC37k5BIM6WRachkRsJp5NsKyLfmH5CivS+YtCblmGwFndoq6lt/632JHJepjdTt83FV9i0JH31I8jtvUXHO+fgmTemyz4r3XWz80cpdt+7AZlUWgL+w/Xl8MR9XDL6i94MKoYTdu0gBjHafeYMv4iPTlqkUG1I5qLAZbXjDXpxOMxUVXYh5ALNFWTyhRuf3Gz0W85IkzQTOBz4QQvxTkqQRwHtAtiRJ3wInCyFK9s40VQYCuvo6Mp96nKQV/ybmSqQxJxtjdRXmwi1oGxvQhkLdfjZuthBLSCDmcBJvI/Rjzmbx7yTmdBFzOok3vZZNpt0W8tH4fZibRLupaGvLa62nkR3k8i2j+c4yjQ3mK/jBMpwt8SwicR0I0PgE2c4wBSNDHJVfRUF+kMH5IbLd4S7TA6NylLpoHc54AiaNCZ1OwumI43T0PYoaDkvKRUDzxUCbiwKfT4vPq8FfL+Ov0yEhcCbV4Eiuw5kIzoQ4Cc44TmeMBEcMpzPe5EygRNKqw9UUB4opDuykOFjMTwEl6lwSLCHga3Wc1UpaMkyZZFuyGZ0xhmxzNm5LNtmWbLLMWRg0hv0mbFVUDkb0VZXkPHA3/uEjKf9j1yZxPr+GxxdnMnqkv8WVqSpUxT93vspx6cczxD60d4M2q3V753Q3WVbqA7mzOqdGByIBnEYnDtPeSZNT2b/YDDbqg/WYd3WdptEorkf19Wp0fj/RmxULVwMh4Lum948DNuBalAWyDwC/69fZqQwMYjFS3nqNjGcXow2GqDr7HMr/cDFlEW87gSeFQ+gaG9E1NqD1NKJraEDnaUDX2Ii2abuusQGdpxFjSTFaTwM6X/e2HbLB0Eb8N0f/nchmM6binZgKt2CoKKeKVDYymg36iXxnPYMftKP5ST8If7Tp7BSANHuEwUOD/Ca/loL8EAX5IQblhjAZO+czx+QY2/zFFPkKmzzPiyjyFbIjsIOYUOwKtZIWq9aKTWfDprNh1Vmx6extXtvatCnP9g79LFoLRqMOozFGclKs0zx2R1zEqQxVUhzYyXeBYorri1vywUuCJe0cXnSSjiyzm2xLNpMSJ5NtVsR6tiWbdFMGeo3qTKGisk+Ixxl0921IsSjb7+zahhLguRfSqK3Ts/DBopZF1s8WLSEu4vyp4NLejxuJKFHVLgIkgQCkpXUuHBSJR5Q1KdbU3o+nMiAwapW/kzqd8vt3aytvs0FDA53LxarsC3oj5guASUKIuCRJbuBI4DIhxFOSJOmAb/fKDFUOaGzfrCd74YOYC7fgmTyNkr9cT2hQvtIY8bbrK4wmoqkmoqlpPR8gFkXn9aJrqEfb2IjU4CFa4ydSFyRSFybUGCHcECVcLxMqlgn6Bd6wmR8sR/O9djw/mvKpCzWle0QhgRiD84LMyfcwOD9EQX6Q/LwQdpvcaei4iLPDX0Khv1DxPPcVUugvYod/O1ERBZQ0k0xzFgXWfGakzMQsm9AbDfhiPnwxH/6mZ1/MR1W4kiJ/Ucv7uNi9QDdrzZ1Ev01na3eh0PwIxoMUN+V0FweKKQ2WtFxcABg1xhYbxkOTD2sj2HNIM6X1zb5ORUWlX0l79e/Yv17HjpvuIJzd2Z0JYPsOI6+8lsLJc2oZNUJxhNrp38G/yv7F6e7TcVvcvRtUCEWAdSHC/H4l6GrvkDUnC5lQLMSghEFou1goq3JwoNVoMelMRONR7HY91dXdiHmNVqke5vF0maalsnfpjZiPCSGa8wXOAILAywBCiJgkSZFuP6ly0KGvqiRr0QISV31AOD2DonkPKVUxm6I6obBEdbWJoMdIKKghGNIQ7PAcCmoIhdtu17Zsb9e/zbZIpGdX/JZYnIKcEDPzQwwuKGnJa090dRbQcRGnOFDaEmUvbBLu2wPbicit/6wzTZnk2wqYnjy9ZUHnIGseZm3riaun6SZCCMJyuI3o9+OLedu89nV6+OPK9opQRctFQltrR1DEf44lh8G2wcxKndUk2P+fvTMPj6Sq/vd7et+zTbbJ7GsygyA6IuhXVhVFBERFAVEUARFZRQT1h7uyg8OwgyIgKgIqKoIsDpso+zZJZt+STGYyk8kk6e70UnV/f1R30tlTWSbJ5L7Pkyfpqlu3TiXp26dOfc45s5gZmEmxt1gnp2k0ExirDOUt7D7io+z61PF9jlEKrltegderOPfsbZ3bb1l/Cx6HhzPmnmn/xIkkhMLQ0v1JaLa2eM/GUGCVoSwNluJz+Xrv1OxTRLwRdsZ24ve7B669FQ5b0fk+y95oxhJbzryIHIJVd/484M9KqTYAESkBbD+HF5HjgP+HdWPgBC5QSr06wPgDgKsBP1AA/Bv4jlIqkdk/D7gYOACr7n0QuF0pdUfOHHOA/wK1Pab/oVLqWbvXMNWQZJKSP9xH2W/vQkzFtq+dTeOpX0FlWn2n0/Dgw8XcdlcZ0djQojVer4nPZ+L3mfj9Xd8LC1NdrzPbfL7M2B7b/T4TX+Z7MGAwbVq611piKpO6WAMbouu7Oe6boptImF16/jJfGfOD8/lg0cHMC81nftBqUhRwjZ4WUETwOX34nD6meYdfyi1tpokZMdrT7XgcHoo8RbrrombM0Gv22FL02KOYbhdbLv1//TpDz/8nwn/+G+Hi8+opKrSCEzWt1Ty5/V+cMffrFHn78LwHw0hbZWpacjYZ1tf06b0D9vFUnJAnRL6v/ypYmn0Hv9uPQuF2g9czQJ6r0wWRPIi299ZkacYUO878T7EWYjeWdv6XACJyBnAp8LSdE4vI+4EHgIOUUtUicizwhIgsVUo19jF+OvAscKlS6g4R8QL/ApZj1cMH+CYwGzhKKZXMfJD8T0TSSqlf50z3uFLqdDv2aiDyn+eZ8atr8NVtpeXQI6g779skp1d07n/rnQC/vHYma9f5+dDBrSw7aDOlheE+He7O1z5z1OV1pjLZ1tGYcdjXd0baN0Y30pHjtJd6S5kXms+ygmWdnUXnBecRdAVH16AxxOVwEXFExqxGu0aTRa/ZY0+gZhWxxVUYkb7fz8mkcN2vKpgzu4OTPtfUuX3FuhXkufM5bfZgjdr7wDCsLp7eLucr2xiqoqK3pCJtplFKURoq1YGDKYLX6UUQlFKEw0Jz8wB5rpEwtO7R0fm9jJ3SlP8QkSXAgcArSqktmV0bgV8AK22e+3LgCaVUdWb+v4vIduBcrMhPT04DHMBdmfEJEVkB/F5ErlBKbQe2Ao8qpZKZMW+JyNNYibm/7mNOzRDw1G1l5vJryXvxOTpmzmbt9TfT9sEPde7f3eLkplun89e/F1FakuSan2/kiMP2sL1lbCqcpMwUTYkmGju2sS2+jcaOxsyX9XNDvKGb057tLHrijIld71yjmeDoNXssSacIrF1D04mf73fIAw8WU1fvZcX163FnPr1fbn6Z/+56iYsWXTy8NS2RgGndnw5GY5a0pqf0WSlFNBlldv5sXA7d8XOqICIEPUE60h34/T7MgbQ2Lrcl2YrHwadLle4tbL0blVIbgA09tj0DICKfAPptKtUHH8WqgJPLK8DH6PuDYRawUymVm6nYgPWo9/+Ah5VSv+rjuDjQu9uGZlAc8Til9/2a0gd+i3K5qfvmhTSddEpndQXThL/8vZAVt06nPerkK6du5+unbycQ6J1MOlSUUrSl2zod8y5nvctpb0o09eqaWeAuoNxfzpzgHA4uOoS5wbmdkXYdtdZoRgW9Zo8h/g0bcCQTxCqX9Lm/qcnFXfeUcthH9nDIB63iAkopVqy9iVJvKZ+fcZL9k6rMOprjtcfjluImvw8FTTQVpThQTMCtyw9ONSLeCO3JdkJecLvAMMHZ31P1SBja2wDtzO8tRvPW+hfA40MZKCKFWIv1th67GoFP9nPYJqBMRDzZKA4wo8f3nucRrLKZPbvTVorIo1gazihwr1LqgaHYPiVQivx/P8WMFdfj2d5I88ePof6bF5Aq7io/VrvGzy+vmcG71UHe9952Lvu2lWQ6GLlR9axzbjnsXa9jRqzbMW5xU+Yro8xfzsFFh1g/d36VU+orxefU+jyNZqzQa/bYE6hdBUCsqncnYoDlt07HMISLz6vv3PbvHc+wqvVdrljyw84SgrZIJCEYsiqR0FXUpqSkt0KiI92B1+mlMFBo/zyaSY/X6UVlbv4ikUFKynu81s5E0hLZa8acAZ15EfkTUK+UulBETBg4kdkGWVFyosf2BNDfv8dvge8Bl4nIT7E+WM7L7Osv0/IMoAm4NWdbB9aHzIVKqUYReS/wpIhUKKV6foBMOXwb1jPzhqsIv/4KsQWL2PjDXxA9oKsleFu7g9vuKufBh6eRn5fmJ/9vM8ccvbvXwv9Wy5u8suNlYjvjNMa3sS3jrPcXVS/zlTE7OIcPFh1Mua+801Ev85VR4CnQVVg0mvFFr9ljTKC2mnQ4TKJiZq99b74d5LEnCjnjK43MqLDui9JmmpvX38zc4Fw+VX7s8E5qpCFk/WmVsr7KynonNxqmQdpIM6Nghl6Lpyhupxu3w41hGvj9TnYN1oQ6Lw+2bdPO/F5isMi8E0vzCLAduK2fcQKcZeO80cz3nqEELxCjD5RSO0TkYOAnwH+APcDPgceAXv9WIvI+rMTcjyqVKQpuzdMIfDHn9ZsichvwfXpHgxCRs8hcW2lpKStXrhzaFeaQSqdoNVpoT7faPnZv4YpGWfjA75j9t0dJBwK8e8432fKJT1qr+u5tKAXPPlfOXXctoqXFyzHHbOG009YQDqXZnlMBYVdyF7dvvZ0Xd79gzSsuSjwlFHuK2T+0P8WFJZR4rdclnmKmeYrxOvqJKJmQiiXZEdu+F34Do0M6naJxd8/g5b7PVLzucbtmpUhjDGstGgGTZs3OzDWidTuVTKEw9+rfd/67b9Iyfz6NLd1ziQ0DfnHthygq6uCYT79N426rQvQTTU+wKbqR78//ATv3NPU15cAoZYXnGmKdL81UB+veXtVrqGEaeJweGqTB/nkmOO3t7Xv7vTQhGM51p800hjJwiINkAtoHu69LpSCxZ8Ikwo7n51SaNC+/+jKOfrVJI2NAZ14pdWLOy5eUUj/ub6yI7D/UkyqlmkWkBSjrsasMWD/AcauBL+Scc07mx3d62LIYuBc4ISdRdyDWA3kiMk0ptbPHOe8A7gBYtmyZOvzww4cwXXf++Y9/EnRFCIUnYJUU06Twn3+j4tbluFp2s/O4E2k461yM/ILOP87GzV6uum4Gr7wWZklljOXXrGFJVRwo7pzGUAZ/2vogt6y7mbRKc+6Cb3Fw8GAqi6umVCRnqHXm9zWm4nWP1zWbhsmuXc0MZy0aLpNpzc6cd0TrdsOmBl5987W99veVRILIps1sP+XLvc75yKOFrF+fx89/tIk55ZbUscPo4I/v/IGlkf34zNwTh1dVJh63hPERKz2hPQrxnatY+oHuMp9oMkrEG6E0ZKPZ3yRi5cqVe/W9NFEYznXHUjHqWusIeUI0N1v9oQasQNkRh8ZGCE4M32c8P6eaduzioGUHEcoLjcn8dqrZnDiS/X3wFLCsx7ZlwCN9DRYRD/ABpdSLOZsPxUrIfT1n3GzgIeDL2aoLInJWtm6xiJwCrFdK/S9nngqs6NIum9cwqQnUrGLm9VcRrH6H9v32Z911K4gvrurcH+8Q7r6njPt+X4zfb3L5JVv5zHG7ej2CrW2t5ec1P6W6tZqDiw7hssrLmRmYSePubVPKkddo9nH0mj1G+NetQYw00R56+bY2JzffPp337t/O0R/tegT6p60Psj2xnR/v99Phl4c0zW6iZwEcPaZKpBO4HC6Kg8VoNF6nt1Ns7fdD8+7BDvCBx2NF6PtsG6sZLYbszIvIfsDXgJRS6rs526/BKlf2lM1zXwmsFJEqpVSNiBwDlAM3Z+b9GXACsEwp1QFEgL9mxjeJSDFwGZaOUmWOKcf6wFkBOEQk+8FzOpkoDbAIOF5ETs10rp2O9Tj21uw8+zqu3c1Mv30FRX//C+mCQjb94Cc0H/2pbp1Bnn0+wjU3zmBbo4djP9nMBec29OqeGkvHuG39Lfx+y+8p8BTwi/f8ko+XHq1rD2s0+yZ6zR4jgjWZ5NcelWxuv7uM1lYnl15U36lUaEu18ZtNv+aQog/xgcIPDO+EiaQVLXVZDlYyaTlnHTlLt6lMkkaSOflzdFBGA4DT4cTn9pEyUvh8bhxi3RP22ytGBAoKYXujdubHGDvVbM4HPgJc22P7O8BtInKpUqrPCE1fKKVeE5FTgXtFJNtN8Oic5iM+rMSq7PISB14GXhKRusy27yql/pYz7U+ABcCNPU6XWzLzQeA7wAsiksRK7LqDfrSX+xTpNMV/eYjyu27BGYuz4wunsu1rZ2MGux77NGzzcM0NFTz3Yh7z58a58+a1vO+90V5Trdzxb66uvYrtie18dsbnOG/B+bpuu0azD6PX7LEjULOKVGERqZIuKcv6DT4efGQanzluF4sXxTu337f5Xvak9nDugm8N/4TpFEzr6hSbSkFhIezuKpRDNBmlLFSG16XLC2q6yPPmsT26HbfTTTgM0eggUhufz7pp7LdtrGY0sOPMHwwcqpTqlmmjlLpXRJ4BHqafx639oZR6FHi0n32XAJfkvI4Cxwwy35nAmYOMqQa+asfOfYHQm68x8/qr8K9fS+uyD1J30aV0zJnXuT+ZFO7/fTF3/bYMh0Nxwbn1nHxSU2djkiyNHY1cXXsVzzatZEFoIVfufxX75x+wl69Go9GMB3rNHhsCtdVWScpM+F0puPZXFQQCBuec2ZWwtzOxk99tvp+Pl36cqkhVf9MNjGmC09Wt4yt0d8hiyRgRb4SIV/fo0HTH5/J1lqgMhSzd/ICIQEE+7Nw5QC1LzUix48yrno58zo46EdGFvicg7qYdVNx8A4VPPk6itIwNP7uGlsOP6pZd/vKrIa68bgabt/g46vAWLj6/nrLSVLd50maaP279A7euvwVTKS5YeCEnzzoFt0M/OtNoNJrh4ohG8W3eyO6jPt657d/P5vHyq2EuvaiOgnyjc/vdG+8ipdKcM/+bwz9hMmkVCs98BqRSmeBpxhtIGSlEhJJgiZZManrhcXpwiAOlFF5v183ngP8q/oDVy0BH58cMO858SESK+3LoM1rIsUnR1QybwsceZeb1VyKGwbavnkXjl05H+bo6/TU1ubhhRQVPPFXAjIoEN123ng8d3NZrnlV7VvHzmp+xuq2WD0/7Py6rvJzp/ul781I0Go1mnySwpgZRqlMv35EQblgxnfnz4nz2hK5CPXWxOh6ue5gTKk5gVnD28E9oGN0ipMmk1SQqSzwVZ3b+bJwO7XRpeiMihDwh4uk4PpePUAg6OsA7kBrL4bCi87t26ej8GGHHmf8T8G8R+TnwKlad4AKsagbfA/44+uZphounvo5Z1/yCaNUSNn//JyQruhouptPw4CPTuO3OclJp4ayvNXL6l7bj9XbPJWtPt3PLupt5cOsfKfIUcdX+V3NUyUd1tEaj0WhGiUBtNdDV+fW+B0po2ObltuXrOqPlALeuvwWXuDhz7oCqpIHJhuHd3Rv5ZCU2pmlSEirB7/b3cbBGYxH2hmlLWoG/cBja2wdx5gECQatt7IAZs5rhYseZvwJYAvyO3p1g/w78cLSM0oycGb+6BuV0sOlHv+yWVPX2uwF+ec1M1qzzc8gHW/nuxXXMnJHsdqxSimd2PM01q69mZ2InJ808iXPmn6sTXDUajWaUCdSsIlFaRrqgkG2Nbn5zXykfPXI3H3h/e+eY1W2rebzxn5w+56sU+0oGmG0Qkkko7WoVkE5blQPdbqsxlIhQ4CsYyeVopgC5JSqzTvygUhuHw+oK29JilU7SjCp26swngeNE5CjgY0ARsBN4Uin1zBjZpxkGeS88S/6Lz1H3zQs7HfmWPU5uunU6f/lbESXFSa7+2UaOPHxPrzdfQ7yBq2qv5IWdz7M4vJhrD7ie/fL2G4er0Gg0mn2fYE11Z1T+z48WkU4LF57bvdPqzetWEHFFOH3OCPKATdPSK+eEUJNJmDbN+jlhJHCIQz951QyK2+nG5XRhmAZOpxO/33ro4/EMcmAoZEXnB/X8NXaxE5kHQCn1NPD0GNiiGQUk0cGMX11DfM5cmk46BdOER/9RyPJbp9Pe7uS0k3dw5lcbCQbNbselzBS/3/IAt6+/DRHhokUX88WZJ+Ny2P4X0Wg0Gs0QcLbuwdtQx87jrZ6L1bUB5s/toLysqwDB67tf48WdL3D+wgtG9nQ0mbQ0ETkSB6W6JDaGaeAUrZPXDI2IJ0JLooWAI0BentXodVBn3uG0ovNtbYPUs9TYxZanJiJu4GTgcMCjlPqSiHweeEUptWn0zdPYpez+e/A21LNm+R2srwvx0ytn8fa7Qd67fzuXf6eOBfM6eh3zTsvb/LzmZ6xtX8thxYfxncXfpdw/Pi2PNRqNZqoQqMno5SuXoJTlzB/+kT2d+5VS3LR2OcXeYk6a+YWRnaxH4qthWBVsPB7rPDoqr7FD0BNkV9xqwDyoXj6XcBhiMevL79cR+lHCTgfYMqyIfBWQArJVbWYBN4rIMUqpt0bfRM1Q8dRtpfT+39D8sU/QtPQgzj91PvEOBz/6/maO/eTuXu+ZtlQbK9bdxMN1D1HsLebaA67niJIjxsd4jUajmWIEazOdXxcvoXG7mz17XFRVxjr3P9f0LG/veZvvV/0Av3MEOuOsON7T5XUlElajKLAkNiGPLkinGTpelxfJ9IdzuaxAeyo1hEavTheUlUNbqyW5cXvAo0tcjxQ7kflrgVrgRGAN8DqAUuo6EXkN+AXwqVG3UDM0lGLmjVejnC7qz72I395fyrZGD3esWMv7D4z2GKp4cvu/uHb1texONnPyrFP4xvxzCLqC42S8RqPRTD0CtdV0zJyNEQ5T/aoVNV+SceYNZXDzuhXMDszmuOnHj+xEueL4DEp15SGmjBQlwREk1mqmHA5x4Hf7SRpJPE4P4TA0NQ3BmYdMMmy+dQewa5eO0o8Cdpz5Q4BFSikDQEQ6K9oopVaKyD7TWnsykvfCs+S99AJ1513MxuQMfvu7Eo7+2O5ejnxdrI4ra3/JS7v+Q1W4il8duHz4nQQ1Go1GM2wCNatof+/7AahZHcDpVJ1SyMe2/YP10fVcuf/VI8tdyiYb5lQQMcwuiQ1YtcN9Lq1h1tgj4o2wI7oDj9OD39+7zOGgeH06Sj9K2FkhjKwj3w/TBtinGUOkI86MG68mPnc+Oz73Ra7/QQVOp+pWESFlprhv873cteFOnOLkksXf4aSZX9AJTxqNRjMOuHY24WnaQTRTyaa61s+C+XG8XkXSTHLb+lupCldxVMlRIztRIgmhsJV8mCGZsPIQRayovNfp1cUONLbxuXwoZbnwbjd4PcNo8pqN0vv9sHOnjtIPEzuV+7eLyLf72iEiZwGbRsUijW3K7vsN3sZtbP32Zfzn1UKefT6Pr5++nZJiqyLCG7vf4NT/nszN61bw4Wkf5qEPPcLJs07RjrxGo9GME8GcZlFKQe3qAFWL4wA8VPcQjR2NfGvh+ThkhA12jDQEu3fdNM2uXNikkSTijYzsHJopicfpweFwYCqrOl44bOViDG8yrxWlz8+3HPpkavBjNJ3YuRX/PvCkiHwL+C9QISJ3AQcA+wE6c3Ic8NZtofR399D88WNoXvoBrvlyBbNmdnDKSU20plpZvvZX/Ln+Ecp8Zdzw3hs5tPiw8TZZo9FopjyBmlUoh4P4wsU0bPOwp9XFksoY0XSUuzfcyUGFB3Fw0cEjO4lhgMvdLfE124Czq9mPIuAO9DOBRtM/IkLIHSKWjuFz+QgEYOeuEUzYM0ofjVo/646xgzLk35BS6jngSKAe+DxQDJwOxIEjlFL/HQsDNQOgFDNuuBrl9lB37oU88GAxW7b6+M6F9bjcBue/8S0ebfgrp83+Mn865GHtyGs0Gs0EIVC7io658zH9fmpWW3r2qsUx7t98Hy2pFr614PyRnySRgPy8bpKFZBIiEWuTqUwcDgce52AFwjWavgl5Q6QMK4ru8YDbZeVkjAiPF8qnQ0EBxOM6Sj8E7JSmjADvAB8BfEAh0KyUio+RbZpByHvu3+T990W2nn8JDWo6d91TymEf2cOHDm7j8W1P8M6ed7hiyQ85vuKE8TZVo9FoNFmUIlBbzZ7/swIsNbUBXC6TwpkN3P/yfRxVchRL85aO+BzdStZkSOeUm0+kE0S8EV1fXjNseiZORyJWLmtgpA97RHSU3gZ2fistWKUpZyml4kqpeu3Ijx+OeNzq9Dp/IU2f/QI33jwdwxAuPq+ehJFgxbqbWBxezKenHzfepmo0Go0mB0/jNtwtLcQqlwCWM79gfgf/2PEwcSPOOQvOHflJkikIBq263hlMExyS0/VVGbq+vGZEuBwuPE4PaTMNWP62abuszQBko/SFhTpKPwB2nPkGYL5SavNYGaMZOmX33o13eyNbLr6M19/N44knC/jKqTuYUZHk91seYFvHNi5cdPHIk6c0Go1GM6oEajLNoiqt5Nea1X6qFsdY1fous4NzmBucO/KTpFNWRmIOuRIbpRSo3pFVjcYuEW+EpJEErFwMl9O6cRw1RCCSB9OnW3ej0egon2DyY8fTWztQJF5EzhkFezRDwLtlMyUP/JZdn/gUe/Z7H1ddP4Oy0iRf+dJ2dieb+fWmX/ORaYdyUOFB422qRqPRaHoQqK3GdLuJz19IfYOH1jYXSyrj1LTWUBmuHPkJsomv3u6OetqwgvVgVbEJuAM64KMZMQF3AMO0KpeLWDeMyeQYnChb8SYbpU+MxUkmJ3bexb8UketFpKif/WeOhkGaQVCKmTdchfL6qP/mhTz8l2msW+/n2+fX4/cp7thwBx1GnAsWXTjelmo0Go2mD4I1q4jPX4jyeDqTX6cv2MKOxI7RaeKXTEIk3C3xVSkQuqrYpIyULkmpGRW8LkQEeQsAACAASURBVC8i0llz3u+3bhzHhNwovdOho/QZ7DjztwNfA3aIyA4R2ZD7BSwZGxM1ueSvfJrIyy/RcOY57HCUcetdZXxwWRtHHLaHjdGNPFz3ECdWfHZ0HtNqNBqNZnQxTQKra4hlmkXV1AZwu00ShW8CUBUeBWc+t5B8hmQSQqGu/EGFwu/293GwRmMPhzgIuAKkTEvP7vNZapgx9bF1lL4bdurMR4A/97NPgGNHbo5mIBzxODOWX0tswSKaPnMSK64pJxZz8p2L6hCB5WtuxOf0c/b8s8fbVI1Go9H0gXfrFpzR9s7OrzWrAyyY18HauNVEalF48chOkExZoVGXu9vmVBqKMxL6tJnG4/Tgdrr7mECjsU/YG2ZHdAcepwcRK10jGu1Kth4TslF6nw927ZrSFW/sOPNblFJf7W+niDwzCvZoBqDsnjvx7NjOxh9fybtrIjz6j0JO/WITc+ckeKX5FZ7b+RznLTifAk/heJuq0Wg0mj4I1maTX5d0Jr9+7MgWalprmBWYRdgdHmSGQUglobCs26aeEpukkaTQrz8nNKOH3+3v7AQL1lOgPa176eTZKH1bKzQ3Z/JFplbvBDtNow4cZP+RIzdH0x/ezRsp+cN97DrmONr2ey9XX19BYWGaM7/aiKlMblhzPeW+ck6edcp4m6rRaDSafgjUrMLw+eiYPZe6eg9tbS6qKmPUttWMXGJjmuB0dnntGVLZKpVO67VhGrrrq2ZUcTvcOB3OTofe67VuINVolqkciGyUvqLCKqczxbT0tp9FiMiRIvJ9Ebk581078WONUsy8/ipMn4/6b17A3x4rZFVNkAvPbSAUNPnHtr+zuq2Wby04D6/TO/h8Go1GoxkXArXVxBdVgstFTa3lUM9Y0EBjRyOVI01+TSQsfUMPmUEyp0qlUgqHOPRnhWZUERHCnjCJdAKw/gVDoTGqajMQbg+Ullla+o6OKaOlt9MBthh4GPgw1g1XFiUiLwCfVUrtHGX7NED+v58i8ur/2HLxZex2FXPTreUcsH87n/z4buJGnFvW3czSyH4cXfaJ8TZVo9FoNP2RThNYs5qm4z8LWBIbt9skUfQG1DNyZ940u2pP9iAbrE8YCcKesO76qhl1Qp4QLR0tna/DYWhv7/WgaOzJRun9/u5a+n0YO5H5W4Ew8AVgPlAILABOxkqOvcXuyUXkOBF5RUSeE5EXRWTZIOMPEJEnMuPfEZHlIuLtMaZcRP4qIi+JyOsickkf81SKyDMi8ryIvCYip9m1fW/hiMWspNdFlew84XPcdncZe1pdfPeiekTg/s33sSOxg4sWXawXZ41GM6boNXtk+DdtwJHo6KpkszrAwvkdrI1Zya8jktmkUlYioNvTa3PAD65M6C5tpAl7R6jL12j6wOvq7rVnnfi9JrXpSW6UPh4f5da0Ews7zvwRwGFKqYeUUhuVUi1KqQ1KqQcz+46wc2IReT/wAPAVpdShwC+BJ0SkrJ/x04FngYcz45cBBwDLc8Y4gL8BbyulDsnYdI6InJUzJgT8C/idUuojwPHAr0TkaDv27y3K7rkTT9MOtn77MtZuCvKnR6Zx4vG7WLwoTlOiid9uuocjS47kwIIBUxo0Go1mROg1e+R0dX7NJr8GLL18aw0V/hkjS35NpaxoZA+Sye6NYBVKd33VjAkuhwuv00vaTANWjobfb/1rjhu5WnrBcur3Qew485uUUn3mJiulWoBNNs99OfCEUqo6M8ffge3Auf2MPw3L3rsy4xPACuAMESnNjDkGeC9wXWbMHqz6+D+QrrD16YAf+E1mTB3wB+AHNu0fc3ybNlD6h/vZeezxtC89gGtumEEoZPDNs7YBcNv6W0mZKc5feME4W6rRaKYAes0eIYGaVaRDIRIzZlJX76G93UnV4hg1rTUjaxallOW09FEHUNGlMEgaSfxuP06Hc/jn0mgGIOKLkDS6dOp5eePszGdxe8Dtth5RJSeCQaOLHWf+fyLy0b52iMjHgH/32PbwIPN9FHi1x7ZXgI/1M34WsFMplZue3AA4gf/LmXN95uYid86ZwOKcMa/3mOcV4EMiMnHS+5VixvVXYQT8NHzjfP71dD6vvRHi3LO2kRcxWNu2lkfr/8pJM7/AzMCs8bZWo9Hs++g1e4QEaquJVS4Bh4PqTPLrrIXbaOhoGJnEJpGEUO/E13Qa/L4uiU3KSJHn7R2912hGC7/Lj2F2tX/d63r5wSgutsq3GmPVonZ8sFNnvhV4WEReBKozryPAUqxHp3eJyBU54w/pbyIRKQTygG09djUCn+znsE1AmYh4lFLZ274ZPb7P62fO7L7azPfX+xjjAOZgXdu4U/D0E0Ree5ktl1xOq3caN9w0ncrFMU749C4Ablx7AyFXiK/PO3OcLdVoNPs6es0eOZJM4l+/lh1f/BJgdX71eEw6it6AuhEmvxppCPVOfE0kLN8li6lM3fVVM6Z4XV5EBKUUIoLLZT0wSqWswPi44/ZAcQk07eg3WXwyYseZvzTz/ROZr570fOQ5UKZB9jeY6LE9AfQXafkt8D3gMhH5KdYHy3mZfdlnhsF+5iRn3qGMGVcc0SgVy68jtriKncd9lrvvKKVpp4erf74JpxP+s/NF/rvrJS5e9G3y3DrKotFoxhy9Zo8Q/7o1ONJpYpVW8mt1rZ+F8+OsjdYAUBmuHN7E6TR4PFbjnB7kSmwM08DtcONxTq1mOpq9i0McBN1BkkayMyE2HIampgnizIPlxHdEoL0NApNmCRkQO878W4M1jspFRN4YYHc0873n6uMFYn0doJTaISIHAz8B/gPsAX4OPAY058wb6WNOcuaN9nPe3DGdZBKxzgIoLS1l5cqVfV7QQKTSKVqNFtrTQ2uHVnn3XXh27eSV732P6pp27v9DMUcdVUdJxXrqmw2urbmGcm85h4YOpXF3z6DWxCGdTk1o+8aCqXjNMDWve9yuWSnSGMNai0bApFmzYeTrdiqZQmGO6t931usvAbBpejGxXduoWb2Uww9v4M1db1DqKaUjGqcxOozkPNO0dDQbWrpvV5YzvybzmzaViVOcbHFs6Xeq9vb2vf1/Ne5MxWuGsb1uU5mkjBSOjOxLKSsRu812Z6PRJZ3ooHHDqq4NqRR0tFj5JmN9btK8/OrLOJxj80uw48xfMfiQoY1XSjWLSAvQswpCGbB+gONWY5XGBEBE5mR+fCfzfQO9nxpkz7E+Z0xf5zXpI4lXKXUHcAfAsmXL1OGHH96fef3yz3/8k6ArQig8+CMd34Z1zH30r+z89GfwffAI7rlkHl6v4tILWphWUM4jdY+wuWMzV+9/DTOLJrZWvnH3NsoKysfbjL3KVLxmmJrXPV7XbBomu3Y1M5y1aLhMpjU7c94RrdsNmxp49c3XRvXvW765jlR+AfmL9mfPVh+xmJv37y/8pmMTS/OXDu9cSlnVOWbOhB5JrbGYVZEvP9963ZZoY1berAFlNitXrtyr/1cTgal4zTC21500kmzcvbFbCdStW62UDuc45l43blhF2bylXRtSSaivt3RAY2xY045dHLTsIEJ5oTGZf8i3CEqpv9mZeAjjn8IqVZbLssz2XoiIR0Q+3GPzoVgLfVZP+SSwQETye8y5NfOhkh3zvkxJtNwx/1FK9Rnl2Wsoxczrr8QIhqj/xnk890KE//w3wtlfa2RaUZpoOspt62/hvfkHcmTJUeNqqkajmXLoNXsEBGpWWfXlRahZbTnUsxc2UhffSlVkyfAmTSQhGOrlyINVUjurIMjql3vWAddoxgK3w43b4cbMyVkPh60cjglFVj/f0THeloyY8XzocSVwtIhUAYjIMUA5cHPm9c9E5F0RydbaigB/zXSizXakvQy4UKnOlgT/BN4ELsqMiWA9av1Zznl/C3QAX8mMqQC+2GPMuFDw5OOE33iN+m+cR8xfyHXLK5g3J85Jn2sC4Leb7mFXcpduEKXRaMYDvWYPE0cshm/zxm7Nojwek0TRWwBUDreSTT+Jr4YJbpclpQcrUhryhHDIOOscNFMCESHkDZFId3nvgcAE7dkUDEI4Yj3KmsTYkdmMKkqp10TkVOBeEYljJUQdrZTKVjLwYSU3Zb3WOPAy8JKI1GW2fTf3CYBSyhSR44DbROSlzBx3ZB65Zse0i8jHgVtF5GtYyVUXKaWeGLurHRxHtJ0ZK64nWrWUXceewL33llDf4OXW5etwu2B7x3bu33w/R5d9gv3y9htPUzUazRREr9nDx7+mFjFNopVWBL6mNsCiBXHWZJJfqyLDSH41DHC5wdu7tnyiAwoKul6nzBTF3uJe4zSasSLoDtIS78rj8HisG0zDhDGSjQ+fggLrTZNMgWeiZOnaY9yceQCl1KPAo/3suwS4JOd1FKvByGBzNgDHDTKmFpsda8ea8rtvw9W8i/VX3ci2Jh+/ua+Ujx65m4Pe3w7AzetWoDA5b8F5g8yk0Wg0Y4Nes4dHsDbT+bVqKaYJtav9HPOJZmpbqyn1lVHgKbQ/aSIBRUV9Ju/lSmzAktnorq+avYnP5UP1KGoYicDu3ROwgIzDYdVwbWiw7jTGU9g/TCba/dGUxLd+LSUP/YGdx51IrGopN9xUAcCF5zYAUNNawz+2/Z2TZ51CuX/6eJqq0Wg0GpsEaqtJlpaRLixiy1Yv0ZiTJZVxattqR9Ysyt87mbWnxCZtpvE6vbgc4xq700wxnA4nPpePlNHVbdXvn6BSG7D089OKJ61+fljOvIg4RWTaaBszJVGKmdf9EiMUpuHsb/G/V0I8vTKfM76ynfKyFEopblhzPfnufL4652vjba1Go9FobBKoWUVscUZi05n8uoPNsc1UDkdik0ha4U1nbwc9mbCSDbMB+0Q6QZ5P9yPR7H0i3ghJI9n52usFl9OqpjohmcT6eVvOvIgcJiLPYNX9fSuz7TYRuWAsjJsKFP7rMcJvvUH9N86jI1DA1TfMYEZFgi99cQcAzzU9y2u7X+Xs+ecQdocHmU2j0Wg0Ewlnayu+uq1Eq7r08l6PSaLgTYDhRebTKctj7wPD7C5jMJVJwD3RdA2aqYDf7e9W0UbEktokkwMcNN4UFFjdrRIT2cjeDNmZF5FPYJUg8wP309Ws43bgcyJy9uibt2/jaG+jYsUNRJfsx65jT+APD01j02Yf376gHq9XkTJT/GrtjcwJzuUzFZ8Zb3M1Go1GY5PA6mqAbpVsFi2MszZWC2C/LKVhWBH5PhJfzUxyoTdTgdJUJk6HU3d91YwLXqcXEaGreJUltUkb42jUYGT180baeq9NEuxE5n8EnKyUOkQp9XWgDUAp9QZwPHDG6Ju3bzP9rttw7W5my7cvp6nZw52/LuP/PrSHQz9sdYp9pO5hNsc2c8HCC3A7JmeGtUaj0UxlAjWZ5NfFSzqTX6sWx6hpraHYW0yRt8jehKkURMJ9Jr4mk70lNhFvRJcy1owLIkLIE+omtfH7IW+iK1ly9fNqoor8u2PHmc9XSj3U1w6lVDOgvU0b+NeupvjhP7DzhM8Rr1zCTbdOJ5kSLrmgHoC2VBu3b7idZQUf4CPTDh1nazUajUYzHII11XTMmIkRibB5q5dY3ElVZZzatprhSWwMw9L29kG6x660mSbkGZuOkxrNUAi5Q92SYMEqwuRyTXC5TVY/H4+PtyVDwo4z7xORPlcQEQkBBX3t0/RBptNrOhKh4axzefPtIP94vJDTTt7BzBnWf/evN95Na2qPbhCl0Wg0k5jA6uouiU2tpV2fu6iJTdFN9iU2yZQV2nT1jp0pBQ7pktgACILXqbu+asYPn7t3iUqHA0pLrYdMEzYZFiaVft6OM/8k8KSIHJHT4Q8RWQo8BDw22sbtqxT+82+E3n6ThnMuIBnM4+rrKygtSfK1L1tJr/Xxen6/5QE+VX7s8CodaDQajWbccTXvwrO9kVhnsyg/Xq9JouBtFMr++p5KQqTvyjSJBIRClqMEVtfXgDuA0zH5amZr9h08Tg9uhxvD7K4/93qhpGSCy20mkX7ejjN/KVZ3vqeAduA9IpIA3gYKsdp0awbB2dZGxc030r70Pew65jj+/GgRq9cGuPBbDfj91i3qirXLcYiTcxd8a5yt1Wg0Gs1wyerlo5Vdya+LF8ZZG8t0frUjszFNq5mNt+9Ie9roXuAmmU4S8UaGZ7hGM4qEveFuuvnO7WHra0I79JNEPz9kZ14ptRs4GDgb+BOwEngEOBP4sFKqdSwM3Ncov/NmXK172Prty2lpc3PLHeUse18bHzvSanv8Tsvb/Gv7vzht9mmU+ErG2VqNRqPRDJdgbTXK4SC+qBLDgNo1XcmvRZ5pFNtZ47PZrY7eH9t9SWwUCp9bd33VjD9BT5C0me5z37Rp1j1qKtXn7onBJNDP22oJp5RKAndlvjQ28a+ppfjPf6LphM8TX1zFLVeX0x518p2L6hGhs0FUkWcaX5lz+nibq9FoNJoREKhZRcfsuZiBAFs2eYnHnVRVxrivtca+xMYwuheQzyGZ6SGV9fMN08DtdOuSlJoJwUB5G06npZ+vq7d+7uNedWJQUACJDks/75147ys7deZfH0tD9nlMk5nX/ZJ0JI9tZ51LzWo/jzxaxBc+28SCeVb74Kd3PMVbe97inPnnEHDpJh8ajUYzaVHK6vyaSX6tziS/zlvUzMboRnsSm3TaCrt7+pHYpK1mPFkSRoI8r+76qpkYOB1O/G5/r6o2WXw+KCme4HKbCa6ftxOZny0ivx5gvwJ2AO8Cf1RK9f1MZYpS+tQ/Cb37Npu+/2NSwTBXXz+Dgvw0Z53RCEDSTLJ87XIWhBZyXMXx42ytRqPRaEaCe3sj7pbdRHMq2fh8BsmCtzE3mlRFbDjziQQU9y3Jycp4cyU2hmnorq+aCUXYE2ZnbCduZ99VzMNhS8USi1kFmyYkWf180w7rUdgEqjRox5lvBb6IlQTbAuwB8oE8rAZSzViJsGHgChE5Wim1aVStnaS42tuYe/ettO//Xpo/cSyPPVHA2+8G+eH3thAOWUmvD279I/XxOla87xacoqsPaDQazWQmmG0WlalkU73az+KFcdZEreTXyqE680pZUUF/3/r3VMryK5zO7HCFQxx4XbokpWbi4Hf7e5WozEXE0s/X1Vn/0+6J2rkoGIREHrS19it7Gw/sqJO+CzwIzFBKFSql5iqlCoBZwB+Bbyil8oA5wOvAtaNt7GRl0X334m5rZevFl9EWc7H8lum8Z2mUYz/ZDEBLsoW7NtzJh4o+xCFFh4yztRqNRqMZKYHaVZguF/EFizAMWL3Gn2kWVUuBu4BSb+nQJkokIRSGfkpMplK9JTYhTwiHTFTxsWYq4nV6EQQ1QEWYrH4+kZjg9efz8ydc/Xk77/YLga8qpRpyNyql6oBzgO9nXm8BvgwcNFpGTmpee41Zjz1Gw6dPJL5wMXf+pozm3S4uvaiuM9Hjro13Ek1HuXDRxeNrq0aj0WhGhUBtNfH5C1EeD5u3eOnocGYq2VRTGakaejNAIw3B/iOAiu4Sm5SRIuwN9zteoxkPRISQJ0TCSAw4zuezIvRaP28PO878dNXPLZVSysCK0Gdfp4BdI7Rt3+D550kUFLDptDNYv8HHH/5UzAmf3sWSKqvE0ZboZh7c+iAnVHyG+aH542ysRqPRaEaMaRKore6S2GSSX+cvamZDdMPQ9fKGYel0vf1LbPw+cOUIZkUEn0uXpNRMPMLecL8lKnPJy7PULB0de8Go4TLB6s/bcebbReQKEemmZBIRt4j8EEtTn922GNCCPYALL+S52+4gHQxzzY0VBAMG5569rXP38nXL8To8fGP+OeNopEaj0WhGC2/dVlzt7Z2VbGpWB/D7DVKFqzCUMfRKNokE5PXf+CmZ7C6xSRkpvE4vLoetqtMazV7B6/QOKLPJImIFvsGq1DRhCQatjswToP683Q6wPwC2i8jzIvI3EXkB2A5cDlwCICI/Av4LPDfKtk5ajECAZ18o4pXXwpxz1jYK8q3HMq/vfo1/73iG0+d8lSJv0ThbqdFoNJrRIFBbDdDlzNf6WbQwzup2a/uQkl+zTs8ApT0UliwhS9JI6pKUmgmL2+nG7XBjmINLU1wuSz/fkZgQge/+mSD6eTsdYB8D3g88DlQARwHlwGPAgUqpf2WG3gccDnxvVC2dxHR0OLn5jrksWhDns8db6iNTmdyw5npKvCWcMvvUcbZQo9FoNKNFoGYVptdHfM480mlYvdbPksVxalpryHPnUe4rH3ySRBKCIXD2HWVPp8Hn7V71QymF3z1R6/ppNBDxRkgaQ3N8/X6YVgRRrZ8fFLsdYN8BThlkzPoRWbQP8uCf5rGjycsvfry2s3zY442PU91azY+X/gS/Uy++Go1Gs68QrF1FbNFicLnYtMFnJb9WxvhdWy2V4SEmvxppCAX73Z1MWomCWUxl4nQ4dddXzYQm4AmwKz70lMq8jIqlo6P7U6gJxQSoPz9qtatE5J7RmmtfYv16eOjheXzsiB0ceEAUgA6jgxXrbqIyXMUx5Z8aZws1Go1GM2qk0/jX1BKr7JLYACxc1ML69nVURioHn8MwwOXuN/EVwFTdnZtEOkHYGx56lRyNZhzwu/x4nV4S6YGr2mTJ6ueV0vr5gbAVmReRIHAMMI/eCa4fHy2j9iXuvx/cbpNvfH0zYD0PfWDL79je0chPlv5U1wLWaDSafQjf5o04OzqIVVmVbGpqreTXRMG7pFWaqsiSwSdJJi0tbj+OuWGAxw2enCB82kwT8oRG4xI0mjFDRCgLl7G5ZTMep2dIN58uF5SVQX295TNP2PvV/HzoiFsSOe/efUI2ZGc+U6HmKSy9vAJ6/joncorCuHHFFTCz4kWmFbkAN83JZu7Z+BsOKz6MZYXLxts8jUaj0Ywi2c6v0cquSjaVi+KsjdYCDK2SjWkO2F0ykYDCwq7X2a6vuiSlZjLgc/ko8hfRHG8m5B3aDajfD0VFsKt5QPXZ+JLVzzc0gOHsasu8N05tY+y1wPVAAHhbKeVQSjmA6cDNwLfGwL5JjwiUl3dlb9y+/jY6zATnL7xwHK3SaDQazVgQqK3GCIZIzJzVmfxqNYuqIewKU+GvGHiCZMpy5F3997M3VfciN0kjScAd0E96NZOGAn8BLoeLlJEa8jH5+db/va4/3xs77/zZSqkblFId5EThlVKNSqnzgM/ZPbmIHCcir4jIcyLyoogMGKoWkcNE5IVMacz/isg9IlKYs/9HIvKmiKzM+XpWRJSIHJgZM0dEGnuMWSkih9m13y4b2zfw5/pH+NyMzzInOGesT6fRaDSjylRbs4dDoGYVscVV4HCwcbOPRMJBVWV86J1fU0kI919b3jDB7ere9TVpJAl7dNdXzeTB6XBSGiolnhq6xlwESkssH3mCNF7tm2DQytzdi3cddjTzuVY5RcSXcewREQcw186JReT9wAPAQUqpahE5FnhCRJYqpRr7GJ8P/B24XCm1InPOB4Hbgc/nDL1QKbUy57gjgNuUUm/kjHlcKXW6HXtHgxvX3ojf6efMeWfv7VNrNBrNiJiKa7ZdJJnEv24NO77wJcDSywMsWNzCunXrOHnWgMXgMpOI5a33QzJhRSi7HYLokpSaSUfQEyTPl0c0FSXg7l9WlktWP19XB6HQBNbP5+VbybB7ST9vJzKfFJGPZn5+F7hbRA4QkQOAu4B2m+e+HHhCKVUNoJT6O1YDqnP7GT8fCAFPZ8abwDN0T7y9BXilx3GnA7+2aduo89qeV3lh5/OcMffrFHgKxtscjUajscuUWrOHg3/9WhzpdE7yq5+A38AoqCGlUkOrZAPg6F9ra5jdJTZpM20143H2L8vRaCYqxcFilFJDaiSVJauf1/Xnc05nY+y9wHIRWQT8DDgaeD3zdQpWd1g7fBR4tce2V4CP9TN+FVCbORciEgBOxPowAUAptUMpFc2+FpEQcHzG9nHDUAa3bF7BdN90vjDzi+Npikaj0QyXKbNmD5dArZX8GstNfl0cp7bN6vw6aPKrUpYT4Oj7o9k0weXsLrFJpBPk+XTXV83kxOVwURosJZqMDj44h4ICrZ/PxU4H2DuUUkuUUmuUUjXA/sA3gAuAA5RSjw51roxmMg/Y1mNXI1bZy77O34HVdfZIEdkMNADvAb45wKlOAp5XSvU8T6WIPJrRcT4uIkN49jl8nt71NOti6zhv4fl4nT0remo0Gs3EZqqt2cMlUFtNKj+fZFk56TSsySS/1rbVEnSFmBGYOfAEpjlgVD6ZhEiku7RAoYYsUdBoJiJhb5igJ0hHeuieuQiUFFtvmUmhn58ozryIPJL5mgGglGpQSt2plFqhlFpt87zZwkI9uwYksKrl9HX+MPAk8DwwB6tE5s+B+gHOczpwd49tHcAm4Cyl1EeAy4Bfich3hmy9DaLJKPfW38uS0FI+VqpL8Ws0mknJlFmzR0KwptqKyouwcZOPRNJBVaVVyaYyvHjwajOmOaBePm10l9iYykQQHSTSTGpEhJJgCSkjhbLh9Lrdln4+Ht+rhWPsk5dv1dPs54nbaGAnAfaTwMlYkZiRkn2e0nMF8gL9qaDOwIoA/UhZf+2oiLwNPCsii5RSLbmDRWQ+sAgrAauTTKLWF3NevykitwHfB67peVIROQs4C6C0tJSVK1cO6QKz3Lv5XppTzVw253K2t4zGr27ykE6naNzdM8C2bzMVrxmm5nWP2zUrRRrD9lo0QibNmp2Za0TrdiqZQmHa+vs6Ozo4cON66j6wjMbd23jptRkAFJZtYM2O1Rxbcuzg85mmVZu6fWe/uxPNOa+ViVOc1DsGuj8aOu3t7Xv7/2rcmYrXDBPzug1lkDbTtkusptPQ2ji4r5xOdNC4YdUILBw+acPk5Vf/h2OMMnbtOPNvKaX+0t9OEalQSg1pRVFKNYtIC1DWY1cZsL6fwxYBjdkKOhk2AsXAYcBfe4w/HbhfKTWUBsDrgTwRmaaU6raKKXJBpwAAIABJREFUKqXuAO4AWLZsmTr88MOHMF0XC1oX4H/YzweLDiEUnqidDsaGxt3bKCsoH28z9ipT8Zphal73eF2zaZjs2tWM3bVoJEymNTtj74jW7YZNDbz65mu2/r7Bt99ETBPHgR+krKCchroyggGD/Nk7SW1P8f7iDww+XzxudYMK9S4z2dFhVe+YNq1rW3uinYpIBUHP6Hy2rFy5cq/+X00EpuI1w8S8blOZbGrZhFOcthK6TTPTp8nonk/Sk8YNqyibt3QULLVP0552Dlo6h5B/bCrb2Ln9eUZEDh1g/99snvspoGeN4mWZ7X1RDxSLSK6gMLsydosMZUqgfZnej2sRkVNE5IM9Nldk5tg1NNOHzozIDI4tOXa0p9VoNJq9zZRYs4dLoLPza7aSjZX8urq9BmBolWwG0MynDUt+m4tC6a6vmn0GhzgoD5UTT8dtyW0cDigpsSL0hjmGBk5g7DjzaeD+TBLS1SJyRe4XvSM2g3ElcLSIVAGIyDFYC/3Nmdc/E5F3RSS7Uv0+Y+83M/udwMXAVuClHnMfCTRkEnV7sgi4WERcmXmmYz2OvVXZ+e/RaDSaqYVeswcgWLOKZHEJ6WnFpNKwZp2fqsoYtW01BJwBZgdmDz6JCDh6P4ZXCoTejaL8bj/OARJmNZrJht/tp8BXYKuZFIDHA6WlEI9NcP38GGFHZpMtPTkD6CvUbOvXp5R6TUROBe4VkTjgBI7OaT7iw0qsksz4DSJyNPBzEfliZn995pieNe5Pp/86xQ8C3wFeEJEkVmLXHfSjvdRoNBqNXrMHI1BbTazKeoS/caOPZNJB1eIYf2ytYfFQkl+zOHs758kkhMPdNcEpI0VJsGQ0TNdoJhRFgSLaEm0YpmHrZjUUskpWtrT0foq1r2NXM39gfztF5I3+9vVHppxlnyUtlVKXAJf02PY8MJDUJzvuSwPsqwa+as9SjUaj0eg1u2+cbW34tm6m+ZNWnKs60/l10aI2Vq9bw4kzTrQxWW/nJZWG4lD3baYydddXzT6Jy+GiNFRKfVs9EW/E1rEFBRCLQSIxsH5+X8OOzOaKQfafNxJDNBqNRqOZjARWW02hojnNooJBA6NgDQmzY/BmUbn0iOBnJTa+HGm8YRq4HW48zrFvE6/RjAchT4igO2hbbuNwWHKbqaaft9M0qjPBVUScIjKtx/4XRtMwjUaj0WgmA4Fay5mPVWWTX/1ULoqxuj3T+TUyBGfeNMHp6t4RCktiE+xRojphJGxHLDWayYSIUBoqJW2mMZU9rzxXPz9VsFXMU0QOE5FnsGoOv5XZdpuIXDAWxmk0Go1GM9EJ1KwiMX0GRiSPVEpYu97Pkso4Na01+Bw+ZgfnDD6JaYKrb4lNuEelSsM0Rq0cpUYzUfE4PZQES4gmo4MP7kEoZDVejdo/dFJipwPsJ7BKkPmB++kqLXY78DkROXv0zdNoNBqNZmITqFlFNBOVX59Nfq2MUdtWy+LwYpwyhCQ+wwRX79raPSU2SilEBK9rCgmCNVOWPF8eXqeXpJG0fWxRkRWlT9o/dNJhJzL/I+BkpdQhSqmvA20ASqk3gOOxuv1pNBqNRjNlcO1uxru9sbOSTU2tlZS6eHEbq9tqqRyKxAZA9Y7MJ5Pg93fPiU0YCUKekO0umRrNZMQhDsrCZXSkOmzVnoeu+vOp1L6vn7ezGuQrpR7qa4dSqhkYersujUaj0Wj2AbLNomLZZlGrA4RCBmbBWuJGfOjOvGmCu3tCayoFkR7S+LSZ1np5zZTC5/JRFCgilrIvgvd6LYd+X9fP23HmfSLSp0hPREJAweiYpNFoNBrN5CBQW40SIbbIctpragNULrIkNoC9SjbOHpVs6C6xAUtmo7u+aqYahf5CHOIgbaZtHxsOW/p5cx+Ozttx5p8EnhSRI3I6/CEiS4GHgMdG2ziNRqPRaCYywdpqOmbPxQwGM8mvPpZUxqhtrcbr8DI3OHfok+VUskmlwO8DV043mJSRwuv04nLYaRGj0Ux+nA4nZaEyYsnhhdgLC623176qn7fjzF+K1cHvKaAdeI+IJIC3gULgstE3T6PRaDSaCYpSBGpWdUps1m3wkUo5qFpsVbJZGF40dMdbqW7i+GSyt8QmaSTJ8+WNlvUazaQi6AkS9oZt154H663ldln151OpMTBunLFTZ343cDBwNvAnYCXwCHAm8GGlVOtYGKjRaDQazUTEvWM77uZdXcmvq7PJr+2sbltts1mUQI/W9T0lNqYyCbgDI7JZo5nMlARLMEzDdu15sPqxVVRYN8pp+2qdCc2Qn9WJyFlKqTuAuzJfGo1Go9FMWbLNoqKdlWwChMNpVMF6okZ0aM2iwIrKOxydnaHSaauknjunrISpTJwOp+76qpnSuJ1uSkOlNLY3EvaGBz+gB16v5dDX11uvXfuIYs2OzObHIvIpEV0PS6PRaDSaYM0qlNNFfMEiwHLmqxbHqW2znHxblWx6SGzyeqhpEmmr66v06BCr0Uw1It4IPpePRDoxrON9Ppg+HRIJMIxRNm6csOOYp4CTgDUicp2I7D9GNmk0Go1GM+EJ1KwiPn8ByuslmbSSX6sWW5VsPA4P84LzhjaRaXYLESrVW2KTNtOEPKFRtF6jmZyICGWhMhJGwnbt+Sx+v+XQxzv2DYfejjP/G6XUV4ADgHeB5SLymohcICLTxsY8jUaj0WgmIEoRWF3dKbFZv8FHOm11fq1prWFhaCFuxxDbrxhmp6bGMCy/3pOjplFKIQhep+76qtEAeF1epvmnEU1Ghz2H3w/TyyEen/xNpewkwP4w8z2qlPqNUupw4HPAIqBORP4yNiZqNBqNRjOx8NZvxdXW1q1ZFJCpMV9DZbhy6JOpLmc+kegtsUmZKQLuAM4eCbIazVSmMFCIy+EiZQy/PE0gAOXlVlOpyezQD9mZF5GDc37+/+y9eZwc1Xnv/X2qeu+enk2zSKNdAkksCcayZWxsA2ZJIDbgJXbgJgbj6/hiY2QHY7iQxHkNRpZDTLCd2Nz7yYuTC8HOmzhgjM1rzKt4IwSwMYtmBFpAQkISoGVmeu+q8/5xqmfTjKSZ6Z6e5fnq05/WVJ06dc50z6lfPfUsIRG5BPgb4OPYQFoNsVcURVHmBIOVX61lfnNPnHRDGZq301/uZ3X6pOPvzPcHMtmM5mJTLBe16quijMARh86GTnLl8aeqHEoyCZ2dVtDP1MJS43Gz+TsROV1E7gRexaalXAN8EVhqjDm/BuNTFEVRlGlHomczfiRKbrn1i+/eYoNfu/u6AY4/kw0EaSkHA1tHZtgwGGJhrfqqKCNJhBM0RhvJliZWTKpCKgUdHZCdoYJ+PEl5TgOeAA4D3wW+Y4z5z5qMSlEURVGmMYnu58mecCKEwhSLwtZtMS7/yGv09HUTkhArUivG1+GQbDZD/ovne4TdsKakVJQxaEu20X+wH8/3JuWK1tBgn4zt32/db5wZlLtxPEN9DfgjYL4x5n+MFPIi8vWqjkxRFEVRpiOeR+KFnoFiUVu32eDXk1Zn6entZmXqBCLOOMW36w4ktRmafbLgFWiMatVXRRmLkBOiI9kxqWDYCuk0zJtnLfQTTJRTF8Yj5m8zxnzPGDMssaeIOCLyXmwwrKIoiqLMamIvv4Sbyw2I+c09g8Gv3b3d43OxqSDOyAyVgLXMJyPJyQ5ZUWY1DdEGkpEk+XJ+0n01NUFrK/T3zxxBP55sNncM/VlEfkdEbgd2A/cD7VUem6IoiqJMOwaDXwcz2TSmy9D8Er3l3vFlsvF9cK05fqSYN8bgiKMpKRXlGIgIHakOSl4J30ze6b252Qr6TGZmCPpxeQSJSJuIrBeR3wC/AT6NzTn/OWB7DcanKIqiKNOKZM/zeIkk+cVLAejuibN6VZYtA8Gv48xkE3IH/hsekpq+4BVoiDRo1VdFOQ4iboS2ZNukg2ErtLTY10wQ9McMgBWRMPA+4KPABcExvwB2AqcaY/qDdrOghpaiKDOKfB4QiKnlUpk6Ej2bya5aA45DoSBs3R7nTy7bT3dvN66EWJlaefydeb6tXoMtGDW0WFTJK9GQbKjy6BVl9tIUa+JQ/hBFr1iVoPHmZivkDx6C1DT2djuqZV5EvolNQ/kvwJnA3wOnGGPeDRysCHkAY4wGwCqKMnVUanAbf2bmElNmJFIqEX9xy4CLzYvb4niesGZVlu6+blYkl4/PLcb44A5eit0RyTiiIb1RVZTjxRGH+an55Eo5TBXM6SLWOt+Yhv7Jx9fWjGO52XwSaACuw2axWW+M6a79sBRFUY5BoWDNJi0tth63okwBsW0v4pRKZILg1+4t1qq+epXNZDPu4Fffh/CgBbHiUVPySsTDcULOeDJIK4oSD8dpibeQK1XnuiBiM9xMZ0F/LDG/CPgL4L8B/yAi76rmyUXkfSLyhIj8TER+KSJrj9H+3SLyCxH5uYj8p4jcLSItI9ocEpFNI14fHtFmvojcLyKPicivReS6as5LUZQa43m2YmYiaV+h8KClXqkZumZDsmczwEAmm+6eBI2NZZzmnRwqHRpf5dcKgWXeMGiZL3pFTUmpKBNkXmIeAGW/XJX+KoK+IWV96KcbR73lN8bsAb4CfCVYtD8qIrcA/wqEh7YVkROMMS8e74lF5M3AvcBbjTGbReQPgIdF5GRjzN5R2jcBDwI3GmO+ISIO8D3g28CHhjR92hhz1lHO6wA/AH5kjPlzEWkEfi0ivcaYu453/Iqi1JF8HtraBqt6tLTA/n22LrdSE3TNtiS6n6fc2ERx/gLAivk1q7L09PUAsGY8mWwqBN9jYVDM+8YnFtKqr4oyEVzHpSPVwe6+3aSj6ar0KWIvO8ZYQT+dLjfjSU35pDHmGuA92ODXF0Tk30TkT0WkC1sVdjzcCDxsjNkc9P8gsA/41BjtVwAp4KdBex94FDh/nOe9EFvN9vagn8PYi8vNoikDFGX6Uy5bt4TEkJU0HodoFIql+o1r9qNrNjb4NbP6JBAhXxC27Yhx0uos3b2bccXlhIYTx9ehMeA4lTccxwr5sKNVXxVlMqQiKRoiDVVztwH799nebivEZquTNKcqjLtYrTGmZIz5vjHmA8AngBjwAHDKOLs6F3hyxLYngPPGaP880ANcBiAiCeD92IvJeM+7zRhzaMR5FwGrxtmXoihTTaFgLfFDdZyI9Z8vFes3rtnPnF+zJZ8jvmPbYPDr1krwa46e3m6WJZcTc8dpTRcBxx2WlrJQLtAQ1ZSUijIZRIS2ZBtlv1yV3PMVHAc6OiAamz7hWuMW80MxxrxujPlbY8ybgc3He1zgM9mIzZQzlL3A8jHOlcc+FThHRF4G9gCnAlePaNopIt8NfDofEZFPi8jQ/ADLxzhvZZ+iKNOVYgliMfsaSSxuzSX5wpH7lEmha7Yl8eIWxPPIrqkUi6oEv2bo7useX7EoYKg53vMGC0aV/bJWfVWUKhBxI7Qn28kUq+vo7jjQ2QGR6PQQ9JMS8yM4ZxxtK6vUyKtuAUiMdoCINAA/AX4OLAW6gFuxFWiHshW42RjzLuDjwGeAO0ece7TzMta5FUWZJpSKttb2WBbL5mbwytO/wsfMQ9dsrIsNQHb1YPBrU1MZt2kPB4oHJpbJxh1eMMoYg4iov7yiVImmWBNRN1qVVJVDcV0r6MPh+gv6quW8MsYcGEfzyi3SyAS6UWAsL6SrsFaYLxr7iWRE5BngP0TkxMojWGPMHwwZ00si8hXgf4nInwdjzAAjoyEq4zji3CLyCaw7ER0dHWzatOk4pzhIqVyi1ztEf7l33MfOZMrlEnsPjjSozW7m4pxhiubt+9YcsucYjoplD/KHBoNja0TdPmtjKONNaC2aBDNmzYbJr9ulYgmDf8Tn2/HbJ8m3tLIr5MHBV3n2+eWsWHGQx/b+EoB2aR/fd8IYe2O6/RC+D70heNWxYn6Ps2dcY64G/f39U/29qjtzcc4w8Xm7rksymZyRLmCtTa3s3XpErP6kCQEhA/SN3WaeAy/2PD9smzGGTCaDV4VMbHVJYGuMOSAih4DOEbs6gW1jHHYisDd4dFthB9AGvBu4f4zjtmGTBCwHDgDbgd8b5byVtiPHehdwF8DatWvNWWedNcZpxuZHP/wRyVCaVMPcemy69+CrdDbPr/cwppS5OGeYonlnMrBggX2ueTS8MrzyinXFqaGgr9dn7Xs+b7xxgImsRRNlJq3ZwXgntW7veWkPTz791BGfb+u2HeRPOoXO5vnkC8LOXQ2c8+4s+/x9ODicseDtxN348Z8oX7BlJZtbyGRg/nzwQ/3MT82nITr1lV83bdo0pd+r6cBcnDNMbN69vb3s27ePrq4u4vH4jBP0vb29ROIRnBpcF4yBUgkwIKN0X/Z8UvEIbnBuYwy5XI7du3fT0dFBOj25jDu1NV0dnUeAkTmK1wbbR2M30DbCl7Ky0mYBROQ9IvK+Ecd1Be87g/efACuDtGlDz7vLGLNlHONXFGWqyBcg1XBsIQ/ghqy7TUF956vMnF6znUw/sZ0vDeSXf/FFG/y6elWO7t5uliaXjk/Ig63+Gh7M8uw4gNGqr8r0ZP/+/XR1dZFIJGackAcbEOs4TlWDYQf7Dv6U5fi8PEWERCJBV1cX+/fvn/T56ynmNwAXiMgaABG5ELvQfzP4+RYReU5EKo6D/4wd79XBfhf4HLALeCxoswj4fJA1gSAf8WeBfzXGVH5bPwKeDrYjImns49hbajdVRVEmjDHW2t40jgI6qQZrHtFCUtVkTq/ZiR5b/Hyw8qt116+kpRy3vzwEAbCD9zqOAwi4w+5/FGV6UCqViMfHecM6zQg7YRxx8P0aCnqOP2wrHo9TKk0+pXLd6kQbY54SkcuBfxSRHOACFwwpPhLDBjdJ0H67iFwA3CoiHwn27w6O6Q+O+SlwOvD/iUgeaMDmNf6rIef1A0vQt0TksaCfu7RglKJMUwoFG/QaCh+xywvWY3ekWcJxoKUZXnttelX2mMHM9TU7Gfi7ZldZ0b65J05zUwm3cQ+vF19ndcNExby1cFaqv4onOKM9p1eUacBMtMgPRUQIO2FKlPCNX/W/tYqgLxXt3/Sxfl3V+n3WTcwDGGMewOaoH23fdcB1I7b9HHjXUfrbhc2EcKzz7gFGPtpVFGW64fv21XCk/7AxkAvCH5PJURbNRBIih60jY/jIGwFl/MzlNTvRs5nCgi68pmbAWuZPWp0brPw6Ecu8CLjuoKYXD9dxZ7xgUpTpzICg92oo6CPHL+irgd7+K4oyfcnnrVXePdLukMnAvHnQ2mr/fwQitrhUUQtJKZMn0f38QErKXF7YviPG6lXWxUYQTmyYYP0q18U3Nse8ZzzCjt54Kkq1WLp0KWeddRZnnXUWF154ISLC6tWrOfvsszn/3PNZunBpVbMZHT58mI9/7OOk4skg1ezUZEquq2VeURRlTDzPusuMYpXP5SCVgsbAjb5YtKW1j3DnjMVtVptCEaKR2o9ZmZWEDh4g+uoeXrv0DwFb+dX3hZPWZHmgr4fFiSUkQxNw5xIBcfDL9uGRb3zioZntk6wo042KWO/r6yOdTnPDDTdwxRVXAAy8V8NC/9STT/Gpqz/FsmXLbL0IByJhW+uQGgt6tcwrijI9yedtVhpneDBgqWQ1fltboIXEWuhddwwjfEsLlEtaSEqZMIktNvi1kslmc7cNfl2zKkdPb/fEXGx83363RfC8QTEfcfWmU1Gqxfr164+6/5JLLuGE5ScgyKSz3BSLRR548AHOO/+8gW0VQV/rMBgV84qiTD88zwa8JoZbOz3fCvbOzoHCmUBQia/TCn1v5HociUJDWlNVKhMm0f08RoTsqtWA9ZdvaS4RatzHvsK+iYv50GD111AIfN8n7KqbjaJUi+MR88uWLeORhx/hzLedyTvOeAenn3Y6d/7tYBHqG79wIycsP4ELzr2AG79wI+e/53xWLlvJn33uz4YVfDrj7WfQ3t5+xDnEsTfrtfSdVzcbRVGmH/k8tLUPK/pUCXjt6IDoKGm4IxEr6F99dZSA2MY09PUOVtxUlHGQ6H6ewuKl+MkUAN09cdaszrKlz1rsJ5TJxvMH/MKMsRd7o2kplZnE+vXw9NNTe87TToM77qhql88++yyXXnopj/z0EdadsY7du3fzjre9g8bGRj56xUe57Su3EYlE+OrGr3L1p6/mtq/cxv79+3nbW95GV1cXn/uzzx3zHLW+6qhlXlGU6UWpZJV5IjFsczZrvW5GcaEfIJm0XjWZ7IgdobANpM3nRz1OUY5GomczmTUnAZDLOex4OcaaoFgUwKqJBL+aQcs8DBaMch0V84oylWzYsIF169bxrne+i7Abpquri4/80UfYcNuGYe0WLlrIxZdcDEB7ezsf/siH+btv/F09hnwEaplXFGV6UfGjGWJBz+etNb65+diHV4q/5vM29nWAdBr6+qwLj6uCSTk+wq/tJ/LG62RXWzH/wtaYDX5dneUHfd0sTiymIXyUO8yxMGZY7QTXhbIxmmNemTlU2UJeL5577jlOP/10ABxxCLthlq9Yzo7tO8hmsyQCw9KSxUuGHbd8xXJ27dpFJpMhWed6JrpqKIoyfSiWrAKPDWb08DzrU9zRMczrZkxEoL3dvg8rrOe4VumrdV4ZB4nuoFhUJfi1Jwh+XW2DX1c3rJ5Yx8YMq3bmODb/tbrZKEp9ccQZeEJmZkjiBBXziqJMH0rFYeZ3Y2wayvnzx1f3qRIQWyyOCIhNJK01tFyu3piVWU2iZzPGdcmeYF1punsStLaWCKdf49X8q6xJnzTxzofcnYrjE5KQFoxSlCnmlFNOYevWrcO27di+g+XLlxNPxAcE/c5dO4e12b5tO4sWLaq7VR5UzCuKMl3IF6zTe3TQNyaTtUWhjsgfj03j11vopbfQO2pKsWjUWvNz2SFZKR3HdqiZbZTjJNn9PLllKzDB97K7J86aVVl6+oPg14lksqngOIOZbIynmWwUpQ7ccMMNPP744/zqV78CYM+ePdxzzz3cdNNNRNwIxhgMhv379vODH/wAgP379/Pd+77L1Z++up5DH0DFvKIo9ccY8MqDVaCwFvlkwsatjqTklegv9jM/NZ/OVCf9hX7K/pHW9lTKGvqHBcTGYvZVLB3RXlGGYQyJns0DLjbZrMNLO2OcFLjYABN3swFwXCvmw7b6q+aYV5Ta8Nhjj3HhhRcCNuD15ptvHth36qmn8v3vf59rr72WdevWccEFF/D5z3+eK6+8EkccIqEIGFj3tnU898xz/N75v8fb172dS95/Cdeuv3agnx07dnDeOefxN7f/DZ7ncd4557H+2qOnxqwWGgCrKEr9KRRsLviIzTlZKQxV8X0fSq6UwxjDksYlxMPWZB9xI7xy+BXCbphoaHjeypYWa/QfCIgVsXcIe/faah6KMgaRPbsJ9R4mE4j5LS/ayq9rVmV5sLebrvhC0uH0+Ds2xn7BHQevBImoFoxSlFpyxhln8NBDD9EwRjq0iy66iIsuumjUfUN96G/4nzdw4003jtpu2bJl/OTRn1RnwONELfOKotQXY2yUa6MVRZ4PhVEKQwFkihlccVnSNCjkARLhBEualmCMIVfKDTtGBDqCOh4DAbGxuDXb59XdRhmbZCX4Nchk073FfufWrMrS0zfByq8wWCWK4QWjQo7a1xRlOiIiiIh1uZmGQbEq5hVFqS/5vLWUh8KDhaHahxeGMsbQm+8lFUmxuGnxqL7F0VCUxU2LibgR+ov9w/aFQvbmoFC04gmwLj1eeYhDvaIMJ9HzPH4kQm7FSsAGv85rLRFtOsDu3O6Ju9h4w8V8OAwGoznmFWUacv311/NP//RP/PqpX/OHH/hDG6M1zS4bKuYVRakfFWUdPPrM5azGHvoktOyX6Sv00Z5qpzPVedQ83CEnRFe6i8ZoI32FvmEWlFjM3iRkKwGx4Yg9mQbDKmOQ6NlMbuWqgXzw3VsSrFmdHfCXn3AmmyGWebBPoDQtpaJMTzZu3MjLL7/MwYMHeeCBB4i4ETzjTStBr2JeUZT6UbHKuyHyeVv4tbV1cHehXCBfyrOocREt8ZbjStvniEN7sp32ZDu9hV483xvY19BgT5etBMSm01bZ+0dmw1HmOJ5HoqebTOBik806vPRylJNWZ+num2Twq/GH5VrV6q+KMnNwHXdQ0E8TVMwrilIfPM8Wcko1jFoYaiDQtWkJycj48viKCM3xZhalF5EtZSl6xYF9LS3WSp/PA27IqnstJKWMILVnN24uS3aNFfNbXohjjLB6lc1kMz82n6bIKKmWjgdj7HcvwHUBQS3zijJDGBD0/vQQ9CrmFUWpD4UCtDRjxBlWGMoYQ1+hj1goxpKmJUdkpxkPqWiKpU1L8XxvIDC2kiXHmKB2VKrB3lR402NRVqYHTUERmUpayu4tQeXXVVm6eycR/Ar2yzf0IZNowShFmWm4jkvYDU8LQa9iXlGUqadctpbJRHJYYSjf+PQV+miJt7CgYUFV3A6ioShLmpYQckL0F2xgbDhsA2LzefBxgvyV09867/uQyQnx6DRy1pylNG19ES8eJ794KQCbe+K0zSsSazzIrtyuyVV+FQHX5ph3HDB4hFzNZKMoM42QE5oWgl7FvKIoU0+hAK2t5AsyUBiq5JXIFDMsaFhAW7KtqlbKkBNiUeMiGqIN9OZ7McYQj1sLfTYLJBLWYb80fQtJ5fOQywvtqSwd89Udo9Y0bX2R7Ko1A/lRu7ckOGl1ji19W4BJFosCcF2MsTeWvvEJO1rzQFFmItNB0KuYVxRlaimVIBKh5MYQsYI6X85R8kosaVpCOjaBIjzHgSMOnalO2lPt9BX78HyPdNomtMlkxVrni8VjdzTFeGXozwjRsM/ixsOkW6PI/M56D2t2UyrRuGPHgItNJuPw8s4oq1dl6e7dDDA5NxsREAfPGxTzWjBKUWYu9Rb0+lxPUZSppVjEb++kUBIWdkEBFFaTAAAgAElEQVSu3E80FGVBw4JR88dXExGhJd5C2Amzp28PsVCM1tYw+TwU/DjRRMIWkopN3E+/muTy9ulEZzpHKlqEtnZMKgWl7DGOVCZD6IUtuKXSQLGoLS/a4Nc1q3P8uK+HjlgnzZGWiXVeCfwWGcgx7xlPxbyi1IClS5eydOlSADzP4xe/+AWrVq2is9MaRHp6erjvvvs466yzJnUe3/e59//cy913341vfPr7+1m+fDlf3vBlFi9ePMlZHBsV84qiTB2FIsRiZP04be0+JcnQFGuiLdl21Pzx1aYh2sASdwm7e3dTpkxnZ5xdu8BLNeFm94CJWOtpnSiXIF8UGlM+LdF+3FgEOhZbVyAtclVzIr99GoDMamuZ39wzGPz6tZ7uybnYGAMh67rjeUG6eU1LqSg1Y9OmTQD09fWRTqe54YYbuOKKKwAG3idLb28vV111FZs2beKtb3srhVKBj330Y7z3ovfyX0/+F+FwbQ1V6maj1AZjVHQoR1IukYk0k2woI5H+gXzwUynkK8RCMRY3LibkhCiaDPPnQ86P4qfSdSskZYx1+fF8oautSFu0F7e1Gbq6IBLBGEPBK+A4unTXkvCzz1BMpSh2LQSguydOe1uReONhdmZfnpyLjefbgmXYmjOhEJqWUlFqxPr164+6/5JLLhmw3E+GUCjEZZddxjve8Q5CTohoOMrVn76anu4efvPr30y6/2OhVwSl+pTLg2U2i9M3oFCZYvIFCuEUkhSS6TyLmxbTHG+uazq+sBtmUeMiUpEUZaeP1lZD1k3btDFTXEiqWIRMRmhO+yxqyRB3S7BwIbS0UDIe/cV++ov9xEIxuhq6pnRsc43IM09zaMXKgacztvJrjhf6tmAwrGmYTFpKH8L2obgQZLMxpi43tIoy2zleMf/QQw/xlre8hXXr1nHqqadyxx13DLS5/vrrWbJkCeeccw7XX389Z599NosXL2b9+vV4QUrjVCrFd77zHcC6c4acEMmErY9SmALjkLrZKNUlnwdxbN6/3RkbvVeWYaXLlTmIMXiFMv3NYZZ2wJKWpdPGR7gSGBt2wrzmv06yOUW20EQif8hmuakxvg/ZvBANGxbNLxEtZyGRwm9tIWdK+IU+om6UzmQniUiCkKN/SzUllyO0pYdDl7wfgP6Mw8s7Y/z++Qfp7g0qv07GMu/7RxSMKvnqZqPMPNavh6efntpznnYaDNHZVeHZZ5/lkksu4dFHH+XMM89k9+7drF27lsbGRq688ko2btxIJBJhw4YNXHPNNWzcuJH9+/dz+umns3DhQq677roj+hQRnnj8Cbq6unjbGW+r7oBHoa6mABF5n4g8ISI/E5FfisjaY7R/t4j8QkR+LiL/KSJ3i0jLkP3LReQbwf6fichTIvKJEX0sFZG9IrJpxOvdtZrnnMDzIJOBeAIWzIdY3Fq1OjqsyVEL8sxp/GyO/Y6wdGkjy1sXTxshX0FEmJecR1d6AfF0BmmMUSw7Nf/e5vOQzQnzmn0WtuSIlDPkWhvpa0pQwKMl3sLSpqUsbV5KOpauu5CfE2v2b3+LeB6HTjgBsJVfAU5anaW7r5u2aBvzovMmdw538NLrOAbXcdUyryh1YsOGDaxbt44zzzwTgK6uLi6//HJuvfXWYe0WLVrEpZdeCkB7ezuXXXYZd95556h95nI5br/9dr7+9a8TjUYx1NbtuG5XBhF5M3Av8FZjzGYR+QPgYRE52Rizd5T2TcCDwI3GmG+IiAN8D/g28KGg2dXAEuA9xpiiiPwu8LiIlI0x/zCkux8bY66o3ezmGPmCfXTc1g7J5PB90ZgV9Hv3Qiw2kLNZmTt4XonX+jKc+OZTWdnRMa2rXKZjaZa5YTC72XMoSWN/L25j8tgHjhPPg1zBFn9a0FGGwmH6fZDOdtKpeTTGGomFYtPqdzVn1uxlyzh021c5ML+TdoYEv67OcUd39+RcbCo4DsYELjbiaY55ZUZSbQt5vXjuuec4/fTTh21buXIl27dvJ5vNkgie0C5ZsmRYmxUrVrBr1y4ymQzJIdrHGMMVV1zBH//xH3PppZdijEGCf7WinqaAG4GHjTGbAYwxDwL7gE+N0X4FkAJ+GrT3gUeB84e02QV81RhTDNr8Nmh/eS0mMOfxfWuND4dgwYIjhXyFWBza2oJym1Prh6zUl5Jf4tChXlYsO5GVizunlTgdi3g4zgltS5i/PMUbpTKmVK5q/7m8UCgK81pLNKYPUcjsw2luYcGJb2ZFxxo6GzqJh+PT8Xc1N9bsjg6yH7mMYmMjYP3lO9qLxNN9vJR5aXIuNhWC6q+uC56vaSkVZTZxzTXX0NnZyRe/+EXAPvkNu+Garun1FPPnAk+O2PYEcN4Y7Z8HeoDLAEQkAbwfezEBwBjzt8aYn404LgdMj6TRs4lSCXI5W2inoxNCx7AsJVO2bS6nWW7mCDkvRz5fYmGsixUnLaxnpsdxE3bDrF6wmIUnLmD/6wcxVfjOemXo6weJZGlp7yMmfbSF0yxb83YWLzuNhnjjdPebnpNrdndPnDWrs2zp24KPP7lMNmDXP3EGcsxrwShFqS+nnHIKW7duHbZt27ZtLF++fMAqD7Bz584j2ixatGiYVf7GG28kl8sNBNA+8cQTPD0FgQV1EfOBz2Qj8OqIXXuB5aMdY4zJA+8BzhGRl4E9wKnYx7RjnUeAddhHu0NZLSIPBH6aPxaRyyY2kzmIMUGmGmD+fEg3Hn8+7nQjNDXZ45VZTaaUIWwizCu1sezUTkLRaS1SR8V1XE46YQVd7R28fvAQvpnYUyVj4FCmxKF8hqZ5GVZ2xFnuNLCsfRXNJ/4OkYamKo+8+szVNbuv32HnrhhrVuXoCYJfJ5fJxlhzvGOrv0YitmBUvWMhFGUuc8MNN/D444/zq1/9CoA9e/Zwzz33cNNNNw1rt2/fPh544AEA9u/fz7333stnPvOZgf1f/vKXefjhh/nTP/1TnnrqKZ588kkeeOABnnvuuZrPoV4rSOU2ZmS+ngIwavoIEWkAfgL8APu4NwFcBew+ynmuAl4D/n7ItjzwErDeGLNXRE4DfiIiXcaYr45y3k8AnwDo6OgYKD4wHkrlEr3eIfrLveM+dlpRyR3vuuC5sPvQmE19H7xSnj1bn+eIlNjlMuQPceSOmU+5XGLvwZF6Z/YzOG+Db3xcccn4WfpCb/Baz25rn52p+Abfy/PqgQyuOAM3r8f8rI3BMwZjIOwK0bDLwdfg4Gv91iT72kF44YUpmsSkmTFrdnDuSa3bpWIJg8+vnsoB0LnwFX72+q9pCjVTzpbZm5vg33jlCc/2PnwfekMg4vOK+8q0CIDt7++f0DVuJjMX5wwTm3djYyN9fX21GVCNefzxxwfcXr785S/z/PPP8xd/8ReArRJ7zz338OlPfxrHccjlclxzzTV88IMfHJhvoVDgrW99K0888QRf+9rX2Lp1K+9973v5+Mc/Tl9fHzt37hwQ/+vWrRt27rvuuuuov7d8Pj/p72C9xHwmeB/5KDUKjGW2vQprAfqisc+8MyLyDPAfInKiMWaYshSR04HrgXONMQPJzoNArY8M+flpEfkWcBNwxIXBGHMXcBfA2rVrzURK/v7ohz8iGUqTaqh+IN2Ukc/b97Y26wM/BuWybdraCrtffJ6uE07m0CEr7mPxIImDMfDG69bffgpS/00lew++Smfz/Ck7X7kEZQ/K/uDTEdeBkGsIhaauiOneg68yr7GNnJejPdqOW2qi0eml49QOSKenZhA1pPDSq/T09HEo+jrRcIiIExn1s/aNT8Ev4Ps+pUKY1kQzKzqjpOKu/b5Ho/aJVmTGuVXMmDU7aDOpdXvPS3t48umn2LfbFo16x5tj/GPPS5zcdDLzWxaMq69hFEsQCUNbO5mMzeBrQv0sblpMLBSbeL9VYtOmTZMuaz/TmItzhonNu7u7m4aGhtoMqMace+65rFu3bszxf+hDH+JDH/rQqPsAotEoruvypS99adT9J5988oTdMWOxGG9605smdGyFuoh5Y8wBETkEdI7Y1QlsG+OwE4G9waPbCjuANuDdwP2VjSKyCvhH4BJjzHAnp9HZBjSKyDxjzOvHOY25ge9bP/dEwip0d+yvTDZrjfZdXRCPwx6B5mar5TIZOHAAch7EokKopTVQ/gWITRv32GmNV4ZSGcqeIGIAIRoxpFOGaNQHp0zZg0JByOWFvpwMGAJdR44Q+KNF1o+67TjuCIzxKfpFFsa7EC+B45Ro63Bhhi78I4kuaGX5G31sP7yIrNlD3htchowxFP0iZVPGEYeonyZqGujqCtPUaHC8EvT1wbx5Nm5kBj6Rmqtrds+WBJ0dRWLpfnb0b+fstrMn16HvD9TcMNivgqfVXxVFmST1dNR7BBiZo3gt8G9jtN8NtImIa4ypJH+umMUGLEMisgT4f4A/qWRdEJFPBJYaAl/LbcaYx4f03RX08cYk5jP7KBSt6betDRLJMc28ng+5LDQ2Wq0yMvuk61pBn0pZwf/GG5AvOESb2gkf2KuCfhQ8z97rlD2xZSKN9cxIJX3CkRLilsEp4zjBToSIGyEmQiJuaMa6d3geFMtQKBhyeSGTC4qbisHB6opwIPBH8wn3OXJbJc3WcISFiYU4foSCJyxM9+PMXzR1jwZqTSRCw5IWurYdZn9hEVl3L77xyJQyGDGkQinmuW2UC3GScaGjzScaDeJLRGDJEnuHO7OZc2v25p4Ea1Zl2dr3Ij7+5DPZmCDqFftn7brgGS0YpSjTmeuvv57vfve79Pb2cvHFF3P//fcf+6Appp5ifgOwSUTWGGO6ReRC7EL/TQARuQW4BFgbWHb+GftY9Wrg6yLiAp/DpjZ7LDhmPvaC8w3AGVLQ5AqCR65Ya9HFInK5MaYsIguwvpV/b6qRsmI2YIy1xkci0NEF4bFdAirZJjs7rVg/Go5j2ySTtvsDB1z6kx2E39hL1AkeP89BfN8K91J5ULiHXIhGy6SiZcQtEwr7iFgRHXYjJEIJYk6UiBsm5IQISeg4LeiD5yoUbMGiXF5sxlDHnj4UMoRDYxuQR/sz2Zx5jrBE6MsLi1pzRFLxWedCRXMzrc0HyR2CcHEBr8t+2mPtxN04pUIIrygsaPdJN/iI70Fvxt7htrfPlvoKc2rN7s+E2PVKlPdd+AbdfUHwazUy2Qx5uuk4Bsc408JfXlGU0dm4cSMbN26s9zCOSt3EvDHmKRG5HPhHEckBLnDBkOIjMWzAlATtt4vIBcCtIvKRYP/u4Jj+4Jj/C1gJjCxl8PKQ/38P+DzwCxEpYgO77mIM38s5R7kMhULgHzN2phrfh2wOEkEK+fA4dLiI1XmJBORyIQ7G2+nfvo9QtEw0GZo1xtzRGCqmDYABEUM4WiKVLOG4ZSIRB9c1hAgRC0WJhxqIOBHCToiQE5rUhV/EflbhsCERh+Ymq4XKZSiWhgt8zwMZReCPftMg9GVsJdNkqADti2ePVb6C6yLtbcwv7+flQ404hIhLA9ms0JA0tM/z7N9BPm9Tty5YMCviBSrMtTV7+zabZ3716hyP9HbTHG6mI9ox+Y4rbm5iC0aF6mpTUxRlNlDXVcQY8wDwwBj7rgOuG7Ht58C7jtLffwf++zHOuRm4ctyDnQvkcuC41sx+lCDXYtHGcc1rtYbHyWi2eBziiyMUmto4vOVVevsFNxwiFjUzXgsaE/i5e9bybQz4UiYULhFLeYQihkjIEAk5RN0IcbeBWChmRbuEpvTReyhkBftIgV8qWZGfzUE2Z9PpWace2z4StgLfN9CQNLQmchBLzQaXktFJpwkdOEDXvAJbD9jfTVenT0MqyPTUHwS5Llw4E4Ncj8lcWrO3brMpQ9esyvL17m5Wp9dUp+iL6+IFBaN8owWjFEWZPGoSUKxjdT4PDWlobrKCfhQq3jfhMCxaaDVLtYimY7Sf0knTjt30+UkOZayFPhY1MyZe0Ctbl9hMVvBMGR8f1y0Ri/tEoxAOGRKRCIlwnLgTI+yGCDvhaZtj2gp8iMcNjWkA7wiBn8s7lMtW3He0+UiuBPO66jzyGuI40NZGbM8eIhHDssWe9aCpFFGbwUGuynC2bmtkfmeRREOWbZntnNn2zup07Lr4nq2zpwWjFEWpBtNTRShTR75gFWhbu3VmH4NKysnmZvuqiVaJx4ks7qR1714aGxP0ZV0OHnYwxor66eR2XPFzL5QMHh5lv0w47IHjkWruIx52ScdixMNJom6UkLiEndqWc54KRhP4ngd7egyhUs4+qqnmXd50JJWCaBQh+E7OriBXJWDbtiZOWpVla/9WPFOeXLGoCiID1V9jMRXziqJUBxXzc5VKyslYzFoTQ2M7vedy9hpUSTlZU1IpaG8ntH8/zekk6QZDJiscOOjYpDcRc7TsmDWjXDLkS2Xynofv+ziuIR6DhkahKR4lFU2RjMb4rxcy/G7n0voEtPl+IBam9oZh4CarXLZW6dmOCHR0QE8P9PbOtiBXBTh0WNi7N8kHLt5Dd+9mgMlnsvE8+9RTrNtdOAwGM22fzCmKMnPQVWQuUixBqWiFV0P6mCknGxqs3h+vVjHGVgMdt7BNp+2F7403cJNJ0ilIJTyyOeGNQw65LETDZlxBt+MZc8nzyBfLlDyDj8H4EI8JTQ1hliRTpGNRYmGXiBs+wq9dkKkR8p5nXTs8b3hlXrCi3k7m6MLecQbFv8jgz0O3Hy++b79Ps9BPfFTicfuIYpYFuSqWZ5+zi8uaVTke6eumMdzI/Ngki8GZIE0VDIp5TUupKEoVUDE/lxjq9L5gAUTGdofI561O7OgYf92fsl8mW7RppIvlImW/bHcM0YbGGByxKdlErAB2xR34meZme8U7eBBSKZvWMmlIJjxyeeHAIaE/I4RDZsJeHWW/TNn3KJTKQRVVcHCIh8O0JpO0NMRIRl0S0RCRUB3/VCqO6p43uC0ctm5R8bgV0OHwoJiviPuBqFv/yG2eZ//veYP/L5fte7EYJKM/Msf8AENvFCo+V83NtZn/dCUUUiE/S3n2WXtTumZ1lm9097C6oQrBr54/7NFmpWCUpqVUlNqxdOlSli5dCoDnefziF79g1apVdHba+nc9PT3cd999VakC/P3vf59vf/vblEol8vk8uVyOL3zhC3z4wx+edN/HQsX8XKES5NrYCI1NYzq9GwOZrL3mLJg3PkOrMYZsKYsjDosaF7HX3cvyluUDFvqhL894eL4XCOoyRc+Kfs94+Ma3hYmSEci5mMOvIYmEFfoIbsShs8OhUHA43BuiP2Orm8bGqIbuGQ/P2HN5nrHCvSyEnTAxJ0FbPEpTKkRDIkQi4hIO18mvvZK3slweLtwjESsa4/FKXsmjBy0MtbRPdjxj3RgMvUEol2HnzoHKlooy0/nts2Ha27MkGnJs7X+Ry5f8t8l3anxboY3B6q9lY7T6q6LUmE2bNgHQ19dHOp3mhhtu4IorrgAYeK8G3/zmN/nYxz7GZZddBlhx/8EPfpBTTjmFk08+uWrnGQ29+s4F8gX7foyUk6WSTTHf2gpNTePzsih5JbKlLK2JVlrjrcMeHYsIrri4HN9Fa5jwb1yEt/sV/HyWcixC2fco+kXKvocbLpFuyREtGg73ubx2WBDHinoJEigWywbHjxB2YkSJkYiGSTc5NCbCRCPH1sU1wxj7C69Yw8H+wqNRe8MVix2fcK8lQ11tjuVjpdlblFnEs8+FWbliP9v6t1I2ZdakT5p8p74/UDBKGCwYpW42ilI71q9ff9T9l1xyyYDlfrJs2LCB008/feDns846C9/32bFjh4p5ZZJkMjaotLmZsSJHK943rmvTY49l4R79WEOmmCHkhFjatJR4ePIRshX3GwDcCCxeAa+8YoXviAjcAav/PJ98weeNwz4HDgmOA2EnTKrBJZ0SolGIhE19jMe+f6Rwdxw7l3TaCviKcJ/h2W4UZaZz4AC8vDPEu951mO7eHoDqZLIBcAdvesXxCRm9BCtKLTkeMQ/w0EMP8Zd/+Zc4jkM2m+Wqq64aOPb666/nu9/9LitWrGDt2rU88cQTbNu2jfe///3cfvvtuIGxa+3atQP9FotF/vqv/5pTTz2Vs88+u0azG0RXktlMqWSVeeu8sYNcPSvkGxutRX48BtZCuUDRK9Iab6Ul0VI730/Xtal0du60rkJD7jaGWv3DcWiIw8J5gwFmdto1q/g+Ovm8Fe6VSvOua4V7U9OgcA+FVLgryjTk17+27ytXHOKZ3s00hBroilepdoJj01KGQuCjBaOUmc36H6/n6b1PT+k5T+s8jTt+b2TB6Mnx7LPPcskll/Doo49y5plnsnv3btauXUtjYyNXXnklGzduJBKJsGHDBq655ho2btzI/v37Of3001m4cCHXXTesVh6f/OQnue+++zjllFP44Q9/SPIoab+rhT4bn82USpAeu0RrPm9jHRcsgLa24xfyvvHpK/QhCEualjAvOa/2QVyhECxaZAVysXjMppHIFGrlSprPvj77/3jcRg4vXgwrVsDKlfZmpLkZEgm1wCvKNObss+HRh/ezevVBuvuqWPkVbMGoQMx7vop5RZkObNiwgXXr1nHmmWcC0NXVxeWXX86tt946rN2iRYu49NJLAWhvb+eyyy7jzjvvPKK/b33rW7zxxhv8/u//PuvWrWPbtm01n4Na5mcrlWwjo/jM+L6tc5NMWhE/HteTfDlPySvRnmynKdY0tUWQwmHrB/Tyy3ZutchNebwYM2iBdxxrdU+l4NVXYf4kU9gpilI3XBdWnVjm4G8KvNj3In+0+LLqdS4OXlkLRimzg2pbyOvFc889N8zXHWDlypVs376dbDZLIpEAYMmSJcParFixgl27dpHJZI6wvruuy0033cQ999zDrbfeyj/8wz/UdA4q5mcrhSKkGo4wtxcKVn+2t9uUk8erxX3jkylmiIfjLEwvrN9FKBq1FvqdO+3cprJQz0gB39hof4mxmFraFWWWsTO/k5IpsTq9evKdGWPXDMdWtA6H7Zqqwa+KMnsolUqERxgZ16xZw/PPP1/zc6uYn614ZUgmBn40xlrjo1FrOB5PyslcKYfne3SmOklH01NrjR+NeNy6rbzyirWG1zKTijH2DqhUsudpaLBBq7GYZnBRlFnM9qx9NF6V4NeKbw02TikSAYJ4H0VR6sspp5zC1q1bh23btm0by5cvH7DKA+zcufOINosWLSKZTFIul3nLW97C008PjyHYs2cPXV1Virk5CqpGZiOeB+EIRK2LTblsk9o0Nwe1oo5TyHu+R2+hl1goxrLmZTTGGusv5CukUnYy/f2DgabVoiLg+/rsLy4Ws+49K1bY9J6JhAp5RZnlbM1tIxlKsTCxaPKdef4wt0DXBbT6q6JMC2644QYef/xxfvWrXwFWgN9zzz3cdNNNw9rt27ePBx54AID9+/dz77338pnPfGZg/zPPPMMPf/jDgZ///d//nccff5yrrrqq5nNQy/xspJIsHhuX6TjWkB0fR9bIbCmLMYauhi5SkdT0EfFDSaftjcu+fePzGRqLYtG+jLE3C21t9pc2la48iqJMC7bltrK6YVV1gvuHWOZhsPqrWuYVZWp47LHHuP766wEb8Lp161ZuueUWAE499VS+//3vc+211w6kpvz85z/PlVdeOayPM844g2eeeYY777yTF154gQ984AN89rOfBSAUCvG1r32NW265hdtuuw1jDJ7n8b3vfY+LLrqo5vNTMT8bMQbiccrlwayOx6tHy36ZbDFLY6yRtmQbIWeaf0Wam+2jhwMHrKAfLxUBD9biPm+eCnhFmeOU/TIv5V7iQ/P+sDodmkExX6n+KkZqnwVMURTACvGHHnqIhjF0wkUXXXRcovvmm2/m5ptvHnXftddey7XXXjupcU6Uaa7UlHFTKNo0NW6IfAY62o9PlxpjyJVyiAiLGheRjNQ+L2rVmBcklj982FrUj0Wl1G1w0zPgOlOXilKKokw3Xjz8IkVTrE7lV7BrzZDqr4hHSELT84mnoigzDlUvs41yCea12srhjtX1x6LklciVczTHmpmXmDfz/DhFbHqeSnDAaJMul62A930bBdzRMZjzXVEUZQjPvPEMQHUy2VRwZCCpjRGPsOjaoygzgUoF2N7eXi6++GLuv//+eg/pCFTMzyZ831p/ojHyOZv6/GhxmsYYMsUMISfEksYlxMPjcKqfbojYND2vvGLT9iQSwwV8JGIFfzw+vlQ+iqLMOZ574zliTpwliSXHbnw8BCq+UpnaNz7hkIp5RZkJbNy4kY0bN9Z7GEdFxfxsolCwQaEi+OboHidFr0ihXKA13kpLomV2+G5WIn137bKZaMJh64KTTKqAVxTluHnmjWdYHl9WvXVRBFwXr2wfDGrBKEVRqomK+dmE70MySaEAqTH0qzGGTClDxImwpGkJsdCRFWJnNK5ri0qVg6umoijKOPB8j+cPPs+5TedWr1MRkCGWed8n7KplXpl5GGM01qOKmCql1lYxP1uoiNdwhFLGepSMJF/OU/JKtCXbaIo1zQ5r/Gi4rmajURRlQmx5Ywu5co4V8ZXV6dDzwHHtE9NKUhtNS6nMQMLhMLlcblghJWVy5HK5I6rGToRZqubmIMUipNO2XlTI1jmq4BufvkIfISfE0qaltMRniVuNoihKlTHGcNGSizgxeWJ1OvR9CLlB34GY14JRygykvb2d3bt3k81mq2ZRnqsYY8hms+zevZv20ayv40Qt87OByh9VPE4+Z63yladguVIOz/foTHWSjqb18ZiiKMpROLn9ZO466y6efPqp6nToG4gO+jw6DngYNagoM450Og3YCqmlUqnOoxk/+XyeWGz6uBaHw2E6OjoGfq+TQcX8bKBQhGQKHxcRm8gFbOETQVjWvEz9MxVFUeqB8e3j0gDXhbIRdbNRZiTpdLoq4rMebNq0iTe96U31HkZNqKtpQETeJyJPiMjPROSXIt8aJOwAACAASURBVLL2GO3fLSK/EJGfi8h/isjdItIyos18EblfRB4TkV+LyHWj9LNaRB4N+nlKRP642nObUrwypGzga1PToLt4vpynNdGqQl5RlKqga/YEqKQMriC+FoxSFKWq1E3Mi8ibgXuBjxpj3gXcBjwsIp1jtG8CHgTuM8a8E3g7kAK+PaSNA/wAeMYYcwZwNvA/ROQTQ9qkgP8XuCfo52Lgb0XkghpMs/Z4HoTCEI3h+YPpKI0xYCAVOY6KqIqiKMdA1+wJYgy4DsYE7o/iqYFFUZSqUk/L/I3Aw8aYzQDGmAeBfcCnxmi/Ansh+GnQ3gceBc4f0uZC4DTg9qDNYeyF42YZNINcAcSB/zto8wpwH3BzleY1tRSLkG6gWBISQ+oh5co5muJNGmSlKEq10DV7IojYglFB8KtnPM0xryhKVamnmD8XeHLEtieA88Zo/zzQA1wGICIJ4P3Yi8nQPrcZYw6N6HMRsGpIm18HF5ahbd4e9Dmz8H1IJCgWobl5cHPZK9MYbazfuBRFmW3omj1RXBffG6z+qmJeUZRqUhcxH/hMNgKvjti1F1g+2jHGmDzwHuAcEXkZ2AOcClw9pNnyMfqs7DtaGwdYetyTmA4USxCP40mYcHgwHWWhXCAZSRINadEkRVEmj67Zk0QcPM8+OfV9n5CjuScURake9VpRksF7YcT2AjCqpUVEGoCfYP0rbwzaXQXsHtHvaH0ypN/jaTP0vJ8AKv6b/SKyZbTxHQ1HnIWuE+o3DLMsTRrX4JSEko+DrRrl2f4FB48ShqqebwLMA16v8ximmrk4Z5ib856Jc14yweNmzJodnHtS67YjTlTEmS8iB8Zz3Kh9gRShaJNSlsuIxzRZn0djJn6nJ8tcnDPMzXnPxDkf15pdLzGfCd5Hmo6jQHaMY67CWmi+aGy1goyIPAP8h4icGDymzQAjcyZVzlHpNzPGeYe2GcAYcxdw11HmckxE5EmvXDhq1ofZiIg8aYyZU/Oei3OGuTnvOTbnGbNmQ/XW7Tn0+QI657nEXJz3bJ5zXdxsjDEHgEPAyCwIncC2MQ47EdgbPLqtsANoA94d/Lx9jD4Z0u9YbXzgpeMYvqIoypxC12xFUZTpSz0DYB8BRt4hrQ22j8ZuoE1kWKWN+cF7xTrzE2BlkBJtaJ+7jDFbhrQ5PUiJNrTNr4wxY1mYFEVR5jq6ZiuKokxD6inmNwAXiMgaABG5ELvQfzP4+RYReU5EKrV3/xk73quD/S7wOWAX8FjQ5kfA08BngzZprN/kLUPO+x0gD3w0aNMFfGREm2ozqce9M5i5OO+5OGeYm/Oea3OeS2s2zL3PF3TOc4m5OO9ZO2exrox1OrnI+4A/B3KAC6w3xjwR7PtrbBqzk40xuWDbO4Fbg7YxrOXnC8aY7iF9LgC+hX2UGwPuNcZ8dcR5VwN/j40ZSAJ3GGP+sYZTVRRFmfHomq0oijL9qKuYVxRFURRFURRl4tTTzWZOICLvE5EnRORnIvJLEZmVkdQAIvIHIvKQiPxURP5TRH4kIr9T73FNJSLyaRExInJWvccyFYjIEhH5rog8KiLPishTInJ2vcdVS0QkKiJfE5GnReQ/RORxEbm03uNSqsNcWrNB121ds3XNng2omK8hIvJm4F7go8aYdwG3AQ+LyMjMDLOFu4H/Y4x5jzHmbcBvgZ+KSEd9hzU1BO4Cn6/3OKYKEZkHPAr8vTHmHOB3sJlHTq7rwGrPzcDFwDuNMe8GPgncJyK/W99hKZNlDq7ZMIfXbV2zdc2u77Cqh4r52nIj8LAxZjOAMeZBbCnzT9V1VLXjZ8aYe4f8fDu2SMP5dRrPVPN14Mv1HsQUcj3wuDFmE0CQS/zPgAfrOagp4DTgCWNMH4Ax5jfAYeCcuo5KqQZzbc2Gub1u65qta/asQMV8bTkXeHLEtieA8+owlppjjHn/iE254H1kwZdZh4i8FygBD9d7LFPIB4CfDd1gjNlpjHmpPsOZMv4VeKeILAQQkQuwwZv76joqpRrMqTUb5u66rWu2Rdfs2UG9KsDOekSkBWgEXh2xay/w+1M/orpwBjal3AP1HkgtEZEkNmPHBczyC2CFYM7LAVdE7gGWYnOH32WM+Zd6jq3WGGPuFpEE8JyIvIotjvQvwPfqOzJlMuiaPcCsX7d1zdY1m1m2ZquYrx3J4L0wYnsBSEzxWKYcERFsCrubjTH76z2eGvMl4FvGmFdFZGmdxzJVVIr83AK8xxjzaxF5K/AfIhIe8dh+ViEiHwf+J7DWGLM1CBY8F1uRVJm5zOk1G+bUuq1rtq7Zs2rNVjeb2pEJ3kfe9UcZrH44m/ky8LIx5vZ6D6SWiMjpwDpsnuy5hBe8P2iM+TWAMea/gO9jCwPNSgKxsxH4X8aYrQDGmGeA92EvFsrMZa6v2TAH1m1ds3XNno1rtor5GmGMOQAcAkZmQegEtk39iKYOEVkPnARcWe+xTAEXAXHgURHZBNwXbL9DRDaJyKq6jay2vIa1WL4yYvvLwLKpH86U0QY0Ay+N2L4D64+qzFDm8poNc2rd1jV7OLpmzwLUzaa2PAKMzFG8Fvi3OoxlSggeZ10IvNcYUxaR5cByY8wjdR5aTTDGfAn7yBaA4JHtDmxlzE31GVXtMcZ4IvJLYP6IXR3AzjoMaap4HXtBHDnv+cwd6+1sZs6t2TC31m1ds3XNDphVa7Za5mvLBuACEVkDICIXYr9A36zrqGqEiHwEuAkbWHRqUGzlPODMug5MqRVfAS4WkWVgi5EAlwJ31nVUNcQY4wPfAT4WBExWHtu/h1kUTDWHmVNrNui6PcfQNZvZuWaLTTOq1AoReR82oCgHuNi7/yfqO6raICIlRn/a81fGmC9O8XCmHBG5A3gb1h/zt8CLxpgP1XdUtUVELgOuw1o4QsD/Nsb87/qOqrYEWRG+iA2gygIN2IvF14wuqDOeubRmw9xet3XN1jV7tqzZKuYVRVEURVEUZYaibjaKoiiKoiiKMkNRMa8oiqIoiqIoMxQV84qiKIqiKIoyQ1ExryiKoiiKoigzFBXziqIoiqIoijJDUTGvKIqiKIqiKDMUFfOKoiiKoiiKMkNRMa8oiqIoiqIoMxQV84qiKIqiKIoyQ1ExryiKoiiKoigzFBXziqIoiqIoijJDUTGvKIqiKIqiKDMUFfOKoiiKoiiKMkNRMa8oiqIoiqIoMxQV84qiKIqiKIoyQ1ExryiKoiiKoigzFBXziqIoiqIoijJDUTGvKIqiKIqiKDMUFfOKoiiKoiiKMkNRMa8oASKSnsAxDbUYi6IoM5uJrCfBcXERCVV7PIqizF5UzCtzHhFxRORLwF9P4PDPisi3RSRynOdaJSJ7RaRfRIyIHAh+3isiORF5QUTuEJHmEcfdH7QxwXvbKH2/fUjfueD/l4mIG/z/QHD8IyIioxx/XdCuKCKHg/8vncDvRFHmLMe7ngR/05W/ySuG7FoAPCUiJ43jnD8WkdeCvip/+3tFpDd4/7GIvHXEMZcNWXeMiPzJGH0/MaTvvSJyf7D9G8HPnohkRWT1KMcuCtocDtaVvSLyheOd10QQkbtFpFtEosfZ/sdjfA7TEhHpFJE9IvJXk+jj+eAzMSJyVhWHN5GxjPV3MFrbyvUzJyJmioY4MzDG6Etfc/oFfBP4FdAwgWPDwP3AvwPOOI77ImCAs4ZsiwCfDrY/C4RHOc4ErweO0ffdo2w/a8jxf3aU4zcBV9T7c9GXvmbiazzryZC/yStGbP8w8DpwwjjOuzTo6+4R208HdgBl4J2jHHd3cNxhYNnR+h5j30vB8U+NtmYFba4ANk3R7/9BYB+QHLF9E/DSeD6H6fgClgAZ4BuT7OeKkdegY7R/qVaf4Xh//5XvbL0/i+n0Usu8MqcRkQuBTwIfN8b0jfd4Y0wJ+ARwHvDxyYzFGFM0xnyD/5+9846T5Cjv9/P25NnZnd293b29uJdzvhMCJSQhIZIkEJhogjEGjMGACbbhZ+OAA2Cwyck2GRtssIURICRAWULSJV0Ouhz2bnOY2NNdvz+qZ3Z2bvY2p9t67tPXM93V3dW9MzXfeut939I/OuuAlw1Q9ARwu4i8cwSX6fSWvxeRjSOpp8FgKM9o25M8SqkfAA8C3yw3ijbMc+1Ad/B9wAcHKHYCqAK+IyK+EVzmBLrT8LcjOHasuQNoUkolJrsi44FS6iRQD7xnsutimDoYMW+Y6XwM+JlSav9IT6CUugB8G/joCH8IS9nprVcOsP9tQA/waREZqMxAdKE7H0HgeyISHlkVDQZDGUbdnhTxSeAa4JYxONdgbcq3gHuAa4GPjOD8HwDOAB8SkeeP4PgxQynlKqXSk1mH8UYplVSeidpgACPmDTMYEVkCPAf41QD7Gz1/+DMickFEjorIj0TkzjLF7wcWAteNQdXy38vWAfY/C7wLiKIFeWA4J1dK/Rfwb8BatGAwGAyjZAjtyVYReVBEekTkuIh8Dohc5pRPAd3A68egeoO1KQC/BzQDf1nqXz8E2oHf9V5/W0Sqh3k8ACLynSIf/n7+9SLynyLyVNH7LUU++y2eP/WJUl/wvJ81umOU9+FvFpFnylTBEpGPeW19p4jcKyKLx7ve3nYRkfeIyF7Ph7xFRP5HRNYXHXun9MU1nShTj1tFZLvoWInjIvIZEXmn9MVn/aJM9cMi8jkROSkibSLyXyJSV3TOW7zntwDIx2U1i8g9RWUGrXtR2eF+D4aMiFSJyD95n4ML3j39s4jES8rViciXveufF5FnReS7InJzUZmoiPyDiBzxypwQkR+LyF1jUdexxoh5w0wmL7wPlu4QkQbgt8BG4Gql1Gy0K00T2opVygFvff0Y1Gsz2ifyZwMVUEp9F/gusBX4mxFc473AIeDdIvKikVTSYDD043LtyUrgN4CD9j9fCjwM/MNAJ1NKuejv6Fi1KQA/vMz1WoA3od1xviciFcO5gFLqQeDv0UaNL4+kkkqpN9LnqvNCpdQnAEQnGHgxsFVE5npldwCrgDZgrlLqkFJqEbptKz7nIaVUIzqO4bRSqtFbNpSpwh8Dh4EVaFfHZeh4qHGtt3fcl9Gfhz8FZnl1UMDjeVGslLq76F76IXpE5Gfoz8wc7/hjaBcrgLuUUuXa+r9Cx2A1ATcAL0Abe/L3dr93zdPAY0XP76VF5xi07l4dh/09GCoiEkG7qN4O3Or9Zt8CvAR4UESiRcX/G1gCbFFKzUH77K8A/rKozJe8Y5/vldmKHtH+zGjrOh4YMW+Yyazw1s1l9uV/lH5fKXUWQCl1HN3Yl+N8yTmHjYhUisgHgTjwYqXUuUEOeRfaSv9hEblhONfy/ElfB9jAN4otMQaDYURcrj35OFAJvF8p1ea5gvwX8PQg5zwPLJJhjr7lERG/iFyHDqz/K3Rw7oAope5DZ+FZBnx2BJf8a+Bx4LUi8ruDFR6An3jrO4q23Yg2cEjJ9hcDv/Jil8aCk0qp//D+PmeA7wEbhmKdZxT19v5G7wA+q5S6R2k6gD9Ad67+bgjX/ye0gP5jpVRCKWV7MVh7Bznut0qp+wGUUvvQAcQvlqFnaBtO3Uf6PRgKH0B3Wj+qlDri3c8R4KNoo9yHvfpWA88HfurVE6XUaeAvgFNF57sTuD//O6yUagP+DP2bO+UwYt4wk5nlrfsFSomIBbwKOOM1bsU8AbyyzLny5xiuKP6xN2TZgR5S/yDwEaXUw4Md6AXYvQ5t5fhO6VDiEI7fibakNAL/Osx6GwyG/gzUnvjQ4q1ZKbW75JjfDHLOBFoQ1QxSrpjXeG3KRSAFPAQ8AnxcKeUM4fiPosXV74vIK4ZxXZRSObRbUBfwRRlBalul1F509p1i8XsnujPSU2b73cO9xmV4tOT9GW89d7ADR1nv13jrX5acsw1tXb9FLjP3gIjMBrYB25VSpa5Ug33Gyt1zAB1kOxSGVPdRfg+GU497Srb/H7qT82rvfRL993i/iLzQ+71HKXWvUqo4PetF4M0i8jv5zrRSaq9S6gVjUNcxx4h5w0wmb3nIlWyvR1vHL7GMe5aEcj6x+XMMyZpRxF3eEOYsdCehBvjREC1BKKWeQlsURjq0/Vng58CdIvL2ERxvMBg0l2tPKihvsS+3rZiRtCs/8NwgGtAW9l3oEcUPD+Vgz1r8OqAX+LqIzBnGtVFKnUBbavPZcUaiM/4P2FZ07ZcCPwbuBW4WkZgnsF6Abr/GilIhnPXWQx0ZGWm9l3nr/y7ySW/2fNXnAy5Qe5nr5n8vRvIZG+09D7Xuo/keDLUenUqpVPFGpVQGHdOxzHufRbuTxdF/l9Oi50wodbv6PXRn+IdAs4h8Q0SuHYN6jgtGzBtmMklvPVCjNZwf0HzZ5GVLDYDXSfgxeqg0jLaYD5VPoYPuXjfcoW0vI8Jb0HmZ/1lERuwmZDDMcAZrT0bCaNuVk+jA1BzwwaH6wSuljgJ/hDYyfAvtJjKc6/4A+AY6jmAk2XF+4l3zdhHZih4lbfW2h4AXoV1YdiulukZw/oFwR3n8aOt9a5FPen6JK6ViSqmLo6zbQIz2nvNMRt1HhFLqf9EBvW8CdgN/COwSkT8pKvMY2q/+lejf19cDj4jIv0x8jQfHiHnDTCZveS8dwm5BDxNfYpESPbvj/DL+hPlznB1lnT6JzgP/Zi8Id1C8QLk3oi0sX0QHFg0Zr6F9EzqjwPcZWzFiMMwULteeJNDubKWU21ZMDdo62DHSSimdJvO7aOvoW4dx3LfR7cGtwPtGcOn3oINJP4bO8jMcHkK3g3cAL6fPJeUetFvhHYy9i81YMNJ6H/bW80pPKCKzZfBZWo9765F8xkbLUOs+mu/BUDgCVHuBsMV1CKE/+0eKtvmUTu/5HaXUS9AByc8C/yheumYR8XtxBz9WSr0a/bv6BPBeEVk6BvUdU4yYN8xk8oFB84s3euL4v4HZIrKt5JgXoBuv0vzs+XMMFmx0WTxrzb9453/3MI47jx4WrEIL8+Fe95fAp9ER+88b7vEGg2HA9sRBZxlplEsnartxkHPOB/Z5I2ij4eNoMfl+Gd5cGH+I9nse9gRFRUH2LnoireEcawO/QLe3r8YLLlVKtaP9/1+Kzlryk4HOUYYEUPA7F5G/E5HNlyk/bEZR7x9463JpDz+GDu683HUvoFOZbi2TzODGod/BZSk8P88H/gsispAh1n2U34OhkM/U9NKS7bejR0t+CODFcXSJ9E3G5gXK3o02ZOVHr2wRqS8qcx4dEA0wotSr44kR84aZzEPobC7lZkL9CDqy/bP5lGIishwttD+tlOouKb/JW983BvX6LHpk4F0l6bQui1Lqp8DnGeaQeBEfRU/JPqoZJw2GGcrl2pO/QPugf0ZEZnkjfK8EXjjQyTyXmOWMQZuilHoWbZ1fTPkA/oGOy+e5H0rgbLnjdwB/zsjalJ/gGU1UX/rG/PZatH/0yWGc7wDQ4OUYX4yOIRgrF5Nihl1vz6Xji8AbReS13ufDJyK/B7yB/ikTB+JD6Of8WRGpEJGAiLyLMhbzEXIAWOJZrp+HnnwwNcy6D/t7MAw+jZ4c7ePebzUisgzdkd2NdkfNUwH8rWe1z88Rkc9e01ZU7hMiUumVmY3unB70zje1UEqZxSwzdkEPI+8BpMy+RuBraNeZZnRj9r4Byt4LPDSE6630ztWLjrBv994vKCn3V97+NnQe3ru9cgo9XLljgPOH0A3NN4u2+bxj29E/ys3AFwY4fjk60v8tk/23MYtZptsySHuyFXjQ+36dAv4deIX3ne5CW+CLy+czVS0fwnV/4bULCu2W0wx8sKTMMrTvfNLb/xFvnfLao2bg+gHO/+d4ITZF277gHeMUtWO+MscKOtjzgWE+y2p05+hTJduXevf5t2WOOeE9y3zbek/RvjnojCst6Jzp/8/b/h2vbP7v8Atv+z0l5/rGeNW76Dm902u/24CT6IDarUVl7vSec7aoLX9T0f5b0ZmIuoGjaMv427zr3lBU7oGSe/u6t/0Z+n6bWoC/KTpmFTq/fQvaredtw6n7SL8HJcfmfz9TXvlmdCrK/P4qtKg/gY4DOwX8MxAvKhNEp3X+jfc5OI92wfkHoKqo3JvQIwmnvDLH0bnnGyerfbncIl6lDYYZidcj34MWr/81wnM8Fz2Eep1S6omxrJ/BYJg+jEV74p3HhxZGDyilhuxuZzCUIno22n8E1qlLUy0brhAm1c1GRIIi8o8ikhtKPlrRU/V+U0SeEpEdIvKJ0tyrIjJHRO4Wkce9Mh8sc55VIvJrEXlY9NTHbxy7uzJMJ5RSx9DDyF+Q4U9hnh/G+yHwbiPkDVc6ps2+PKNtT6Ag5L+DtoBe1lfaYMgjIreJyF+X2fU8dM70S2YmNlw5TJqY934IHkQPfQ01IOeb6GG8q4Dnoqe5LkxlLzqf7f8BzyilngfcBPyhFOXPFpEYeqjte0qp69HDVp8VkdtGeUuGaYpS6m50loGXjODwFwPvUEp9ZWxrZTBMLUybPTRG2Z6Ankn2JHCb0jmyDYahUAN8QERugkLH+23oANCPqqFNGGaYpkyam42IrAPS6Gj93wCLlZ5s4nLl9wAblFJ7vG2vRv9YNCilekXkZcD/AnVKqU6vzIfRWUGalFJKRN6N9iObrXTWEkTkS8B674fCYDAYDCWYNttgmLqISBM6CPYW9IRIFWhr/KdG4/JlmB5MmmVe6Wlxjw7jkFvQPyTFqf+eQufGvq6ozLP5H4WiMgvQgRP5MjvyPwpFZa4ZTuYQg8FgmEmYNttgmLoopU4qpd6tlFqllJqjlKpSSj3HCPmZwXRKTbkEuKD6DyU0F+3Lr8+XHDfUMhbDnGzHYDAYDANi2myDwWCYAPyDF5kyVACl/oP599ExLlPA8918O0AkEtm6YMGC4dUacF0Xy5rYfpPy/tNrhaIo0e94ZBFXhf/6NilF0bwMAyAD1kmKNg56msEo0hPF0kIxtm5mQ7vnK49Ju+/8NfN/xrGswiAfDaXconsexYVHcKhS4LOGf+Dhw4dblVL1g5ccEyalzYbp225PNuaeZw5XxH0P003cVQprqL9TU+R3fKht9nQS8wl0Du1i8u+TRWWqhlBmsPMUUEp9DZ1rnG3btqmnn356eLUGHnjgAW688cZhH1eKq1wc18FRDo7rkHNzZHJZEqksveksXT05kimF62p94A9AwC8E/X4CVnDsxJZSYGchk4GeHshm9QdfX7DwJWjuOE9jzZzyx7su5BxwHf0+/6X0+SAQIOsXbJ/CHwxTGWzARzU+f4DqaojHIVT6FxyInh44dw6CQZJumOaLFnbOJetvpz3bTsgXImgFx+a5XO6er3Am/L4zWcjZ2LEobiSEX/z4sLzPkqs/X44DbtH7wlK0rRilBm7AlQLL8vZ7n+9EG42xur79fYX7to0mJmmA+riuos12uO2lNwz7lCIynEl2RsuktNkwtdrt6YS555nDtLzvXE7/pnd0gG1DIKDFwBC1zQP79nHj2rWDF3RdSCb1eWfNgqoq8E+OXB5qmz2dxPwx9OxtUjRs2+itny0q86KS48qVaSxTxkVPNDAplBPqWSeL7dpkc1lyKofrurhKf4YzGUgmhGzGQsSH3/IT9AeZVSnj06F0XchmIJ2G3gTkbC1uAgGoqBj8+GJEtGj3lUmIoRQ4DsFUjqDr4LgJOtzzIFAVrCF3YRYdgSrClUFmNfiIVvmxgv5Lv8xKQWsrtLbiRGK0dvnp6LLAn6CDFnJ2jpg/NiOt6FcEoSAEAwRSGehN9v/7i/SJ7vxr8bZblnbOsAKjt7ykRNdjonFcSLZP/HWHzxXdZhsMhglAKUiloLMTent1ux0O62W8sCyIxbTuaWvTWqK2FqqrJ03UD8bUrFV57kPP5LWWvoCqbeiZwB4tKvNuEakuCqjaBpxWfdMq3wd8TESsooCqbcBjSqmyVp6xwHbsfkLddmwt1D3B7ubN6UX+MD7xoVwLJ+fDzkRIpYRUWu+zBEIBqKgcx9Eg19EW0EQCkok+62QgMH4iRkR/WbwvjA89xq6UojeXxMmeIJwN4vRUkjpVgd8HtdUulXGLQCykv+ChkO65J5Mk/HGaz/mwnRwZfytddichX5gK3zA7IIapR75RN0xVpnWbbTAYJhHb1uK92Aofi01sHSxLGytdV3cm2tu1qI/HdX2mEFNWzIvIx4GXA9uUUmml1D4R+R906qU3i0gAeC/wL0qpXu+wnwO7gPejG/8qtN/kx4tO/S3gT4E3A98QkXnAa9ETfYwLOTfHsx3PFnzARQSf+LDEwmf5iPgjBQtxLqe9VtJp/TnO2vocPk9Dx8Zbg+bsPveZdNqzovu1aJpEK7aIEAlUQABs16bV7cIfTlDlq+ZippKW80IsZFMT6yQSdHDw0ZKM09kNrr+bDtWC5VjEApWTdg8Gw5XMldRmGwyGSaDYCt/To8X0eFvhh4JlQTSq69fZqa31NTV6mSKiftLEvIgE0ROBVHub/lNEziml7vLeh9HBTcUK8i3A50XkKbTR9n7gL/M7lVKuiNwBfEVEHvfO8TXPfzJfpldEXgh8WUTeijb8vl8pde943CfoIMuQL0TI39/tU+VdZmz9+U0kwM7pG/Zcx4mN9yi+Uv3dZ2zP/30k7jMTRMAKELACOMqhI9eGopV4MI7rVNLTESMY8LyC3CwJ30XSTpqwL4xPhjrPjcFgKGUmtdkGg2ECyVvh29u1RTMQgMopaHgT6RP13d161KC6Wov64CS4XBYxaWJeKZUFbrzM/g8CHyzZ1o22zlzuvOfQs+9drsxB9EyDE4pS2upu257nSlK7vxbEe3AYgZ2jIe//nkxBolcHClqW/jAGp6aAL4dPfFT4K7QLjtOLo7oIW2GqqMHGpkO14sdPhX/63JPBMFWZiW22wWAYJ5TSIqijQwuivBU+Epnsmg1Osajv6dHW+nhci/oJEXGXMmXdbK4klAvNzeBk+5Jb+P364tkr7wAAIABJREFUbz5hmaGcnOf/3quHAZQCy6cF/DRPTyUiRHy6AbBdmxa7GRRE/VEsmd73ZjAYDAbDtMUtySbmONqVt6NDW+GDwalphR8KxaI+kYCuLp35prZ2wkW9EfMTgONo/RyPjbPbuevqnoPj9KXgc3J6+CqT6UsfOcn+7+NJ3gXHYDAYDAbDGJNPLV3QGUUiPZvVAj2/5MuUHm9Z2gI/HazwQ0Gk716SSS3qKyt1WssJ8vc3Yn6C8JfJnjgkXFdnlSnOke06/b8wOUeLduifm7o4+8wU9X83GAwGg8EwSeTFebEoz69zOe0XbNsDi/M8hdS/3uL3a6v7FWo4HJB8JyWVgpMntfaaNWvcOy5GzE8GYyHQxZvAxmeB3wfBMcibbTAYDAaDYeIonlyu3Ouh7suL7LyuyO8f6H02C0ePDjx5Xl6c59czVZyPlLx4T6f7RP28eePm1mzE/ETgunCxWUe5DibQLUsnkTcC3WAwGAwTTa7oN6qYgWYzLrd9JGWLBWSxiJxuv4HexIeX+Irnrdv5Jf++3PGXm4m6eF/x++J12Un0il7n34fD0z5mbsqTT63Z09MXIzAOGDE/EbiuThhfGTQC3WAwGAxTh3xQV0eHjq06duzygrKUcmWHuu1y2/Pkxb3Pp63DeStx/rXP11/8l3YGRstgbij5yWGK3VDK3VNp/QIBHSQ5WXpgrJ6PYWiM89/ZiPmJwufTi8FgMBgMk4lSevi/q0tbDF23L73aRM+yORjF7iG23fe62LUkX66cYMoHrBV3AIpfu67ORJJ3Penn7uoJ9NL6GDeUUVHsJTQkLyKkbLl8/6rwWvX/uLiu9NuXzQqnz1qEw4pgQPenfJbC75/+8syIeYPBYDAYZgKZjM5u1tmpharfr1PrTWUBWiycR0Kx8E+n+6u//MyNZ8/qbcWWc8ua4PzRVwbFAxeOK3rgwtZC2s5BLieX6YMVuVwV71N6T+mntJ8HEapQ4BLPovwpRdetu0dwnPzZ9Jn1YIkiHFKEQ15/z6cKdtip/BUBI+YNBoPBYLhyyeV0urz2di3mp9PkPGNBXowPZHqdiqMRUxTHKVpc0dkoPaGezQk5uygswhPhuh+mtEeUBZGwGoIwHiDmYpQI2hofCJReQ6GU/qokkkJ3jzcSIDrbd17oh4Ja6AcCWujnLfpTQegbMW8wGAwGw5WE62o/+LwbjYi2Mk/XyXkM40px6vi8ULdtsHNg26VCXaGQgrXbsrT12m8pgpGpIWxHgogn9IHSzkQ+pjmVFhJJb2RB+ooFghDyxH4o1N91Z6IGdoyYNxgMBoNhuqOUtrx3d+vFcab37JoTyHDifacixWEEpa8V0s/TyHV15utcDk6ftbBz2sKeF+qI9LOolxfq42M5n6oUh1yUu3fHgUwWUinBcaWfS5Dfj7bo5yxqFsJ4aXsj5g0Gg8FgmK7YtvaD7+jQr/3+aZ9ysFyAZF6Q9tvvBUaWplAvTN/i9gVCFrYpQRWVy2SEI8f6XHAKyXC8x2eJwipy2c+7jBRc+YviYEuzaRYyQXoCsDQzpEj/+3RV//vJ5Yomc3fAcaTovfQLAL3E97yQ+rp/zG6+PvlnEvBr15Gipz+qv52rXL3g9nudc3M4Koetcjiug9/yY2FhiWCJDx8+LMtCECx0RQXBEr1NEEQECwuZYj2v/vlN+j8/19UjHD3tPipzMD6JKY2YNxgMBoNheuE42g++o0O70+T94Mdg6vjB5iy6ZFuZTCOl8xeVyzJSKFNGYJdLR6/1W2me9UvLFMSzlApYz8JqKcRXJL57IFahyt57/rXrglMQzdJvP2WeQX5dqKqUvC/nWJ4/puR+LOm7F8vqu4+AX/XrOFzK5UW5dOV9xy+PUgoXF0c5uMpFKRcXRc7NkVM2OeWQc3O4ysFWOVRRtKp4xyN9ojy/zrgZlFIU/qm+tYgUnkPhLvLmbm9tYeEXn1fWGlLnQOGSdbNeOavQQRhPLAuCFmSt8R3NMGLeYDAYDIapjlJauOfdaGBM3GhyOchkhZ5evT78rG/AeYkuEdPeptJMI/0ziVyaZaQvA8mlArv4+PKMnyga2vXLMdI6qZL1+JMX5wpFxskULOiO65BDW81t18ZROXKegEe0p7xVGGOgIMwLIt3yESEwYVbzwn1464E6B3kEyLo2p5On+3UMLNGdAkt8+C0/Piwsy4cfPz7Lh4Ugxfcp1pQcHTBi3mAwGAyGqUomo4NYu7q08g4E9NTwIxQTSul06smU0N0rZDJaoAX82p2kMjaYsJxZ/tJTnVK3lrzlPC/Oc26u4OJSLM6zbpazyTM6XaNSWqx6biyWaEEbnkBxPlxEBB++S/NVXoZu6abCX9FvW74z4CrdIXCVi3L6dwbyAwL5UYPSToDP0iMBvjKdgHwHwFHOpRUaQ4yYNxgMBoNhKpHL6YmM2tu18vb5RpVO0nEgnRF6E9DTa+G42tc7GFAFF5OZgFJKu4sUuY04yqEz24nlhSbmXTPyjh4CBf9t/V48147Lvx8peXGer2debBYL8rxbS16cK/pcU4ot58XiXMQibPWJ8x7pJhqoGLAeM4V8p8Anw5s1qrgT4LiOfu+4l44IKFACqXSGhc5cguPkNW/EvMFgMBgMY01xCpFy6+IIx+K142hrvIgW8CNwo8lb39MZoatbSKUFEfD59KQ40zg2tizFft2O0sIq5+awlU1O5bDdLDnX21ckfF2lyKkcHXaH9u2GPiFW5NYuRdcRBCX931PmfaFzIJZnpdWzFhW7pwCecM/hKJecyvVdu/+cRpf4nE91y/mVznA7AUnS/UT+WGPEvMFgMBgMxeTFdjZbXoiXE+H5RN3FKUZKz5lPX5IXYMVpUPIRjpY1IgGft74nktDdY+G6WrQGA2oIrjNTk9Lgy7zF2lY2tmt7QZjajaSfu4XSYktE8IkPC4ugL1gQ0MX0Sg8R39hPoFVsoe0X4Iny3GH0trw4D1gBQhIa5KwGQ3mMmDcYDAaDoZhEQlvHT5wov79UhOeFeCDAIClGxoxS63va833397O+T46ILxaupe/77VO6RP591s3iuA5ZN6tFet5STT4zCgUrtU98fSLYN/VEcLHrjd4weXUxXPkYMW8wGAwGQzF563ksNtk16YeenKbP9z2X65tqfjS+70opbGXj4pLMJfssyK4XWIkXWFmUCUUpz8Jc8OtWhUBMneFG9bmAFLmNSNFr5f2XL5vPFGKJTjVoLNUGw9AwYt5gMBgMhilKNqunke/u0b7vCp3KMRRSREaQVt5VrnZRUTnSToqUkyLr2igUtmtzPnW+T3gXBXP2CwotCfi0LAtf0cQ+BkMpViJB9SMPEH/kQXLVNfSu20hi/Uayc+ZO7+l3pwhGzBsMBoPBMEXIW98TSW19t22tdYLB4VvfHaVzhtuuTdpJk3ZSZJVdcG/xWT784ifiiyAi9Eg3FSbDydjiOFjpFL5kEiudwkqlsVL6tQqFSKzdgBrK7E3TEMmkiT/2CDW/upf4ow9jZTNk6+rxJZPU//iHAGRn1ZFYr4V977qNpFaunv7PQykCF5qJHjrgLftZ1nwBdu0at0saMW8wGAwGwwSSj5nNOYJtQyYLmYyQyQqOA3gTKQWDivAQPE2Ul5Ul59rYbo6UmyLtpMmpXMF+7vMmxamQ8ZpQfhqjFJJJ40ulsFIpT3SnSkS4XnyF133b+x+X9Mp5oj2bveylnYoY3Vc/j65rrqf7udeSq6mdoJseH8S2qXzqCWruv5fqh36DL5XErp1F6x2voOPWF5FYsx6UInLsKBV7d1Ox5xlie3ZT88CvAHCDQZKr1tK7fiOJ9RtIrNs4tZ+JUgTPnysS7geIHD5AoLNT7/b5SC9aQvuSZcQzGWB8XPeMmDcYDAaDYYwpFux6llVIp7Vg18luFF4iQ3w+hd8HkbAa1OMg79+ec3Nk3AypXKow2Y0+VvBbfpMdZQAkmyW6fy+Vu3cQ27md9fv34k8mEDX0UQ/l8+NEI7hhb4lGccJhcvE4buMcvS0SwYlEccNh3EgENxLV2wrHRPB3dhB/7BGqHn2Iml/fhxIhsW4DXddcT9e1N5Besmx6uKA4DrFd26m9/16qH/gV/u4ucpVVdNz6ItpvuY3eTVv1XAlFpJavJLV8Ja2veDUA/tYWYnuf8QT+bhp++D2s730TgPSChSTWbfQE/ibSixYzKflVlSJ49owW7YcPED14gOjhg/i7u/Run5/U4iV0Xfd8kivXkFy5mtSy5ahQmJaLbVwbGr/voxHzBoPBYDCMgHw2yrxoT2e0hT1rawGvFIgFKC3YfT5K8rxfXkCW82/POFmUKEShp50XP2Ff2PiqD4CVSlGx7xliO7cT272Din17Ctby5LLlnL/+egKz5+FGo7jhCE5eeHsi3PFEuBbo+vVYuoF0XX8TuC6RwweJP/Yw8UcfYt5Xv8C8r36BTOMcuq65ge5rr6dn8zbUOIrBYaMUFfueoea+X1Dzm/sJtLXiRKJ03nATHbfcRs9Vzx3Wc8rV1dN54wvovPEFAEgmQ/TQASr27Ca2dzdVjz/CrJ//ny4bi5FYp632vRs2kVy9DjcaHdv7c11CZ09r4X7wAJHDB4kePoC/p0fv9vtJL11O540vILliFclVa0gtWTZpf6NJFfMicgfwF0AK8AHvVUo9fZnyG4FPAhGgBvgN8CGlVMbb/1fAy4HO4sOAG4AtSqmdIrIIeAI4WHL6jymlHhz9XRkMBsOVyUxss/Np5fOCPZ8OMpOVgj97ft4gSxQ+v55ZdSjuMcW4yiXrZgf1b4/6o0a4Xwart4fYM7uI7d5BbNcOKg7sR5wcyrJIrlhFy12vpnfTVno3bsapitPccZ7GmjmTXGmL1Ko1pFatofmt78Df2qKF/WMPM+tnd9Pw4x/ghMP0XPVcuq69ga7nXUeurn7i66kUkSOHqLn/Xmp+dS+h5vO4wSBd11xPxy230XXN9ajQCKKyy10qFCKxYROJDZu46F07dPY0FXu05T62ZzdV//YVRCmUZZFatsKz3HuBtbPnDH1Uw3UJnT5V8G/XlvdD+BK9encgQGrpcjpufiHJVWtIrlhFeskyVHBwl7Vk0uLg4QiHDgW49qaRP4/BmDQxLyJbge8Dz1FK7ReRlwH3ishapVRzmfJzgQeBDyulviYiIeCXwOeAdxQVfZ9S6oGi424CvqKU2llU5hdKqbeM+U0ZDAbDFcpMarMzGbBtOHbKR87W2/IZFX3WyAV7nmKLeyqX1BlllO2lbTT+7cPB19VJbPdOYru2U7lrB5EjhxDXxfX7Sa5ey4XXv4neTVvoXb8Rt2JqpRodiFxdPW133EXbHXchmQyVO54qWO2rH34AgMSqNVrYX3sDqRWrxtUdJ3TyOLX330vN/fcSPnUC5fPTffXzOP/2P6LzuudPzHMVITN/IZn5C2l/8e0A+Hp6iO7fQ+yZXVTs3c2sn/2Ehh/9AIBsXT2JDZsKWXNSy1fq8zgO4VMniB4+SOSgJ94PH8KXSgLgBkOklq2g/YUvJrlyNcmVa0gtWQL+wUcZslnh8NEI+w9E2Xcgyv4DEY6fDKOU4Pe7/NlHk+PkMT+5lvk/B+5VSu0HUEr9VEQuAH+EtvyU8kbAAv7VK58RkS8A/yEif6mUugB8CUiUHPcW4N/H5xYMBoNhxjBj2uxsFhxHCPgU4VHq6byPe97innKSZJws3jSlWriLnwqfySIzFPxtrcR27aBy13Ziu3YQOXYU0CIssXY9zW/5A3o2bSGxdj0qPPYzu44F2axw5NkwXd1+1q9NUBkrM2OwhwqF6H7edXQ/7zpO/8mfEXn2CFWPPkz8sYeY8+9fZe6/fYVsXT3dnp9997bnjMl9B8+fo+ZX91Jz3y+IHj2MEqFny1VceN0b6Xz+zTjx6lFfY7Q4lZX0XH0NPVdfozfkckSOPUvFnl3E9uymYu9uan59H6A/H0vnzaOi+Ty+VEpvC4VJLl9B20tu1/7tK1eTWrR4SMLdceDYiXCRcI9y5NkwuZz2oautsVmzOsktN3exZnWSxrozhEJbxudBMLli/hbgEyXbngJupfwPw0KgVSlV/Kk/hx7qvQ74kVLqYvEBIhID7gT+bKwqbTAYDDOUGdVmi6jSmL1ByWeVsV2btJvuC07FRZTOxx6QgEn/OAwCzecLwj22awfh0ycBcCJRejdsov2WF9G7aQvJ1WuH5PYw0di2cPRYmAMHoxw4FGH/wShHi0SfZSnWrEpy1dZertraw4b1CSLhAWIpREgtW0Fq2QouvPn38Xe0U/X4I8Qfe5ia+++l7ic/xg2G6Nl6lbbaX3M99uzGIdc10HKR6t/cT839vyC2bw8Aves2cPp9H6LjpltH5NqjFJxvDrJ9ZwU7d8d4Zm8FoZDLvDlZ5szJMrdRr+fNyTKnMUs0OnDHZlD8flIrVpJasZLWV76mcE/5oFo5epD0tqs9i/tq0gsXgX9wGawUnDkbLIj2fQeiHDwcIZ3WDURFhcOaVUne8NoW1q5KavE+2+43WNJy0R75fQ2BSRHzIlILxIHzJbuagRcPcNgJoFFEgkqpfK6n+SXrUl4NPKyUKr3OKhH5CdqHMwF8Wyn1/WHcgsFgMMwYTJtdnpybw3azZNwsyVyStJv2ssro2UyLc7gbhoBShM6cKgj32K7thJr1RyFXWUnvhs203nEXvZu3kly+ckhCbCKxc3D8eJgDh6LsPxjlwMEIh49GsG0t3Ksqc6xeleR3X9vCmlVJYjGHHbtiPLU9xre/38A3vjObQMBlw7okV23t4aqtvaxdnSQQKC/uczW1tL/kDtpfcgdi28R2bSf+qHbHiT/+CADJZSsK7jjJ1WsvyQLj6+qk+oFfUXv/vcR2Po0oRXL5Ss6+67103PxCPanTMFAKTp4KsWN3BTt2xtixO8aFC7qTFa/KsWF9AtcRnj0e5pHHqshk+9enujrH3MYsc+dm+gn9uXOyNDZmB+7oDIBd30DnTbfSedOtQ4qPUAoutgQKwn3/wQgHDkbp7tGftVDQZeWKFC+/vZ21q5OsWZVk4YJMv8fqKpczqbMc6TnM4d7DHOk5woXEBZ686bfDqvtwmKxvQt4skSnZngEGCkn+FvAR4M9E5G/RPyzv8fYNZD95C/CZkm1p9I/M+5RSzSKyCbhPROYppT5VegIReTvwdoDZs2fzwAMPDHCpgbFzNt1OJ7257mEfO53J5WyaO0p/k69sZuI9w8y870m7Z6XI4YyoLRoF06bNhtG3267tklEZ9jXvLdqqcFEopXBxUcrtl4vmSpj9dDI+06HWVhqeepJZzzxD7b69hNvbAcjE47SvXUf7HXfQvm49PU1N/dMb9rSMyfVHes+OA2fOxDhyNM6RI1UcPRLn2PEqslldx2jUZtmybu64/QLLl3exbHkXjbNTgKLdbudc5hwXnTQ33rmMV7yqhmTSx/79Nex+Zha7d8/iq//WyFf+VQiHc6xd28HGDW1s2NjGksXdA48YLWvSy5veQMWZ0zQ8+SSzn/wtjd/5d+Z861/JVFfTsm0bF55zNY2JXuY/8ih1u3ZiOQ698+dz5HWv5/z1N5BYsKDvnIM8G9eFU6di7N1by569tezdW0tnpw4mqa7OsH59Gy985X78Sx+mJbyDI8nDRH1R1oXmcVt4PvFcE4Hu5WQvLubixQouXohw4UKEA4ciPPhwFbbd/2arqzPMnp1idkOShtkpZjek9PvZKRoaUgSDA1v2y/2tu7sDHD4S58jhuF4fidPRoYN4fT6XRYt6uObacyxf1sXyFV00LezF7+/75iedJA+cPcHx5HGOp45xPHmCk6kTpFztymNhMTc8l6bQIh598lFCgfHJdiNqGLlVx+yi2srTBvyeUuqbRds/4W1rGOC4lcDfoIdvu4DPAj8rPY9XdinwKDBfKZUbpD5/C7xHKXVZJ7Bt27app58eMHHDgPz8np9T4a8iVjmzhlanRJaACWYm3jPMzPuerHt2HZe2tnZue/ktwz5WRLYrpbaN4Lhp2WbDyNrt7rPdPPr0YyxpXErKSwmZ86okXh53v/ixZBJyXY8jE/KZVorIkcPEH3mA+CMPUnHoAKADFns3b9WZZjZtId20eEJyrA/lnl0XTp4OceCgZ609FOFQkZtFNOKwamWK1au0pXb1ygShurOcTZ/iVPIUp1OnOZ08xenkaU4nT5N20/3OPzc8l3XxdayLr2d9fD0rK1eR6o2yY6e22j+1o5LjJ7TArKrMsXVzb8EtZ/GizKCPydfdRdUTjxF/9EGqfvtYIb1ipnEOHbfcRscLXkRq+YohPe9cDo4cjbB9V4wdu2Ls2l1BV7e2C8+enWXLpi7mbd6BLHyU09bT7OrcSXNax8eHrTBr42tJOSlOJk6ScPrCZYJWkAXRhSyKNrEw2kRTRRMLIk1UZZbR01LPufNBzp8Pcq45yLlzIc41BznfHCi4K+WZNcvu58Izd06WuXMyzJ2TJaPO0d3WVGR1j3L2nBbXIoqmhZmCtX3t6iTLl6cIh7RGdpXL2dRZjvQe0Rb3nsMc6T3C2dSZwrUr/ZUsjy1neeUKlseWs6JyJUtiS4j4IjrP/E1XE4sPLwR2qG32pFjmlVLtItIJlDpzNQLPXua4Q8Br8u+9lGUAe8oUfwvw3cF+FDyeBeIiUqeUah1CeYPBYJgxzLQ2O5FLYKssLZmWQmYZMwHTyBHbJrZze0HAhy406wmS1q7n7DvfQ9e1zye9eMmUmCDJdbV/9P6DeVeZKAcPRUimtHAPhx3PzaKVBatPULHwINnYs5xNa8H+2+Rpzhw5TfpQn2D3i595kfksjC7kqtrnsCC6kAXRBYSsIPu69rG3ey+7u57hlxd+WSi/onIF6xvXs/7163ndO9cRTi7h6R1VPL0jxpNPV/Kbh3Q/dtYsm6u29Hjivpd5cy+dcdapitPxwhfT8cIXQ84mtvcZWtLdRK6+cdBnbtvC/oMRduyKsXNXjF3PVJBI6mexYH6G6248T92GR3HmPsYxZzsPdT1DItcLF6EuWMfG6k28oemNbIpvZHnlCgKWDi5VStGWbeNU8iQnEic5lTzJycQJjvYe5YGWB3GKmoHqQDVN1U00zVvEwuhCrqlYRFO0iXnhBXS1V2ih3xzk3Pm+Ze++KPf/uhrHKb6/NYVXcxqzrFmd5JUvb9MdsFVJYhXaqp/IJTjae4SfXjzC4d7DHO05wpHeIyQdnfFGEBZGF7K6ajV3zr2T5ZXLWR5bQWO4cdJG5ybT4ex+oLS3sQ34cbnCIhIErlJKPVq0+QbgGLCjpKwFvAl4UZnzvB54VilV7Lw0D0iiLU8Gg8FguJQZ02brEWsh6h/jiWhmEL7ubqqeeJTqhx+g6reP4Uv04obCdD/nuTS/9R10XXM9udpZk1pH2xbOnYvyzI5qDnrBqQcORent1WI1GMyxZMMxrv6d/VQsPIRVd4Ru/3HOpE/zP8nTZNw0eIbZgASYF53PgsgCrq59DvOjC1noifbGcCM+Ke8bs6Vma+F1S6aFvV172dP1DHu79vKTcz/hB6d1qsV4oJp19WtZ9+r1fOQP1jMrtZkDu+bx5PZKntpeyS/uqwVg7pxMwWq/bUsv9XUlfWN/gN5NW+nqOE+kjPBMZ4S9+yrYsauCHbt0wGomo63fSxaluPElB4mve4hU/RMczmznFz2HtPC+CEsrlnLb7NvYVL2JjdWbmBeZN6C4FRHqQnXUher6PQMA27U5lzrHSU/gn0xqsf9o66P8JHt3oZyFxZzIXJqiC2latIiFa5rYEG1iYUUTDaEGlGtxsSVQEPonz6XYuDrA2tVJamocXOVyLnWOI71H+H5zn3/7mdTpwjVi/hjLY8u5fe7tLIutYEXlCpbGlhLxTa1MSZMp5v8ReEBEViulDojIS4A5wBcBROTj6MlEtiml0kAVcLdXvkVE6tEZD96nLvUVuhk4p5Q6UOa6K4A7ReQNSqmclwv57cCXy5zHYDAYDBrTZhsuS/DsGeKPPEj1Iw8S270DcRzs2ll03HwrXdc9f8zSJg6G60Jnl5+LLQFaWgO0tPppaQnS0qq3tbYGuNgSoKMzAOJC5Tl8DXtpWHGQuc85iNQdIRk+xkXnNAfddGG2skCXFuwLPcGuLexatM8Ozx5QsA+V+lA9NzXcxE0NenYhRzkc6z3Gnq497O3aw97uvTx27DGUF63RVNvEulet521vXU9NYgst+7ayY3sNv34wzt0/1R2lxYvSPGdrD9u29rJ1cy/xKqffNZNJi917+sT7vgNRbNtCRLF8WYKbX/U4Faseorv6CfYnd3KPJ3RDbSHWVK3hTU1vYmP1JjZUbyAeiI/q/vMErABNFdrVhvob+u3rzfVyKnGSE8k+a/7J5Cl2du4k5aQK5cJWmIXRhTRVLKIp1kTTpiaWrbG44EvwcPNhjhw5zNHeowVXH0FYEF3AysqV3D73ds9NZgWN4TnTIhZm0sS8Umq7iLwB+LaI5GcTvK1o8pEwOrAq/xRTwJPA4yKSd1L6U6XU/5U5/VsYOE/xD4EPAY+ISBYd2PU1oGwglcFgMBhMm20og+sSPbCP6kceJP7Ig4Wc76nFS7nw+jfTef2NZTOojIZEwuJiqyfSPbFeLNBbWgO0tvkv8aUWUdTW5Kid3Ulo1YPMvvlhIjWPczG0nZykcdCpmlolwPzofBZHFnBD9GoWRBd4FvaxEezDwSc+7cJRuZy75t8FaDG7v3u/Fvdde3ii7XHuOf9TAEI1IVbdtZrb37yOWclt9B56HgefXsnd99Tygx/VI6JYuSLFVVt6SWSqOHRwNgcPRXEcwedTrFjdzs1v/A2BpY/QVvEE+xO7OWx3gQPV3dVsqt7MK+e/is3Vm1hVtbrgMjORxPwx1sTXsia+tt92pRQXMxcL1vxTyVOcTJxgf/d+fnXhflz6AmMrPGv7S+e+jOWxFSyvXM6y2LIpZ20fDpM+s1MaAAAgAElEQVQSADtdMQGww8MERc4cZuJ9z6QA2OnMSNrtcyfO8fSu7cxvWDB44SuIoXymJZOm8ukntYB/9CECba0on4/ejVvovO75dF17A9n5w39uti20tvkL4rxUrOff533Xi6mocKivs2mot6mv61sa6m2ita1cjDzJUecpdnfv4ED3ARyVw8JieeUKVkRWsK52XUG0N0ywYB8tSima0+f7rPddeznQc4Csq33nZwXrWFe1nlmpLWSPP5czT13Lvl2zUQpWbTpF41UPwoLHaA49yaHefdhK50NvijYV3GU2VW9mYXThtLBQlyPrZjmTPM2h1oNsnL2ZOZNgbb8iA2ANBoPBYDBMD/wd7VQ99rD2f3/yCaxMGidaQfdzr6XzuufT/bzrcKqqBj2PUtDa5uf4ibBeToa8dZi2tkutvH6/S31djob6LMuWprnm6h7q6/uL9fo6u99EQ62ZVnZ27mRnx3b+t2MHRy8cRaHwi5+18XW8semNbKnZwob4RioDldPeECEizInMZU5kLi9svA3QPudHeg6zt3tvQeQ/mPwNNID1UovFr15KOpdmb+Y0ewG/7WdNZA2vXfg6T8BvpCZYO7k3NoYErSBLYkuJ2lEaI9P3b305jJg3GAwGg8HQh1KETx4n7rnPVOx9BlGK7OxGWl92J13X3Ujv5q2oQHk3C9eFc+eDHD8Z5viJUJF4DxeCS0Fb1Bc3pbnm6m7mzsleItKrq53LJltRSnEufY5fndvOzo6d7OzcwankKQAivggb4ht4x9J3sqV6C2vj6wj7wmP6mKYqAStQcEV59QKdTKrL7mJfV5+4t3M2L19wJ5urN7O6as2MeTZXKkbMGwwGg8Ewk1EKyaSp2buHebv/g/gjDxI+rUVxYuVqzr/1HXRdd+MluchtWzh9JsixIrF+4kSIEyfD/Wb2nFVrs6gpzYtu7WDJojSLF6VZ3JSmri43rGyUSimOJ46xo2MHOzp3sKtjJxcyFwCo8lexuWYzr5j3SrbUbGFl5cpJ8emeqsQDca6pu5Zr6q4FZqZr5JWMEfMGg8FgMExlXBcrk8FKp7DSaaxUqu91mW2+dEq/z6T7r4vLFm3zpftyoruBAD1br+Lia95A17XPx26YTSplceJkiOO/1Jb2vHg/czbUL4/3nMYsSxal2ba1lcVNaRYvyrB4UfqSDCpDJefmONxziJ2dO9nRsYOdnTvpsjsBncN8S80WNtdsZXP1ZpbGlo7NJF7DiSMcbsxhufIDTudquKIY5/hUI+YNBoPBYJhkJJOh4b//g+rf3I+VShYEty+VxsqkBz9BCW4ojBsO44TDuJGIfh+JkItX485uxA1H9PZwWL8Ohzkcqudk0x0821ytLe2f0KL9fHOwcF6fT7FgfoYli9K84MbOgmBftDBDJOJepkaDk3Ey7O/eVxDuuzt3FSbqmR9ZwA31N7Cleguba7YwPzJ/9EGMWVv7BCWT/bcPK/uOjGyyKxEt8NJpCIdnjqjP5cBxIRQcvOyVQjIJ0QgM4JY2FhgxbzAYDAbDZKEU1b++j3lf/iz2+S7uX/RGEpX1ZKqjZPwRMr4otj9CxgqTscJkrTAZCZGVEFlC2BIkS5CsCmATIOsGsF0fds4i5wi27S05IZcQ7E7BzlnYtpDLedu9/dki15hQyGXRwjQb1/fy8tsznqU9zYL5WQKBkVsZM06G1mwrLZkWWjIttGZauJC+wN6uPezr3lfIwrI0toyXznkZm2s2s7l6Cw3hhlE/6gKOo0V0KAR+PzQtGrtzDweltNBrbwPb1vWZphljBkUpSKXA5we/zxO4V/ikbN7f141V4VrBcf3bGjFvMBgMBsMkEN23h/mf+ycq9j7D9xvfzQfi/8CFE0NPXRcMugT8Cn9A6bVfEQgoAn6XQKBveyCgiETcwuu+7W6/43yhDjauDrB4UYY5jdlhGaht16Y100prXqQXCfZi4d5ld11ybEACrKhcwasXvIYt1VvYWL2J6mD10C8+VFxXi3ifH+obtJg83jH21xkqIlBRAZEwdHZBdxcEg+NqwZ0U0hlwclBTA5VV+r7b26GnGyKRMZ2HYMrguqhkilSkBiJxGuIJguM4GGHEvMFgMBgME0ig+TzzvvJ5au/7OQert/HOJYd58NhyVixL8ef/7xh1tXY/IZ4X6P6AJ7z9Cp9v7A195YIic26O9my7J8gv0prpb1XPv+6wLxXFPvFTF6qjPlTPwuhCtlRvoT5UT32onjpvXR+qJx6Ij2/e77w7C0BtLVTEppaAtHy6XtGIFrmJxJUhcvMjINEo1MyGQJGanTULAn5oa9P3eiW5GTkO6a4MTk09NfNjxOOQyo3vJY2YNxgMBoNhArASCRq/+w0a/vO7ZFSQD2/6Hz63/3Z8GfjAH5/lppft46muJ2hXLgrtyqJcBRlQGSC/Lb9WJe8LVxpof0m5ov0KxcXeC6TOp/tZ09uzbYXjCveBRW2wlvpQPY3hRtbH1/cT5/XhBupD9VQHqscmKHU05K3C1dVQVaWF8yTjuJBJg+s91kgEfBYQjkDjHOjt0aLe54dwaFLrOiLyLjWWD2Y36hssR1Uc/AFouahHI66AEYls0ibbm6Ny2Wxq50awfA4pO4VlWeP6XTBi3mAwGAyG8cRxmHXP3cz9+pcItLfx460f4U/OfYSTuyq45eYO3vPu4/wy+Q1+57f/RspJTWpV8yK9LlTPqqpVfQK9yKJeG6yd+rOkZm2wsxCLQTze3yo8Sdg2ZLLaZTxe7eAPZ3DtIJ3tfpTSmlcsS4vcSAQ6OrSVfjoFyGaykLO9zlN88NGFaBQaG+HiRd3LmY6dF/Qtp3ttIkGH+dtmY8Us0rke/Pipr6inMlSJ3xo/yW3EvMFgMBgM40TlU08w//OfIfLsEY6uvoX3Lv06P3tqEfPnZfjcp4+SW/JT/ujwZziTOs1NDTfzjiXvoDKgZ1MVpGTtIaXbvbWUlBtwf/91ns7uDhbMWjhm9z4p5HKQyWgBXDcHQpM7GZJSujo5B3x+m6raLKGwS8gfoCpUTXemGwmkyCYj9HT58fl01QkEoWG2FvPtbZDN6h1TNUA271ITDsPshuF1nkJhmDNHC/r8OaYJjgPpjODPpZlT7yJNtdg+mzBh5lfNJxKITMjolBHzBoPBYDCMMeETx5j3xX8h/tjDJOcs4GMvvY9PP3AT2azw9rc2c+Ndj/O545/iid2Ps6RiCV/a8mWunvXcSa1zwuqd1OuPiryY9Ae0a8ckC1/X1SI+ncsSimSprlVURUPEw3VUBCsI+rTYnRWdRU+mh9ZAK75wikxPlN5eH8GgjoWd8gGy+XgEsfqCikfy3P0BbaFvbdUdmJGeZ4JQCpIpwbKgLtyFL65w6+uIR+NUR6oJ+ye2Q2LEvMFgMBgMY4Svs4M5//5V6v/3v3HDEX76yk/zoWfewcF7Krj6qm7e874D/Dzzed64/QdEfGE+sPJD/M783zGzlY6UgpgUqKuDaMWkBo7atqI7lUFhU10Nc6ujzKpoJBKIEPBd+jcWEarCVcRCMXozvbSEWghEHRJdEXp7fV5sqBcgWxHVAaNTJUC2n0vNGMQjWD7dIejsgM5OLegn+x5LUEpb4h0HqqrSBFUbgXg1tQtXUBmOl/0bTwRGzBsMBoPBMEokm6X+R/9J4ze/ji+V4uiL38T/c/+G//rxPGbV5vi7vz5GatW3+ONnv0BHtoNXzLuLdy17FzXB2smu+vQlndYW+UkObnWVS28qQyqbIxSwWDingjm1DVQEI/iGWCdLrIKo74n2cDHcQm/CJdEVRbmW1u6hMMyZq1M6TmaAbLFLTUM9BIdeh5zjkHVswoFgefcTEaip1aMPra1TKl4gkwE7J4SjKeIVGSpyNrMaVxGb24Q1yYHVRswbDIZph5VIMPs/v8Osn/4vbihErrpGLzW15KprsPPv89tq9Gs1lYanDVcGSlH9wK+Y96XPEjp3hs6rr+Urm/+ZT/1gE51dfl77qlaue+0v+OLJf2T/gf1srN7E5zZ/gdVVqye75tOXvEU4VgnVXkaUCcZxHdK5DKmUg1IWjbVVrK+vpDoWxjcKa7IlFvFwnMpQJV0VXbRE2+jsdkl0R/H7LMJhQari2mqdT2M5UYK3eBRkGC41Sil602mSaZugP0gsHKG9O4HCxbIU0XCAkL9E3Mcq9YReFy5MeqYb29ZJkSSYoro+y6xwhNpcnPDChUjt1OiMGzFvMBimDWLb1N39Ixq/8TUCnR10Pe86nGgUf2cnoXNnqdi/F39nB+I4ZY93KmKe0K8uCH8t+PXaLt5WXYMKjY/VS2wbK53GSqewUqn+rzPpfmtf2tvvbZNkknhDI7z8lnGpm2HoRA/sY97nP03l7p2kFi/l53/6ff7ily9j+1cqWbcmwd988nF+7n6SP9pzDw2hBj6+7u95UeOLxjen+pVMcXBrfd2EB7fm3BxZJ0POUeRsP5WBahbNr6ChJkwoNLZ/U0ssaiI1VIWq6I51cz7WSlcn9PRGCAUtQqGADpBNJrXrzXgHyOazA8XjehmCJTptZ+lJZgCL+so4axdWUVMZwucTbFvRm7Lp6M7S3N5DezKBEoeAX4iE/ASsIFY4ogNjL1wEJzPhoxCOAz1pB/GlmVUHc+NVVFkRgpkcNM2DysoJrc/lMGLeYDBMfVyXml//krlf/SKhc2fo2byNZ9/1XpJr1pUt6+vtwd/Rgb+zbwl0tPe97+gg2Hye6MH9+Ds7sHLlZ/RwIlFP6GvrfrHFP4BNjRXSIrycGM9vKxLjvnQaK51GnOHNIKJ8PtxwBDccxgmHSanBjzGMH4GLF5j71c8z6xf3YNfUcvD9f80nL/4B3/n0bKIRlz/98FES6z/Ph058nZyb4/cXv423LPo9ov4rfPr68SLv1hEI6iDJ8AB5y8cB27XJuhmd798JElJ1zIpGmbswSCwm424Q91m+gqjvquribEcrbW1CtidKNCr4olEtcru69BIIQnAMrdjFLjVDyA6Ucxx6UhmyOYfKcIQ1C+ZRF48QCfd/UIGAUBMIUlMVZPG8GJmMoidp09qZoa27l55cAvE5BAJCaHYNgdZOrFRq4Jz1Y4jrQlfSxpUsDbU+mmpmURmswGfntJm+qWlC6jEcjJg3GAxTmsqnf8vcL32WikMHSC1dztF/+jzdz712YAuUZeFUxXGq4mSaFg1+AaXw9fbi7+wv9vOdgUC+M9BykciRQ/g72rFsm/lFp3D9ftxw+P+z9+Zxclzlvff36X3vnp6tZ5VGq2XJlhfZxouMsQ0G49fhsickrDeQsCSQcAmBhIQlAUK4byAEiIEEuIG8gQuExRizGBlvYONdsmXt24xmpNl7766q8/5xumd6RjPStDSjGWnO9/OpT3WdOlV1qqfn1K+e8zzPmRDcTiCIEwziBIJYDcmafZX9wSCOP4AdDE49prpvWpnyeifu17EdhoaGp1zfcHZw5XK0fvNrtH7z66Ac+n//TfzX2vfyyS+s4Wi/j5e+ZIirXveffKn3Hzi89zA3NL+A96z7MzpD5q91WjiOFpIuFzQ36+DWBR7VUEpRdkqUnTIKRcAVJKJa8UiQhqSPZLKSD/4sD664XW6SwSQxf4yR2Ci9I8MMD7nwqCChkBtXQ1K7vcxXgGw1pyac8rtXSpEpFigULFwuD52NSdqbIsTCvjl9TyIQCAiBgI/mpA/bjlIoKMYyWtyP5TKkg+BOH8c7ehxvJIrP7Z/3ES7HUYzli5Rsi67GACubU4S9AX2dfGX+hxUrYIFGbM8EI+YNBsOSJLhrJx1f+Cyxhx+i2JriwF9/lOEXvmT+fUNFsKNR7GiUYteKU9dXClcuy9DRAzS1rsAOBhbFZ9dwFrFtkj/5Ee3/+jl8Q4MM33wLj77iffzdNy/n3v+Is2plno985if8xPVRPrTnQXrCPfzLZV/geYucavKcpSokHUcHt0ajCxrcqpSi5BSx7DK4hJAnTMLXjFMK4HF5SCS1Z8lS0HAel4fmSBMNoQTDiVEOHh9iZMRN0BMkGAwg1QDZkRH9nZ2Oa0rVpSYWh3hMB9rOVM0qM54r4jjQFI1xQUecxlgAj+fMRLbbDeGwEA77aG/1USpFyedTjIytYOjQUXJDR8n4c3h9umlelxeveE9b3NvKZixXoGwJ3Y1RVjZHCNf+sXM57b/f0bG00oLWYMS8wWBYUvh6j9D+pc+T/NldWLE4R9715xz/H69aMP/1uhHBCUcoNjZiLyGfScPCEHn0ETr/+dOEdj9H9sKL2PXRT/Ol7Tdzx3taAXjbO3aSvuzv+fCR/9SpJte9l1d1vdqkmjxdCkWwLYjGdHDrLEJyPijaBRzlkLOyRH0xIsEoYgewym68bmhs0xPILpFkKlPwuDy0RJtoCMU53jjCgYERBsfcRPxBgqcbIFt1qfH7ta/6DC41tuMwns9TKjuEfH7WtaVoTYZPcKOZT3TOfSEe99PduZLi8SS5fUcZtL1kig5ZJ0tWsng9CnHNXdyXnTKZYgnb8tARa2RlS4hwcNrvLZPR32Vb29L8IVQwYt5gMCwJPCPDpL72ZZq+921we+h//Vvof90bcCJGMBvOPuHeXlZ9+tMk7r+XYmuK/R/+OL9ofDkf/4cu9h0Icv3WES55/ef4j+P/xMjhEX6n42W8Y807SZpUk6dHuayDOEMhSLTUle6wHizHougUQEHYG8Hr8rIytoZS0YVV0N4pqdYlP2fRBF63l/Z4C02RBP1jI+zrGyU76iERCeJpadXuIYODJw+QrY6EKKVz9YcjU+oppciViuQKZVziIZVooLM5SiLqP+vfkcsFwdYYwZiXxiNHsPBQoIV0RjGcsSiUS+TsLAV3FrdHBxdVxX31XopOkWLZwin7SUVSrGz1Ew5Nc0lSCtJpaGjQbkZLLN/9dIyYNxgMi4orl6Plv/6D1m9+HVexwOBtL6P/TW+l3Nyy2E0zLEeGh4l95EO84OtfRfkD9P7Ru3juRa/n//3SKn50V5K2VIk//fh3+Ln/b/hs7w42xzfz2Uv/mQ2xCxe75ecmVWuwb+GCW5VSFOwCjrLwurwkva34JIwoD8fVLnJZF4mE9uhZKgOA9eJz++hOtpKKN3BkaIj9feM4OS3q3R3tswfIVl+iZhgJKVkW6XwBy1Y0hKJs7knRGAvi9S6Bt5xgEFaswHPkCBEnS6Q1RKrFQ6nkIV8IMzYO6UKZol2iqDJkPTkcZZMuZ/GUY7QG4nR1+oiE1YkvJI6jLfJNTdDYeE681RkxbzAYFgerTNMPv0fbv92Bd3iI0etvpPeP3klxRc9it8ywnNm5k/DXv8rBm25m9B3/i2/fv47PvaGNXN7Fa974FGNXfpDPHPsRzTTz0U1/x0tSLzGpJk+XQhGUM6M1eF5OXy6SL5VxHCHsjhP3xvCLH69LCAS0Hjx0CFav1i7R5wM+t49VLW20NyQ5cGyIg/3jeMRLIpFEagNkldLraS9RjnIYzxUoWTYBj4/Vra20JsMnup8sBXw+6O6Go0chm0XCYfx+8PsViTjYtodiyUsmGyadEXJkaHGtpK3DTTymcLlmSAtm2/p7aWvTgRLnCEvwr2MwGM5rlCLxy5/TfsfnCBw+RHrzpez7+KfJbtq82C0zGOCaazh270P898M5vvKXW9j+TJhLLx9k4xs/wXdHv0D5eJk3rXwzb+55i0k1ebqcxBp8OjiO1mCWBWXbpmQXsJVDLBCmK9FMMhoiGHDh8ej4xVqPCZfr/BHytQS8fi7oaKe7qZG9Rwc5cjxNwOsl3tYO2QwcGZ3yEpUvFUnnSrhcbtoSCdqbIjREA0vdu2QyMPX4cR30G41OvBS63RAKKkJBaG5UHMoI61a68Hhmye1bLutRos5OHSxxDnEe/oQNBsNSJfLoI3R84TOEn91BftUa9vzDZxi/ZutpWeSGhj08+XSYgN8hGrWJRW1iUYto1D4vH86Gs8P4OHzwKxv496+FScQtfv9D/8694b/hP4YO8/zm5/OedX9OV6hrsZt5buI42of7NF1qlNKC3bb1UkVEId4C7pBFLOClOdpEIhghMJ/51s9RQn4/F63sYEVLgV1HBukfTRMN+sHnoxQIksnkKNv6xefinhaa4kF83qWu4KfhckFLi35TO3YMwuETglVF9DLrs6FY1D+uFSt0bME5xqI+8kTkduCvgTzgBv5UKfXbk9TfDPwDEAQagF8C/0spVaypMwo8Me3QLyil/qumThvwRaAF8APfVEr947zclMFgOIHg7udo/+Jnif/6QUotrRz4wIcZfvFL68oOoBTs3BXkvgdi3P9gjB3PhmetGw7ZkwI/ZhGLnrg9UVbdjtlEwvZSTliw6CyHPvuJJ+Dfvxbm2tvvofT8v+U/xu5npauHz132ea5uvHohLrk8KBS0mJ+DS41Sk5b2WtHucum42HBY+7bblFCuEm4XxPwx4oE4AU/AuD3NQCwUYMu6TobH8+w8PIhl2+QKFt1NTbQ1RoiGz/EXHxFIJrWg7+vTgnyuaSTzeX38ihX6RfMcZNHEvIhcDnwTuFIp9YyI3AbcLSIblVL9M9RvB+4F3qeUukNE/MBPgc8Cb6up+oRS6oaTXNcF/BC4Syn11yISBx4TkXGl1B3zdoMGgwHf0T7avvx5knf/GDsS5cg73sPxV7waNcdp2PMF4ZHfRrnvwRj3PRDj+KAPEcWmC3O8/a1HufLyNI6C8bSHdNrN+Lib8bSb8XEP42k36bSbsbSbAwf9E3WKpdmtTiKKcNghHrMmxH80ak/Zrr4Q4CkQ3OwmHrNnPd/5xHLpsy+5apzXfun9fOvIl/BnA/zZuj/n1V2vMakmT5eqS00kojODTHOpUUpXKZcny6qiPRrVot3jmVwc5ZAv53GUQ8gbJOFPEfaFcS9gHvrziWQsyNUXdvHLgT08/+Ie3O7z7MUnGtV+9L29+k3wVFb2atxAR8c57W+1mC3/S+BupdQzAEqpH4nIAPAOtOVnOn8AuIAvV+oXReRzwH+KyIeUUgNzvO6twCXAzZXzjInIvwJ/JSJfUkqZidKXOo6Dd2gQX38fvr4+/P19+Pp68fX34e/rwzM2yviWKxl+8W2MX32dnj3TcFZxj46Q+vpXaP7ut0BcDLzuDQy87k3Ysdgpjz3a7+X+h7R4/+2jUYolF+GQzfOuSrP1mqNce3WaZIN12m0rFIX0uJvx9KTgr30BmF527Lh3Yrtcrn0R0IG6rS0l1qzOs2Z1gbWr86xdU2BFdwHvuftcmI1l0Wc/0f8E/3n4i9yUvJm/uOj9JtXk6VJ1qfGe6FJjO3pOIssGQaeBbGhgwqd9uqZSSlG0i+SLZTwuD8lgkqg/is99blpRFxsRcLnk/BPyVYLBSUGfy+kf2HSU0hlrIhEd7LrkgwNOzmI+bm4GPjmt7BHghcz8YOgGBpVSTk1ZH3qo9zrgO3Vcd69SanTadbuA9cDOOZ7HsFAohWd0BN/RPnxH+/Af7a2I9aP4+3rxDRzFVSpNOaScbKTY1k72wo04wRDx+++l4d57sGJxRm56EcMvfinZjRefEymmzmVc+TzN3/omqW98FVc+x9Ctt3P0LX9EuaV11mNsG3Y8G+K+B2Lc92Cc3Xv0Q7+zo8grXjbI1mvHuXRzFq93UrNZjsVTY0+yfWw7zf4WesI9rAivIOg+tQ9uwK8INFs0N9f3QqCUfhGoiv7n9qUZOtbBnr0Bdu8N8ptHoliWfiB4PA49K4ta3NcI/aYm61z+CS6LPvv6FdfzwMsf4PjewbMu5JWCbE5AwCXgcSu83nOw26q61CSTEImCyzVhoFeA1wOxmNZcfv/sOspyLArlAgpF1B8lFUkR9ASNG43h1FQz3fT3T4r2KtUc8smkziF/HvyeFkXMi0gSiANHp+3qB14yy2EHgJSI+JRSVSXXOW1Npc5/AW1ACfhvtP9ldSx81SzXre4zYn6hUQp3Oo3vaC/+o334jvZWRLsW777+Ptz5/JRDrHiCYqqN/Jq1jF33fIrtHZRSbZTaOyim2lDTA6ksi9jDD5G8+04a7/wBzd/7NoXOLoZveSnDL7qVUqcJYJtPxLZp/P53aPvKF/ENDTK69Qb63vZOCj2rZ6yfzrj49cNR7nsgzgO/jjE66sHtVlxycYZ3v7OXrdeMs6K7OKWPHSuP8eDgg9w3+CseGnyQcWv8hPO2BdpYGe6hJ9zDyvDKyrqHBm/DGQsAEQgGFMFAmdaWMtHkIKmGyVGfclk4eNjP7j1a3O/ZE+TRxyP8+O5JQRiPW6xZpa332oqfZ1VPgWBgaQ8ILrc+e0V0BccZnO/TnpSqkG9scAgFFcWSkM0J+YKgBx9kQtwvWSOiZelAwkgEJ5ag5Hix8tr6Hghq3RQInNwt2VEOBauA7dj43D5aI62EfWE8rvNvqMuwwLjd0N6ug2JHRnRZNYd8S4sW8+cJi/XfUY1cK04rLwKz5fr6GvAB4P0i8lH0g+VdlX21znJ7gL9SSu0WkZVoH80N6KHg6rVnui4zXVtE3gq8FaC1tZVt27bNdk+zUrbKjNujZGYQH+cdjoOrVMJdKhE8NoAz9GuCAwOEBgYIDvQTGjhGcKAfby435bByKES+NcVYayv5iy8i19pKvrq0tGLNNExWJT+ql2n0b1gDG/4Uz1v/kNQD99P+y3to+7d/pf0rX2R4wwb6XnAjR7deTzk6fzOMWlaZ/pHpuuM8RCm8mQzBgX6iBw5w3be/RbS3l+ENG3jufX/ByMaNul7Nd9HbG+LhR1p45OFmtu9IYtsuotESW7YMcOUVx7j0skGikUlref+I4nDhMA+P/oaHxx7m2cyzODjEPXGuiF/JlfEruSh6EaPWKIfzhzlSOMzhwmEO54/w2MijFJ3Jf/OoO0pnoJOuYBedgS66KkuLvwW3nJ6v7Ux/60gDXHqFXqqk014OHIhy4ECE/QeiHDgQ479/2ECh0AxoP/22thw9K/1bxtQAACAASURBVNOsrCw9PWlaW3MzizalsLBPqy86A86ZPhvOvN8ul8oonLP6v+w44HYp8oPVgQxBABFBKVBKcIq6npqoUTEqzpNh8bT7L91AQHBcbhjNIaPHcLn1i4dLoCBwYi9dewqlX1oE3OLG7XIjCAc5eLq3MycymczZ/l9aEiy7+7ZtMvk827Zv12+T/SeE+ZzTyGK4iFesPEPAm5RSX60p/2SlbMapH0VkPfAR9PDtGPAZ4MfTzzPtmLcAXwKalFLDIvIDIFYbcCUiG4BngJcqpX48W7u3bNmifvvbWRM3zMpdd95F2BMjEp09+8a84zi40+O4czmkVMRVLOl1qYSrVESq6+LUbVexZl+phKuoj6keO2Vde85iUX+2ZnZdsAMBSm0dlNraKba1U2rvoJRqr1jY2+fkSz0feAf6Sf70xyR/cifBA/twPB7Gr7meoRe/VPvXn2Eke//IUVINbfPU2sXFlc/r0ZO+3qmjJ316RMWdzUzUTXd1cewd72HsuhsmhizLFjzxZIT7Hoxx/wMxDh7WgUire/Jcd+04W68Z56KN2Sn+sSWnxKMjj3Lf8V9x/+B99OZ7AVgfXc91TVvZ2nw9G2MbccnJTZOOchgoDLA/u58DuQMcyOzjQO4A+7P7GS4NT9TzuXx0h1acYMnvDnWf0mXnTP7WjgO9fT5twd8bYM/eILv3Bjh8xI9S+vsLBm1W9xRYuybP2tWFCb/8aLjM0NAwt7zs5rqvKyKPKqW2nMZx52SfDafXb/cd6OO3TzxKZ8vZGcHL5IRY2MYfHCFJgIg/QqGUJ6dKFNwK5XZRFfdu8aAcN47lIZeHXN5F2QIEPC5tuT/djEz1/qaVglK6hFV2UPEE/mSEaNxFMKj10vTBMKUUlmNhORa2Mxk4LiIEPUEagg0EvcFT/n/PJ9u2beOGG244a9dbKizH+952zz3ccPXV2r/rHGGuffa8WeZF5O+VUh+YS91KBz0KpKbtSgF7T3Lcc8Braq65svLx6ZNcbi/abrEKGAb2AS+e4brVuksOKZdxj4/hGRutLGN6e3QEz/iY3q7Z5xkfw50eRxzn1CefAcfnx/H7UD4/jm9yXf1sxWIoXwDH78Px+VE1+xyfD+XX6+N+N6E1Gym1tWMlGpaEX1q5NcXAH7yZgd9/E8FdO0n+5E6SP/8JiV/dgxWNTfrXb9q8JNq7kEiphG/gqA4iPtpbEe59lcDiXryjI1PqO/7AxItY5uJLKbW3U2rroNjewYFkhNamTkZG3Tz4ax28+tDDMTIZN16vw5bLMrzmlYNcd804He1T4x0Gi4M8MHg/9w3ex6+HHiJv5/G7/FyZvIo3rHwj1zZdRyowvas4OS5x0RZsoy3YxjVcM2XfWHmMA9n9HMhqcX8ge4Bnx5/lFwM/x0H/zwhScdmZFPhVwd8wD37ULhd0dZbo6ixx4/PHJsrzeRf7DvjZvSfI7r1Bdu8JcM+2BN/7wWRX3dJc4nlXDHDLy864GXPG9NkLRzYnREIO/tAoTYRoWrsZCQYJF4s05nKosTGsQhZLOZTEIed2yFPE8eYJ+lwE4wpluVG2l1LRQzbvIl9gUtx7znhOpinYNpTKgl20kHKRcHOIps4G/BHvxIt5rWh3lIOjHARBRPB7/MT8MQKeAB6XB6/bi1vcxg/esPC4XOeUkK+Huv7FKynBrgBamTpMCvB76CHVufJzYPrbxhbgu7Nc2wdcoZR6oKb4enRH/1ilzk1AWCn1g5o6HZX1ocr6Z8A7RSRRE1C1BThcefAsHErhKhSmCe9R3GOnEOq57KyndPwBrEQCKxbHisfJt6RqthPY4XBFXFdFd41A9/sm9lXL1DxGWy1pK7UI+fUb6F2/gd53vJvYI7/W/vV3/Yjm//6/FDq6GLnlVoZvuZViZ/dit/b0sG28x49VAoinCfajvXgHjyM1I3OOx0OptY1SWztj179gQrgXU3ptNSRP+G04DuzZG+An3xWeeKyDp3eEcRyhsbHMTTeMsvXaca7akiYUmnyxVEqxM71zwvq+Y3wHAK3+Vm5teylbm65nS3LLnIJZT4e4N87mxCVsTlwypbxoFzmUO6Qt+BVL/oHsAR4deYyiU6g5PsHK8EpSnhSXZC7lguh61kTWzstsoMGgw8YNeTZumIwZUQoGBz0TVvxdewKEgqefzecMWH599gKTLwgBv0MgPEqzCtC0bvNk5o1AAAIBJJnEa1l4CwWC6TTxTAbcEWzlUPa6KLugYBfJWXlcvgz+qMKyBMd2YxU9FAo+8llBKu4uXrfCU0eCr+pETaWydvfxuh3i7izBFje+9hZUyEfZLlNwiqiimhDtPrePqD9KwB3A6/Ya0W4wLCBzFvMi8nK0D2SImT306vXX+QSwTUQ2KKWeFZFb0QFQ/1K53seAlwFblFIFIAZ8v1L/uIg0A+8H3l2TmqwLeIuI/Fwplau8fLwH+I5S6lilzl3oCUreA/yNiMTQvpUfq7P9c+OrX+XaD38YfzqDNz1+QhaWWqxIBDuW0GK8IUlh5SrsWFxvx+NYsQR2XIt0vcTnnK/7fKZcFnY+F+Txp8I88VSE3XsCJBssOjpKdLYX6ewo0dlRpKO9RHNT+UQ/ZI+H8auvY/zq63BlsyTu/QXJu+8k9e930PZv/0pm40UMv/g2Rm56EXY8sSj3OCNWGd/gcbwDA/gG+icz/1QF+0A/Yk+KPiVCuaWVYls76cuv1EK9KtjbOig3NZ9yfL5UEnY8G+KJp8I8/mSYp7aHSad1N7JhfY7/+cYBtl4zxgXr81O+57yd5+Gh33Df4H3cP3gfx4vHEYRN8U28ffU72Nq8lbWRdYv6oPe7/ayNrmVtdK02V1TQLjv9E1Z8vd7PgyMPcPfgTwBtye8OdbM+up510fUT6yZ/0xm3SwSamy2am9Nc87w0ju0wNDRMNTXmWWR59NlniUIB3G6bUHyclAqSXL1x5hR6oHM1RiJ6UQqKRdz5PO6xMQLFIlF84A2jwj7KyqLsWBQrAr9gZynbDqUyFItCMe8ll/VWfNLB61F4PFPf0x1HZ56xHO3aE/A7JJNl3HYGF0VIJrGiURy3wqfUFNHucXnwuDxGtBsMZ5F6LPOfQE/28V300GetD4cAd9ZzYaXUoyLyOuDrIlKdTfCWmslHAkx9ccgDDwMPiciRStlfKKV+WHPaXwCXAb8UkQIQBe4BPlxzXacyi+EXReShynXuWLAJo6JR8qkUuXWNSFOTFuVVMR6La3GeaMCKRqnLXLKMyWRdPLU9zBNPhnniqTDbnwlTLGrl2NVZZOOGHGPjHp7eHuJnv0jgOJMPFZ/Pob1tUtx3dhTprKzb20sEwmGGb72d4Vtvx3tsgOTP7iL5kzvp/vTH6fzMpxi/+jqGb3kpY9def8b+9SdFKdzpcXz9/fiO9eMd6NeCfeBoZd2vLevTXKnKDUlKbR1kL9zIyE0vmohJKLW3U2ptqzvnfjrt5smnQzzxVITHnwzzzM4QpcqkSz0rC9z8glEuuThLz9q9bFwz1f3kaL6P+wbv5/7jv+KRkUcoOSXCnghXN17N1qatXNt07by4rCw02mWnnbZgO9c0XTtRfnS4Dwm52JV+jp3jO9mV2cWO8R38dOCnE3UafU2sj66rCPwLWB9dT1eo66z6BM8Xy6bPPgsUCoBLEUmkaVdBGlZeoCe7mQsiE1Z7Ghq02bxQgEwGSafxOQ4+l4uwL0Iy0ADoFI9lp0zJLpOz8uSsItl8mWJZZ8wpZ9y4xYPjwFjWQolDMFgiHhK8XhuvcvAVHQINSYItnXiDYSPaDYYlRD1ivqyU+uBsO0XkT+q9eGVo9Qez7Hsv8N6a7Sx68pCTne8wcMp2KKX6gNvrauzp8opX8FggdPYDYM8jjh/38PhTkQnxvntvEMcR3G7F+rV5XvE7g1xycZbNF2dpapzqflC2oL/fx5FeP0f6fPT2+jnS66O3z89jj0fI5adaopubShWRX6KjvZXOjgvofN8fs6b4LGse/A6NP7uLxH3bsKJRRm58EcMvvo3sRfX710uphPdYxaJ+rH9SoNcI9unpOR2vl1JLinJrSlvWW1OVpY1SKkW5JYVzhv6Ax457efxJ/aL0+FMR9uwNoJT+rjesz/HqVwxy6eYMmzdlaWiYDGDrHyliK5vtY09z3/H7uG/wPvZkdgPQFeziVZ2v4rrm67k0cel5M5OmiJAKpEgFUlzf/PyJ8nQ5za70czyX2aXX4zv5zfDD2Er/NoPuIOsiWuBXrfirI6sJuJf+KNuy6LMXGJ1rXRFPjNNFkHj3WojHT/+EtVb71ladGjKfh7ExnYJPKTweDx6/n6AnSNyvkw04MYeyU6bsWGRLBcbyefYecehMOUSDfoLuGD6XB0+hhMfjR1alIGyeYQbDUqQeMf+UiDQopUZm2d85S7nBMGccBw4c9PPEUxGeeEqL994+PwCBgM3Fm7Qrx6WbM2y6MDfFF3smvJ7JQMPpKAWjo+4JoX+k109vZf3wbyMcO15rNV5PKPj/0NFeZGV7P+vST3DBnfey9vv/SWfLV4jcsonMS18MEd/kpFf9RycFeo1g9w304x06MYd1uSFJqTVFYUUP41deQ7kq1lNtlFpTOoh4HhNMK6W/68efCvPEk5Ep33UwaHPxpixvffMol27OsunCHMHg1O+6YBc4mDvI3swefnn0Hh4df4yx8ihu8XBp4lLes+7P2Np0PSvCK+atzecCUW+Uy5NbuDw56V5eckrsz+7nufGdPJd+jl3p5/hx/4/59pFvAToV38rQyglxX3XTSfiWkFuX4Ywpl6FkOzQk03S7wsTaV2rr+nwxk9W+WNQT5GQyOnrV5QKfD5fXi9/tx+/2E/GGaQ1D38AYaxsrj/J8Hso2NKcgkVjCye0NBkM9Yv47wHdF5LvAbiA3bf8H0T71BsOcKZeFZ58LVqzuEZ54OszYmP5ZJhvKXLo5y2tfOcglF2dYuzaP9yS/2LJTZm9mL3szewi4A8S9CeLe+MTid/un1BeBhgabhoYcF22a/nPWs30ePerjcI3I7+3zsae3nV8dXUnRermueAxc/8em6/8cptvbS5u9mzanj1YGSNFPKwO0eEdoaFYk2uLkr14z1aLemqLU3Iry+09ow3xStmDnc1V/dy3ea7/rSy6e/K7Xrc1PZKbIWBn2ZPezf3gf+7P72Z/dz77sPvryvahKqEzME2Nr8/Vc17SVqxuvJuqdv9z95wM+l29CpFdRStGb79XW+8ry2Mij3NU/mWmxNZBifWTdpMiPXUDKW19mH8PSwLYgX3JoaEqz0hMhmuqGxsaFvajHo5dwuJJHsqSntx8f1+IedJxM7TSslqWFfCSiZ3laSHdCg8EwL9Qj5r9VWVfHk2sDXoX6A2ANy5B0xsVTT4crVvcIO54JUaz4YK/oKnDD1jEuuTjLpZszdHaUZvVeUUrRV+hjx9h2to89zfbxHewc3zkl68h0/K4AiYqwj9WI/Op2YtrnmDdOZ3eMnpXT56vRIwiDQ156e30c6fNxdLfFscdHODIQ4xFnNcdLCTKlGreJMnoi+z49C2hTskwyaZFMTn5uTJZpTFo0Ji2SyTINCWtKDvZ6yeVcPLV90t/96R1TYwuuv3aMSzdnueTiLN1dRUbLw+zP7ueZzD7u3LOf/Vkt3o8Vj02c0yteVoRXsjF2Ibe13UZPZBU94R6CpQAdSTM4Vw8iQmeok85QJze23jRRPlIaqQh87aazK/0c9w/eP5E2M+KJcE3sOm6h/jzzhsXBtiFdsGlsyrLaFyPS2AZNTWc3/a2IFu1+/1SrfSajLfe2rTu2chk6O41LjcFwDlGPVNgL/M9Z9gl6kg+DYQoDx7xauFcs77trfLAvWJ/jlS/X/u6XXJwl2TB7ur2x8hg7xnawfexpdozvYMfYdkbK2uPL7/JzQfQCXtn5CjbGN7Euso6yKjNaHmO8PMbYtGW8PMZoeYy92b2V/eMT/swzEXaHTxD9Ey8DDXHiLXEuvCLO1W+IU8oXWZlcRdgTxikFGBnxMTTsYWjYy9CQh+ERD4NDXoYrZdt3hBga9lAonJhFRkSRiFs0Nlo0Nlg0NlZEf0OZxkaLZINFU6UsEbcYHfNMxBU8/mSEXXuC2LbgcinWrc3zP24f4pKL03RcsI9x/x72ZfexI7OPHw7sY/++/YyWJ+dnDLqD9IR7uCJ5JT3hHlaFtWhvD3bMOK36spj19izR4GvgqsbncVXj8ybKCnaBvZm9PJd+jp3jzxK2I4vYQkM9OA6kczaJphxrgwlCsUY9lfxiB47WWu1bWrTVvrcXenqMS43BcI5Rj5j/plLq3tl2isi/zEN7DOcgjqMDJyd9zn0cPuLnye3rOHZMp1oLBW0uOoUPdpWiXWRX+jm2j2+fEPCH84cBnQKwJ9wzMRPopvhFrI6sPqOgSqUUWTurxX5plDFrnLHSKOPWOKOlUf0CUCkbs8bpy/cyVh4jbaUn3ExmwiMeIp4IYU+EiC9CpCtCpCdMxBOhxROhxxMhUlm8dhQ7H8fKJCinE+RGE+SGk4wPJRge9jM05OFwb5ihIe/ESEYtLpeayNrj9zls3DjOy9/4FMl1T0PLM/SV9/F0Zh8/zO4nu2Ny3oK4N05PeBUvaLmRnnAPPRXRngqkTJaKJUTAHWBjfCMb4xtrUlMaljqOA+NZi1gyz4ZwA8FwHNralp5YrlrtXa6l1zaDwXBK5izmlVJ/c4r9/3TmzTEsVfIFobfPr91KanzIj/T56Dvqo1yefAC43YpUa4l164Z5/e8Nc8nFWdauzs/oMuIoh4O5g+wY286OcS3cd6V3YVUs5c3+ZjbFL+J3Ol7GxvgmLoxdSMQzv1ZJEZkQ1R3BjlMfUMFWNulyesL6P1oe4/DYITx+DxkrM7FkrezE575835Ryh1kCeCOVpVuPDFTbt94TJiBRvHYMdzkKxThOPo6VjYN/DNW0k2H3LnbkD/KYU9TJAQ9Ck6+JVZFV3NZ+W0Wwr2JVZBUN3gYj2g2GBUApneYxliiwKd5IwB+G9nYjlg0Gw7xT7wywrcBfAi8EmoBB4KfAJ5RSA/PfPMPZQikYGvZMCfSszfIyNDTV8h0O23R2FFmzSvu5V3O2d7SXSLWW8HhmngF2qDg04SpTXWcsHYgVcofYELuQ1634fTbFNrEpfhEtgZaz9h3Ui1vcJHyJKRlH+j1zn/VWKUXezleEvRb4aStD1s6SKad1uZ2tEf/VF4QRsvYRMk6GjGQoBoo68zbQTjs9wVVc1XTVhGtMT3iVCUg1GM4iSsFo1iIWK3JxQxK/NwgdHaeclM1gMBhOh3pmgF0FPAA0APuBPUAS+GPgNSJyrVJq/4K00jAvlMtC31HfCUJd5133TfHbFlG0tJTpbC9x3dXjU8R6Z0eReMw+pctnwS7w2MijbJ/wdd9Of0HPL+MWN2sia7il9RY2xjexMb6JnnAPblk+DzsRIeQJEfKEgNN/aSk7ZTJWhoA7QNB9ZnnmDQbDmTOSLROLlLmoqRG/26cDSs8kmt1gMBhOQj29yz8APwbep5QaqhaKSCN6dthPAa+c3+YZ5ko+72JoWAdYDg1XAyw99A9MiveBY16UmlTgfr9DZ7sW6FdtSVcmSirS2VGiLVXC7z91giKlFMOlYQ7lDnEod5CDuYP6c/Yg+7P7J9xI2gPtXBS/mN/t/j02xjZxQewCIzznCa/LS4NvHnNVGwyG02Y4UyISctjc0oQflxbydc68bDAYDPVQj5i/XCnVM71QKTUkIm9DZ7sxzCO53EwC3avLppVPn8m0SrKhTGdHicsuyZxgXW9qtOacUCFdTnM4d4iDFdE+Kd4Pka24yYAO+uwIdtId6uaK2JVc1fo8NsU3kfQlT3J2g8FgOPcZyRQJBeDStib8tgMrukyedoPBsODUI+ZnnWpTKeWIyMmn4jQAkwJ9QpyPeBiupC2c+FwR6vlZBHo8rtMTJpMWGy/MTXxuTFokK2kLG5MWDQkLr3fu6f8LdoEj+SMcyk4V64dyBxkuTWbPEPQ09t2hFby07aV0h7orywraAm0TqQtn8pk3GAyG85HRbIGg38XlnY34LRu6unSGGIPBYFhg6hHzh0Xk7Uqpz0/fISLvBA7PX7POH77xDfjYR5/H2FiQkVHvjPnEARKJSYG+aWNuclKhBj2ZUHVyoUSDddJZUE+F5VgcLfRxMHuQQ/nDFeGu3WMGCgNTUi02+hrpDnWztel6LdbDK1gRWkFnsPOE2VQNBoNhuTKSzeP3uLm8qxl/qQjd3RA0boQGg+HsUI8s/Cvg5yLyJ8BvgRF0AOwWYAVw00mOXba4XBAI2HS2p2ltUVNm+qxOAHSmAn0m0uU0uzO72J/dr4V77hCHcoc4kj8yZYKkiCfCitAKLk1cNmFhXxFeQVeoe95TQBoMBsP5xmg+j8/lZcuKJvylgs5aEwotdrMMBsMyop488/eLyM3oYNfXAi60681DwJuVUg8sTBPPbX73dyERe4SwJ0YkOv/TY9vK5nDuMLvSu9iT2c2u9C52Z3ZNZI0BPUNqV6ibNZHV3NhyY42VvZuEyTNuMBgMp8VYPodXAmxZ0USglNMTQkVNGliDwXB2qcserJS6H7hORIJoq/yIUiq3IC0znMB4eZzd6V3syuxid3o3ezK72ZPZS9EpADrd48rQSi5JXMrayFrWRteyKrya1kArLjETlRgMBsN8MZbP4lZBLl/RRLCUhVQK4vHFbpbBYFiGnJZzh1IqD/TWlonI55VSb5+XVi1zLMficO4Quycs7bvZndnNQI21PeFNsC66jld2vpK10bWsjaxjVWQVPpfJnGAwGAwLyXgxi9sJs6WnkZCVheZmaDDpYQ0Gw+JwUjEvIh1AUSk1KCKvP8W5bp2/Zi0fxspjE4J9T3oXu9K72JfdR9EpAuAWDz3hHi5LXMa66DrWVCzuTb4m4x5jMBgMZ5nxYgZXOcZlqxoJ2RlobNSLwWAwLBKnssw/jp7t9Srgq6eoO/cciMsQS1nsy+ydam1P7+JY8dhEnaQvydrIOl7V9WrWRdaxNrqWleEeY203GAyGJcB4MYO7HGfzikYiTka71TQ1MecJOwwGg2EBOJWYfxswXvn8LLNb3wW4c74adT7xjae+wd8+87ccyh+ipEqAnlipJ9zDFckrWBNZx7roOtZG1tLoN9Ydg8FgWGoopchaOTxWgk1dSWKSgXAYWluNkDcYDIvOScW8Uup7NZufUkodnK2uiHxq3lp1HuFxeYh5Yrw89Uo2Nl7I2sg6VoZX4nWZ6b0NBoNhqaOUImNl8ZYbWN/WQMKbA39QZ64xQt5gMCwB6klN+dWZykUkoZQanW3/cuc1m15D7GBswVJTGgwGg2Fh0Bb5LN5ykjUtCRqDefB4ob1dTyJiMBgMS4A590Yicr2I/JuIvLayvUFEDgBDIvKoiHQuVCMNBoPBYDi7KLJWBr/VxOrmBppDeS3gOzrAPfNM3gaDwbAY1GNa+FPADzxZ2f5nIAK8F9gNfHJ+m2YwGAwGw+KggKDdQncyQUu0gLgEOjvBM8/TdRsMBsMZUk+vtBq4XCllV6zwNwJvV0p9UUQ8wBML0kKDwWAwGM4iXpcXD15S0Tit8QLi2NDdDV4T62QwGJYe9VjmLaWUXfn8KiAPfANAKWUBpXlum8FgMBgMZ52gN4DX7aK9sYjLKkFXF/hMimCDwbA0qUvMi8jVIpIC3gV8TymVBhCRFqBuk4WI3C4ij4jIr0TkARHZcor6m0Xk7kr9p0XksyLir9m/SkQ+JyL3Veo8KiJvnXaOlSLSLyLbpi3Pr7f9BoPBsJxYLn12KAQ+r8JtFbWQ9/tPfZDBYDAsEvW42XwU+CVatBeAjwOIyFuA9wG/qOfCInI58E3gSqXUMyJyG3C3iGxUSvXPUL8duBd4n1LqjsoD4afAZ9H58AHeDqwAblJKlURkM/AbEbGUUv9Wc7qfKKXeWE97DQaDYTmznPrsiUQ1nZ0QDJ6tyxoMBsNpMWfLvFLqTuBC4NXABqXUjsqu/cDfU38A7F8Cdyulnqmc/0fAAPCOWer/QaW9X67ULwKfA94iIq2VOofR+fBLlTpPol8yXldn2wwGg8EwleXTZ/t8egmFFrUZBoPBMBfqSpSrlNqnlPqOUupQTdk9SqmvARvqvPbNwG+nlT0CvHCW+t3AoFLKqSnrA9zAdZW2fEYp9atpx+XRWXgMBoPBcPosnz7b7zd55A0GwznDfPZWfz/XiiKSBOLA0Wm7+oFVsxx2AEiJSG0UUue09fTrCHAV8K1puy4QkR9U/DR/IiK/N9e2GwwGw3LD9NkGg8GwdDmpz7yIfBvoVUq9W0QcdOrd+aA6FWpxWnkRmG1c82vAB4D3i8hH0Q+Wd1X2zTaDx1uA48AXasoK6IfMu5VS/SJyCfAzEelQSn1q+gkqwVhvBWhtbWXbtm0nua2ZKVtlxu1RMtZ43ceey1hWmf6R6c/+85vleM+wPO970e5ZKSzs0+qLzoBzps+G+em3M5nM2f6OFx1zz8uH5Xjf5/M9nyoA1s2k9X4A+OIs9YRKxzlHspX19KFUP5Cb6QCl1DEReR7wEeBBYAz4O+DHwPAJDRK5DB2Ye7NSqlxznn7gtTXbT4jIF4EPAic8GJRSdwB3AGzZskXdcMMNc7vDGu668y7CnhiRaPjUlc8j+keOkmpoW+xmnFWW4z3D8rzvxbpnx3YYGhrmdPqiM+Cc6bMrdc643962bdvZ/o4XHXPPy4fleN/n8z2fVMwrpV5es/mQUurDs9UVkYvnelGl1LCIjAKpabtSwN6THPcc8Jqaa66sfHx6WlvWA18HXlbr338S9gJxEWlSSg3Oob7BYDAsG0yfbTAYDEuXerLZvPxM9s/Az4HpOYq3VMpPQER8InLttOLrgX3AYzX1VgD/F3h9NetCbd5iEfk9Eblq2nk60NaloTrvwWAwGJYL2jIPvwAAIABJREFUps82GAyGJcicxbyIbBKR/y0in5xW/ikRufk0rv0J4BYR2VA5z61AG/Avle2Pich2EQlU6seA74tIc2V/M/B+tB+lqpS1oR8sXwZcIrKlMqnJG2uuuw74MxHxVI5pR7sIfaF6HoPBYDCcgOmzDQaDYQlSz6RRfwJsBf5xWvnTwBdF5H1Kqe/O9WRKqUdF5HXA10Ukj/bPv6Vm8pEAOrBKKtt54GHgIRE5Uin7C6XUD2tO+xFgDfBP0y53sObzt4D/BdwvIiV0YNcdzOJ7aTAYljC5ae7aHi943Cat4AJg+myDwWBYmtQj5p8HXK+UOl5bqJT6uojcA3wHmLOYrxz7A+AHs+x7L/Demu0scOspzveHwB+eos4zwJvqaafBYFiClMtavKdawbL0dqEA+QLYFojoxePRi8ipz2k4KabPNhgMhqVHPWJeTRfyNTuO1AytGgwGw8JTKkEqBW6PXvwBiET1Prsi7kslLfALBVBKL26Ptt673UbgGwwGg+Gcpx4xHxGR5pkEfcUXMjJ/zTIYDIaTUChANAaB4Mz7qwI/EIRYXIt424KyBcWKuM/ndd2qwPd6tMBfKjiOXmxHt9GxdbntgKuerttgMBgM5zP1PBG+DfxSRP4OPaX3MNCAzmbwAeC/5r95BoPBMA3b1uI2EZ/7MSIVf3ovBCsvAEpBuQSWPSnui0Vd7nKBy60F/nz73ys1TahXxHrtfpHJEYSAX7sJeX3gdump+3LT524yGAwGw3KlHjH/IeBC4BucOBPsj4C/ma9GGQwGw6wUCtDUpMXumSACPj/4gFBlElPH1u45lqXFfaEIVnnS/75qwZ/NPacq0p2qYLcnxXntdavnCVQCdj1ecIkeGai+SMx6DQUl+8zu3WAwGAznDXN+GiqlSsDtInIT8EKgERgEfqaUumeB2mcwGAyTlMrg80F4gbz6XG7wu/W8ptVrTPe/Lxb16IDj6Gw6tWLd5dbi3O+bDLx1e2qEusm0YzAYDIb5pW7TllLqF8AvFqAtBoPBMDtVt5i2trMbuDqb//2BDLS2anFeFeomoNZgMBgMZ5m6xLyIeIHfBW4AfEqp3xeRVwGPKKUOzH/zDAaDoUKxqMW0f5ETZ1X9712u2QNwDQaDwWA4S8xZzItICm2R3wCUgWpWm27gn0TkVqXUk/PfRIPBsOyxKz7i9QS9GgwGg8GwDKjHefMfgZ1oMR+gIuaVUp8GXgf8/by3zmAwGED7qieT2pXFYDAYDAbDBPWI+auBVyulnlNKKWoy2iiltgEt89w2g8FggGIJAgEIhRe7JQaDwWAwLDnqEfO2Uupk+dCazrQxBoPBMAWldGrIZNIElxoMBoPBMAP1iPkBEfnzmXaIyFuBA/PSIoPBYKhSKEAiofPBGwwGg8FgOIF6stl8EPiZiLwT+DXQISJfBjYDm4AXLED7DAbDcsW2QVwQiy12SwwGg8FgWLLM2TKvlPoVcCPQC7wKaAbeCOSBFyilfr0QDTQYDMsUE/RqMBgMBsMpqSc1ZQx4GtiKzmaTBIaVUvkFapvBYFiuFIoQCkHYBL0aDAaDwXAy6vGZH0WnpuxWSuWVUr1GyBsMhnmnOsNqQ8Nit8RgMBgMhiVPPT7zfcBaI+ANBsOCks9rIe/1LXZLDAaDwWBY8tRjmd99MiEvIn88D+0xGAzLGcsCtweiJujVYDAYDIa5UI+Y/7iI/G8RaZxl/x/OR4MMBsMypliEpkZw1dM1GQwGg8GwfKnHzeZfgQbgT0VkCMhM298+b60yGAzLj0JRB7wGgovdEoPBYDAYzhnqEfMx4Huz7BPgtjNvjsFgWJY4Dji2CXo1GAwGg6FO6hHzh5RSb5ptp4jcMw/tMRgMy5F8XueU93jrOsyy9OLx6MVgMBgMhuXGnB9/SqlLT7H/xjNvjsFwBti29rlWSm+bHOXnBuWyzlwTidZ9mGVBPA65HGSzk/s8HvB6jeu9wWAwGM5/6rZliciNwNVoH/k+4CGllLHKGxYHpaBUBqusrbrJJASDMDiofbAD/sVuoeFUlEqQStWlvC1Li/mODvD79Z/dcXRZqaQN/fk8lC3tAyiixb3Hoz8bDAaDwXC+UM8MsM3Ad4Br0c/HKkpE7gdeoZQanOf2GQwzU2uFD4d1BhR/YFKpNTZCby84xjy7pCkUtEW+jqBXy9J/+qqQr+Jy6W2/H6LRybrlsq6fzWmB7yjdgbndWuC73fN7SwaDwWAwnE3qUTlfAKLAa4DVQBJYA/wuOjj28/VeXERuF5FHRORXIvKAiGw5Rf3NInJ3pf7TIvJZEfFPq9MmIt8XkYdE5DERee8M57lARO4RkftE5FER+YN6225YBJSCYkn7U1iVYMmuLmhu0WKw1uTq9UFTk1ZvhqWJbeu/aUOirkMKRWhvh0Dg1PU9Hj1Qk0hARzv09EB3lx4IiET0+bLZyaVU0hZ+w8yYPttgMBiWHvW42bwA6FFKjdeUjQL7ROSnwO56LiwilwPfBK5USj0jIrcBd4vIRqVU/wz124F7gfcppe6oPBB+CnwWeFuljgv4IXCXUuqvRSQOPCYi40qpOyp1IpXjPqyU+oqIdAJPicgxpdTd9dzDksZxJn3Hz3XTo21rlaUUhEInWuFnIxyBTMa42yxVCgX9wuWeWzdk25AvaFEePM3slSLg8+mlGlJh25PuObmK9d52Jq33JrhWY/psg8FgWJrUY5k/ME3IT6CUGgUO1HntvwTuVko9UznHj4AB4B2z1P8DdHu/XKlfBD4HvEVEWit1bgUuAT5dqTOGzo//VyITyu+NQBD490qdI8D/B/xVne1fOJTSCqOqMoolLUgLBa00crkTl2x26rpU1orEcaaWl8uTIn+pU2uFTySgs3NmK/xsiGh3G9sy5talRqlcUdSROVW3Hf3TPxMhPxtut7byx2LaYr9yJazohrY2XQZTrffF4rL9OZk+22AwGJYg9dibfiMiNyulfj59h4i8EPjltLLvKKVecZLz3Qx8clrZI8ALgb+eoX43MKiUqn2M9gFu4Dq0P//NwN7Ky0XtObuA9cDOSp3Hpp3nEeBtIhJSSuVO0ubTp1SCvGtSSCulxWZ1XYvLBS43uESbBF0urTgm1m59TDWyz+WaXCMn+og7DpRLWshns1oVKVU5nwe8SygqsGqFd5yZfeHrpepuMzhostssFZTSv8e2tjn9XW0H8jldfbqQz5QyKKUIeAJ43fWltZyNarCs16sHgmYLrnUqLxiBM/h5nmMsrz7bYDAYzhHqEfPjwHdE5AHgmcp2DNgIbAa+LCIfqql/9WwnEpEkEAeOTtvVD7xklsMOACkR8SmlSpWyzmnrVbOcs7pvZ2X92Ax1XMBK9L3NLy4XxBMQDoG4KuKbiiCviO+qEK+Wzff1/QG9RKKTYqpcnvQrcBx93aq4P9tBo8XSZEaaREKrqDpzjs9K1d2mWAK/b37OaTh9ikWIxfXv8RQ4FSGfSp34LpYpZoj6o0T9UY5lj1EoFgh6g3hc8+8TM1NwbXpA+92PjU267pyvLLs+22AwGM4h6nnqva+yfnFlmc70Ic+T+XJUH8vFaeVFIDTLMV8DPgC8X0Q+in6wvKuyr+oUHp7lnNScdy515heXC2IJCC4Rv20R8Pn1Eo5ocW+VtetDvkbcgx4F8HoWxu9+vq3ws1F1t+ntXZwXFcMktq3XifgpqzqOHkiqBqvWki1lCfvCtEZacYmLsDdMppThePY4+XKekDeE27WwsSIi0Nysxf3goH5fDIbAfX7+vJZXn20wGAznEPWI+SdPNXFULSLy+El2V6d3ma5u/cCMQ6ZKqWMi8jzgI8CDwBjwd8CPgeGa88ZmOCc1583Oct3aOhOIyFuBtwK0traybdu2GW/oZJSLBcZ7d5NxnUNj8UrpxXEgq5jybjbH0QPLKtM/Mt3ohs4NSE1wrssF6Rykj89L02fFtqEwuqBiftZ7Ps+Z8307jnYdO5Cec9VDo9PKlYMLF163l90zxN07yqHslAFw4ZqaSHceKWQL7Hhkx+R1bUhb+pe90O+Llu2wbVvfwl5kKudMnw3z029nMpnTOu5cxtzz8mE53vf5fM/1iPkPnbrK3OorpYZFZBRITduVAvae5Ljn0KkxARCRlZWPT1fW+zhx1KB6jb01dWa6rsMMQbyVjAp3AGzZskXdcMMNszVvVu66+2eE29YQWSqW+dPBtrTlvpCHXF5b8pU6abLu/pGjpBraKsdPs8JHowtjhT8ZSsFAvw6oXSB3myn3vIyY030XS+BxQ2vqpH93pbRFvqlJe1zVkivn8Lq8dMY6T2p5d5RDupjmePY4CkXQG8Ql86uwdzyyg41XbJxSZtva7WZ4RN/qXNJn1ovjKIbSWW7Ysm7+Tz4L51KfXbnuGffb27Zt43SOO5cx97x8WI73fT7f85yfbkqpH9Zz4jnU/zkwPUfxlkr5CYiIT0SunVZ8Pbqjr/pT/gxYIyK1EmALcLjyUKnWuaySEq22zoMmkOokuCsJuxuSeraezk7t/xCNTs2Yk8/rmXqqVDPSlK3Ty0gzn5jsNotH1ZUrmTylkM9kZhby+XIej3joiHWc0oXGJS7igTg9DT00hZrIl/NkihkctbB/d7db32J3l/avz2Sm/juc45g+22AwGJYgi+nd+QngFhHZACAitwJtwL9Utj8mIttFpGrbigHfr8xEW52R9v3Au5WayLV4F/AE8J5KnRh6qPVjNdf9GlAA3lCp0wG8dlodw6lwe7QgTzRAe4eevCmV0gpMRAt4x9E+6qmUFvGx+PwFtZ6EYlEvM+L16cmmzGRSZ5dCQf82fLOPTp3MIl+wCogInfHOugJc3S43DcEGVjWsoincRK6UI1vKohY4PavPp7PvtLdPTkx1Hrw/mj7bYDAYliCLNhWKUupREXkd8HURyaMDom6pmXwkgA5uqprx8sDDwEMicqRS9he1IwBKKUdEbge+KCIPVc5xR3XykUqdjIi8CPiCiLwZHVz1HjP5yBnicmtxHwhq0e44sD+rXSrOIvn85AQ/hcIsbg7RWCVhuMluc1awbZ3FKTbdNXqSqpBPJvW7Vi1FqwgKuuJdp52pxu1ykwwmifljjOZHGc4P4xIXQW8QWcARolBIv+eOj8PQkPaln+88+WcL02cbDAbD0mRR5zVUSv0A+MEs+94LvLdmO4ueYORU5+wDbj9FnZ3oGW0NC0U19/1ZJJvV7xKpynQ0/3979x4nZ13f/f/1mdnzIbs5b7LZbE43lBvScghNg1QSULFiIZTS0tAqKa1SKSRYCKRgpW2iMbe9xSg1oL9WRWgEK4qIUpA7iBUpRBAQEBMihxzFANnT7GHm8/vjumaZnT1kJzuzszPzfvLYx+xe1/e6ru+1Gz7zme/1Pew/EPT+qUmf78IsaP7V7DbjIxYLulaN0DWmoyNI4odK5OOJOHMb52ZlHvmySBnTaqfRWN3IG11v8EbsjSCpL8tdUh+JBE8aamvh0CFoawu64JTn/iFV1ilmi4hMPMpipOC5Q3tHMH3hrKag33I0GnxfXR0kioOUVwTNwOpuk1ux7uDT1AgLdrV3QEPD4O70PfEe+hJ9tDS0UBHN7hOUskgZ02unM79xPvUV9bT3tNPVm9t/C+XlMHNmMOQEgvuOF37XGxERybOjSubNLGpm07JdGZFMJRLBIMMpk2HGjIGN7JFIkDzV1weJ06Bu0vWTgibS7h4kB9yDwcbpze0p2jugYVLwoCQ1ke+N99LT10NLQwuVZbmbBao8Ws7MupnMnzyf2vJa2rrbcp7UV1cHQ0hmzoDu2NsLMouIiByNjJJ5MzvDzB4imPf3Z+G2rWa2JheVExlJPJxEZ8aM4SdJiUSChX0mNwYt9AOSpuTsNn29RTE6ccKJxYJEvnzoVvWODqivG5zI9yX66I5309LQQlVZDuZ2HEJFtIKm+ibmNc6juryaw7HDxPpiObueWfAhc+7c4LWjc4RB2yIiIiMYdTJvZu8lmIKsGvgaby/WcQvwx2b24exXT2RofX1Bi2ZTU9BFYyTJnH3q1CFmFamoVHebXOjrC/rI1w896LWjI+h5M336wEQ+nojT1dvFnElzqC4f/5GilWWVzK6fzbzJ86iMVnK4+3AwADdHysqCDzMtc4KJntrb314kV0REZDQyaZm/Efgzd1/m7n8FtAG4+5PAecCl2a+eyGA9PcFX8+ygn/xQhpp6cPLkIHns7Ezrq5zsbtPTm5sKl6Lubpg2dcjBxclByendouKJOB29HTTXN1NTnj5qeXxVlVXRPKmZ1oZWyiJlHI4dpieeu+5YlZUwe1bw4bS3d4inSCIiIsPIJJlvdPdvDLXD3Q8BBTg3gxSaWCxIcubMGXqKv4QnOBw7zOHuw/QlBq/W09AQJExdnSktoMmm+94edbfJhlh30OxeNfgP1NUVLPw7c+bARD7hCTp6gkS+rnKYT2h5UF1eTUtDC62NrRjG4e7cJfVmwYfTuXODh0WdncG/dxERkZFkksxXmdmQU1KYWR0w/Cg3kSxIziHf3BwsypOuN95Le087s+tnM7dhLt193UP2e66rCxbz6YqlrM6p7jbZkUgMO+g1Fgt+zU1DJPLJv1t9Zf04Vnb0qsurmdswl7kNc8GhrbstZwtPRSLBr6+lOFeRFRGRLMskmX8AeMDMVqSs8IeZHQ98A7gv25UTSeroCBaAmjXr7UWhUnX3ddMT76G1oZVJVZOorailtbGVCBHau9sHla+pCbrpdHcH3RoAdbfJhq6u4ENR2kq/yQ9iTTODaUOT3J327nZm1s5kUtXwi0pNBGZGTXkNrY2tzJk0B4D2nvacJfXJVWSbm4OnSO3FsYqsiIhkWSbJ/DqC1fkeBNqBxWbWDTwNTCFYplskq9yDlslJk4LuMdEh1h3q6u3CcVobWwcMmqyIVjC3cS4NVQ0c7j5MwgdmQskpAvv6wplEUrvbqMNy5np7g5lr6ga2rsdiQSI/a9bgRL6tp40ZdTOYXF04D/bMjNqKWiqiFUyrmUZbT1tOB8lWVwet9NOnBR+K9PBIRERSjXoFWHd/w8x+D/gAcBYwDXidoMX+NndXc6ZkVSKcenLKlKDbwVBTT7b3tFNdVs3s+tlEh1hhNGIRZtbNpKqsiv3t+6ksqxywAFFlZdDyuW9fkHRWVVUGF3vjjREXOpIh9PQEn7hS+tDEYsGPwyXy06qnMaV6Sh4qmx1TqqdQU17D/rb9tPe0U1tem5OVZCORYLxHchXZ3sEPm0REpESNOpkHcPce4Evhl0jOxBPBINUZM4JW+XTuTntPO41VjUyvnU7ERn7I1FDVQGVZJXsO76Ez0TlgtpSKirSEvn5S0K+npxcqNK57VBKJoEU+ZdBrd3fwAWz27MFdo9q625haM5WpNVPHuaLZV1VWxdzGubwZe5ODHQepjFbmbKGrsrJgRqYJOrRARETyIJN55n+ay4qIJPX1QawraM0dKpGPJ+K09bQxvXY6M2pnHDGRT6oqq6K1sZWqsqpBAxjLyoKks7wCOmORYPJvdbcZneQYg8mNb28KJ3wZKpE/3H2YydWTmVYzLSet2PkQsQhTqqcwv3E+huW0Lz1A9KjW7hYRkWKUSct8q5n92wj7HTgIPAt83d01/4JkrKcnGOzX3BwMeE3XG+8l1hejub75qGY+KYuU0VzfzG86f8PrXa9TU15DWST43yAahVlNcOAAdHRWUjt5Mrz5ZjBaVgaKx4M/ViIRdOouK4No8HtMbp49G8rTHmwkn6bMqJ1RNIl8qsqyynFrpRcREYHMkvnDwEUEg2DfBN4CGoEGggWkDhEMhK0H/sHMznb3X2W1tlLUYrGgW8ZwU0/G+mIkEon+1vWjZWZMq51GVVkVe9v2UhYt6z9fJBLMgf7663D4rUnUlnVg6m4TSCTe/rRVVg6NjcEHnbJy6PgNEIyBTX4YS/8btne3U1dRx8zamUWZyCclW+lry2vZ17Yvp33pRUREMnlYey1wJzDH3ae4+3x3nwzMBb4OXObuDcA84KfAp7NdWSlenZ0jzyHf2dNJhMiYE/lUdZV1zJs8jwgROno6+rdHIkG/5MlTInRUTcV7Sry7TXdPMIaguxtq696eL3FSw4ApKHt7g6/Zswf/DTt6OqipqKGpvqlkktpkK/14zHgjIiKlK5OW+bXAOzytI6i7v2ZmfwP8P+B+d3/FzD4A7MpiPaVIuUNHJ9TWDF4VNNgfDHStq6ijqa5pyBlrxiI5feXBjoO8GXuTuoo6Ihbpn6UyEqniN7Ep1HS8QaSuhLrb9PUFrfDuwRQqU6cGU/+k/4GSPCje3BwUS9XZ00lVWRWz62ePenxDsVArvYiI5Fomyfzs9EQ+yd3jZjY35edeM/vNmGsnRc09aPBtaAjGm6bnN8mVQadWT83pYMmIRWiqa6K6rJp97fuoLqumPBq0OE+eDNGF9Rx4uoOaWC/RqiLubpPajaaiIkjgq6v7+8IPp7cXEj70OIeu3i7Ko+UlmcinUl96ERHJlUzeXdvN7B/MbEA2Y2blZvZxgj71yW3HAnqnkmElEsFiUFOnDp3I9yX6aO9up6muiem108elJbOhqoF5jfPoS/TR1fv2yjyTGiPMOn4KXYd7ifcWWXcb97e70fT0Qn190E9mdnMw1eQIiXzyw5h7MKRgqEQ+alGaJzVn/YlKIRrvGW9ERKQ0ZNIyvw74FrDWzH5OMAh2MvC/gRrgXAAzuxFYQ9CPXmSQeDxYxbKpKcgd0/XEe+jp66GloYXaivFduCk5feW+tn20dbdRV1GHmVE3tYrm35rE3l+2UzmpKrWreGFKdnCHYBDrtKlQWTX0ylzDHN7dA1MmB+Ngnz8wcH+sL4aZMadhTv9sQRJQK72IiGRTJivA3mdmpwDrgd8DTgH2AfcBG939+bDobcDdwKtZrqsUgWQS2Nwc9OBIl2wRb21szVuCUxYpY86kOf3TV9aW1xKNRKme1cjszg72HezFKR807eKElzqdZFVV8EikuhoyaDV3DwYrl5fDnGGmD+3u6waHloYWJfLDUF96ERHJlkxXgH0GWHWEMhr4KkPq7g7yyOGSwI6eDiqiFTRPas57Epg+fWV5tJzKskqqW6bT3LeHfe3lJBKDB3tOOMluNPG+YOaZhoagJb58iCmDjqCnJ/iaMiVojR9qLGxPvId4Is7cxrn94w5keGqlFxGRscraiDQz+3K2ziXFp6sr6MExZ87gRN7d+7u0TLTW3OT0lYYF01dWVVE5czKz69vAjFgs3zUcRm9v0KE9Fgta35uagschDY0ZJ/LJvvHJv9+UKcMn8r3xXloaWqiIZv5hoVSl96VPX51YRERkJBllTWZWC7wPWMDgAa7vyValpLh0dEBVNcycEcwlnyrhCdq725lWM42pNVMnZDeDimgFLQ0tHOw4yFvdb1HXMImK9naaK2Pse6OSWMyoqpoAyVd6N5oZM6GqMqNuNOmSrfFTpwaN+sPOTOlOT18PcxvnqmX5KKW20v+649dURCv0uxQRkSMadTIfzlDzINAMOJCedU2AbGbi6umF7kjQuhkJX1O/ilV7ezDIdfr0wYlgX6KPzt5OZtfPZlLVpPxUcJSikWgwfWV5Nfvb91M9dTLl+w8we2YZ+38dpbPLqKke5/8F3IN/WPG+4Pv0VVnHeOrOzmCGypaW4bsTuTuxvhiO09LQkrUFvUpVel/61EHYIiIiQ8mkZf7TwP8FvgA86u4nAZhZE3A98Fz2q1ccotFg1o8oQaNpXxw8EazLk0gEX0eS/BAAb38YiEQAg0gOPxAkn/a7p3xaS902zPcQ3NfkyUG3jPT6dfd105foo7WhleryIUbCTkBmRmNVI5XRSva27aWvvprq9i5mzajhwOsROjrHIeFKzkLjHvwDqKmBminB3JBZmmJnNK3x3X3d9MZ7MTPqK+qpiFYUzN+xEKiVXkRERiuTZL7V3T8DYGZv53Xu+4ErzOwHBIn+qJnZucDHgC6CXHeNuz8xQvkzgI0E6WQ58ALwUXc/FO6/EVhJMG1m/2HAO4GT3f1JM5sH/CQ8NtXH3f3hTOo/WhYJktrKYX7byUQ4kRj4mro9kZL8x+PBVyIRNMqO9gPBkNfm7UcsQz1uST45SCZ0A76PQDQ8IPWDRvL7trIgIUzX2dtJxCK0NrYWZN/q6vLqYPpKK6Pt8C+p6yujaXoFrx8y3uoK/mZZ+3AVjwfJezwenLSyMvilVlQEfd+z+CkuuRpv5TCt8X2JPmK9QSt8bXkt02unU11WTTQS5YVB/zvJWA3XSp9PpRKzRUQKSSbJfOpQv6iZVbl7DMDMIsD8TC4cTnN5B/C77v6cmb0fuN/Mjg8/IKSXbwTuBda7++fDa94J3AJcmFJ0rbtvTzluBbDV3Z9MKfN9d78kk/rmUnrCfDRG+kCQvEb662i+H4v9Lw3e1t7TTnVZNbPqZ02oga6ZKouUMadxLr9pjfL6zqepnTSNaVPK2HcIYt1GPAHlUaci03w7kYDevuBTGgSLNtXXB33gKyrG1P99JD09QY+dqVMGtsYnPEGsL0Y8EaciWsHMupnUlNdopppxlN5Kn6/fvWK2iMjElEk21WNm73L3B4Fngf/PzDaH+9YA7Rleez1wv7s/B+Du95rZAeBygpafdAuBOuAHYfmEmT0EfDKlzL8CHWnHXQL8W4Z1KzjZ+ECQS8kZayZXT2Z67XQiNkErmgEzY9qUOVTO6WXf3hcpr2sgGnVam+PEuo3D7dbf9aai3Ieel949eOTS1/d215nqmqD7TBa7zgwnkYDOrrA1fk7QGu/udPXG6Ev0URYpo7GykfrKenXzyKP0Vvo8rairmC0iMgFlksx/FdhiZiuBDcAjwEXhvl7gTzK89ruAT6Vtexx4N0O/Mfyc4DHrKuBjZlYD/BHQv/akux9MPcDM6oDzgOsyrJtkUTwRp6O3gxl1M5hcNbnoBvPVN7ULrr5GAAAgAElEQVRS2dHNntivSXgCM6emGmqqnb44dMWMw4eDxN4MKiN9RD2t68yUKTnpOjOSZGv8tLBvfG+ih/aeHnCYVDmJSVWTqC6rLrq/VyGrLKuktbGVWF9e5kRVzBYRmYAyWQH2VuDW5M9m9tvAOQRTVD7g7r8Y7bnMbArQQLCCbKr9wB8Mc/2YmZ0F3GVmHwiP7wYuHuFSfwI84u7p1/ktM7sHmEzQKvRVd79jtPWX0euN9xLri9Fc30x9ZX2+q5MbkQgVc1qZuzvOLmuns6+LhCcAI2JGRUWEWY0J4t0JOroivBWrJFY5iUhdJZWTKolEx/cpRbI1vqoSZs+O49EY7T0JqsurmVU3i5rymny1/MoomNm4DzZWzBYRmbgymZrym+G3V7r7a+6+F/jiUV63NnztTtveDdQMc/164AHgOwSPe2uAS4E9I1znEoIZeFLFgF8R9NPcb2YnAg+YWbO7/58M7kGOwN3pjffS2tha/FMWVlcTnTGTsldfY9GkefT1dNHb3UV3b4xOeohVlRGfXEVZRQXTysqJ90bp7iqnoz1CPBbMeFRZmftG+e5u6O5NUN/YTW1dH5FoOZOrp1FXUad+8DISxWwRkQnKRrvSoJl1AX8G3OvufWO6aNDK8xtgtbt/OWX7p8JtM4Y4Zi1BX8vJKQNvlxMMqDrG3d9MK78Q+G9gzpHqa2b/DFzh7o1D7PsQ8CGAmTNnnrJt27YM7jTQ1tZGZU1lcXRXcPBwbko/wtIC3Z3d1NfXY4PmyCle7YcPU1dZ+fa0Psl5REPujuMkPEHCE7g7CQ963HgCwIhELPtJvUM84WBOeRmURaNEI9Gs/W3a29upq8vvTCvjrRDvecWKFTvcfUmmxxVSzA73jzluF+Lfd6x0z6WjFO+7EO95tDE7kz7zP3P3bw23M2wlGanFpZ+7HzKzN4GmtF1NwK5hDjsG2J98UwjtBqYDZwDfTit/CfC1UX7w2AU0mNk0d389ra793YuWLFniy5cvH8XpBnrgoQdYdNKiCTWAMJlMDkwqE2Gfb8PdB7xCMAgvalHKImWDviIWGfT1yA8f4Wh+X4Vs+/btLH/nO0c9EjnhCXrjvfQmeuno7uJQWye/PtRDZ5djQFVVhKryMsoi5Uf1YbA30Ut7Vzc9vc7CpnrmzmigpqI66wOQt2/fXpp/6xK550KK2WF9xxy3S+nvm6R7Lh2leN/FfM+ZJPMPmdk73f2Hw+z/DnByBud7EEj/tLEE+OYQZSF4NDvdzKLuHg+3zQpfO1MLhlOgfQB4b/pJzGwVsMvdH0vZ3Bye4zcZ1H9Ciyfi9MR7iHucoZ6+RCPR/sS8Mlp5xMQ8YpHieLIwHjKYUihiESrLKqmkkrqKOmbWw2/Ncrp6enmrvZeDr/fwVmcnhxNdlFcmKIsEE3aXRcoos/Ih+7bHE3G64zH6PEEiVklTQxPz59RQU1W4U4HKhKCYLSIyAWXy7t4HfM3MniKYoSB9Ksr0Fpsj2QRsN7Pj3P15M3sfQaC/GcDMNhAsJrIkbNn5D4KVZj8CfM7MosBHgVeBR9POfSaw192fH+K6xwDnmdnF7t5nZrMJHsd+wUfb52gCSibvfYk+DKMsUkZ9ZX0wmNGiSswLiJlRU1lBTWUFs6bW0tMzmY4O+PVv+ujq7iVhPSSsk55EF7FEF0aQ4EeIkPA4ZVZOjU2lwupoXlBBY+O4TZAjxU0xW0RkAsokmb8hfJ0DvH+I/RkFVXffYWYXA18N++NHgbNTFh+pIhgwZWH5l8zsbGCjmV0U7t8THpP+weIShp+n+E7gGuBHZtZDMLDrVqCgBlINl7zXltdSEa3QYMYiUlERfDU2ltHdXUZ7ezVvvNFAArBInGhFL3EPuupURKqJx6qoqTGamoLjRLJBMVtEZGLKtM/8ScPtNLMnh9s3HHe/B7hnmH1XA1enbXuEYJnvI533z0fY9xywOrOa5p+SdzELFoKtqoKpU6GrCw4fjnL4cBT3KiqjkOiDpqZg3ni1xku2KWaLiEw8mSTz/3CE/VeMpSIykJJ3GYlZsEhsTQ1Mnx4k9p2d0Nio1ngREZFSksmiUd9Jfh/2fZycOouAu/8oy3UrKUre5WhFo1BXF3yJiIhIacloegszOwP4OHAawSwCzWa2FXje3T+bg/oVLSXvIiIiIjJWmawA+16C6SefAL5GME8wwC3AFjOLufst2a9icUh4gq7eLiXvIiIiIpI1mbTM3wj8mbt/A8DMfgrg7k+a2XnA9wkSe0lj4X91lXVK3kVEREQkazJJ5huTiXy6cHVAZafDKIuUsWDKgnxXQ0RERESKTCZruleZWe1QO8ysDpicnSqJiIiIiMhoZJLMPwA8YGYrzKwqudHMjge+AdyX7cqJiIiIiMjwMulmsw74AfAgwWqvbmbd4Tl2AH+S/eqJiIiIiMhwMpln/g0z+z3gA8BZwDTgdYIW+9vcvTc3VRQRERERkaFkMjXlh9z9VuBL4ZeIiIiIiORRJn3m/9HMzjGzTI4REREREZEcySQx7yXoF/+imf2Lmf12juokIiIiIiKjkEky/+/u/kHgd4BnCVZ93WFma8xsWm6qJyIiIiIiwxl1Mu/uHw9fO9z93919OfDHwDHAa2b2rdxUUUREREREhjLqZD6cySb5fZmZrQT+L/BXBANpa7JfPRERERERGU4m3Wz+1cxONrMtwD7gm8BxwI3APHd/Tw7qJyIiIiIiw8hk0agTgceBt4CvA19x95/kpFYiIiIiInJEmbTM/xr4M2CWu/9NeiJvZp/Las1ERERERGREmSTzn3T3O929O3WjmUXM7A8JBsOKiIiIiMg4GXU3G3e/KfXncJ75DwKrgJmAZ7dqIiIiIiIykoxWczWz6Wa21syeBJ4E/pZgzvmPAi/loH4iIiIiIjKMI7bMm1k5cC5BK/zZ4TE/Al4BFrt7e1gunsN6ioiIiIhImhFb5s3sZoJpKO8CTge+AJzg7mcAbyQTeQB31wBYEREREZFxdKSW+cuAPuBq4Ob0wa8iIiIiIpI/R0rmW4C/AP4cOMXMbnH3H2br4mZ2LvAxoAuIAmvc/YkRyp8BbCQYbFsOvAB81N0PpZR5E3gq7dAvuPvXU8rMArYCM4BK4A53/3RWbkpEpEgpZouITDwjJvPuvhf4FPApM1sCfNDMNgD/SRCY+5nZ/3L3X472wmZ2CnAH8Lvu/pyZvR+438yOd/f9Q5RvBO4F1rv7580sAtwJ3AJcmFL0KXdfPsJ1I8B3gO+5+8fMrAH4qZkddvdbR1t/EZFSopgtIjIxjXo2G3d/wt2vAM4iGPz6opl908w+bGbNBKvCZmI9cL+7Pxee/17gAHD5MOUXAnXAD8LyCeAh4D0ZXvd9BKvZ/kt4nrcI3lxuMDPL8FwiIqVCMVtEZALKaGpKAHfvdfe73f0C4ENAFXAPcEKGp3oXkP549nHg3cOU/znBI9pVAGZWA/wRwZtJptfd5e5vpl23BTg2w3OJiJQKxWwRkQko42Q+lbu/7u6fdfdTgOdGe5yZTQEaCGbKSbUfWDDMtWIETwXONLOXgb3AYuAjaUWbzOzrZvZDM3vQzP7WzKIp+xcMc93kPhERSaGYLSIycY16BdhRODODsrXha/rsON1AzVAHmFk98ABB38n1YblLgT1pRXcCN7j7L81sHvBfwHG8/Si4dpjrMty1RURKnGK2iMgElbVkPnV2glHoCF8r07ZXAp3DHHMpQSvMje7uQIeZPQ08bGbHJB/Buvv7U+r0KzP7FPBFM/tYWMcOYNIQ12Woa5vZhwi6EzFz5ky2b98+7E1VVFRQVVVFejfOSZMm8eSTTw57XLEa6327O7FYjJ6enizWKrfa29tH/DdSrErxvkvsngsmZsPo47aZUVtbSzQaHbSvFOO2YnbpKMX7LuZ7zmbL/Ki5+6FwOrKmtF1NwK5hDjsG2B8+uk3aDUwHzgC+PcxxuwAjeFM5BLwEvHeI6ybLptf1VuBWgCVLlvjy5cuHvMgrr7yCmTFz5kzKy8sHJPRtbW3U19cPU73iNZb7dnd6e3s5cOAA7s7cuXOzXLvc2L59O8P9GylmpXjfpXTPhRSzw/qOKm7v3r2b+vp6pk6dOqgRphTjtmJ26SjF+y7mex5Tn/kxehBYkrZtSbh9KHuA6Wl9KWeFr50AZnZWOA9yqubw9ZXw9QFgUThtWup1X3X3X2RQ/wE6Ojpobm6moqJi0JuCZM7MqKiooLm5mY6OjiMfICK5VlQxGyAWiw2ZyEvmFLNF8iefyfwm4GwzOw7AzN5HEOhvDn/eYGbPmllVWP4/COr7kXB/FPgo8CrwaFimBbgmnDWBcD7iq4D/dPeDYZnvESxQclVYZhLB49gNY72hSCSfv87ipN+pyIRRdDE7PF82TiMhxWyR8ZeXbjYA7r7DzC4GvmpmydUEz05ZfKSKYHCTheVfMrOzgY1mdlG4f094THt4zA+Ak4H/Z2YxoJ5gXuN/TLluImwJ2mpmj4bnuVWLj4iIDE8xW0RkYspbMg/g7vcQzFE/1L6rgavTtj0CvHOE870KXDmK6+4F0h/tlpx58+Yxb968/p8ffvhhjj32WJqagu6oL7zwAtu2bctaH7O33nqLNWvWcPvtt9Pb25uVc4rI+FHMzj/FbRFJl9dkXvIvdWS3mXHddddxySWXAPS/ZsMTTzzBhz/8YRYsWEAwsYWIiBwNxW0RSaXObSVs7dq1I+5fuXLlgBagsejp6eF73/seZ599dlbOJyJSihS3RSSdkvkSNto3hfvuu49TTz2VpUuXsnjxYm666ab+MuvWraO1tZUzzzyTdevWsWLFCubOncvatWuJx+P95U477TRmzJiRs3sRESkFuYzb1157reK2SAFSNxsZ0TPPPMPKlSt56KGHOP3009mzZw9LliyhoaGB1atXs3nzZioqKti0aRNXXHEFmzdv5uDBg5x88slMnz6d66+/Pt+3ICJSUo42bp900kksWLCAq6+++sgXEZEJQ8l8Lq1dC089RXU8DkOsMJgTJ54IKS0wY7Vp0yaWLl3K6aefDkBzczMXX3wxGzduZPXq1f3lWlpaOP/88wGYMWMGq1atYuvWrUrmRaRwhDEbGL+4neWYDUcfty+88EK2bNmiZF6kwKibjYzo2WefZdGiRQO2LVq0iJdeeonOzrdXUm9tbR1QZuHChbz22mtaPEREZJwdbdyeP38+r776quK2SIFRy3wuha0tXSW4LLiISMFJaSFX3BaRQqGWeRnRCSecwM6dOwds27VrFwsWLKCmpqZ/2yuvvDKozJw5c6itrR2XeoqISOBo4/bu3btpaWlR3BYpMErmZUTXXXcdjz32GD/+8Y8B2Lt3L7fffvugvvAHDhzgnnuCtWQOHjzIHXfcwWWXXTbu9RURKXVHG7fvuusurrzyiGt4icgEo242wqOPPsr69euBYODUzp072bBhAwCLFy/m7rvvZs2aNUQiETo7O7nmmmsGDKICWLZsGU8//TRbtmzhxRdf5IILLuDyyy/v3797925Wr17Nvn37iMfjLF++nMWLF/O5z31u/G5URKRI5CJun3vuuVx11VX9+xW3RQqDknlh2bJlA1YUTHfOOedwzjnnHPE8N9xwAzfccEP/z21tbf3fz58/f8RriIjI6OUibre1tRFNmcFHcVukMKibjYiIiIhIgVIyL2Oybt06brvtNnbs2MF5552X7+qIiMgRKG6LFBd1s5Ex2bx5M5s3b853NUREZJQUt0WKi1rmRUREREQKlJJ5EREREZECpWReRERERKRAKZkXERERESlQSuZFRERERAqUknkRERERkQKlqSlL2Lx585g3b17/zw8//DDHHnssTU1NALzwwgts27aN5cuXj+k6iUSCr33ta3zlK1/B3Wlra2PhwoVs3ryZuXPnjuncIiKlRHFbRNIpmS9xqUt1mxnXXXcdl1xyCUD/61gdPnyYSy+9lIcffpjTTjuNeDzOxRdfzHvf+16efPJJKisrs3IdEZFSoLgtIqnUzaaErV27dsT9K1euHNACdLTKyspYtWoVp512GgDRaJQ1a9bw/PPP89Of/nTM5xcRKRWK2yKSTsl8CRvtm8J9993HqaeeytKlS1m8eDE33XRTf5l169bR2trKmWeeybp161ixYgVz585l7dq1xONxAOrq6vjKV74y4NzV1dUAdHd3Z/muRESKVy7j9rXXXqu4LVKA1M1GRvTMM8+wcuVKHnroIU4//XT27NnDkiVLaGhoYPXq1WzevJmKigo2bdrEFVdcwebNmzl48CAnn3wy06dP5/rrrx/yvI8++ijNzc284x3vGOc7EhEpbkcbt0866SQWLFjA1VdfPeR5FbdFJqa8JvNmdi7wMaALiAJr3P2JEcqfAWwEHCgHXgA+6u6Hwv0LgI8CvxOWqQVucfdbU84xD/hJeGyqj7v7w1m5sdDatfDUUxCPVxONZvPMwzvxREhpgBmzTZs2sXTpUk4//XQAmpubufjii9m4cSOrV6/uL9fS0sL5558PwIwZM1i1ahVbt24dMpnv6uri05/+NJ///OcpLy/PXmVFJKdKJWbD+MXtbMdsOPq4feGFF7Jly5Yhk3nFbZGJK2/JvJmdAtwB/K67P2dm7wfuN7Pj3X3/EOUbgXuB9e7+eTOLAHcCtwAXhsU+ArQCZ7l7j5n9DvCYmfW5+7+lnO777n5J7u6ueDz77LOcfPLJA7YtWrSIl156ic7OTmpqagBobW0dUGbhwoW89tprdHR0UFtb27/d3bnkkkv4i7/4C1auXJn7GxCRrFDMLhxHG7fnz5/Pq6++qrgtUmDy2TK/Hrjf3Z8DcPd7zewAcDlBy0+6hUAd8IOwfMLMHgI+mVLmVeAed+8Jy/zMzH4AXAz8G+Ms2drS1tZFfX39eF9+QrriiitoamrixhtvzHdVRCQzJROzQXE7leK2yMSWzwGw7wLSH88+Drx7mPI/J3jMugrAzGqAPwIOJAu4+2fd/Ydpx3UBmkPrKJ1wwgns3LlzwLZdu3axYMGC/tYdgFdeeWVQmTlz5gxo3Vm/fj1dXV39A7Eef/xxnko+0xaRiU4xu0AcbdzevXs3LS0titsiBSYvybyZTQEagH1pu/YDC4Y6xt1jwFnAmWb2MrAXWEzwmHa46xiwlODRbqrfMrN7zOwRM/u+ma06ujspftdddx2PPfYYP/7xjwHYu3cvt99++6C+8AcOHOCee+4B4ODBg9xxxx1cdtll/fs/8YlPcP/99/PhD3+YHTt28MQTT3DPPffw7LPPjt/NiMhRUcwuLEcbt++66y6uvPLK/v2K2yKFIV/dbJIf+9Pnt+oGahiCmdUDDwDfIXjcWwNcCuwZ4TqXAr8GvpCyLQb8Cljr7vvN7ETgATNrdvf/k+F9FIVHH32U9evXA8HAqZ07d7JhwwYAFi9ezN13382aNWuIRCJ0dnZyzTXXDBhEBbBs2TKefvpptmzZwosvvsgFF1zA5ZdfDsDLL7/c/yaydOnSAcfddtttub49ERk7xewJJhdx+9xzz+Wqq64CFLdFCom5+/hfNGjl+Q2w2t2/nLL9U+G2GUMcs5agr+XksMUHM1tO0IJzjLu/mVb+ZGAb8C53f4URmNk/A1e4e+MQ+z4EfAhg5syZp2zbtm3IczQ0NLBo0aIh98XjcaLjNZ1NHvzTP/1Tf4tNqmzd986dO3nrrbfGfJ7x0N7eTl1dXb6rMe5K8b4L8Z5XrFixw92XZHpcIcXscL/i9hEMFbcVs0tHKd53Id7zaGN2Xlrm3f2Qmb0JNKXtagJ2DXPYMcD+5JtCaDcwHTgD+HZyo5kdC3wVWHmkN4XQLqDBzKa5++tpdb0VuBVgyZIlvnz58iFP8Pzzzw87WKqtra2oB1JVVlYSjUYH3WO27ruqqoqTTjppzOcZD9u3b2e4fyPFrBTvu5TuuZBidlhfxe0jGCpuK2aXjlK872K+53wOgH0QSP+0sSTcPpQ9wHQzS202mBW+diY3mFkr8A3gA8lZF8JWmuT+VWY28JkhNIfn+E2mN1Hq1q1bx2233caOHTs477zz8l0dEckdxewiobgtUlzymcxvAs42s+MAzOx9BIH+5vDnDWb2rJlVheX/g6C+Hwn3RwkWG3kVeDTcNovgjeVLQMTMlpjZEuCSlOseA3zUzMrCY2YTPI79guejz1GB27x5My+//DJvvPEG3/72t498gIgUKsXsIqG4LVJc8jbPvLvvMLOLga+aWXI1wbNTFh+pIhgwZWH5l8zsbGCjmV0U7t8THtMeHvNPwCIgfT29l1O+vxO4BviRmfUQDOy6FSjZgVQiIkeimC0iMjHlc9Eo3P0e4J5h9l0NXJ227RHgnSOc76+Bvz7CNZ8DVo9URkREBlPMFhGZePLZzUZERERERMZAybyIiIiISIFSMi8iIiIiUqCUzIuIiIiIFKi8DoCV/Jo3bx7z5s3r//nhhx/m2GOPpakpWBfmhRdeYNu2bVlZZOHuu+/mlltuobe3l1gsRldXF9deey1/+qd/OuZzi4iUCsVtEUmnZL7Ebd++vf97M+O6667jkksuAeh/zYabb76Zv/zLv2TVqlVA8Cbxx3/8x5xwwgkcf/zxWbuOiEixU9wWkVTqZlPC1q5dO+L+lStXDmgBGotNmzZx0UUX9f+8fPlyEokEu3fvzsr5RURKgeK2iKRTMl/CRvumcN9993HqqaeydOlSFi9ezE03vb2+y7p162htbeXMM89k3bp1rFixgrlz57J27Vri8Xh/uSVLlhCJBP/cenp6+PSnP83ixYtZsWJFbm5ORKQI5TJuX3vttYrbIgVI3WxkRM888wwrV67koYce4vTTT2fPnj0sWbKEhoYGVq9ezebNm6moqGDTpk1cccUVbN68mYMHD3LyySczffp0rr/++gHnu+yyy9i2bRsnnHAC3/3ud6mtrc3TnYmIFKejjdsnnXQSCxYs4OqrB6z9pbgtMsEpmc+htd9fy1P7nyIejxONRsflmic2nchN701fGf3obdq0iaVLl3L66acD0NzczMUXX8zGjRtZvfrtRRlbWlo4//zzAZgxYwarVq1i69atg5L5rVu3cvPNN/ef95FHHmHhwoVZq6+IyNFKxmxg3OJ2tmM2HH3cvvDCC9myZcugZF5xW2RiUzcbGdGzzz7LokWLBmxbtGgRL730Ep2dnf3bWltbB5RZuHAhr732Gh0dHYPOGY1Guf7662lsbGTjxo25qbiISIk62rg9f/58Xn31VcVtkQKjlvkcSra2tLW1UV9fn+fa5Fdvby/l5eUDth133HH8/Oc/z1ONREQGSm0hV9xW3BYpFGqZlxGdcMIJ7Ny5c8C2Xbt2sWDBAmpqavq3vfLKK4PKzJkzh9raWvr6+jj11FMHnXvv3r00NzfnpuIiIiXqaOP27t27aWlpUdwWKTBK5mVE1113HY899hg//vGPgSCQ33777YP6wh84cIB77rkHgIMHD3LHHXdw2WWX9e9/+umn+e53v9v/87e+9S0ee+wxLr300nG4CxGR0nG0cfuuu+7iyiuv7N+vuC1SGNTNRnj00UdZv349EAyc2rlzJxs2bABg8eLF3H333axZs4ZIJEJnZyfXXHPNgEFUAMuWLePpp59my5YtvPjii1xwwQVcfvnlAJSVlfGZz3yGDRs28MlPfhJ3Jx6Pc+edd3LOOeeM782KiBSBXMTtc889l6uuugpQ3BYpJErmhWXLlg1YUTDdOeecM6rgfcMNN3DDDTf0/9zW1tb//Zo1a1izZs2Y6ikiIoFcxO22trYBM/gobosUBnWzEREREREpUErmZUzWrVvHbbfdxo4dOzjvvPPyXR0RETkCxW2R4qJuNjImmzdvZvPmzfmuhoiIjJLitkhxUcu8iIiIiEiBUjIvIiIiIlKglMxnkbvnuwpFR79TEcklxZjs0u9TZPwpmc+S8vJyurq68l2NotPV1TVoOXERkWyIRqP09vbmuxpFRTFbZPwpmc+SGTNmsGfPHjo7O9UykQXuTmdnJ3v27GHGjBn5ro6IFKHGxkYOHDhAIpHId1UKnmK2SP5oNpssmTRpEhAsm53e0hOLxaiqqspHtfJqrPddXl7OzJkz+3+3IiLZNG3aNF577TV+8YtfDNpXinFbMVukMOU1mTezc4GPAV1AFFjj7k+MUP4MYCPgQDnwAvBRdz+UUmYWsBWYAVQCd7j7p9PO81vAv4bnqAFucvfbxno/kyZNGjKIbd++nZNOOmmspy84pXrfIsWq2GJ2JBJh7ty5Q+4rxfhVivcsUgzy1s3GzE4B7gA+6O7vBD4J3G9mTcOUbwTuBba5++8DpwF1wC0pZSLAd4Cn3X0ZsAL4GzP7UEqZOuC/gNvD85wHfNbMzs7BbYqIFAXFbBGRiSmffebXA/e7+3MA7n4vcAC4fJjyCwneCH4Qlk8ADwHvSSnzPuBE4F/CMm8RvHHcYGYWlrkEqAb+PSzzGrANuCFL9yUiUowUs0VEJqB8JvPvAtIfzz4OvHuY8j8neES7CsDMaoA/IngzST3nLnd/M+2cLcCxKWV+Gr6xpJY5LTyniIgMppgtIjIB5SWZN7MpQAOwL23XfmDBUMe4eww4CzjTzF4G9gKLgY+kFFswzDmT+0YqEwHmjfomRERKhGK2iMjEla+W+drwtTttezfB4KZBzKweeAB4hCCANxMMrNqTdt6hzknKeUdTRkRE3qaYLSIyQeVrNpuO8LUybXsl0DnMMZcStNDc6MFE7h1m9jTwsJkdEz6m7QDSp5NJXiN53o5hrptapl84ECs5GKvdzAbPYXZk04DXj+K4QleK912K9wyled+FeM+tR3lcwcRsUNweA91z6SjF+y7Eex5VzM5LMu/uh8zsTSB9FoQmYNcwhx0D7A8f3SbtBqYDZwDfBl4C3jvEOUk570vDXDcB/GqIut4K3DrcvYyGmT3h7kvGco5CVHc/yfsAAAm6SURBVIr3XYr3DKV536V0z4UUs8P6Km4fBd1z6SjF+y7me87nANgHgfRf6pJw+1D2ANPNLJqybVb4mmydeQBYFE6JlnrOV939FyllTg6nREst82N3H66FSUSk1Clmi4hMQPlM5jcBZ5vZcQBm9j6CQH9z+PMGM3vWzJLL0f0HQX0/Eu6PAh8FXgUeDct8D3gKuCosM4ngUeuGlOt+BYgBHwzLNAMXpZUREZGBFLNFRCagvK0A6+47zOxi4KtmllxN8Gx3T85kUEUwuMnC8i+Fi4RsNLOLwv17wmPawzKJcIXCrWb2aFjm1vCRa/K67Wb2HuALZvaXBIOrrnL3+3N4u2N63FvASvG+S/GeoTTvu6TuucRiNpTY3zekey4dpXjfRXvPFoxLEhERERGRQpPPbjYiIiIiIjIGSuZzzMzONbPHzeyHZvbfZlaUI6kBzOz9Znafmf3AzH5iZt8zs9/Od73Gk5n9rZm5mS3Pd13Gg5m1mtnXzewhM3vGzHaY2Yp81yuXzKzSzD5jZk+Z2cNm9piZnZ/vekl2lFLMBsVtxWzF7GKgZD6HzOwU4A7gg+7+TuCTwP1mlj7NWrH4MvA1dz/L3X8P+BnwAzObmd9qjQ8zmw1ck+96jBczmwY8BHzB3c8EfptgGsHj81qx3LsBOA/4fXc/A7gM2GZmv5PfaslYlWDMhhKO24rZitn5rVb2KJnPrfXA/e7+HIC73wscAC7Pa61y54fufkfKz/9CsEjDe/JUn/H2OeAT+a7EOFoHPObu2wHChYH+Drg3n5UaBycCj7t7G4C7Pwm8BZyZ11pJNpRazIbSjtuK2YrZRUHJfG69C3gibdvjwLvzUJecc/c/StvUFb6mr95YdMzsD4FeINczbEwkFwA/TN3g7q+4+6/yU51x85/A75vZHIBwxpbpBEmfFLaSitlQunFbMTugmF0c8jY1ZbEzsylAA7Avbdd+4A/Gv0Z5sYxgfuh78l2RXDKzWmAjcDZF/gaYFN7zAiBqZrcD8wgWArrV3e/KZ91yzd2/bGY1wLNmto9gpdO7gDvzWzMZC8XsfkUftxWzFbMpspitZD53asPX7rTt3QRzMRc1MzPgY8AN7n4w3/XJsX8Gtrr7PjObl+e6jJfkip0bgLPc/adm9rvAw2ZWnvbYvqiY2V8Bfw8scfed4WDBdwGJ/NZMxqikYzaUVNxWzFbMLqqYrW42udMRvqZ/6q/k7aXMi9kngJfd/V/yXZFcMrOTgaXA1nzXZZzFw9d73f2nAO7+P8DdBKt8FqUw2dkMfNHddwK4+9PAuQRvFlK4Sj1mQwnEbcVsxexijNlK5nPE3Q8BbwLpsyA0AbvGv0bjx8zWAv8bWJ3vuoyDc4Bq4CEz2w5sC7ffZGbbzezYvNUst35N0GL5Wtr2l4H541+dcTMdmAz8Km37boL+qFKgSjlmQ0nFbcXsgRSzi4C62eTWg0D6HMVLgG/moS7jInyc9T7gD929z8wWAAvc/cE8Vy0n3P2fCR7ZAhA+st0NrE3OGFCM3D1uZv8NzErbNRN4JQ9VGi+vE7whpt/3LEqn9baYlVzMhtKK24rZitmhoorZapnPrU3A2WZ2HICZvY/gH9DNea1VjpjZRcD1BAOLFoeLrbwbOD2vFZNc+RRwnpnNh2AxEuB8YEtea5VD7p4AvgL8ZThgMvnY/iyKaDBVCSupmA2K2yVGMZvijNkWTDMquWJm5xIMKOoCogSf/h/Pb61yw8x6Gfppzz+6+43jXJ1xZ2Y3Ab9H0B/zZ8Av3f3C/NYqt8xsFXA1QQtHGfAld/9SfmuVW+GsCDcSDKDqBOoJ3iw+4wqoBa+UYjaUdtxWzFbMLpaYrWReRERERKRAqZuNiIiIiEiBUjIvIiIiIlKglMyLiIiIiBQoJfMiIiIiIgVKybyIiIiISIFSMi8iIiIiUqCUzIsUKDO7z8z2m5nmlxURmeAUsyVXlMyLDMPMZpjZU2Z2yMw8/D79q93Mluejfu7+PmBrPq4tIjLRKGZLqRpq1TcRAdz9IHCimX0Z+KC7n5hexsy2j3e9RERkMMVsKVVK5kXG5gbghXxXQkRERkUxW4qOutmIHAUzW25m2939R+7+empfSDM7y8x+ZGY7zWyXmX1giOMvNbNnzewXZrbbzG4ys9q0Mo1m9gUze9nMng6/PmNm84c436lmdr+Z/crMfmJmx6ftX2ZmD5vZk2b2MzP7vpmdn/3fjIjIxKOYLcVMybxIFqT1hbwSeLe7LwI2AF8xs3cny5rZOuCzwF+7+7HAKcA7gXvNLBKWqQAeBI4Hjnf33wYuAC4GzhuiCn8O/AGwCOgGvphyvXrgPuCL7n4ScCLwNLAmO3cvIlJYFLOlmCiZFxml1EFUwJdGKLrJ3bsA3P3fgeeAj4fnaAi//w93fzQscwi4EVgOrAzP8RcEbxh/7+7tYblfArcCfUNc89/dPeHufcB3gGXhmwvAsUAj8FJ4Hgc+A3wj09+BiEihUMyWUqFkXmSU3P3E5BfwVyMU/XnazzuA3w1bcJYBNcDjaWX+J3x9d9rrgHLufoO7f36Ia76Y8v2h8HVm+PoL4ADwLTP7mJkd4+77hjmPiEhRUMyWUqFkXuQouPt2d18+zL7DaZveAMqB6cC0lG2pksF8Wsprp7t3j7I+nSk/JsLXaLivDVgK3A1cDfzCzP7HzN4xmnOLiBQ6xWwpZkrmRbLMzCalbZoC9AK/Bl5P2ZZehpT9rwM1ZlaZjTq5+8vu/mGgieBx8Ezge2aWXg8RkZKimC2FTsm8yBiY2efM7KK0zcen/XwK8D/ungAeBTqBU9PKJH9+IO31lLTrXWtmf5dhHReb2d8DuHuXu38NuAqoB+Zlci4RkUKmmC3FSMm8yNjUA1Vp2/7WzKoBzGw1cBzwjwDu/lb4/UVmtiwsM5lgMNV24FvhOW4j6Le5MTn9mZmdAKwF/ivDOk4F/s7M/ld4HgPeAewHns/wXCIihUwxW4qOFo0SGYaZNQE/IewTaWa/GqLYNIKAnuqzBI9D5wBGsBJhstUGd99sZoeAL4azF1QA3wauD1uCcPceM3sXsAl4zszeANqBi939mbA+twNnhd8/RfAo9hzgI+Gl7jOzfwjr92Xgm2YWJ+gLuht4T3IGBxGRQqeYLaXKghmPRGSszOxG4OPubvmui4iIjEwxW4qFutmIiIiIiBQoJfMiIiIiIgVKybxIFpjZfcBl4fdPmdnZea6SiIgMQzFbion6zIuIiIiIFCi1zIuIiIiIFCgl8yIiIiIiBUrJvIiIiIhIgVIyLyIiIiJSoJTMi4iIiIgUKCXzIiIiIiIF6v8HlcL1N/wo5QAAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtQAAAMbCAYAAABt5AIlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XmcHFW5//HP07NvWRCSaBISAUGFKEIwBvPTgBsalXDBy+aSoLhDgkIMgopX0Bj1inHD5SoY4MYVRcDtCkEFjGyyKIhhC2SbhOyzZLbn98epnumpVM90T/ekZ/m+X69+9cypU1WnttNPnz51ytwdEREREREZmFSpCyAiIiIiMpwpoBYRERERKYACahERERGRAiigFhEREREpgAJqEREREZECKKAWERERESmAAuoRzMzuMTM3s1mlLstIYGZPRfvTzezqUpdHkpnZGDO70syeNLNWM9toZr8ws3GlLpuMbGY218wuM7Pp+3m9t0T100FFWNY7zWy3mb2zGGUTMLNXZXx2uJnNLXWZpPgUUI9QZnYUcGz077tLWZaRwt2nAy8sdTmkX98APgK8HxgHvAN4a/S3yGCaC3wGmL6f1/tCYAJQV4RlTQbqo3cpAnf/q7sb8NlSl0UGjwLqkWsBsC36+wwzqyxhWUT2p3nAA+7+B3dvdfe/AC8B1pe4XCKD5Rhgirs/VeiC3P2L0bK+WHCpREYRBdQjkJmVAWcDFxGC6gMILXQio8EBwJ7MBHd/3N3bS1QekUHl7i3uvq3/nDkvT18+RfKkgHpkOgloAH4M/DRKe09mhqifnyf16zKz6bH01RnzlZvZIjP7u5m1mNkOM/uDmb0+tvylsWXUm9kKM1tvZp1R2oIo7wlm9gMze9TMmjOWeWK2DTSzt5nZmqgM28zsBjM7vK9+zmY228xuivK3mtk/zOyTZlY10B2dUK73mNlfzWxP9LrLzBK73JhZtZl93szWmdleM3vCzP7LzN6Ua3+7qM9mZt7pGdNu6qvPd7SeP5pZY9Rn8gEz+28zOzqWb1gcHzNbbWYe/fvazPUk9GE8wczON7NHzKwtXh4zOyDaF09Gx2aTmV1nZi/Ksu7jzew2M2sys53R/nllukzRa7Xte23NzVjGNyzhmst3H5nZpNg6FpjZu83sn9G2PGVmi/vYj++Kzts90bF+0My+a2avztzPma+MeRfEpl2W47Hr97qJr9N610tX97FfX2pmq6LzfK+ZrTWzL5rZ2NjyWzPLbWZvNLM7o2PqZvZUH+WfHu2Hz0RJt8XPcwvXT+Y5OTM6T3Zl7kczqzWzD5rZ783s2ej8XGdmV5nZhNh649d/5nb/NnbuHW6hr/Xu6Bz9sZkdGFte4vVpZmfE1vMiC3XX+mi/3W+xz4CMeaeY2bVm9pyF+uC+6Bzr9RmUbd8mLO/dGefKbjO7w8xOj+WJf769wMxWmtnmqLwPmNm7siy/zsw+Ex2vVgvX2q/NbHaW/LVm9ikLdUlrtI6/RvvnkOybYR+3UOfvjdZ1ZkKmMjP7cLR/d5nZlmh7l5qZuuQMNe6u1wh7EYLoldHfcwAH2oADY/kOi6b9Ncty7gA+kPF/CvgV0AmcR+hn9wLgf4Au4N0Jy1gdreNXhKB+HPAqoAVYEOV5GLgfOA6oBqYBX4/W87aEZZ4dre+PwIuAKuAtwD8ILfJPJcxzBtAB3ELo31gDnAk0A78HUjnu2+nR9lydMO3b0bRLgPHR69Io7euxvAb8Npp2ETAGOAhYBjwSpV+WxzG/Oppnei7lBd4epX8VmATUAm8ENgCrY3mHzfGJluXxbciYdlk0/ffAckI/0SlR2a6O8kwC/g1sAd4Ulf8oYA2wHZgRW+YJwF7g78DRUf5XAw8C6wDvoxxzcy1/vvuI0O3LgT8AXyNcq88HVkXppyWs4xv0nMMHEK7XM4HdwI6MfAujfF9KWMY4oAl4UY7HK5/rZmWUflLCct4APJu5H4DXRmX5G3BkdGxOAhqBB4C62DLmRsv/I/AbQlehBuC6pPM2n+Maux7vBP5EuM+lHvhi+jwBZtJzbb6AcG2+Ojq/1gJjBnA+PQT8X7TsBsI12g7clGcdd3U07SbgfdGxPpJQRzQDU2P5JxKuge3A2wj1x2GEui9dzyXuqyz7L31+XhGdJ88DLo/SLk3Ivzqadl90HtcCUwmfkQ5cEMtfB9wN7AT+g3CNTQd+Fu2v02P5awn1wg7g1Cj/84HPRcv/ZZbj9DvgYuDAaPl/JNSZx8XyfyVa73sInxHjgQ8S6oHLct1veu2fV8kLoFeRD2i44FqBN0b/G/BEdBGfn5D/T9G0l8bSDyd8EI3NSDsvyvujWN4y4ElgF3BAbFq6Qrs0ln4F8Nro758BMxPKdh/wUCxtTFR57QLGx6adG63rqVj6JEIXgF3AuNi0/4rmOTfH/Tud5AD15Cj9+oR5/jea9taMtPdEadcm5L+DwQ+ofxGl18fS38u+AfWwOT7RPLkE1P8XSz8b+FD098+jPOfE8hxG+NC7IyMtRQhyOoHDY/nfEC3H+yjH3FzKP5B9RE9A/UAsfSLJH/Zvi9KvSyjThfQOqGuj49wIVMbyng/cmuOxyve6OTFK+0lC/uuBKzL+ryb0m+8kFtwD50TLuSKWPjdK3555bQCvIBbc93N+7XNcY9djBzAtI30KsCr6+6XALQnzvjya9+MDOJ8cOCaWfkt0Psfr7HQZr05Y1tXRtBWx9P+M0hfH0n8Ypb8vlj4+Op9zDqgzzs8/JUz7U7RPXxxLXx3N89lYelV0buwl9BdPp381yv/+WP5K4OmozBMz0r9ClvqJ8KUjW0B9Yyw9/SXqylj6NuCehGWvRAH1kHupy8fIcybhIvwjdDd5XBdNe09C/h9G7+fE0s8BbnD3nRlpH4rev5+Z0d07Cd/4Gwjf0pP8JDbPJe5+e/T3ae5+T8I8DwNHmdmYjLSTgbHA7919eyz//2ZZ97sJLQ8/c/cdsWmrovcFWebN1Qf7KEM67cOxMmWuP9P1BZYlFx69n5Gw7rN7ZRwZxycufj5e5+7fNrNJwCmED9prY3nWAvcAx1tP149XA4cC97v7Y7H8fyC0chdDIfvoxli5NhPqiHj3lfT1nXScfgL8KGMZzYR65SBCS16mc4HvZilLXL7XzW3AU8DbzeyAdKKFIRHnEwK+tLcTWnhvd/d/x5b94+h9QZZy/cbdu/vhu/v97n5e1q3I39/c/emM5T/r7mdEf//T3d+SMM9D0furB7C+Z939vljaI4QGl0MHsLxfJSwLMs4pCzfCn070BSgzc1Q3/CbPdSZ+/kRWERp2Ertx0HO80+vfC/ySECifEZW3nNCg4An52whftOuIPkej/Ocm5Y98jfDrUJL4/vtX9B6/Jh14sZm9PJa+CFiRZdlSIgqoR54FhJaOzoy0dGBwjJkdGcv/U0JL9DujCiJ9U+O76Am2MbMGws+fEH4qjXsmep+ZpVzPZEnHzCaY2Zcs9Afdk9GnLl05js/I/oro/V/ERB+ASTfmvDJ6/3sf5TrGzAq5Ho6L3h9NmPZoLA/0sR2En0gH27cI3YC+Z2G88o+Z2XQPNzf1uiFphByfbMuNm0kIMv4ZfYhmmy99nvd1HPtaT74K2UcbEtL2EFqZM6XPz6Rjt87dz48lp4PmD6QTzOx4Qmv6LxLWmSSv6yZqILiG0MKYOU7ymcC9scA56z5z9ybCufgCM3t+wrqLddyy6XP5ZjbHzG40s6fNrCO63tJ1+vi+5s0i2zkA+54HA1le0rJeTOgCsdHddyUsI996LpdrINvnT9K60ud5+p6RFxMahTbGGpLS4ufjERn599k+D6MMfTNLeXLZfxBazOuAe83s5qjv+Th33+ZFvAlVikMB9QhiZi8lXOzxlrV/EfqFQayVOgpyfkr4GTg9EsibCP22bs3ImtkKuSN2w4fT8215YlLZ3L0lS5kPInQd+AjweeBgdzcPY3Zek86WUI6mpOUR+nrGpW8++lpCudMVYXVsG/OVXkdSudJpmeMg97UdSdtQVO7+R8IH1I8J/YO/Ajxh4Uamw9P5RtDxiUs8HzPK8op4WaLypFtj0+f5QLZ3IArZR0nb6vQ+btBzfmbblt4LcH+A0Dd5bsY5837gmixfRpLke91AT7eDhRlpC8loAIgt+4IsxzLdwp1UZ2U7P4ol6/LN7GxCF4YJhPOtLuOag32P20DXl/6VqhjLS1pWsa+N9PF8IOFYpn+Fyfb5sychOV2usbH3bOWNn495XS8xvfZf9EURYsfC3S8n/PJyB/Bmwq9EGyzcoNowgPXKIFJAPbKkg+V7Eyqc9Lfqs6MW6Ew/iN7PyXi/JuMih9BfEkLFWZWu4BNe8/Ms87mEG8Ouin527+9bd7rlINsDDJIqmXTZz+2j3JbwU3o+0vMmlSudltkFoq/tGEhF6VnSs7Y+ufsD0c/MEwhdCtYQvkz9JePn9JFyfHKVXscd/ZTlyijfQLYXshwvM8t2vEp9DmeTbqV+f9Tt4h3k3t2jv3UmXTd4GGv5NuBoM0v/6vZSYt0KMpZ9RT/7LKnFs5Q+Qwis3u/u90bdE4ajgV4b2aSP54v6OJZHJ81oZvUJyelypcvZ3/kfPx8Hcr3kzd1/5e6vJdwMvoTQjewDwA2DuV7JnwLqESIKkt8JfDSpoiG0xrQQ+hT2Gt7I3f9MuLHqzdGH01vp3Rcx/RPpPwgV/cFZynCCZRlWrA/To/d4H0cIPxfGpfsBvjhh/fX0tDplWhNbV3y+w63wR8H+LXp/ScK0l8TyQB/bQZb92490i0e8ck8cWin6SXkCgLvvcveVwPGEPn8HAa+Jsk6P3of78cnV3YQbtbKVpc7MTjKz50VJfR1HCCMKJMnreLF/z+GkY/cCM1tssWHbCH1XdxG6mr0PuNtjfclzXGeu101a5r0f5wA/TWiF7G+fTbUwdORAWmizyfbFNh/To/de15yZJV1vQ9mjhJE/nm+xIQoj+dZz/R3PV5nZy7LMm7Su9Hl+f/T+KOFczlbe+PnYZ34Lw2Z+OJ6eDzObn+7G5e7PuPuXCDenbgVeF32JlSFCAfXI8UbCT2w/SpoY3QSSbsFJGhf5aqCcMKLDne7+ZEKeb0XvC+ITzGwmoYtIUn/EvqT7tvWqCM2sgp4+c5luJLQMvMHM4n0J9xnHM/IjQh+1s9P9xDPWU0bYL4U+nv3bfZThjFge6OkucTr7OmsA609/+B4RSz8lS/7Lid1AGv0ikb65KB3wjZTjkxN3byTcfDTZksfV/SChm0y61fBOwr5/RWZXGQAzewPhy0mSfI/X/jyH4zeqQtjui4n1gY++aF9PGL7sc+TXOp25zlyvm7RfEIKZswgNCfHuHgC/Jgyj9/aEcxFCffaJ2C9xhUq3XlYDmNn/M7OHrfeNu/1JvOYIQ6AOGx4epPS/hEaYd2ROiwLBN+e5yL4+fyYTRvRIbKEmdk5bGLf9ZMJ1vCoqbyfwvai88fyVhO43TYQRNuL5/zNhnV8m1ng1ADcQqyOiX6E2EEY10cOqhhIfAkON6FX4i1ApXNVPnlcRWlCaiY1lSmhJ64ymvyvL/ClCsLGXMIzWFMLPdm8lfAj8MGGe1SQMG5YxfQrhQ6iNcIf1WEJrwrWElkJn36Hgzoym/R9hKLP0OMe3A5tIHuf4NELlcwvhG34t4WfinxOGQ5qarYyx5Uwn+5BSX4+mpcfTHRf97SSPQ31zNO1Cwpeh5xHGof4j+Q+bdzAhCL6f0JIyjtBd49dJ5Y2OyybCUFRjo+P49uhYPEA0FNpwOz7Rspz+h82b28f8Ewg3LG0kfIiOJwTGHyUMSbkglv81Ufrfo7JXEkZiuIPwq84+5z+hZbox2rZXRvv/P+gZH3ef8ue7j+gZNm9BwrKeynIcks7h9xGu+TOy7K9XRPNsJXQHy7fuyvm6ic333SjPWsCy5JlD6Ku7hlD/1QEvJATp24GXx/LPJc9rLzb/8dH8X4zW9T+Z+5k+6o+MPB+J8jwYnRu1hPG0H+/j3Mh6Xuc7T19lJP/hOSdE59o2wudEFWFUkZvoGdIu67WYsP6vEuqWLwKHZOybBwljO1fE8qfX8WtCvVRDqNPS19miWP70uNLpcairCfXdTwkBbC7jUE8hnNPb2XcYv7yOU5R2F6HLZg2hHrooSv/2QM5RvQbvVfIC6FXgAeypyLpfWfJdHc+XUPn9jtDqU9vH+soIw1jdSwjMtxN+AjuX3g9UWJCwvn0q4ijviwgt4xsJH9yPAp8itHyl51sdm+ctUUXWSuhTtpJwQ8qzwGNZyn4cYaik5wjB578JN1NOznFfP5WwPQtied4VVYBN0euvJDzwJspbTWgpXhdt978IwyGlxy/+ZJ7nwhsJAfVewhirn6Pn4T3p12lR3pcRbkR8gPBhtwf4ZzRPfPzo4XJ8Vmc750i4TpKOX8ayxhE+tNdG27yR8DCK12fJ/yrCLzTpa+JX0b5fTfZrcibwl4x99C1CEJZZvgsHso+StjVKvyxh2mV9nMPbCF+E9nmQSmyeB4H/LqAey/m6yZhndlT+fR7oEct3BOEL4KboWD5JqA/j44Y/lbBvrh7AtnyKMOpEM2GYxVf3cX6uzrKMMwjdj3YT6uRbyRjXPH3u0vMFIOlYX50wbQHJ18JTfdVxWdazuo/tmpuxLZOj/b8t2id3Ee7VSD+Q5fg89++ZhOsmPS77A4RGiZo+6oQGwkNh0nXYg8A7syy/Fvg0oZ7bG5X7JmB2P/kfIVzLGwgB+Esy8vS1zxOPUzTtzYS681+E6+I5Qr36PqBsoNebXoPzsuigiQx70U/frcCf3T3rY7GHOjN7D6GSfY+7J3bhGY5GyvHJh4XHY7/We0ZoGHGivvEbCU95Sxr+TmQfZvZDQrA+zd0HZajQ0XD9ydChPtQy7JjZF8zs3IRJbyL0A79pPxdpQMzsn9GwdHHzCF0ssj0UYEgbKcdHkplZmZll9uc9E7hPwbTERTfm3ZKQXgW8jvCk1f0x7r7IoFNALcPR84FlZvY2M2sws/Fm9nbgO4SuKEk3MQ1FLwFWmtmRZlZlZtPN7L8IfWU/5e4bS1y+gRopx0eS1QC3mdkMM5tK6O+8vMRlkqGpljB61HIzm2xm1WZ2FOHG3gmE+xJERgR1+ZBhx8yOI/Qhew1hGMBqQt+/nwOf9+RB/IecqBX3FOBIQv/iNkIf6K+5e65PmhtyRsrxKYSZXUYYTzjT7e4+d/+XprjMrJrwxegwQh/WFe7+udKWSoaiaHSVDxFuSDyEMGzmDsKDa65w9/v7mL2Q9V7GCL3+ZOhSQC0iIiIiUgB1+RARERERKYACahERERGRAiigFhEREREpgAJqEREREZECKKAWERERESmAAmoRERERkQIooBYRERERKYACahERERGRAiigFhEREREpgAJqEREREZECKKAWERERESmAAmoRERERkQIooBYRERERKYACahERERGRAiigFhEREREpgAJqEREREZECKKAWERERESmAAmoRERERkQIooBYRERERKYACahERERGRAiigFhEREREpgAJqEREREZECKKAWERERESmAAmoRERERkQIooBYRERERKYACahERERGRAiigFhEREREpgAJqEREREZECKKAWERERESmAAmoRERERkQIooBYRERERKYACahERERGRAiigFhEREREpgAJqEREREZECKKAWERERESmAAmoRERERkQIooBYRERERKYACahERERGRAiigFhEREREpgAJqEREREZECKKAWERERESmAAmoRERERkQIooBYRERERKYACahERERGRAiigFhEREREpgAJqEREREZECKKCWIcXMxgxwvoZil0VEhrcC6pMaMysvdnlEZORSQC1DgpmlzOxzwJcHuIjbzOw/BrjuyWb232b2iJltMLNdZvaoma00s7PNrC4j731mtsXM3Mz+YWbVCcs73cw2mVmLme2J/v5/ZjY9+ntnNP8PspTna1G+TjPbFv1dNpBtExmN4vWJmS3MuKZW57CIFwD3mtlLB7j+48zsWjN7ysw2m9kOM7snurbfYGapKF9BdYKZnZVR17iZvTvL/Hdn1FubzOxXA9muPLb/fWb2nJm9LMf8n47K5WZ29WCWrVjMbHWO51K2+b+XcUwuK17JBlSWT+Sz/6PPvvQ5O3fwSzhMuLteepX8BXwTuBNoGOD8LwUagdPynO/NwG7gG8DkKK0cmAXcDjhwd2ye6VG6A1/vY9lXA5clpC/ImP/UPuZ/Cphb6mOjl17D7ZWtPomuqdU5LuN0YCvwojzX/WmgCfgoUB+l1QCnRut34EuxeQqqE6K6xoGdwAuzzDs9fOTvl/1/IdABvCqWfllUzulZ5nPg6lKfPzlu48PAwwUuI/1ZclmO+a8ezGOYz/7POGfnlvpYDJWXWqil5MzsLcAHgfe5++6BLMPd/wl8Dvi+mU3Icb0vB34BrHT3j7r7+mhZHe6+BngL8AhQkWURTwEfNbM3D6DIG4B24LtmNnkA84tIgmLUJwDu/mPCl+qrzcxyXPcHgM8CC939G+6+J1pWi7v/HJgHtJJcpxRaJzwFjAFWlvoXLXf/MjDW3f9aynIMsldELxFAXT5kaPgMcEsUFBfiu9H7ohzzfw0oAz6VNNHdm4Bv9zH/WYRWmB+a2UG5FjLyb+AS4ADy+MAWkX4Vqz4BWA4cD7y+v4xmNjbKf7+7/yQpj7v/A7glyyIKrROuAW4GXg18Ms95iy6qP0csd2939/ZSl0OGDgXUUlJmdgjwSuCPSdPM7Mqob/OmqO/gLWaW2Crg7nuBPwNn5rDeQ4HXAne5+3N9ZL2a8NNW0vruIrRGTQS+3986E3wZ+APhw/qCAcwvIhn6qk9i+U40szVR/+YNZnZ5lpsQ7wZ2Eb489+c0Qgvxr/vJt4jwZT5JoXXCQmAT8Gkze+UA5sfMPpTRP3ZbZn9rM/ugmbWZ2biMtKeiPtw7o77q1yf1DTazfxC6ggDcHdXpm8zssIQynGZmf4+Web+Z5fKFpqByZ6S/0cz+ZGbbo9cdZnZyxvSDonLvidY1PVaOw8zsJjPbbWbPmtnPzew1Ud70PTW1CeX/sJn9MyrPHZmfc2ZWa2abCN2QyNh3m8ysKteyZ+SbYGbXWejbv97MbjSzaf3t41xY8BEzezC6vjaZ2U/M7PBYvjILfbcfMbONZrbOzH5jZu+N5XtfdC5siPbnajM7L3O7h4xS9znRa3S/gHcT+mGdlDDto4SfQWdE/48D/pfQ5/mQLMtbHi1vSo7r/dYAyjydqB8b4Uvp6mhZH4jlu5rsfahXR39PIvT9bgVeFsv3FOqfppdeOb/6qk+i6U8BTwM3AgdFaacRfmn6bpZ5/gaszWHdP4jW/Z8DKHdBdUJmXQO8AegitHjXZeTprrdyKM/x0bacH0v/TZR+Ziz9buC4+Lri9R+59aH+J/AVoDp6/RJoAZ6/H8p9VrTvPglURq+l0bzn9LctwIGEz6yHgIMBA04AHs2yP9L76WHg44T7d8YBfwU2A1UJxznxGOZadqAKeBBYDxwVpb0c+B1F6EMNXAU0E12DwFhC18odwJGx/fcscHj0fx2hYcpj69gNzIr+ryA0YmU9h0r5Ugu1lFr6W+umhGmNwGfd/SEAd98BnEu4wefDWZa3MbbcbJ4fve/Ivaj7cvcu4J3ANuC/zeyIPOffRGhVqgKus4RRQ0QkZ33VJ2mTgfPcfQuAu/+MEGCfa2YzEvJvBKabWbZ7KdKKVacUVCe4+x8ILd2Hkb0lvD9/JdS/b08nWBia9OVAG5DZYvsCwrbfM8B1xR0IXOzure7eCqwgBNYnDWa5zayecDPrXe7+eXdvi17LCIH3F3NoFf1EtMxL3X2dB7cB1/YzX4e7f8XD/Ts7CN0XJxC+IPQrz7K/D5gBLHf3hwHc/QFgZS7r6qccc4APAD9w999Gy95J+Lyui8qYdjKwxt0fi/I1ARcB/4rleczDPU146GbzGeA+wv0GQ4oCaim150Xv+/S3c/efuPt3Yml7CC0AR2ZZXno5B/azXo+9D5i7P0uopGoJH4D9ffDG57+Z8MF3FPDFQssjMoplrU8yPOHuT8fS0v2a35aQv4lwr8X4ftZdzDql0DrhEkKg+F4zO2UA6+8i9Md+jYW+4RAC2t8TfpE7KaOeeztwk0dNiEVwj7u3Zfz/bPT+gv5mLLDcbyK0Dv8+YdF3Ez5Tju2nCG+N3n8bS7+tn/nujP2f8zZH8in7QMuYi9Oj95syE6MviXcDr7WeQQMagbeY2blmVhPl2+7uL86YtRF4hZktzeyu4+7HejSIwFCigFpKrTJ674hPMLMqM1tsoa/jhnSfMUILU02W5aWXU5llelq6Bau/D8mcuPsNhJ+6jiX8JJWvTwAPAOeZ2ZuKUSaRUShrfZJhc0Jauj54YcK0ktQpFFAneLhZ7kxgD/A9M3t+P7Mk+TXhJ/b0KEYnE1rybyT8jD83Sn97lFYsW2P/p4PrXBsqBlrudF/uj8X6KG8i7Msmen6FyOaFwA4P9/Nk6usXEyh8m/Mpe/ocj5epvzLmU46NCdM2xPIsAp4gtMY3Rv2s32zW62bcy4C7gC8Am6K+6f9pQ/ShSwqopdSao/ekiuM64EvAVwn9pSa5+yTgmT6Wl/7Qa+4jD8Ad0fuAHtyQxccI/f8+YWavyWfGqAI+k9BX8Goz66+FXUT21Vd9MlAlqVMKrRPcfS3wEUKr/TWE/rz5+D2hH/fbowDmdYR+tukg9OSoq0G/N4HmqavA+Qst92fSnzUZrwPcvd7D0IeDodBtTitF2QfE3R8l/ALzJuCnhC9AtwC/SAfV7r7R3V9NGLnme8CrgB8Df063ag8lCqil1NLfWnu16pjZeOA/gD+4+6rYT4B9SS+nz5+D3P1xwk9cx5vZAdnymdlnzOzPufRjdPcW4AxC68JKQmtIztz9EWAx4aakgYwaIjLaJdYnMRMT0iZF708mTBtPCGq397Pun0V53tpXJjP7tZn1NRxnt0LrBHf/EXA94UbFxXnO2wTcSgh0Xgfc5+5N7v4McD+he8xJwO0JLbIlU0C5H4ve9xkD3Mwqzez1UX/svjwJjEv4vJiUlLmI8il7+hyPl6ni/V5wAAAgAElEQVQYZfx39J7UVSWdtjYqV1nUx/z37n4OMIXwpWc+cGI6j5mZu9/p7udFeb5DCKxzGXlnv1JALaX2cPQ+JZbeRs+Tw7qZWSXJH4hpU4BOwl3V/TmfcGNDYhcNC8MhXUi4caI1h+UR3UB5IeEO732GK8ph/u8RPphPjpYhIrnLVp9kOsTM4tfWvOg9aci7KcA/+usjHN189XHgWDM7NSlPlP5WQj/fnBShTvgQ4af18wYw742EvrlfpHf3iBujslxCft090n3bywHMbIGZ/ecAytWfgZT7D4QvRPNj3Q4gBHmrgP6+OKTPn3gXnbk5lbp/TQDpLg9m9nEzex35lT1dxvhNnsUoY3r89XmZiWY2CTiOMJJNY5T8uJkdl84TXT/fi/5N95f+I2EUnnSeVsJTjTPzDBkKqKXU/kQIal+emRi1MvwGeKOZzYcwFifwdcId39kcDfwtujj7FN3hfArwbjNbEd31jZmVm9lJhErqTkLlmzN3/yahsh7ow1rOBdYVML/IaJVYn8RsB65Kd6GIgty3Ad9LjyiUZmZ1wIsIdUG/3P2HhGHLrrYwrnBdejlm9kHgR4SRi27qazkJBlwnuHt6HO3OfOclBF8OvIzeXzbSwegM8vhyQHjyLMBLo1EnLqL/fskDkXe5oxvePwgcAixPdykws9mEG0Q/mcMvpcsJ/Yc/Z2ZTo/lfS3jqbjFk7r9xwMWEx9vnU/b/IXzxvMjMjozyvYyBfeHqxd3/QmhBPifd7z+6OfRbhC8DH43N8lmLHooW5VsIbCH8wpD2CYvGyI5a/j9I+MXoVww1PgTG7tNrdL8IP0k+BFgs/QDCxbmecLfvfYR+yusILdib6D2u5VTCh+k5ea5/MqGf9mPRMtcDfyFc3BWxvPcRLniP8v4qyzKfFy3nsoy06dE8OzPK/4ks888h3Aw1t9THRy+9htMrqT6h54EnnYTRHk4h/PzfSOgmcjlQnrCsM6N5XpRnGWYSxsx/JlrvU4Rg7nWxfAXVCYRAeRMhwNgT/f3/ssx/MTmOQx2b727g7oT0dcCfs+z/dB2ZLlNVNC1FuHl7MyHw/DFhdKQPRfk82pZNUfolsWX9a7DKnTH9REJA9xxhtI2/Au/ImH5QVL49Ubm2AFdlTD+UMMrFrmhdK6PzwYFPZ+T7fGzb/hGlX0UYhtWj8+L/MuapI7QCNxI+X74VO8/7LHtGvgmEe5R2ROf/Hwj9mTP3/xF97KN/RGXzqKw3Z0wzQuD8UFTOzYQ+0kfElvE24OeELigbCePDX0fGtQb8P8KX0LVRnmcJgfQx+6s+yedlUaH3KzN7lH3vKH0+0OrufbUsyAhk4elmDwEL3P2nBSznKkLfqpnu3tdd/iKSp+FSbxexPikjjLKx2t3jLWsiOTOzWYTg9qMefsGUEahUQ49scve5mQlmdg29B/SWUcLdnzCzs4DvmtnT7v63fJdhZh8m9Nt6rYJpkUExLOrtItUnZYSWxS2EftEi/TKz5wE/cvd5sUmzo/c/7eciyX5Uqj7UCzP/iYawmU94rKaMQu7+K8K4oAPta3Ys8Ep3f6J4pRKRDMOm3i5CfXI44SfoN/kQGsFChrwKwsNKLkiPUBENoboUuNZjffRlZClJl499CmG2EDgt4VudiIgMQaq3RXqLbrRcSugfnH4AWSOhH/Ay/Xo6sg2VgPpPwNd8iA08LiIiyVRvi4j0KHlAbWaHEoYmm+LhcalJed4PvB+gpqbm2KlTp+a9nq6uLlKp0TdK4Gjcbm3z6DEct/uxxx7b6u4Hlbocheiv3ladPXCjcbtH4zbD6Nzu4bjNudbZQyGg/hxQ5+4fyyX/zJkz/Z577sl7PatXr2bu3Ll5zzfcjcbt1jaPHsNxu83sXnefWepyFCKfelt1dn5G43aPxm2G0bndw3Gbc62zSzXKBwDRE33eRT+PahURkaFB9baIyL5K3e5+IrDZwxPrRERk6FO9LSISU+qAeiHwgxKXQUREcqd6W0QkpmQBtZmNAU4iPJ5VRESGONXbIiLJStaH2t13AQeWav0iIpIf1dsiIslKelOiiJTWrl27aGxspL09ccTKIW/s2LE88sgjpS5Gt4qKCiZMmMCYMWNKXRQRGYG6urp49tlnaWpqKnVRBmQk19kKqEVGqV27drF582YmT55MTU0NYfCG4WX37t00NDSUuhgAuDstLS2sX78eQEG1iBTd1q1bMTOOOOKIYTeeM4zsOnv4HQ0RKYrGxkYmT55MbW3tsAymhxozo7a2lsmTJ9PY2Fjq4ojICLRjxw4mTpw4LIPpoabYdbaOiMgo1d7eTk1NTamLMeLU1NQM2y40IjK0dXZ2UlFRUepijCjFqrMVUIuMYmqZLj7tUxEZTKpjiqtY+1MBtYiIiIhIAXRToogMG9OnT2f69Ond/99+++0cccQRTJo0CYBHH32UVatWMXfu3KKsb+fOnSxatIjrrrtO3ThERPI0mupsBdQiMqysXr26+28zY+nSpSxYsACg+70Y7rnnHj7wgQ9wyCGH4O5FW66IyGgyWupsdfkQkWFj8eLFfU6fP39+r9aQQrS1tfGb3/yGN73pTUVZnojIaDOa6mwF1CIybORaOd9yyy0cd9xxzJo1ixkzZnDllVd251myZAnTpk3jxBNPZMmSJZxwwgkcfPDBLF68mM7Ozu58xx9/PBMmTBi0bRERGelGU52tLh8iMqI89NBDzJ8/n1tvvZU5c+awfv16Zs6cydixY1m4cCHLly+nsrKSZcuWcd5557F8+XIaGxs55phjmDJlChdeeGGpN0FEZNQYKXW2AmoR6bF4Mfz97/t3nUcfDRmtEYVatmwZs2bNYs6cOQBMnjyZs88+myuuuIKFCxd255s6dSqnnHIKABMmTOCss85ixYoVQ6ZyFhHpl+rsIVNnq8uHiIwoDz/8MIcddlivtMMOO4wnnniC5ubm7rRp06b1ynPooYfyzDPP0NTUtF/KKSIiI6fOVgu1iPQoYquDiIgMMtXZQ4ZaqEVkRDnqqKNYu3Ztr7THH3+cQw45hNra2u60devW7ZNn6tSp1NXV7ZdyiojIyKmzFVCLyIiydOlS1qxZw5133gnAhg0buO6667jkkkt65du8eTM33ngjAI2NjVx//fWcf/75+728IiKj2Uips9XlQ0SGnbvuuouLL74YCDe0rF27lssvvxyAGTNmcMMNN7Bo0SJSqRTNzc1cdNFFvW5uAZg9ezYPPvggK1as4LHHHuPUU0/lggsu6J7+5JNPsnDhQjZu3EhnZydz585lxowZfP3rX99/GyoiMgKMhjpbAbWIDDuzZ89m9erV7N69m4aGhn2mz5s3j3nz5vW7nEsvvZRLL700cdoLX/jCXk/4EhGRgRkNdba6fIiIiIiIFEABtYiMKkuWLGHlypXce++9nHzyyaUujoiI9GG41Nnq8iEio8ry5ctZvnx5qYshIiI5GC51tlqoRUREREQKoIBaRERERKQACqhFRERERAqggFpEREREpAAKqEVERERECqCAWkRERESkABo2T0SGjenTpzN9+vTu/2+//XaOOOIIJk2aBMCjjz7KqlWrmDt3bkHr6erq4tprr+Waa67B3dm9ezeHHnooy5cv5+CDDy5o2SIio8VoqrMVUIvIsJL5aFkzY+nSpSxYsACg+71Qu3bt4r3vfS+33347xx9/PJ2dnZx99tmcdNJJ3H///VRVVRVlPSIiI91oqbPV5UNEho3Fixf3OX3+/Pm9WkMGqry8nLPOOovjjz8egLKyMhYtWsQjjzzCfffdV/DyRURGg9FUZyugFpFhI9fK+ZZbbuG4445j1qxZzJgxgyuvvLI7z5IlS5g2bRonnngiS5Ys4YQTTuDggw9m8eLFdHZ2AlBfX88111zTa9k1NTUA7N27t8hbJSIyMo2mOltdPkRkRHnooYeYP38+t956K3PmzGH9+vXMnDmTsWPHsnDhQpYvX05lZSXLli3jvPPOY/ny5TQ2NnLMMccwZcoULrzwwsTl3nXXXUyePJlXv/rV+3mLRERGrpFSZyugFpFuixfD3/++f9d59NGQ0RhRsGXLljFr1izmzJkDwOTJkzn77LO54oorWLhwYXe+qVOncsoppwAwYcIEzjrrLFasWJFYObe0tPDlL3+Zb3zjG1RUVBSvsCIiBVCdPXTqbHX5EJER5eGHH+awww7rlXbYYYfxxBNP0Nzc3J02bdq0XnkOPfRQnnnmGZqamnqluzsLFizgXe96F/Pnzx+8gouIjEIjpc5WC7WIdCtmq8NIcd555zFp0iQuu+yyUhdFRKQX1dn7KlWdrYBaREaUo446irVr1/ZKe/zxxznkkEOora3tTlu3bt0+eaZOnUpdXV132sUXX0xLSwvf//73Abj77rupqKjg6KOPHsQtEBEZPUZKna0uHyIyoixdupQ1a9Zw5513ArBhwwauu+46Lrnkkl75Nm/ezI033ghAY2Mj119/Peeff3739M9//vP87ne/4wMf+AD33nsv99xzDzfeeCMPP/zw/tsYEZERbqTU2WqhFpFh56677uLiiy8Gwg0ta9eu5fLLLwdgxowZ3HDDDSxatIhUKkVzczMXXXRRr5tbAGbPns2DDz7IihUreOyxxzj11FO54IILAHj66ae7K/NZs2b1mm/lypWDvXkiIiPKaKizSxpQm9k0YDlwUPRqAy5099tKWS4RGdpmz57N6tWr2b17Nw0NDftMnzdvHvPmzet3OZdeeimXXnrpPunTpk3D3YtS1pFEdbaIDMRoqLNL1uXDzA4EbgW+7e4nAi8DngCOLFWZREQkmepsEZHsStmHegmwxt1XA3j4avFx4KYSlklERrglS5awcuVK7r33Xk4++eRSF2c4UZ0tIvvdcKmzS9nl41TgS5kJ7r4uS14RkaJYvnw5y5cvL3UxhiPV2SKy3w2XOrskLdRmVgccApSZ2XVmdoeZ/cHM3lGK8oiISHaqs0VE+mal6MRtZpOBZ4EdwOvc/T4zeyVwO/Bed78+lv/9wPsBJk6ceOyqVavyXueePXuor68vuOzDzWjcbm1zbsaOHbvP06mGm87OTsrKykpdjH2sXbuWnTt3Jk474YQT7nX3mfu5SAVRnb3/jMbtHo3bDKOz3h7Rdba77/cXMAlwYGUs/Xrgnr7mPfbYY30gbrvttgHNN9yNxu3WNufmn//8Z/ELsp/t2rWr1EVI1Ne+7a+OG4ov1dn7z2jc7tG4ze6js94eyXV2qW5K3ALsJbR4ZHoaeOH+L46IiPRBdbaISB9KElC7eydwB/D82KSJgG5yEREZQlRni4j0rZTD5n0RONnMXgjdDww4BVhRwjKJiEgy1dkiIlmUbNg8d/+9mX0E+LmZNUdlucjdf1iqMonI0DZ9+nSmT5/e/f/tt9/OEUccwaRJkwB49NFHWbVqFXPnzi14XTfccAPf+c53aG9vp7W1lZaWFj7xiU9w+umnF7zs4Uh1tojkazTV2SV99LiHO8Ov7zejiEhk9erV3X+bGUuXLmXBggUA3e/F8M1vfpNzzjmHs846CwiV9WmnncZRRx3FkUeOzocDqs4WkXyNljq7lF0+RETysnjx4j6nz58/v1drSCGWLVvGGWec0f3/3Llz6erq4sknnyzK8kVERrrRVGcroBaRYSPXyvmWW27huOOOY9asWcyYMYMrr7yyO8+SJUuYNm0aJ554IkuWLOGEE07g4IMPZvHixXR2dnbnmzlzJqlUqCLb2tr48pe/zIwZMzjhhBMGZ+NEREaY0VRnl7TLh4hIsT300EPMnz+fW2+9lTlz5rB+/XpmzpzJ2LFjWbhwIcuXL6eyspJly5Zx3nnnsXz5chobGznmmGOYMmUKF154Ya/lffCDH2TVqlUcddRR3HzzzdTV1ZVoy0RERp6RUmcroBaRbot/u5i/b/r7fl3n0ZOO5sqTruw/Y46WLVvGrFmzmDNnDgCTJ0/m7LPP5oorrmDhwoXd+aZOncopp5wCwIQJEzjrrLNYsWLFPpXzVVddxTe/+c3u5f75z3/m0EMPLVp5RUQGSnX20Kmz1eVDREaUhx9+eJ9H8x522GE88cQTNDc3d6dNmzatV55DDz2UZ555hqampn2WWVZWxiWXXMK4ceO44oorBqfgIiKj0Eips9VCLSLditnqMNy1t7dTUVHRK+0lL3kJ//jHP0pUIhGR3lRn9yh1na0WahEZUY466ijWrl3bK+3xxx/nkEMOoba2tjtt3bp1++SZOnUqdXV1dHR0cNxxx+2z7A0bNjB58uTBKbiIyCg0UursnANqMztpMAsiIlIMS5cuZc2aNdx5551AqFCvu+46Lrnkkl75Nm/ezI033ghAY2Mj119/Peeff3739AcffJCbb765+/9f/vKXrFmzhve+9737YStEREaHkVJn59Pl4yozO8ndHx200oiI5OCuu+7i4osvBsINLWvXruXyyy8HYMaMGdxwww0sWrSIVCpFc3MzF110Ua+bWwBmz57Ngw8+yIoVK3jsscc49dRTueCCCwAoLy/nq1/9Kpdffjlf+MIXcHc6Ozv5yU9+wrx58/bvxoqIDHOjoc7OJ6CuAb5rZtXASuB6d39ucIolIpLd7NmzWb16Nbt376ahoWGf6fPmzcupEr300ku59NJLE6ctWrSIRYsWFVxWEZHRbjTU2fn0ob7Z3V8DnAE8D7jDzH5lZqeaWUU/84qIiIiIjEg5B9Tufk70/oS7X+buLwa+DLwZWG9m3zKz2YNUThGRoliyZAkrV67k3nvv5eSTTy51cUREpA/Dpc7OucuHmU129/UZ/x8OvBF4PXAgcCpwhJlNAn4IfN3d9xa5vCIiBVm+fDnLly8vdTFERCQHw6XOzqfLx6/N7AAz+4iZrQEeAT4O/BV4G/ACd38d8FqgGvhJ0UsrIiIiIjLE5HNT4kuADUAF8Gfg/cBP3X1XZiZ33wpcbmYPFa2UIiIiIiJDVD4B9V7gS8C17v50XxnN7CfAuEIKJiKDz90xs1IXY0Rx91IXQURGMNXbxVWsOjufgPoH7p7rA9E/BnQMoDwisp9UVFTQ0tLS60lUUriWlpZ9Hn8rIlIMZWVltLe3U1lZWeqijBjFqrPz6UP9BTN7u5n1GijQzM4ws4mZae7+rLtvKrh0IjJoJkyYwPr162lublarahG4O83Nzaxfv54JEyaUujgiMgKNGzeOzZs309XVVeqiDHvFrrPzaaE+n3AT4k+BmzPSXwV82cze4u4PFlwiEdkvxowZA4THvLa3t5e4NAPT2tpKdXV1qYvRraKigokTJ3bvWxGRYjrwwAN59tln+de//lXqogzISK6z8wmo5wEnuPuazER3X2xmNxLGpH5jwSUSkf1mzJgxwzr4W716Na94xStKXQwRkf0ilUpx8MEHl7oYAzaS6+x8unxYPJhOc/dbCWNRi4iIiIiMKvkE1OPNLDG/mZUBBxSnSCIiIiIiw0c+AfUdwLVmNjkz0cxeAFwD/KWYBRMRERERGQ7y6UO9hBA0P21mm4FtwHhgIvAMMKf4xRMRERERGdpybqF29/XAMcAXgHWEx4s/E/1/rLtvGJQSioiIiIgMYfm0UOPu24FPRS8RERERkVEvnz7UfTKz3xdrWSIiIiIiw0VeLdRm9npgLqHfdFls8jFFKpOIiIiIyLCRc0BtZpcDnwT2ANuB+HMv64tYLhERERGRYSGfFur3AG9y9z8kTTSz+4tTJBERERGR4SOfPtSbswXTkbkFlkVEREREZNjJJ6D+PzPr6wHslxdaGBERERGR4SafLh9twM+jrh3/Bppj008FzitWwUREREREhoN8AupLo/fpWaZ7YUURERERERl+8uny8YC7p7K9gAcHq5AiIiIiIkNVPgH1p/uZru4eIiIiIjLq5BxQu/uv03+bWZmZHRib/pdiFkxEREREZDjI90mJrwU+AxwPPAdMNrOrgEfc/Wt5LGcBsBTYFJt0srvvzKdMIiIy+FRvi4hkl8+TEk8Cfg3cA1wLvDaa9B1ghZm1uvt38lj3Mne/Oo/8IiJSWqq3RUQS5NOH+jLgTHef7e7vA3YDuPv9wMnAe4tfPBERERGRoS2fgHqcu/8saYK7bwMqilMkEREREZHhI5+AutrM6pImmFk9MD7Pdb/VzG41s7+Y2c/M7Lg85xcRkf1L9baISAJzz+15LGb2PeBI4BLgLuBOdz/GzI4EvgI84e4fznFZbyb0wb7M3VvN7GzgGmCOu/81If/7gfcDTJw48dhVq1blVOZMe/bsob6+Pu/5hrvRuN3a5tFjOG73CSeccK+7zyx1OfKVT72tOnvgRuN2j8ZthtG53cNxm3Ots/MJqMcDfwReTngqogNdhBsb7wVe7+67BlpgM/sz8Jy7z+8r38yZM/2ee+7Je/mrV69m7ty5Ayzd8DUat1vbPHoMx+02s2EZUCfJpd5WnZ2f0bjdo3GbYXRu93Dc5lzr7JxH+XD37Wb2KuDdwOuAA4GtwB+Ale7ePtDCRh4HRsSHjIjIKKF6W0SEPMehdvc24PvRa8DM7AvA59y9OSN5MrCukOWKiMjgUL0tIpJdPjcl9snMfplH9tlkDLMXPTDmROBbxSqPiIgUleptEZEs8nmwy6f7yfLKPNa7DDjPzN5BCOrLgdPd/aY8liEiIvuP6m0RkSzy6fJxWT/Tc7u7EXD33wK/zWPdIiJSQqq3RUSyy6fLxwPunsp8AfWEG1K+CWg8UhEREREZdfJpoT4rnhDdnHKfmd0P/AY4qVgFExEREREZDnJuoXb3R/pZzuGFF0dEREREZHjJ56bEdyclEx45/jZgc7EKJSIiIiIyXOTT5ePqPqatAc4trCgiIiIiIsNPPgH1I8BbYmmdQGP0wBcRERERkVEnn4D6s+7+9KCVRERERERkGMpn2LyX5rNgM7ssv6KIiIiIiAw/eQ2bZ2Z/JNyImFN++n8YjIiIiIjIsJZPQH0YsLqP6UbP0xIz/xYRERERGbHyCagXApcQRvt4GNgJjAOOAk4DrgC2RHkN+F7RSikiIiIiMkTlE1CfArzR3Z+Kpf/KzK4Hlrn76elEM/thEconIiIiIjKk5XNT4iEJwTQA7v4k8OJY2ucLKJeIiIiIyLCQT0A90cxmJE0ws5cBE4tTJBERERGR4SOfLh8/Av5kZtcB9wM7CI8dPwY4E/hO8YsnIiIiI1ZLC7S1wbp1MH481NZCWVmpSyWSt3wC6qWEJyN+FPgwYRQPA5qArwGfKXrpREREZOTp6oJt22Dr1p7/N24Mf48ZE141NWC5jtQrUlo5B9Tu3gksNbNlwMsJXTw2Ag+6+85BKp+IiIiMJHv3huC5rQ0aGkLQXFkZXu7Q3Aw7d0J5OYwdG/JUVZW61CJ9yqeFGgB33wHcPghlERERkZHKHXbsgMbGEDzX19PcYrS1GeueTXHAeKe2BlLV1VBdHVqtd+yA554L+Q84AOrqQqAtMsTkdVaa2eGErh9zAdz9EDP7L+Dv7v6L4hdPREREhr22Nti8ObQ+19XR6Sm2bjG27wxjI3Q5bNiUwgzGjuliTL1TXZ0KfaoBOjrC/O4hqB4/PnQJSeUztsIQ4A7t7WF/dHbCnj1hG8rKer/LsJNzQG1mxwG3AduBR4FDo0l3AFeambn7z4tfRBERERmW3GH3bti0KQSLDQ00NRubGlO4Q0OdY3ugsgIqKzzKHgLtyko4YGwXdbVOeXk51NeHZe7dC+vXh64i6S4h1dVDs791Z2cInvfuhaam8IXCowdJd3TAhg3hf7Oe93RgXVERXpWVoVU+HnTr5s0hJZ8W6mWEGw+/6u5dZnYfgLv/zszeCKwCFFCLiIhIT6vy7t2hVZqy7lbp2mrP6LnhuDtmhlloeAYPs2+JAu96Z/zYrhA3V1WFPtXpYH379hB4jhsXgu7KytJsb2brc3NzCKDb2sK0VCqUsba2J/BPpXq+JMSX09UV9l9bW9hG955X5heH8vLeQXdlZXKL91D8sjHC5BNQH+zuX0ma4O7PmFl1kcokIiIiw9mePaFVGmDMGJqajY2bQ1eGMfWhhdbd2dOxh7auNp5ufpqG8gZqy2upTlVjZpSXQ315aLVuaYVde8qorIDxY7uor3MqKrqj79AS/NxzsGVLCLYPOCAEr4PZ3zrd+tzaGoLnlpYQCJuFQLaycmA3U6bnz6UFurMzrLOpKQTbnZ0909LBd3p5mcF3TY1GUSmyfM60CjNLuXtXfIKZVQAHFq9YIiIiMux0doah8LZvh9paOihny+YUO3dbr1bptq42trRuoaWrBTOjMlXJro5d7GjbjlmKMeUN1FXUU5WqImUpaqqhBg+L35aicSvU1Trjxzk11U6qrCz0rYbQSrxpUwgoGxpCy3V1dWF9k+Otz3v2hBZk9+TW52yztxvNLbCnOcXevca/nyiLGpGdshSUlzupFJRHDcvl5T29QAzvbmzueS/D0t1D+tLVFY5Na2so/9atIdg/6KA+yy25yyegXgP8zMw+Hj1qHAAzGwdcCfyl2IUTERGRYaKlpadP8Jgx7N5jbN7Su1W6y7vY2b6T5/Y+R0WqgvryevawOwTNZTVQFvLs7tzDzo5dGEZ9eT0N5fVUlVVTVpairjYsa28bPLsxRVkKxo3poqHeQ4Nwuu+xewggn302RKDpLiFVVf0HkB0dIQJubQ3Bc2trT5eLdNeK6uw/zHc3Xu81mpqNllbLaLx2KitCcFxb4909PLq6Qn538C5wwjxpTtTVuqt38dMN0H0H5WUh+I6C8oo6SHW0wTPPhO1QYF2wfALqCwk3IK41s0ZgjJmtBaYAG4A5g1A+EREZreL9RWVo6uoK3S2eew5qauiwCjZvTLG7yair8e6eCy2dLWxpbaS9q4O68josy7HtDq4J3UKaO5vZ07Ebd6ivqKehvIGqsiqqKsuoqvQwut6uFM9th6oq54BxTl2tU1ZmPUFv5u8XomgAACAASURBVBB8FRVhlJD6+p7Au60tBNBNTeHV0RHmMxtQ63N7G2CQMqiocGprHDNo72qno6udXZ176fB2trU9R4VVUJYqI5VKkSJFuZWRshQpy61FPR3n5xOUGzB+bBVjGiqptPbwpaOyMgTWdXW67gYgnwe7PGNmRwMfA15H6OKxFbiecKPi9sEpooiIjDodHeFn+4kTNYzYUNbaGh7S0t6O1zewuynF5i0pUubdrdKd3sm2vdvY0b6D6rJq6irqcl68mVFdFoJid6e1s5U9HXsAqCuvo6G8geqyamprQtTe3g6bGqNW8YYuxjZ4uJExFRuCb+vWnvGw29t7Vpju+1xg63N1fdjutq42Wjvbea61idbOVjq9EzMjZSm6vItdHbtwT9+UGQJeokFAUpaiPFVGuVVQYeWUpyooT5VTRgqzFGVR4F1mZd3dQPblidvQ1QXbd4YvIQ31KcaPraDa2rHMwLq+XoF1HvIZNu/t0Z9fcPdLB6k8IiIioclt27YQvTz/+RoibKhxD/2kGxuhupr2qnoaN+/bKr2nfQ9b2raAQ315fdZW6VyYWWiZpgp3p62rjU0tG8GMmlQNYyvHUlVWRX1dOe7Q1Gzs3J2iojzzRkZCH4h0Z+6OjhBAFtj67HTR3tVOu7ezrb2F5tZmOjy0chtGeaqcqrKqXq3OOzNa4pPX7XR6Jx3ewd6uvXin0xXdxmYOnjnYh5WHV6qcilQF5YS/zSwE3qQD7zBTKkV315nWvbBuQxkVFWUcOL6S+lQ7qQ0bQsv8gQeGwHo4f6nt7Azdkdraws2qgySfLh+/BH4F3Ak0DU5xREREIrW1PX1gJ0/WE/KGira20Crd2trdKr2pMUVZqqdVur2rna17t9LU0UR1WTXlZcU9dmZGpVVSmQpD5IXgehMYVKWqGFsxlurKampSFdlvZEyxzznVPWx0m7GnKbn1uarOafd2Oro62N3ZQktLM3s72zBCkJsObKussMelmxnlFspXQd83HXZ6J13eRWtnK82dzSHwdkLfDkJwboSW8YpUOTVltdSX11NVVkV1FVRXhWEKNzWmMKti/NgKxpS1U5kePzzdYj1cAut0EL1zJ527mmhthXYvZ9wQCagfdfdTBq0kIiIicbW14YNx3TqYOrX/0Qxk8LjDrl2hK05FBW1VDWzemKKppadV2t3Z1b6LrW1bSVmK+oqEcZYHQWWqJ7hu72qncW8j7k51WTVjysdQU11DRaqCvW2wflOKlIUbGevrnI7O0Prc1JKibS/7tD53egftXW3s7Wpj+95mWrtacRwcUqkUFVaRVzeWwVBmZZRZ/7/ipFu9d3XsYkf7DiqsnHEV46kpr6GivIL6cs/oDlJFQ30l4xs6qN6wEasoDy3WDQ1DM7DOCKI7djbR3AK79lbR3DGGtq522NvEuEFcfT4B9Voza3D33UkTzex/3P29RSqXiIhIUFMTWqrXrYMpUwY2tq8Upr09dO/YvRuvq2dXUxmbGlOUl/e0Srd2trJ17xb2drVRU1aT8011xVaRqqAiFb54tXe1s6VtC77XqSqrZEz5WGqqayinku07U2zbCXhP63N5XSftXe20dbaxp7OF1rZW2rvaSZlhlqLcyqkpqymo60oppVu9y6Pwr6Org61tW+na20VNWQ3jKseFfu61IThv3QvrmiqoqBjHgWPaqduwmbKKLT0t1qXuipUOonfsoG1HMy2txo7WKlo7x9BOO52pFvamGmnpaqWjrYujePGgFSWfgPqrwHVmdjXh0eN7YtNnFatQIiIivVRXh8c3p1uq+7hpTIos/ejwVIq26jFs3pSiudWoqw3dJrq8i+1t29nWto2qsirqykvbWpspM7ju6Orgubbn8Db//+y9eZwkVZmv/5xYc62svXqnm+6WZhNkERAVFLfRQURlEQQZF3TmozPO5lXH0Z86OjP3N3fu3Oudud65M24gsgioyCDqIKisAoKIytrVXfuee8Z6zv0jMquyuquKrqaqq6o7nu74RGZEZOSJzKyIb7znPd8XUxi0mDkSeoJQhVSCKuNODU/59SwJMZ2PbOuH7w2coUXpKRDdfDRy0rNGlqyRIWElSdj1McITJkLkaMv6tDgjWIkx6OiAlpZDK6zrIlpN5XGnqlRrgryTINBy+MolEFUcbRhXemiq3oOgp8lTXNZmLUZQ/2d9/pblaEhMTExMTMyC2HbU1bxnTySqG64NMctDGEZR6WIRlUyRLxuMTURR6Ww6ikrXgiqj7hiBCl70oMPlplk8BjJg0ptE1U2ddaFjaiZpsUJly1cBjZuPhlVhKSihC52skSVjZMik7SgdpGQyIXNkkiHt1XESiXFEZwfkcssnrIMAHAc5GYnoclWj6Nr4WguBcpFGmYos4uOjKQ1Ls2alG8lwv5qES85iBHUf8Ol51gng/3vRrYmJiYmJiVkI04xGiO3dGw1UzGZXukWHJ9VqNPBQKVwry/CwhuNGudKaNhPtLfslLN0mra+eqPSB0CyuY2bTbFXYsPab8qewhUXObJ3OR3dcjb1OC2ZZ0lmaIJ2eQO+uR6yXYgBxXUSHE3mcySqlqkbJtQmNFkJqhFaRclgiVAGa1LE060UPBH0xzHvEQogrgZOBjymlAuCHSqmvL7D9ccvQvpiYmJiYI5AgFIxNaHSsm2P8k2FExSf6+2HduqhIR8zSIGXk0Tw5GUWlKyaj4xqmGUWllVKU/DJj7hhCCNKHaNBhzMrQXGQnkMF0PnpKT5GzcqSsBCrUGa62ICqStsIULelxrHXtUWXKxQrrIIBajWCigDNZJV82qPomoZlFajUCO08pLKGURAv1qDS9vjrSvxY60k8Cf10X0wB3LLQjpdTHlqxVMTExMTFHNErB6KROyddZ3x2S3NeuV9ej6PTISCQC29vjIhQvFseJSoeHIa6VZWhYx/VmcqU96THmjFGTNZJ68oBcJWIOH5qj+p70GHaGZ0rDJ7JYJJhyM4yPS7L5Iu0tUyTWtyFacwu78wQBVKt440VqkzXyJR1HWSgjS6jV8BJTlIMSyMjNJKEnVmzA60IsJKgdpdRNTc8/Bdwy38ZCiHuUUucsWctiYmJiYo5oUgmJpin2DOi0t0o62tTsFE1Ni0T12FiU79vVFYvqxSBl3XTZhXIZymWkaZP3koyOa9h2FJWOBh0WmHAnMDWTjBFHpY90GjaF0/nWfhFdM2gxW0jbadwgxd48mBNlOlsmSW9oRe9s6kkKAlSlijtaoDrlki9pBMJCmmmkVcMR41SDKkoqDGGQMlKrOj8fFhbUmhDiD4B7AQewhBCbmbYJ34+OpW5cTExMTMyRjWmCYSgKRY1SGdb3SFLJpnLKQkSiulFVMS5VPj/TNbOdSEDXatFyIcAwcIwMw2M6nifIZqJS2LWwxrgzhid9UkZqVUYGY1aO6XxrPcq3znt5JpnE1ixyViuQYriSQPy6SlumgPICak/3UZl0KZQ0As1CmklUskZVjlKTNQgUhmauOXvChQT1Z4BvAs0Z3r3L0QghxIeBLwGvUUrdvRzvERMTExOzNBzqc7YQUYU734e9AxptOUlne1O0WohoIFS5HJcqbyYIouhzrRZ9Nq6LUhCqSMiEWoYgFDguuG5UFdC2FZl0VPxjyplkys9HvsQrXLgkZvWjCY2UETnvTOdbqyjfOpvNMeGl8VzJ3j6BsmxUxqEUDuNKF3wwdXNVWS4ulnkFtVLqViHEDuB0oA34LMvg8iGE2AD85cG8NiYmJibm0LKS52zTjKrXlcoa5Qqs65akU03R6nQ6cqc4EkuVKxUVX/E8wmKFsFghcAJCKfCkgROaeCTxvfr2AlAzJbV1DTLpKCpd8SuMeWNIJVe9FV7M6mTffOtRL8q3llpI3h7EC33wo9SRtSyim1nwbKOUGgS+CyCEOPsFXD7OPsg2fAn4IvDlg3x9TExMTMyh45Ccs6UKKfpFOlT7fmkGqaQiCKBvUCOXVXR1yBntfASUKlcKAl8R1jyCioufr+AWarhOpKlDYSCsJErTEICuKXQDDE1hL6BdfOkz7oxTCSok9ASGfgTdkMQsG8351gU1BYjDssfjgP9alFIfeDHr50IIcT7gA3cu9rUxMTExMYeWQ3nOlkoy6g5TrpZoN9vJmJlZrhKGAS0ZRbUm6O3T6emSZOslsA+HUuVhGGVshGE98FwLccseXtElKFVRNRchohCzZhpoVgIjrZHUm8dlzkTvpZJIJfFkNFdKIlEEMiBQPoEKKQdlNKHNKogRE7NUiHr59kblysONFbv9FEKkgS8Ab2R2nnZMTExMzCpjJc7Ztp7E0izG3XEm/UnazDayZnaWsE4momj1wPA+0epEIhqA1xDV+/nurS58P0pz9jx45hlQfgC+B44LlQq69NA1hWUIEgkTlbYJkdE/FaKUj4si9EN85ROogEAGSBUSqDAS0ahI1DAjtQUCTWjTfsPxoMOYmINjJftzPg98WSk1JITYuoLtiImJiYl5YVbknK0LnbSZRirJhDfBpDdJm9VGi9kyLawb0epKVVCuzESrhWVF4dq+viinOr26upmljLJTpqagUpIIt4YKfLThpyDwkEoSauDbGoGQMwLZXVggi3opbYFA03QSmHEedEzMMiOUUi+81VK/qRCnEOXhvUopJesn593MM2JcCHE1cDVAT0/Pqddff/2i37NcLpPJHHndWEficcfHfOSwFo/7Na95zSNKqdNWuh2LYSXO2cVCEU3oaPq+EVOFrF+3DKGj1YVjM6EEXYvs9oQgSjqWEixrVVjqNZoTBIBUoAJUGBCqgEBJdG1W3gbNj6LFh5c4DgIfwzg80wAW4kg87hU7ZqUIQ0k2t/jrxYGes1dKUP81cCFQrC9KAGcAjwN54INKqafmeu1pp52mHn744UW/591338255557UO1dyxyJxx0f85HDWjxuIcRaFNSH/Jx9x+13kDZayGTnjipLJXFCB4Wi1WwlZ+amXQUgivyGUrCuux6tliFUKpFP9QqUKpcyMiCZnFDU8g6qWkTURin4UzhagGbZ2EaCsfwo69rWH/L2rSTDU0NH3DHDkXncK3XMMpTk80Ved/65i37tgZ6zVyTlQyn1eaLuQwCaoh0fXTZPU9+P/DjX4OCUmJiYmJVkRc7ZL0DD81YqScEvkPfzs4R1MglhqBgc0UgXFT1dYGUyUanyMISOjkNSVdFxoFhQFMZcwmIFnDGccIoyDsowsNJJMofpIK2YmCOJRQtqIcSrgXOBlFLq40KIc4BHlVKlpW7ckiJllEe3ZUvU7RcTExMTs+ZpCGulFEW/yJQ/RZvZSouZw9RNWjKKmgO79+qs6xa0ZLKI8fFIVHd3L4uoDkOolBUTQy5evoosTxBSpKTKBIaGnjBJaq1xXnNMzGHEAQtqIUQWuAU4r75oGPg48HvA14QQr1VK7V5sA4QQ/wScWX/6T0KIZ5RSFy12PweEps2I6sPQmzQmJiZmuTmk5+xFIIQgaSQjr1u/SN4vkDNayFmtJBMmUiqGxzSKJUFPVwtWPh8FWpaoVLlSUTS6MOpSHK0RFqaQYZ6KXsXRA3TdwtIz2CKu4BgTcziymAj13wEpIgH9JPB9gHqU+rH6+ksW2wCl1EcX+5qDxrajtI+GqD6SqmjFxMTELAGH9Jx9EAghpiPWpbBMvlIgZ+bIWTmyaQvHhd4+na6OFlqLJUQQwIYNB12q3PehPOkxNVDFGy8QyBK+Uaase2DqWLpFRltd7iIxMTFLz2IU5ZuAk5RSZQAhhGysUEpdL4T4i6Vu3LKQSESjVfr7oypaB3kSjYmJiYlZvQghSOpJlKYoh2UKlQItZgutVisp02J0QqNot7AuKGPLxZUqVwqq+UhEV0ZKBF6J0KxRthxCLbL6S2nZOKUjJuYIYjGC2m+I6XlofbGNOWQkk5GoHhyMTqKrwEYpJiYmJmbpaRbWlbAyI6wTrcjQpnciS5dTpdXfi3bUwqXKvYpPabRKfm8Rp1oj1GrUEjVcM0BDIxEXRok5QMIwujGLOXxYjKCuCCHeoZS6ed8VQog3A5NL16ylJwhFZPKRqC9IJiMLpaEhWL8+FtUxMTExhzENYY0O1bBKyS+RMTO0JtoYr6YoVhzWeX0ktm+c5QYlXZ/qeJXJPUUqBQ8fFy9ZpZp2EErUUzoSC7xzzHxICfc/anLXr306syVaEgkytk0uaZJJ6qRTimRSkkxKUklJIhlirpJMzTCEckWnWNQYKzmMlauMl6pMVsvkK0UK1QJlt0QpKFGVZWqUcfQKnlHCN8tIs4JWayNZ3kRLbT0dwTp6RA+b7fVsbGulvVujbb1O+wad9vaQVEoeClOamBfBYn6afwN8Wwjxc+A+oEsI8SngJOB84B3L0L4lIwxhd5/O+h5FrqV+W5hOR6J6ZATWrTskFkoxMTExMStLQ1g7oUOfv5eMkSFNG71DFp2lftqPW4dXCyn2FymMeTihh5/0qGUqSCUxhEFaS8cpHQfJ757T+PefP859pR/gbL0NNjaZhCmgCpR18FP1KTn9WAQpNJnEkEkMlcAkgSWSWCKJrSVI6AkSuk3SSJAyEqRNm4xtk7FsMgmbrG2TS5nkEja5lE0gQ0aKVcbLVcbLJfLFAoVKgaJTouSXKIdlqqpCTavg6hU8s0RglpF2CRIFsAugyZn22/WpfWaRCA0MJ43lJsk4FinHIlU1KCX3MLn1MYayBYaAXzde4KUgvw1+sQ2mjob8NqypjXQWW1lXzbJe9+lMlenMVOjKObS3enR0+LR3QVuPINFhE6YzhJksYSaLTCSOXH2jFMbUJNbePciKAwfhQ32gHLCgVkrdKoS4DPivwKvqiz8H7AUuV0rdvgztW1LSScXQqEa1pujulFH6dDoNxWIUoV4mC6WYmJiYmNVHJL4SOKFDRfWTtFL45RYm7x3GVyGeGeCmynjKQxc6tmbHKR0Hycg4/Ns9v+E/R++ksPE22DCF4WY593fruOzZAF/o5E2TgmlRNE1Kpk7J1KmYgoopqJoejuHimJO4ZohrBvhmQM30KJke0nRRerBwI5z6VFhgm3R9aiA1dDeD6aSw3ARtjk2qZpHxO8iG62iRBu3KpE236DAtOm2b7rRNZyZDJt1GKtWJmW5DZrOE6QwynSFMpUDXGZ4cZH2qDa84zkh+N4OlPfSV+3neH6c3M85A5peMbv8RruHiAYP1Sa+0I/JbCSZ3Qv5oGDsant4RifDCZtLSpYcRehhhHUN0i1G6zTzdyTydqTJdLVW2bHTIbMngrd+At259NHWvQ61FW2EpMcdGsfv7sAfqU3/f9HO9VgNg4uTT4C//aNmasajOE6XUDcANQohjgE5gfL7qWKsRTYOWjKJcEdRcnY09YdSzl83C1FS0QVfXSjczJiYmJuYQktCjlA03dJkyhjAti0BF4swWNhl9bZW3Xy2Uq4qv/+wpbu//ESMdt0HLGFoiw8sGT+DP7n+Ki56donb26Tx3/sXkWrsRMkQEIUiJCMOoumUYRo/D2ctFGIIbIqohQkoIQ4LQx1UuNeVRkx4lJZkKBXkJBSkoKEURqChFSSjKQqKh0aabtOs2HXaCrmSCrmyarpY0mWwniUwHMpMlTKcJMxmUvbhor1+f5kQIVCKJmdjMpu7NbAJevs8mSinyfp7B2iADtX4GagMM1AYYrA3QX72XYedmQmZuJITSEU4PxdJmyvktPDO+ndrYTipj50bR7qEuGBLwFHQwzi5+xzE8xS5+xkt4mqNbR9m00UOt76oL7SbBvW4DMplc1G9gyQgCrOEh7IH+umDeWxfM/diD/WieN72pNE2cdZvY030yz2y6nGetXTwvt5Lsgf9/GZu4GB/qq5VS/wpQF9FrRkjvSzqlcD3Y06+zrlvSklWRqJ6YiFw/2ttfeCcxMTExMYcVtm5j6zaBDLD1uKruweAHkpt+8Sw3P/Of7MnchsoOIdan2DF1Nlc/VuEjP7kP03ycibdcwDOfuwxv02ZGpoYQS1yO2gDa6tPBooDa0jTnoBFC0Ga10Wa1cXzu+P3WBzJg1B2dFtkD01M/g7W7mPBumrW9LVK0s4mkuxVtait7B7bxxJ6dFAf/AKa2QT6JkQ84+qledoVPskv9jl08wjE8xTE8RUurxOupC+zm6HbPBrz1Gwiz2YM/Vs/DGhqYFV2ejjYPDSHCmRsHaScY37CLX7e/lmc3n8Bz+k52h1vYU+6mfyLL4LCN1zfTm6RpilecOXbQbTsQFhOh/mMhxB3AfLdmChhTSjkvvlnLj22BaURlaWuOpKsDtGwWRkeju8+2F/NnGBMTExOzVjG0VTLybY2glOLO3zzHN399F78zv4/M9kGXzfrieVw8eD5/9eMf0vX8j/C6uhm7+k8YP//thC0tK93swwJDM9iQ3MCG5Abg9P3W18JaPbrdENmD9Ff7GHCeZyD5M2o9NThlZvuM6iblbKVY2MZPh7dz+94dhOOviKLb5fV0VEvsHOxl18DvOLb2OMeGT3AM32Enz2MQEqYz0yLbbY5w18W3XquRnHgaa6B/RjTX59bIMKLJ+sRLtfD8utN5uutSntt8LM+J7ezxNrKn2EH/aJqp3SbsBlCQmiDZs5eOo35OZlc/x3b2IVoG8JPDVPUhpuQIKnUC8NPl+y4Wse1xQO8LbKOEEL3A55VSXz/YRh0qGikgxZJG1YEN3SF2JhMNUtR1iP/gY2JiYmJi9kMpxUN9z/PVR+/hMXk7fvZ5yJm0T76WN1gf5BP9uzn2tpsx83mqxxzL7s98kanXvg6MuErxoSSpJ9me2c72zPb91imlmPKnGKj2018X3A3hPdB2D4V1N6JOnhG4urJx3S38Jr+NXw7vwB3ZDlPvg6mjMYpb2Jpw2ZHcyzHO0+x65gmOf/QXHF/7IZuYmt7HS/dpw3huC090nMEzPRfw3OZj2C230ltbz958K0OjCYI+B/IDkB1EtPaRXX8fqeP6SLX1k0gP4VhDlBghwKcG9Dftu91qp8vuYqPdzcnWcWw1jl7aD3cfFiOo/wL4GPA9osGoBSLv6ROA1wL/CFjAicA/CyFSSqn/vbTNPXgCFVD2y2SszH4jsxspIL19Out7BC2ZTORRrWmQiXPnYmJiYmJiAH4z3su/P3I3D1TvwMk8DUmd9Og5nKf/IX+8aT2nP3oT7T/8LCIIKLzyHEYvfTflk06JB/yvQoQQtFvttFvtnNi6r9QFT3oM14b2F9tde+nfdB9uMFOaJAD2eJ30FbZx58h21OTRMHUZTH2KnLeBHXaSnalh0owzxNH0Vtrpc2qUtFEwB8EagOyjmB3fw+roh+wAWmIY9JkRpAooAr6epNvuptPuott+Kd2JxuMuuu1uuuwuOu0uTG3m5k2Gkny+uIyf5uIE9cuANyulHt13hRDiVOCDSqmr68//FfgKsGoEtVSSYWeYZJigw+6MbJOasC0w9HoKSA66WtNoAwNRNcVUaoVaHRMTs5IoFVluBkE0eR64LjhONOyis3OlWxgTs/zsKfXx1V/ezd2Td1JKPwlCYBVfySuc9/L+l5/Nq3KP0339tbT84gHCRILx89/O2MXvwt181Eo3PeZFYGkWW9JHsSW9//eolKIYFPeLbg/WBujf/HOGnJuQhEAUfX1UmvyycBSylkPPDRKmRkDIWfvU0GmzO+iyu+myN9CdOJkuu4uuulBuiOiMsX9gdDWwGEF9/FxiGkAp9UhdVDeePyCEWHU1vdNGmoCAgWo/WbOFdqt91h2MrkcpIIWiRs0x2dCRxOrrg6OOikqWx8TEHHY0i+YwjESz40TC2fdnqpkpFZ0jdD0qSOHPO3Q/JmbtM1Qb4ltP/oQ7Bn/EZPIxALT8mbx08gtcedKrOfdVJp0/up3uT7+HZO/zeJ1dDHzoI4xf8A7CltwKtz5muRFCkDNz5HI5jptnsOSIOzJLcA/WBhivTbAxc/p0JLkhlrsS3bRb7eirTzoeMIsR1FuEEBuVUgP7rhBCbAa2ND3XWMApZiWxNAtLs6iGVcrVMq1mK61W66wvMZOOUkB2D9ps6IBsXx9s2TKrelZMzJFOGEKtBoVCJDANY/akaXNPKxVYaI40+/5MpNnzovY32tVop2FEnVNztdd1D23bY2IOBWPuGN957i6+u/vHDFkPRwunTuPo/s9zya5zOf9dWdLVCbpuuZbOT9+ImZ+iuvMYej/9N0y99g2oBcq2xxxZGJrBxuRGNiY3zrICHJ4aYt0SO7qsFhYjqL8L3CeE+BLwSyBP5EhzCvBHwK0AQogtRLnWy+tP8iJJ6kmUUhT8AsWgSKfVOasboZECMjBh05aELtWHtnULrEXT85iYJULKSITm81AuR1Fby4oEqONE65WK5vOhaVGUd18BvhQivDnS7PtRmxwnetxok1Kz2zCfaI6JOVxRSjHpTdJb2c3uSi+/Ht3L4+NPsVf8AoSCyZfSM/YZLth2Hpe8rZXWXEji+efo/sf/RvsP/wPN88if/WpGL3k35VNOi/+AYmJYpG0e8O/A38+x7lvAn9QffxDYCPzzi2va8iOEIGWkCFXIqDtK3p+i0+okaUQ507oO2bSiULWpObBB9mNt3wzxXXjMEYRSkSgtlSIhrVT0J5BOH9x1tCG4G+L8QEV4I2rcPIVh5HTputEUhjNtEmImRSOZjK/5MUcevvTpr/XTW+mlt7Kb3kovT+f3sLfWi0PTAC0vBePHkh36JG9c9wYuP6+TLZs9UIrsQz+n+4ZryT14H9JOMPGWCxi96DLco7au2HHFxKxGFlN6vAJcKoT4DHAGsA4YAh5USj3dtN1fLXkrlxld6KSNNL70GagNkDYydNgdWJqFEFEKiONa9PbDen+A7LGboqt5TMxhilJRKkSpFKV0BEH0kz9YEd1Ms9BdTHsaItx1o1QTpaJ2lUpR2w6paA5DCBSLLDYbE7MsFPwCeyq9kXCu9k5Hnvur/dMDwwBEeQNqOZWpowAAIABJREFUdBeMvxJt6iVstLZxfNcWTjm6jePPcjhmZw0hQLgl2r9/B93XX0ty93P4HZ0MXP1hxt/2DsJc6woeaUzM6mXRV4P5qiQKIc5USj2wJK1aIUzNxNRMnNBhb2UvbVYrObMVQzNI2BAaFgNDLh3+EB0nbkAz127yfEzMXHgeVCowNRWlSeh6NB53oWqzvoyGS+hCRxPa/Bu+COYT4Zq2cNuWlEYOSbEIhRp0ZWFzzyF685gjnVCFDNYGI+Fc7Z0VdZ7yZ3x+NWVhl7fjD5+KHLocxnehTR7D0S1bOGG7yXG7qhz76io7tjtYVsNjOHq9MTVJ56030XXLjZhTk1R37KT3U59j6rw3ouJ0x5iYBVnK8Mq/MKveztoloSdQmqLolyj49fxqM4Oua2Q7bPKTDtWHh1n/svVYieUREDExh4ogmBHRrhuJ1ERifmMbpRRu6FILqpT9Al7oo5RCaAINDUMzMDWrfoNqYWgGWl1s60JH19bQjWgjHF4qgeehlEJaBr4hMGXwwq+PiVkk1bDKbwpP0lvdMy2Ye6u99FX34klvers07WScHZhjv09i9wk4/cfB+C4oHsWWbT67jqlx3ClVjt1VZcfRDrY9POf7Cdcl89gjtP3kx7Tf+R9onkvhFa9i5NJ3Uz7l9DhXKibmADlgQS2i0Xp/AnwAOJqoiMthixCCpJFEKsmYO8qUP0WX3UVST5JuT+BM1eh9aJT1J3WTzcWiOmZt0XDomJqCajW6Ztp25K08F1JJ3NCl4pcoeUWkChFoWLpN2pxxv1FKEaoQL3RxghpSSRQKQWTKr1BoaJi6gVEX3Ua9Z0gT+nSUWxf6svuMSiVnTQqJlCFhrUpYLROW8oS+S4BCWjqBUEglwQO35tGd6GQTG5e1jTFHBm7octvg97hu73XsqfZOL9fQWGdtpjXYwTGTr6fWdxwjvzmR0p7jqVQ7cXTF0dscztpVZdf5VY7bVWPn9t9g22r+NwPsvj20PHAfLQ/cS/aXj6C5DtKymfi932f0kstxj9q2zEccE3P4sZgI9Z8SDTi8BbgK+HJ9+XrgYiIXkMMOTWikzQy+9BmsDZLUk3TYHSTakoTFCv2Pj9O5q4uOToEW6+qYVYyUMzZ35XqBK8uaX0SHMsQNHUpekbJfAhSaMLD1BJoCAh9qLrhFMHSwLIRhYOgGaPOfWpSKhGkQ+riBg4qkLELNiG6BwBAGhm5i6RaGiES3rumzhHfz/iRN4rhJKAcyICSI5jIglCGBCphW+VIifA9VrUK5Akqi6QbCtNCSJgKBJjQSaNMiX2kgWWAUZUzMAVAJKtzc/22u3XMtE944x6RO4DXyj9DHT2Hi6RPY8/jxDI5lGAR0XbFtq8NrdlU59vdqHLvraXbuqJF4AfEMIJwa2UcfpuX+e2l58D4SA30AOJu3MH7+2yieeTall52KShyq/KmYmMOPxQjqdwOvUkqNCiHeqJT6bGOFEOIfgc/O/9K1TyO/2g1d+qp9kX91ppWWSpGpZzWq1Q42bBSxAUjMqqLZoaPhF72QQ4cvfRy/RtEvUAuqCMAQBillIoIQ3BrUJmdXNdF0oMmmQ4hIqScSYCcisW2Y028ohIhSP9BZ6M9FKkmoQqp+ZTrSrZRCiJliK17o8nzhmfqxqqZjEtF/JRBCQxNROooQGqZuYUsDXA8q5ZkRjpoO6TbiO+OY5WbKm+Rbe7/FjX03UApKnJw+i2N//a/cd8MFPBVqaFoknl9xWo3jdvVz7K4qO3fUSCZeWDwDoBSJPbuno9CZxx9F8zyknaB06umMXnI5xTNegbdp8/IeaEzMEcSicqiVUqNzvU4p9XTdf/qwx9ZtLM2iHJYpVou02+3k3EnccY1ev5316yGTWelWxhzJKBWl/pbLkYgOw2gw31x+y0opPOlRC6qUvDxu4CLCEEtqZHw5U/mkoWA1Hcy6efNCDQhDKNUboNSMyE4mwbJnRPYC4lUTWj0KPb/sLtV7kA6IwJ+5u3CcaJlhRsI/zhONOQQMO8Ncu+cabum/BVc6nNXyOuyHPsbPbnodmqZ45wUTnH7ms5x1SppkcnE9IFqlQvbRh6aj0PbwEAC1rdsYu/Aiime+kvJJL0PFBcpiYpaFxQhqIYQwlVI+UBRCnKGUerC+4gTgiEm6EkKQ1KP86ilvioIQdBaq2Ab097fT2Qnt7XGgK+bQMp9Dx76/w0Y+dNWvUKpNEHoOwvexPEXGD2fMnBvGz4sVnELMGEU3aBbZsjCz3DQjkd0cyV6qPxylwK/XES+Xow9IiJkQfUzMIaK30svXe7/GfwzdjgLOyb0Fce9/4e5bzoyE9NvGec+7R+np9hmeypM8EOsapUg8/yy5B+6l5YH7SP/ql2hBQJhMUTrt5Yxc8d4oCr1+w7IfX0xMzOIE9aPAHUKIS4EbgLuEED8iykJ8PXDTMrRvVaMJjZSRIpABw0aJxMgTtG/YxeRkD9UqrF8f14A5kmguTqLU7OmFljWKmzT7Lb/Qsn29mXt7Iy1q2/s7dIQyxPUqlGuTlCuTKKeG5gbYSkPT9BkRbNvLE62dS2RDJLLLlciKrkEjapyoi2zTrKeVHABKgVsvj1iuQBjMRMdjER1ziPlt8Td8dfdXuGv0LizN5k1tl+De/Rfc9d2T0HXFOy8c56p3j9Ld5b/wzgC9VCL78ANRKseD92GNRZ3Gte07Gb3k3RTPeAWVl54clwCPiVkBFiOo/wZ4OeATWeRtBK4AbOBm4KNL3ro1gqEZZLQsnnAY7Psl2Y07CNlCb6/Fhg3xdXyt0xCuYTgzb5S29rzIds73o2VqjhTHRsbDQsuaq/s1P25ettCkafukGkmJ71ZxakVKpTFq5UkIAwzNICkshFlPv1jpbpS5zKUbFiTl0swHOi2y7UiUW9aMyJYSPBcq1SgnWspon6YJ9mFtRhSzClFK8cjUI3y19ys8MHE/GSPDOzs/QOnHf8odtx2zOCEtJclnnqLlgfvIPXAv6Sd/hQhDgkyG0ulnMnTGKyieeTZ+V/ehObiYmJh5WUylxN3A7qZFH69PMXUsI4GV7aI6tIdSV4mWzGZ697TR0a6TSkXX90aQLk7ZXHnmEspSRiK5WSgHwcz2zd+brs8UHLGsFdKmSkEQKXlVLuNVi9RKE5SqE3gqarhlJkknWhZXmnAlmRbZTWI4DKOoc6XctJ0RfUH9fXURXY+wr/RNQswRiVSSn439lK/2foUnCk/QYXVwZfefMv6DP+aW249C1xUXvX2cqy4foatrfg9zs1Si7ZHHp6PQ5uQEANWX7GLk8qsonHk2leNPiG4yY2JiVg0vqrCLEOIlwHHAQ0qpwaVp0hpH10mmW1ETFcpiEBJ5vMlO9EkbQzMx6nZiZlOvtmnOiO21onlWO/tGkxtC2fdnpmCea9q+Qnm+AidLiVJq2sVCImeeS4kKAwgDZOCjAh/peUjPQXouyvcICPHdKnt7f0EgFMIwsdIZ0gtY16055hLZjfyaeFBhzAoSyIAfjtzJ13Z/lecqz7EhsYEPrvtr+r9/Nd+8YyOGrrj47eO8ZyEhHYa0/uxuum66jpf96jGElAQtOYovP5PiGa+geMYrCDo6D+2BxcTELIrFFHZ5H/BXwFeUUn8jhHgr8O36PspCiDcppe5bpnauLXQdkUySmigRrktS1keJbMUEhjJIGEmsMIVTthAlE63pa9C0JscxO3qs65HYjgNvs6PKjSkIZsSy50X5xM8+O6OxGpHlZqHcuKFZKhrexqEMZoRx3Rs5lEHkkSybvZLD6LkKkaEPoQQZHYwKAoTvIxqqX4jIn1lFBVKEbiB0HTQdYesINJQjMNIt2OIIuiPTtNk5MjGHD088weYf3EH+vPMhuzpz5pzQ4XuD3+Oa3q8z6AyyPb2dj274O575zlX8253dGLrikneMceXlo3R1zi2khVOj447b6L7+WhL9fbgbNvLsJZcSnvtGqsceH0dYlpmGNScwy9s+JuZgWEwI6wrgH4B/qz//W+C3REVeXkWUY/3apWzcmkbXwbbRR8dJ9/RELgY0HBYcKrIMKCQKXegkjCQpI42mWfihhV8yyOdn77JhuJBIREK7kT6y7zivtUyzUJ5LLAfB7DxlpSJdpWmzbzzmK1byYglkvUCICnACByes4YUuUsm6P3JdvSsQCASAlGihREiFkCH4AcLzMYIwWt6s/DUNhAa6DXYSUgd2QW14O8fEHBbceCMn/K8vEXzlK0y+6fcZv/AinKO3r3SrACgHZb7ddxPX7f0mE94EJ+ZO5KrOT/D4zZfypR92HJCQNqYm6brlRjpvuQEzn6dy7PE8//n/Sv6c1zJcHGVd2/pDfFRHBlJJfOkTqCjwoaOT0BOEKpy1XCCiQlONcSz14k6a0NDQmiw9Y2JmWIwUa1FK/QuAEOIk4FjgAqXUL4FfCiHevxwNXNMYRiSShoamBbaWSGBZFpZhTefASSXxQ48Jv0pUJy5yEEkYSZJGCluP0kWENHBdQbU609sN+0e1m3O1VxNLIZYPhYWqUopAzVTWc0OHWlAXzkg0BEqAho4h9HrlQNWUeF0Pkwdh5DLRjBB1waxFfsxxt0NMzH6Mfvhz3C83csZ9t9J92y1033IDpZNPYfzCi8ifc96KuFhMepN8a+913Nh3A+WgzJkdZ/HR9NU8cNP5/P0P2zF0xaXvjIR0Z8fcQtru30v39dfScfv30DyXwtmvZuSyKymfdErc07IMNAS0L31EvbhTykiRNtJYmgWBSRBqCKHQDBAohC5BRJFrpSQShS99QhXgq4Cgvr9ARtVWFSq6JtTfUxMagijAMT2Pv9sjgoOVXJcBo8DtTcsOzPdnJbjlFtY99DC8+R2H/r0bCdJKRWIrn4/UcMOaoVlkm3Y0sIq6qAt9poIJpAz3F9mmjalbGMIABEEQ1avYN6rdSH+A2dqt+e+7eflSPm4I5n3F8nSNkH3EsmUd2muKUk0nytDHlQ5u4OCF3nTEWdQjErpmkDRS0YlRqahIiB+AW4ZqLRLRjYNqCGbTiF0mYmIOgn/7d8FfffFDZNLvZ8fOMieKJzl1939w8mfuYFfu/6Leei7jF7zjkHgsD9WGuGbPN/jOwHfwpMtru1/L76U+yE+uP4/P/LAN01RcetEYV142v5BO/fpX9Fz3dVp/+hOUYTD5xrcw+q4rcLYeveztP5KQSuJJj1CGUQRa6KSNNJ12J6ZmYmDi+QLfFbgKkglFR4uMxtj4EAQCPzBmOzYJMFQklpIaaLqKrl1CgSaRhPU0viilL5DBdLQ7UD5O6E9Xep3pjYz2q+qC/7BPNwmCaGr4vFarM+uaR/s3P9Y0oOmxYG6Lq1XEYgT1kBDiE0ROHx8C/o9SSgIIIV6+HI1bKh75+x/T/tCddPzs5/T/+cfx1q2A0X2joERzZEXKSJQ5+dkq07YRiQSmZWGaFlhNIlv65N1JZPTRIxDYRoKkniJhJLCsqER64w9X0yJ3tH0jv800P2/2UQ7DF95+Ppu4xiGvlFhuRipZT9WIIgtOUMOTDl7ozzRYCAzNQBdNwnl6BzISzL4T2bk5zswH1agcaK3OPM+YmLXIhRfC4MCT9O9tZ29flu88fwbXlM6OVhZg/TWDnHjNE+xc/xSbXtXBptdtZNt278BLcx8Au8vP87Xer3HH8B0AvGX9W3id9QHuvP4sPlYX0u+6eAEhLSW5e++h57pvkPnVYwTZLCNXvJfRd1xC0Nm1ZO08ktlXQJuaSVpPk7JTmJqJpVmEIbiewJXgC8ikJT1ZhW2pOXpxo99Ps8d/GEIoBVLWg0Q++L7ADzVCV0PK+k7qsRYDMAVomkLTo9iKEAolwmhMjQqnB5+XSyV0dNx676dQRGmgmo4hjLUrtBsWWY3goWVFeZiJBAxWYPPmuYswRIOF6gKkIcBVNL5o+guRM+sbzOVN20w9DXO5WYyg/nPgNmA78CTwdwBCiH8iEth/u+StWyI+ov0zDwnJlQ9eyyff9We0vf9NjFxy+crbDmkaWPuUVj5QkW00iWwVUPCmmHLrkWw0LN0maaSQSlLxS3O+/ULdULPWiQXWzV6z3+YhEKr6g1kc3K9bzaXg90EqSd6dwglquIGDr/xGNnPUBafpGMIkbc6TPxLWTwZOXUB79eizEDPWbKvszjgm5nBi644ar3z9EyT0NMlMAikVY5Mau/ea7N5j0PespPcZg7sLO/HutuAeD0RAT1eNjVtcNm502LCxxsYNNTq6XDRdTkcRFZJQSZSShNTn9eVSKUIVcM/Y3fxk9CdYms3Fmy/mNcb7+O51J/PRupC+7JJISHe07y+khevS/oPv0/Ota0j07cFdt56+j/4lE295GzKVWoFP8/ChkescygCIgiANAW1pFqYWXUs9H7xaFIU2LWjLSdIpdcCn7kYwqDGAff/r1czzWdarTcLbD+rCOwDP05BSq+u+RpY2aMqgTduAbgIiRAqfUIW40sUJnFlCWwGapq0+od3ofW/uhrZtaG2NhLRlESIIZIjnh4RSUqh56JoeXYs1MyopIGYHoQ/4vZUCJecQ6E3r62OXMJe3x3gxPtS/A3YKITqUUhNNq74A/HdgZKkbt1TcfIvgg1fv5Zt3vptr/Mu56l++yp/f9peIT15F5aUnr3TzZrNYkZ1MYprmnCK76BXwpc9IdWi/t5nV/bTvOqWmBegca9lPYUcvAhYW6c37n+aghOk8bajjS58pZwJdRH+straAnUdz+katFk1BPXLdCK/HF8GYJmqOYGAwQRCuskEKhxH/eP8/8qnHPzX3yo76dMb+q0bq06MQnSYG6tMiyRpZ3rvtfZwtruLb3zyWD/0oEtKXXzLGFfMIab2Qp+uWG+m6+QbMqUmqxxzL7s/+LVPnvm71DWhZI8wloDN6mpSdxtTMaQEtJbgeOGF05UolFe3dkoStsBbSUI2xL835h4uk8dL6Dvd9g1lvNavmgRL0VRQtWYXnCVzfIPCj34klMliNy5wWoLQARUAgXNwwmgICNCUOvdBuCGjfR8qQEEVoGoTJBK6uo3QbiRbpCDcE18HQdJKWSTZh4egG3a0Z3MDDC3zcwCH0FVLNfEaiPvAzyj/X0ZuOafbVX0S58fUvYLrQWd3Rq1mkoxRUasv60Sz6r3wfMY1SagxACPEm4AdL1K4lJUj1ceV7H+VDf1DmG9et4+vf+QO+1ncV7/3Dr/Ch8/432l9cRtiSW+lmzs+CIntqtshOJKJItmlimiYFoZE2M3Pu9nClJDSSxjwiWIYzIyGr1SjJvPH56UZU6jrOe35BlILdvTb3P9jCnr02LS0hra0BrbloamsLaM2FtOYCUim56gP6SkGhqDM+YTI+bjAxac75eHzSpFKJLrof/tAQr33zCjf8MOUN29/AwHMD2FqSZCKBJnQ0IaI5zfMZ54XE2Bi5B+4n98hDUA3pbXsZv9v2ep5Pn8jgaIaB/hSTkzZIHZRGwoJNGwI2b/LZstHnqC0+2zYHtOUk1ZFNXPONrbz/x21YluTdl45yxWVjtLftL6StgX66b7iWjtu/i+44FM48m5HL3kP5lNPinqxFEqoQT0ZjWJRSWJpJ1siQ1FOzBDREmq7iCKSK0ipaspJMOkrlWFAXKxWd930/+n4ymZnSt44ze7BPcynahuBu+K8uEiH2va+K2tnVoWhONZketB+KeoqJhufZeEEC3c9gSshqkVVrSIDEJ8TFly6+8AhUMCuirYsofWQxQrthJ9iweA0cDxmEBKFCBkSuZekUupXAtNOYhkXWtuixTRIJnaStY5kalqFjGhqGMfN53T34FMdv7Wn6OtT0+4UyjH4DgY8beLihh+t7+GEQ1WZQjWxLEYluNJTSQUb2sTMpOlHQWjbdwCg1O+N2OVjK2+YvskoF9dXfv5p7d9/LhRvfzhV/eAnvefcWvvaVdr52+3v56n/+AVf97Ju854NFkpe8eu2cAOcT2Z4fRVkbXR2eB317mU7m0rRIODY/FgI0sf/JA7H2XSga0WenHn3269HnxtktLgpywJRKOg8+nOH+B1v4+W8mGM/eC9vuQl/3NGGlHQba4dkOqLVDtT6vdWD4rbQYOdrsHO2pNG05SVtrUBfgkehubQtoq4vxXC7EspYm4c33BROTBhOTBuPjkTBufjw+aUTLJgyCYP/fejIZ0tkR0Nnhs3NnjbM6SnR2+GRSFU4/PQRie7Pl4PSNpzPePU7aaCFzoD7UPcAJl6JdXqPtxz/gvFtvIn3jFwiTSSbf8GbGP3oRoxuO5fndCZ57Psmzzyd49rkEj96Z5CeFmUthW6tPoWi8oJBO/fbJaKDh3f+J0jSm3vBmRt51Bc7RO5boU1ibTBelqvvxNz+WyFnbNMKNUknKfhlLM2kxsiT1KIXDaCpOpVQUhfZ9gVJg24rOdkkqqV54jE6ziG74qmaz0QCj5mvcXIUOwnBmdH3DkqqRVjBf6VxdP6hrZ+OyZBhgz4p27y+4QykIAhPPM3G9NF4gCHwIVEhAZO3qeR4+NVw80AKEFvU+NyK60Y1LJD5DqZChIJQCPQgxpYaOhqknyWS6SPRkSGRTJDI2iYSJZUZC+SAPtemYIycUHR0aN0L7xLSUUrMEdyijngsv8PCkRxBGNxLT4ev6vBGx17VIcDvzFyhdEhZT2GW/LNi1wsfP/jifGPsE1+69hmv3XsM53edyydWXcuVVZ3HN/0rwtbvfzde+pLjyW9/jXZ9J03bKGr1IziWyvWKUz9Q4ATRGVaj6XfFcJ4Z9aYhuvX6Hvq84bx6B2yi2se9JaikeNzPrXLPP9lLC+FgkoBsjK3UjGjwYp28cMGEIv30qxf0PZvnp42V+6z2IOupuxPa7UKfuBqDVaOclLTsoB33k3Scp+AUqsjhrPwEwWZ+eUxqa2wbVDmSlHYY7YPdsAU6tnUTYStbM0WrlaE9k6cikaG8LpyPgra0hba0BY/l2fuW1RuJ4wpg1n5g0yefnOMUJSWtHibauMm2dZY57SYWWtjLZtgqZXJVUS4VUtkoiUwXDxZMurvTwpIsnPZzQZdypsDV7DrBrub+GmEUik0kmzr+QifMvJPXbJ+m89SY67vg+Xd+9mc3Hn8hRF17EyW96A6ruwakUTE4ZPPvcjNDu7PB510VjtLXtc9mTkpb7f07PdV8n+9ijBJkMI5ddydg734Xf1b0CR7t0NETLfAI4yuUV093oqBmfZqXqKYR1IWMIA63eHd+IjmpN3fgaGpoWLRNAtVxha3rrLAENM1o2kFEqRyat6OqQ2JZ64WhjI6DUCKJkMtDTs7+IbqZZEC/EvmV4w3C24G62tpo1HknMjnQ32nmAQZ1mwc08gjvK4TYIpUkYJvG8HK4nqHkKx/PxZYDvR70ApmajA7YKsA1JMiFIJAzMXBojl0ZP2ehJC6GtbNCp8Tva9/fRzFyi2wu9mUk62MYqyaEmssn78j7L0kRXlJcCX1+qRi0152w9h09s+yQiJbh58GZuHbiVn4zexfbMDi750CV860Nv5ZYvwjcefyvXfERx2TH3cunncnRtOkwKZTROEgdL8yhczwflzR4IAAufFOazxXkxjxciCKJQhmWt/Qj7IWZs3OD+B1v46aM+D449QrXnHth2F7zldwCkRI7TO07ljI6LOa39dI5OH71f3nyoQop+kaJfpODnKdTnRb9Ivj4v+HnyXpFJ93kK3mOUwjyOqkzvw6lPY9M7NcCpC++xdthTF+DSBMMBw0GYNcyNNYztNXTLQVgOOcNB6Q5ScwiES4BLoALyQJ7IsmgWCijUp3kQCCzNoicbOzWsdqrHHs/eY49n4MN/Rvsdt9F1601s/ZtPs+l//jcm3vJWxt/2TtxNW+hoD+hoL3PG6eU59yM8j/Y7b6f7+mtI9u7G61lH/0f+nPHzL0Sm16bDz0x+chh1RqJhasYBCWDqns5CCBr/Gv7LB+O5rKFNiyXfB8+PBveZJuRaJOmUxD5Q237XjQRtI52juzvqiVzKqpONXtyFVP2+SdONtJLG1Ih0Vyoz2zdsWRf7GdZfI5RCF4JZR2oxHfFV1AdNhgZChuhGiGZoiEwLpNPR52Saa7LX9kBF93KyGEF9o1Lqs3OtEEKcBhywybMQ4tXAR4F2oiB/K/BvSqn/sYj2LJp1ifV8ZOcf84Gjr+aHIz/khr3X88XffoGM8T+44E8u4Mv+W7n78y1c+9R5fOuSkItf+TSX/4VGV9cy9xOsdtaaKHULYK2wg8sawfMEjz2R5p6HFPf0/YqhRJTGwZmPA2CR5uTcKbyi+/c4vf3l7MzufMGKjLrQabPaaLPagKMOuC2+9CkFJQpenkJQnDUv1ueTbpGJWpGC9wzFII+vXJJGkqRhkzQtbM3C0mxsLYmlt2JpFrZm1+fROkuzsHV71rroNRaWbjftY+7tDWFQKVdpyR1ZYxNW6ry9FIQtLYxdcjljF19G5tFf0HXrTXTfeB0937qG4ulnMnbhRRTOfvV+gwf1YpHO79xE97evx5wYp7rjJez+9BeYOu/1K+8StQgaA9V96U9HoG1hTecnG5qBKcyDEsMHQ8MBrTEQTSooVaIIdzKh6O6cGVB4QE1qRIWVioRhV1cUiV7J0u37J03vz5498JKXRI/3LdSw0Hwx2zbNhZTogN64W7GsNSugD4bl/n0vxuXjTxZY97AQ4l8W8b6XAY8ppT4HNCovPiqEeE4p9f1F7OegSOgJ3rrhrZy//nx+VXicG/Zez/V9N3Cduo6zP/5KPj92N7/7h5dy7c8v5qb7Qt7xlmGueH9p3jKyMTFrib5+i3seMPnRs0/yO+9+gs13w9EPww6JrhLsSr6MczZ+mNPbT+PYluNmDQRaTkzNpN1qp91qP+DXDE8NHZoyzUqhl4pYw89hDQ+R29OLPPU0OPOk5X/v1cOKnreXBCEon/pyyqe+HHNslI7bbqXze7ew/ZN/jtfVzfhb387E+RciwoDu678LVcN3AAAgAElEQVRJx/dvRa/VKL78LHr/+vOUTjtjTYiP5hLbAKjoutdutU/fHL7QjfEL0ezV3BDGSkbuFQ3XsumPap+OTMMAXVfoGhiGQtcUm9bLebyh56EhoiFK5evsjCKsa9VRpfFhrYHfV8zcLMkvTwjxGmDdIl7yP4G+xhOl1ONCiDxwSEdzCCE4qfVkTmo9mT91Rrl54GZu6b+Zn4ufcdSnt/DHz3+Dka9fwPW3fYBv/4fiHW+f5D1XjM1bDSsmZjVSqWg88IjJ7U8+w6OFhyh1/hQ2PQCn+ghlsE0/mXM2fICzek7jxNyJ2Poi67sfTBflakNKjMkJrOEh7OEhrJEhrOH6NDSINTyEXqvOesnw+z4I779ihRq8IqyK8/ZS4Xd1M/zeDzJ85fvI3fczum69iQ3//mXWf+3/1rcQTL7+jYy+60pqO16yom19IRriWSoJCgzNIKknSRkpTBEVOHmh6FwQQBDWM/nqqQHAjEeZmjEsU6qeBmyAoSlMPRLIhl4XyHpjrLuazo6Ya3hNg6fGIZ06gO54359xZkomYd26SEyvVREdc1ixmEGJz8+1GGgDsiyisItS6jdN+9WA9wEucNOB7mOp6Up086Htf8h7t72PH4/8mBv6rue/r7+T1Cfv4R1P/wPeD97P9Td9jFu+2xEJ68vn9iKNiVlppITfPmPyvV/u5r6RhxlK/By1+T7YUQOlsV6eyFndV/KaLafwsraXkdSTB77zwCf1zNOkf/0r0k/+ivQTj2ONDBNmsgS5HEGulTDXStCSI8jlose51mhdSythfZugJTc9KOyQEARY46PT4njWNDKENTKM1oh2NV6SbcFbtx5302ZKp70cb92G6Pm69UxlcqQ2b1xUFGGtsxrP20uCYVB49WsovPo12P176bjtOyAEYxdehN+z+r5hpRS+iqq+Nm5mbc0iZ+ZIagnMfdwx5uP/sXfn8ZFc5b3/P0+vau2aTbN6xh7v9owde8BgbDO2MQabxcBNAiYQ+8KPJITFJOCwJSEBguMbbliScG9uboCwXANhc8BAAmZswMZ4X8AL3o09+3i0S73U8/vjVEstjaSR1JJaUn/f8+pXtaqrqk9J06eePvWcc8pjNxdLIdUik4Wmxijuex5aistTbFcO/lQOjOftO/R4QXQuN/djoIlM03S+1rUB145ZVyJ0VrzB3X8w3Tc3sw8CbyMMAHCRu89gCP7ZlUlkuGjNRVy05iJ+2fVLvvLU/+Ob/p8Ujn4/Zz5xFZmfvYkvf/Vv+fo3l/Pbr97PG1+/Z9whlUTmizvsP5Diuluf4fon7uBhv5nC2p/A8h5YDh1DJ/Jbzb/LS44+leeuPI2WdMuUj5169kAInu+7Oyzv/xWJoUEA8itX0XfyVp598UUkentJdR8k1dVFet9eGh75NanuLpIDEw+kX8rlKLa2jQTg7e0VQXcbxbaOEJS3tg0H5VFj07hXchsaIrN7VxwkVwbN8fN9e7HS6BEbCstXkO9cw8Axx9N19rkMrV5DfvUa8mvWku9cM2lns2JP3+JvlZ+hhVhvz5ah9UfwzB+9o9bFGGW8zoO5VI72VDuZZIZMIjOlMYbLfcrLw84lk9DSPDJ284Jq5C0WQxAdRWGUqs7O0BKtIFoWMJtqr0czu97dz5v1AoT7UJcC/wS81N1vGmebtwBvAejs7Dz9mmuumfb7dHV1kU7OLPn+YOEg39/7fb635zvsKx5g/bNpVtz+u9x9+yfIRG287GVP8ppXP0pbW2Hax55rxWKB1CLqPDMbFsM5hxGdEvT3pxgYSI1ahufJ4XXdg0McLB2gO9pPr+2jP7GPwdRehjJ7KDbsoZTbDW1PQO4gALm+zRyTOp1zNhzPmWtOoC09xUmLSiVanniCjgfup/3+++l44AGadj4DQJRM0r15M88efwIHjz+eZ084kcGVhx/lIpHPk+7pIdPdTbqnm0x3T1j29JDp6gqv9XST7i4vu0n39WET1EtRKkW+pYVCSyv51hYsn6dpz16yB58dvV0iwdDy5fR3djKwchUDq8JjMF4OrFxFNOkUapOLShHJZIJc0zRa92Pnnnvu7e6+bcZvvgAcrt6ejTq7u6s7TOCSXGSdoqtUKBZIVnSmMxiewKY8osZkM8VWckIKR1kibn2e1xbmKegdHKQ5mx3pRFcemarcHL5E9fb20txcX52bF+M5T7XOnnJAPdfM7D+ANnc/Z7Lttm3b5rfddtu0j/8f3/4Oa5atrapyLkQFduzdwdce+Bduzz9EQ8FY89BLeOzGq8h1n8TvvmYfv/e6PXS0L5whu+et09YCMt/n7A47d2W4654m9h9I0deXpK8vQV9/kr7+BP394efevuTI834jatgPzTuheRe0xMvmnaOfN++C7KFDeVmUJltYRWNpFc2+iibv4JwNp/HyE09hTePUxsNNdnfFrc/x41f3DecJF5Ytp+/krfSefAp9J2+l//gT8OwkU7jPplKJZE83qa6u4VbvZFdYproOhpbvroOkug4yRAQbjgwty5WPFavmNK+yt6eP1rZmTp1Bp0QzW/QBddlU6u2Z1tnf++73pjexyyJXiAoMlQbp7elh04qjZtR5sJzGUSqFIDSTcVqbfXjykwUzYJN7SOUoFiGK2PHYY2w/5hjo6AijdFTxZXcx2bFjB9u3b691MebVYjznqdbZNbnJY2YZd8+PWf0r4M21KM9UpRNpLui8gAs6L+Chg7/i2z/5GN869ntw0vdo3H0an7vhfXzlGy/nta85yO+9bg/tbQsnsJbZ4x5Gyrj9zmbuuKuZ2+9qZvfu+AKQGoTmXTSs+A2Z5c+Qat9J4ohnsObdRI07KTbsppDdjaf2wjhzJeWsmY7USpZnl7Oq4Wg6G89gRXYFKzIrWJ5dMfy8Nd066jbvYb9ERBENjz82nLrRfN89NDwRRmH2ZJKBzcew/6Uvp+/krfSdvJX82nW1axlKJim1d1Bq72DoMJvW4xfGWlms9fZCV/ISg6VBMok06xrX82jfI7Rn2qe0b2UaB4TvkC3NEU2NCyiNY0zwDIS6paEBWlvD8umn4aijaltOkSrV6uN2u5lt9dHN42uBRZOLd2z7ibzn5V/grU8/xPXXvo/PrriD/b/z23j/Gj5789v4yhvexOte5rz+tXtpa1VgvZi5w2OPZ7n9rmbuiIPoffvTkOmh5bibWfWSG2lefwv7snfSFe0HRiYmgZDz2JFZFgfDy1mR3cSK7EqWZ5azIhsHypkVLM8un14HwUkk+npp+uV9I7nPv7yHVG9o6S62ttG35RT2X3hxaH0+4SQizSAph7fo6+2FxN0ZKA1gZqzKrqI51TylcXLLE5+Ux9xoanSWd4yM21xThwues9nQ+pxKHTqDoMgiV6uAuoXQqeXTAGZ2OvDfgPfWqDwz1rTuWF7+R1/ndTdezz3f+jD/67id/Oj8DzC4/a/5v/e+li/98Vt54eZjOOn4fk48vp/jjxsgl4sOf2CpmSiChx9p4Pa7mrnzrmbuuKuJZ7uSsPxBWk74Pm2//VNWrvoF+xIP0oPTA2xqOpKzW89kY9PGkUA5E1qUOzIdVY/5egh3LJ8nkc9jQ4M0P/0ky266laZf3kPzvXfT8NgjmDtuxuBRR/Ps+RfSd9JW+racwtCGI3QBk5lYMvV2rQ2WBilGRToyHbRn2ietH8ZOv92QdVYsi8g1ONlsDT/KMw2eRZaoWgXU7wfebGaXEkYKyQF/CnymRuWpWu8553H0c57Pl/71f7PvM1/g02c6n996DYOnfp7/6l3HD545Fb5+Crb7FNanTuCUdas56YRBTjqhn2M2D5LJLIxc9npULMKvH84Nt0DfeXcT3YUeWH8Lzcf/jNxlN9HQdhuD1k0P4KlmtrRt5VVtb2FL21ZObjs5pGD095Ps7iKRz5N4dhAbGiKRf5zE0AMkhoZCADw0OM7zIRJDQ4d5PrJ9Ip/H8kPjdtwrNjfTd9JWnj33RfSdfAp9J55E1Dz1UT1EJrHk6u35Vs6Tbko1sza3lkxi/CblwSEoFsNoHOXptxvjNI6aTP7nHirKQiFE+OVejQ0N0NISlgqepc7VJKB29y8DX67Fe8+lKJfj6T++goaXXMzfXf0RrvrePfzrSzfwk1NXcveJv+SJY79PRImngKfyzXxn11b4xqkk9m7liNSJnLp6E1uOc046oZ8jNw0ujPy3JahQhAceaBwJoO9toL/5AVh/A43H/ZTEC34OuV8D0Iexuvlozm67gC1tW9jStoWNTZuG85ezTz5B2399i7af/YTme+48ZGi2w/FkiiiTIcpmibJZPJMd9bzY3hGeZxuGt6t8HmUb8EyGA54n81vPY3DjkQuo55EsJUu13p4PkUcMFPtJJ9Ksy60jlzo0xSqKoH8gTKiSa3BamkMAPe8jxU0WPHd0hGU6XVdTVotMxXQmdrnD3U+by8IsFYObj+Ghz3yW5d/5Fu/4p0/yJ98Mk4v1trdw++lHcMcxbdy12rnjqG5+fcS/MUQvjwOPRwm+te94+PapJPedwsb08Zyy8mhOO7aJE4/v54gNQ4qVZiCfN375q5EA+q5H+hhaeSus/zkNW2+ieMGtkOwDIJNuZ0vbVra0vZgt7Vs5qfUkmlIVowwUCzTfeQdtP7uBtp/dSMNTTwIwsPkYdl/6+wytW0+UyeJxUBzFAbJP8Hy2vjWpc57IwuPuDJYGcZyV2VU0p5vHHTN6YDCMzLFiWcQzg86aznm+Y1mexts9fCFX8CwybdO5mm80s3+d5HUnTPJyH/AVd6/v2U4SCfa/4tUcuPBico8+TOOD95N76AG2PXg/Z994K4lCGLO60NjI/aeexG0nLOPOdUl+sWaAB1f+mC77Mo8CjwLf7FkD3z2V9P6tHJE6gS0rjuGMzZ1sOXGQ1Z0F1XNjDA4m+MXtIXi+/e4M9+57hELnT2HDzaTPuZnCy8KknwmSbGo5lq3tLxtufV6f23BIx6BkdxetP7+Jtp/dQOstN5Hq6SFKp+k57Tns+e1L6T7zbPJr1tbiVEVkgRoqDZGP8nSk22nPdIw7e2GxCANDRnOjs3J5KXQqfGaeCpjPh8lTYGQGwnIArYuKyLRNJ6DuBl4LNAAHgS6gnTCDYg9h1qxlhI4rf2FmF7r747Na2kXIs1n6TziJ/hNOGl5nhQINjz1K40P3k3vwAY566H5O/uKt/Pd4Broo28BTJ57AbSd3cvsRWX7eUuRXTY+x5+j/4hEr8gjwrYEmuG4r2QNbWZ88gZOWHcsLjjqCU090Vixf/N9logj6+hP09iaHHz29SXr7wvPu3gTdfQW6+0t09RfoHSzSO1igd6jArkIv0dp/hvU/xy66DU+F2fqWpVdwSsdWtrS9nK1tWzm+9YTxR9VwJ/vk47T99EbabrqR5nvvxkolCh3LOHjOeXS94Bx6nvM8jYwhIocIedJD5JI5VjeuJpvMHrKNO/T1G8kkrF8ThrmbF+WWaAjB85o1YQZC5ReKVG06n6I/Ay4C3u/uw9+hzWw98BfA1939B2Z2BPC3wN8ReoDLGJ5OM3DscQwcexy8LF5ZKtHw5OM0PvQAuQfvZ9mD93PJ12/lNf0hFSFKpzl49Gbu2rqOX2xs4sascd/qXexc82UeSfXwCHBtfwJ+cBzZZ7ewLnECx7ZtxijQnOsikXASBolkWCaTTiLhWMJHv5aAZHn9qO3CncCERSSSkDAnkYRkArCIRNJJWrxN0ilFEd39RXoGCvTEwW7fUJG+fJ7+QoHBfJ6BYoGhUp6hUp58qUDehygyRIE8kQ1BciiM65yKl+WfGwehdexwuKMlSXNc8wmcuuzVcevzVlY3rJ54WKpigea77xwOoht+E9J0+o8+ll2/dzldLzgnfClSzo2IjCPkSQ+QSqRYm1tL4zh50hA6HBYKxvKOiGUdPvdVytBQyIeGkZZoBdEis246n6grgBeMGYMUd/+Nmf0R8GPgB+7+pJm9EXhkFsu59CWTDB65mcEjN8OFF4d1UUT26adofPABcg89QOOD93PO927nvO4u3kuYkKP/yCN58OTnctOR7VzfkOGelr083XIzjzZ8lUen8r5R/ACYj5nTM/GjIQ3FBhJRlkSUJUmGpGdpIEtLIkPGsmSSLTQkl5NNpcmlMzSm0zRm0jRm0zRnw7pMIkMmkSWTSA8vk/kkL1h31oQ96MuSXQdpu/mntP3sJ7TechPJvl6iTCakcrz29+h6/tkUVisvWUQmVh5P2nGWZ5cfMulSWakE/YNGY4OzbnWJ7KEN17OnHES7h5kHly9XEC0yx6bz6Vo7Npguc/dS3DJd/rlgZvurLl29SyQY2rCRoQ0befZFF4Z17mR27yT3YAiwGx+8ny033Mlp3zrA2wA3Y+iITTx94vncsbmTXY0NpFdtJN++jEJDMyVP4FHoSV6KDC8ZpQjcE5RKIdUiioxSyXC3+DlEDlEp/BxFRlSCyMO+UcnwKDGyXWQYCVpyKVpzKdoa07Q3J2lvStHRkqSjJUVjbu7S9HY9u3P8YNqdhscfpe1nN9L2s5/QdN/dWBRRWLacZ899EV1nnUPPtucR5WZncpWlyt0pepGiF4miMAqAu4fW/3IVUfnHLc9AARg2fJfAyv8sLCtfr3xNZKEq50m3p9vpmCBP2j2M3mEGazsjmpt8buq+sUH0ypUhrUNBtMi8mM4nrdfM/gL4mLsPt2WaWZowPml3xbrjgLn8/l2/zMivXkt+9Vq6XnheWOdOet/e4VbsxoceYMMdv2Tz9340atcokyG/qpN85xoKnavJd64e/jm/ejWFVauXXDBphQLNd90+HERnn/kNAP3HHs+uN76JrrNeSP9xJyiVYxLFqEjBC0RRFAJjh2wyS1u6jYZEA6lECsNwHHen/A93yt/Ay+uiKKL8zz0icg8/eXg4UbyNh3VEwwF5OGY4XjnQjjyiv9g3XNaK2J0xt9IqXhn9tJKNeWGigL4QTZ5yJEtbMSoyWBokl8zR2dhJQ7Jh3O2G8mGUoWUdEcvaZ3kMafeRnGiz0AKtIFqkZqbzqbsS+BZwhZn9ktAxsQM4EWgEXgFgZh8C3gl8ZVZLKhMzo7ByFYWVq+h+wTnDq5PdXXT/+l7W9hfJ7N5FZvcu0nvCsuW2W0jv24tFo2dtLLa1x0F2HHB3rqHQ2TnyfPkKajOzwNRlurpYdvOttN30E1pvuZlkfx9RJkvPtuey+/W/T9eZZ1NY1VnrYi5IxSi0PJe8NByEZpMZWlMtNCRzpBNp0pae15bjyiB97POB3j7W5taNbFsZRlfcUKsMrn10qD3q56ji8xARjdqmvJ27k0010JxsrvbUZJGpzJNe3bCaplTTuJ+FcnpHQ9bZuL5Ew/jx9vSNDaLLLdG53IKvl0WWuikH1O5+XTzV7PuA5wGnAzuB64CPuvv98aZfAL4JPDXLZZVpKrW20XPUZromGp+4WCCzby/p3bvjgHvncOCd2fUMzXffQaqnZ9QunkySX7GSQueakaB79Wryq1bHrd5rKDU3H5rPMWaq7DDj31CYTTB+PvlsgvHzfD7e59DniaEhbGiQzO5dmDv55St49kUX0vWCc+je9ly8YWm1vler5KXhANoc3CBjaZqTTeRSjaQsRTqRPiQf1B3yhTCTWykCPP5zj2kaTiQIHV4ThE6viZndCKhMCRnbsmwkJmwdnEtDhTwN6clz9GVpGSgNEHk0aZ60OwwMhhkO16yKaGmehfQO95DOUYxHb2puVhAtsgBN676Qu98LXHqYbdQZcbFIpYfTR/om2CTR10tm924yu3eS3jM68G765T20//i/SBRHD9NXamyi2N4eB8GTT5U9VcOzBGZGJkwZnjylIUeprX14/f5lbZTOv4iBY49XKkcs8ohCVAjBMxDhZCxNY7KRhmQD6USaTCIzbvBcKIRreTEKYa0ZNGSdto6IbBbSqfB3Dfn3Ibc+isJ+hWIIvIslyBeM0f9VHK9IskgkwOzQAHwuGsPdRz8iH7vOhp8PqyhHlDca9V+rLuSjPEOlIdrSbXRkOkgnxp+6MF+AwUGjoz1ieYdXl3UxXhDd1hbSORREiyxI0/7Im9kq4IXACmAvcKO775ntgsnCEDU1M3hUM4NHbZ5gg4jUgf0jLdu7d5LZvZtU18EQBI+ZNXCi58MzCI59LZvF05lpBcb1Pmtg5FHoNBgVh9MUUpaiIdlALpEjk8yQTqRJ2qEX5uEZh6M4WZpw27q9zWlocNIpn8K8D2O/OI3+uRx4D3eCjQPwYhGKpXIZjELx0AAcs4o86hAI9w+MDn6dMX0iozE/e4hJEgnCcJDmpFMVrekJSCV9VEBvFrYrP7d8kVSz8lSXsmJUZCgaIpvIsKFxw4R3QspThmcyIb2jqm4ohUI8CH+fgmiRRWZaV4Q4P/q9QJqR9pq8mX3M3f9qlssmi0EiQXHFSoorVtJ/0pZal6auuDslL1HyEpFH9BX7wCFhCXKpHO2pdtLJkPM80SxthWKY8rjcZS+bdVpbnVyDk0lPJXievuGgdbhI4925qMxrHvOoCMCf7HWWd0Sjgt9EAoyK4NdGB8blR/UnMgvHkAUn8oiB0gBJS9KZ7ZwwTxpCIB1F0LkyorWlivSOchBdnuZ782YF0SKLzJQDajP7Y0Jnw38EfsHIzIjPBd5hZnvd/Z/mpJSzZKA0QMYyE96yE1mIilHoJBjFI2AYId/ZMDKJkLbRZSnWNqwhnciMGzyXSiPpF+WROtIZaGmOaMyNtDwvxAyZQ3Kvo9JwbkYy4XS0FEeiZpEZijxisBRmq12WWUZrunXcuzgQGpIHhoy2Fmfl8mjm6R3uMDAQlp2d0NoKTz6pYFpkEZpONfBW4Fx3v2vM+q+Y2b8BXwYWbECdTabIFVfSW+ih2/tJpZxsOjlu3qjIfCu3NJdbm41wjTUz0omQrpFNZMkkMiQtSSqRGnWx32O7ycUzs0VRCJ4LhRA8exQavZoao+GW58z0smimb2ySsnso2KjcjIr14zXtuY+/PpEYydmA0FRdzh+ZbP/KpupDmrQ13nW9qpyY5XCBdDm9I5WGI9aFL6MzNjgYRutYtiw8NNSdyKI2nU9wYpxgGgB3v9tsYUelmbTxW8c2MVRoobe/xL7uPAcH+tlf7CWZKJFKGblMWq3XMmcij8LIGl4k8orgzwkzPSbDzI/ZRDYEzRaC5srbzcP5x0UoRCFYLqdA9PbbcPCcawjj3mYzoeV51hu8hnsdFsYPfM3Cm1YGr6lUeJR/HvsYm5MxlVyNxx6DI4+Mf48VAXr5UflzOfAuxYna5Uf59fIxJgriK89lbPAui467M1gaJCKiPd1OW7pt3Ls7ZQMDUCwZq1ZEtLVWMWV4oRAO1tQE69Yxt1Mmish8mU5AnTGzFe6+b+wLcUfFBV8rJJPQmHIacwlWLW+gVGpgcGgZB3vz7Ost8Gx/NweiPlIGDdkkubRar2V6yrMIllubyyNqGEbKUmQSGRqTjWSTWcyTJDxFglQYVSKCqBg62BWBYrmZumJ4iWQSkkknlYRkJnSmSyadp/qcDWtKpNNz1NAVRaE1rVAYKUh5SuNsdiR4ntUk5WmqDMKna7JAvNz6XRmEJ5PM3uDCMp/KLdIRER3pjsMG0sViGFO6pclZtSJ8xmakMk96w4bw+RGRJWM6l95/B3aY2UeA24BnCTnUzyHMlPjV2S/eLMvnqUwUTSahqRGaGjOsW5WhWGxiYCjiQO8Qu7sH2N/TCxaRNGjKpsnOuCaVpcrdKXiBQlQgihyPkqQ8Q9oaabDQ0py0FKlEigQGkUEEFCGZGgmOU6mRZTmbIWE+bgPueBJPU93oAmOVSuHzUh5mI50OAUBTE2QyzElvxVoqt6grd3XJcncGo0Eij2hPt9Gabpv0jqQ79PUbqRRsWBvR1DjD9I7KPOnVq6GlRfn+IkvQdALqvwBOJuRKjx2d9br49YUrlQqBwOBgCBLMQgWXSoWLaCpFKpWgJZWgpSnHxs4chUIHPYMFnu0dYmd3L7u7+iABDYkkjdkM6ZQqxXo0MhV3CTDSNNJYWkY2maWjLV0RHDMmOB4dIC8oxWIIoEul8HM6HTpINTaOBNAii1A5kC5FJdrTbbRl2g8bSA8OhQ68K5ZFdLRXkd6hPGmRujGdmRKHgIvN7EXA+YRxqPcBP3T3H81R+WZPMhny1WAkh7JQCIPnDwyEiq98qzdurUonkyxrTrOsJcPmNS0M5Ut0DebZ293P7u4+CgMRuJFLpWhsSC+8IElmxfCkKFEBhzAVd7Id8xxJz5JrMJa1O02NTjK5SHJrC4VwoS93CMxkoKMjNHNnMrrwy6JXGUi3pdtoz00cSEcRDOVDjrQBzU3OimUlMjOdDLOcJ93crDxpkTox7aumu/8Q+CGAhd5SZ5vZOfFrN85u8eZI+dZuNhsqvLJSaWRauMHBUCEODIT1ZmSBVekkqzpbOXFtB335At2DeXZ1d3Ogp49CCdKWoiGVpiGbUIC9iBWiAvkoD+4kLElTqomm7AqslCUqpkk4tHeEqYWz2YobNsXi4fMz5lt5usN8fuQLY0MDrFgRlpmMUh1kSRkoDVCMiqGzYa6NTOLQyLhUgqG8UYrCzJytLeHz3JCtokW6VIL+/nBH54gjwh0eEakL1TZDpYDyhC5nAIu79qjMoawMtMsdkQqF4UDbBgZodqc5CWuXt1Na7vREEc8O5tnd20tXf2jtyCTSNKRTC3aMXwlKXiIf5YdH38gmsqzIrKAh2UCKDINDCaJByDU4y1aE4bKG/57lOx3u4UtaeeSI+IvYhCNHwMSjWowd3WI63Ec6ELqHY+VyoQU6m2Xux8wTqY3B0iDFqEhLuoWOXMchgXShAPlCGBUnnYb21ojmJiebrfL7r/KkRepeVQG1uxeAcwHM7LFZKdFCVB7uq6EhVJQQKs5yi3ahQHJwkPaBAdoTSTZlM+SXFekZHGJvfpADA30c6E8RlS44Xc8AACAASURBVIxkIkE2laQxmyKRWCAtmHWosjMhhKm5W5LNNKWayCRDZ8LBIcgPGlESlneEC+/wLeAogv7B8H8gmw2TMjQ1jU6VGG/85coRJMr/h8ojSIxdujNm7u2JRRH09ITnY0fgyGQWTmu5yBwYLA1SiAq0pltpb2gnmxxJscgXIJ+3+Puus2JZ+EI8ax+LgYFwHVi+PHxpVbqUSF2azU9+FSPcL0JmI4F2Lhc6cAG4Y8Ui2WKRbD7PisFBov4+8gP99OcL9AwW2DdQ4EDPICUzEpYglYJsOkE6kZp0+CapTrkzoXuEOzSmGunIdpBNZodbskolGIynE25pdlavCpOhWHkIu4G4U2sqBe3t4QvWRPmR1QzjVmmiYLxy+dRTIVdzKY7AITKBodIQ+ShPS7qFNQ1ryCazozoVAjTmnGXx53hW+9aW86RbWmD9euVJi9Q5RW+zzSwENOl0CLTb2kgADVFEQ6HAskKBjYODeF8//d399A4UeLa3xIGeAn0UyCcGSWeMdCrMkpdKpEhZSuNhz4C7k4/yFKMijpNNZGhLt5FL5sgmssO/0+E4uRR+7yuWhdbo4YtvPh8eEC6ebW3hbztfQetUAvNkcnSaksgSNlQaohDlaUo109nQScYaGBqCnshIGLQ0j+RDz3r3AOVJi8g4Jg2ozez33f3z81WYJS2RCC0YcUdIWwFN7jQVi3QWCvjgEEPP9jPYNcD+gwV6+yKGogL5RJ58ZhAyEQk33Ait2hYCbavTlsjIIxwfznku/1xe11foxSxBc6qZpmwTmUTmkB7+xSIMDoXfX2tLRFtLRENDHCeXStA/FJa5XMiLbGpS5z2RGspHefKlIRqTTSzPdGKlHIVB8CS0tkY0N0Zks3OUvuweAmkI9UFrq+4Eiciww7VQvxNQQD1XKlqzrbGRhmUdNADtxSLRUIF8b56BAwP07B+irycfpqy2Ip4uUMgUGWAA95CO4IQ84FQiTFe9ULk7ERHuPioAdnx4XZkBOLiFJRXLJEmSlsAsQdKSJBIJUpbELEGPdbOucT3ZRPaQLxzu8VDkkZHJwOpVUTzcXeWLxfB3WbYstPrOeOwsEZkN+ShPoZQn6Tna2UA2yoVOhW2znA89kYGBUC+Ux5PWF2sRGeNwAfWpZlaal5LIiFSKRCpFQ1OOhs42OoBSvkS+r8BAd4HuPYMMdQ/iQ3lIFkkki0TpEkOUGIzyDEaDcfAZt9YW+yZ8K/cwLfaYteNenca7Xvk468vH9HF2SFAOfC0ExYkkSRIkEsnwWiKFYWFWQTMSJLBxlpPZac/QkBw9LXS+EIbIShi0tUa0NkcjM0cPDUF/PjRrtbWFtI7hpmoRqZV8VGB/Xw8pb2RZej0dTQ20tTq5hirGiJ6OyjzplSv15VpEJnS4gPpZ4NopHMeAV1dfHJlIMpMkl0mS62hg2caWMIbqQER/V4GeZ4vke4fIDQ7QXMqTShTxRJGiRfRbL52ZlZBIjBM4B+OtH3fLcYPsiY9pZiE4tsTwcj5FUUjpKBZDx6S1naE1K5kktDb1DYWNmprCxbKxUUNdiSwQZpCKGtjQ3klnewMNWSeVmqeJk0qlEEgrT1pEpuhwAfWT7n75VA5kZi+chfLIFCWT0NicoLE5y4p1WYrFptDQ2uf0HChQHIwn8ujeSaIvjI1siXhM5HQKEkksNTIHdjlWroyZy0+H1/kE242zbjLuk/88420q1vf0GclEGGe2tSUe7i6KQmt0OaVjxYqQ0qFptUUWnGw6xdlHriLZmGXWBpEqj4pTHq6y/BgrkQhDYSpPWkSm6HAB9YuncaznVVMQqU55BL+mJmPlqgyFQoahoSae6kmx/LSNRIWR6dajwTwMDhD1D4JHcWpImG49Ij6Q2fB1JoqvZWH0tnBx8fJrFdei8a5L481pMt5cJWMbhsc2Zht+2H3KP1vCWb8mDJOVSBDyonsKIykdra1UP5ODiMwlA5LJKX5GxwuSo2j0xEruI5N3ZTKhnisvk8lQP5SX5YmVRESmaNKA2t33TvVA7r67+uLIbCmP3JdMhrkGIBk/xoyVOt5060N9I7P8QThIaiTQPpyxLcfzfV369QFoSufDKB3uoRW6szOM1qGUDpHFI4rCnbZSaaR1eTyVk29VVn7jBcoiInNA41DXu2lMt05//8gkI+WLU/nCVRE1z2oAPXYSk8qLanndRPuMN3uhiCwOlXVMLqfWZBFZ0BRpyPimMN36qEC7fHu1ct/yPpXBcOWj/PrYi2HlunKreLmVPJE4dFme9KS8fPpp2LRpzn9FIjKHkkk48shal0JEZEoUUMvUTTLd+nCLdj4fAu3BwfBaZSt2ZRBcbtUeGwyPXTfTcoqIiIjMEwXUUr1xplsXERERqRfqoSEiIiIiUgUF1CIiIiIiVahJyoeZvQx4K2EMtybCjIx/5u731KI8IiIyOdXbIiITq1UL9eeAL7r7+e7+POBu4Edm1lmj8oiIyOQ+h+ptEZFx1SqgvtHdv1zx88eBFUxvZkYREZk/qrdFRCZQk4Da3V89ZtVAvMyO3VZERGpP9baIyMQWSqfE5wODwLW1LoiIiEyJ6m0RkVjNA2ozM+DPgQ+6+55al0dERCaneltEZDTz8hTQtSqA2ceA9e7+hkm2eQvwFoDOzs7Tr7nmmmm/T29vL83NzTMu52JVj+etc64fi/G8zz333NvdfVuty1GNw9XbqrNnrh7Pux7PGerzvBfjOU+1zq5pQG1mVwDnAq9x9+JU9tm2bZvfdttt036vHTt2sH379mnvt9jV43nrnOvHYjxvM1vUAfV0623V2dNTj+ddj+cM9Xnei/Gcp1pn1yzlw8zeDFwE/I67F83sKDN7Ua3KIyIik1O9LSIyvlpN7PJa4APAZcCWkI7H6cAa4Ie1KJOIiExM9baIyMRqElADX4jfe8eY9X81/0UREZEpUL0tIjKBmgTU7p6uxfuKiMjMqN4WEZlYzYfNExERERFZzBRQi4iIiIhUQQG1iIiIiEgVFFCLiIiIiFRBAbWIiIiISBUUUIuIiIiIVEEBtYiIiIhIFRRQi4iIiIhUQQG1iIiIiEgVFFCLiIiIiFRBAbWIiIiISBUUUIuIiIiIVEEBtYiIiIhIFRRQi4iIiIhUQQG1iIiIiEgVFFCLiIiIiFRBAbWIiIiISBUUUIuIiIiIVEEBtYiIiIhIFRRQi4iIiIhUQQG1iIiIiEgVFFCLiIiIiFRBAbWIiIiISBUUUIuIiIiIVEEBtYiIiIhIFRRQi4iIiIhUQQG1iIiIiEgVFFCLiIiIiFRBAbWIiIiISBUUUIuIiIiIVEEBtYiIiIhIFRRQi4iIiIhUQQG1iIiIiEgVFFCLiIiIiFRBAbWIiIiISBUUUIuIiIiIVEEBtYiIiIhIFRRQi4iIiIhUoaYBtZllzOwqMyua2aZalkVERCanOltEZHw1C6jjyvgGYA2QrFU5RETk8FRni4hMrJYt1M3AG4DP1rAMIiIyNaqzRUQmkKrVG7v7fQBmtr5WZRARkalRnS0iMjF1ShQRERERqULNWqinw8zeArwl/rHXzB6cwWFWAPtmr1SLRj2et865fizG895Y6wLMNdXZVanH867Hc4b6PO/FeM5TqrPN3ee6IJMXwGw78GPgSHd/fA7f5zZ33zZXx1+o6vG8dc71o17Pu5ZUZ8+tejzvejxnqM/zXsrnrJQPEREREZEqKKAWEREREalCPQXU/1zrAtRIPZ63zrl+1Ot514N6/dvW43nX4zlDfZ73kj3nmuVQm1kG+E+gHTgFuAV4xt1fXZMCiYjIhFRni4hMrOadEkVEREREFrMln/JhZq8ws1vN7EYz+5mZLcnepWVm9jIzu87MfmRmPzez75nZ1lqXaz6Z2dvMzOPRCJY8M9toZl8xs+vN7F4zu93Mzq11ueaKmWXN7O/N7C4zu8HMbjGzV9W6XDJ76qneVp2tOnup19lQH/X2kg6ozex04MvA77v7OcDHgB+Y2eralmxOfQ74oruf7+7PA+4GfmRmnbUt1vwws7XAe2pdjvliZiuA64HPuPt5wFbgUeCkmhZsbn0QeCVwtru/EPhD4BozO6W2xZLZUIf19udQna06e2nX2VAH9faSDqiB9wE/cPdfAbj7d4DdwB/XtFRz60Z3/3LFzx8nDKT+4hqVZ759GvibWhdiHl0J3OLuOwA85HD9KfCdWhZqjp0K3OruPQDufifQBZxX01LJbKm3elt1turspV5nQx3U20s9oH4RcNuYdbcCF9SgLPNinA5CA/EyO99lmW9m9nKgAPyg1mWZR68Bbqxc4e5PzuWEGwvA14GzzWw9gJldCKwkBF2y+NVVva06W3V2HdTZUAf19qKYenwmzGwZ0AbsHPPSLuCl81+imnk+MAhcW+uCzCUzawI+ClxIHVyIYPicjwKSZvYlYBPQD/yzu3+tlmWbS+7+OTNrBO4zs53AscDXgK/WtmRSLdXbgOrsJate62yoj3p7yQbUQFO8HBqzfghonOey1ISZGfDnwAfdfU+tyzPHPgz8L3ffaWabalyW+dIeLz8CnO/ud5jZc4EbzCw95jbykmFmbwbeD2xz94fjDlwvAqLalkxmQV3X26qzl7y6rLOhPurtpZzy0Rcvx37zzRK+EdaDvwGecPeP17ogc8nMTgPOAP5Xrcsyz0rx8jvufgeAu/8C+CbwJzUr1RyKA46rgf/j7g8DuPs9wCsIlbUsbvVeb6vOXtrqrs6G+qm3l2xA7e4HgIPA2J7hq4FH5r9E88vMrgBOBC6vdVnmwcVADrjezHYA18TrP2FmO8zsuJqVbG7tJbTc/WbM+ieAI+e/OPNiJdABPD5m/WOE3ERZxOq53ladDajOXqrqot5eyikfAD8Exo5fug34Rg3KMm/iWysXAS9396KZHQUc5e4/rHHR5oS7f5hw+xCA+PbhY8AV5Z7US5G7l8zsZ8CaMS91Ak/WoEjzYR/hgjT2nNdQHy2Y9aDu6m3V2bYJ1dlLtc6GOqm3l2wLdewq4EIzOwHAzC4i/AH/saalmkNm9lrgA4TOHlviCREuAM6qacFkrvwt8EozOxLChAHAq4BP1bRUc8TdI+DzwH+PO7CVbx+fzxLq3FLn6qreVp1dd+qqzob6qbeX/NTjZvYKQiePASBJ+AZ8a21LNXfMrMD4dx7+yt0/NM/FmXdm9gngeYT8vLuBX7v7b9e2VHPLzC4F3k34pp8C/sXd/6W2pZo7cU/xDxE6tPQDLYTK+u99qVdodaKe6m3V2aqzWeJ1NtRHvb3kA2oRERERkbm01FM+RERERETmlAJqEREREZEqKKAWEREREamCAmoRERERkSoooBYRERERqYICahERERGRKiigFhERERGpggJqEREREZEqKKAWEREREamCAmoRERERkSoooBYRERERqYICahERERGRKiigFhERERGpggJqEREREZEqKKAWEREREamCAmoRERERkSoooBYRERERqYICahERERGRKiigFhERERGpggJqWVDMrHUG+7TMRVlEZHGbSX0S75czs9Rsl0dEli4F1LIgmFnCzD4M/N0Mdn+Xmf1vM8tM8b2OM7NdZtZrZm5mB+Kfd5nZgJk9ZGafMLOOMft9O97G4+XKcY59ZsWxB+Lnl5pZMn5+IN7/h2Zm4+z/7ni7vJl1xc83zeB3IlK3plqfxJ/p8mfysoqX1gK3m9mJ03jP75vZ3vhY5c/+LjPrjpffN7Pnjtnn0op6x83sjRMc+9aKY+8ys2/H6/8h/rlkZv1mdvw4+26It+mK65VdZvZnUz2vmTCzz5nZ/WaWneL235/g77AgmdlqM3vGzP6qimP8Mv6buJltn8XizaQsE30Oxtu2fP0cMDOfpyIuDu6uhx41fwD/CNwEtMxg3zTwbeBbQGIa+30IcGB7xboM8LZ4/b1Aepz9PH5ce5hjf26c9dsr9v/TSfbfAVxW67+LHnosxsd06pOKz+RlY9b/LrAPOGYa77spPtbnxqw/DXgMKAJnj7Pf5+L9uoAjJzv2BK89Hu9/+3h1VrzNZcCOefr9fwfYDTSNWb8DeHw6f4eF+AA2An3AP1R5nMvGXoMOs/3jc/U3nO7vv/x/ttZ/i4X0UAu11JyZXQT8IfBmd++Z7v7uXgDeAlwAvLmasrh73t3/gVDxnwy8bIJNHwdebmZ/OIO3ORg//sbMTplJOUVkfNXWJ2Xu/hXgBuBz491Nmuax7iB8yU4C755gs8eBVuALZpacwds8TgjcPzyDfWfbK4CN7t5X64LMBXd/AlgJvL3WZZGFQwG1LAR/CVzn7r+a6QHcfTfwb8AHZngxGuvOeHncBK+/GegBPm5mE20zkS7CF4AM8CUza5hZEUVkHFXXJxWuBs4EXjQLxzpcnfJ54LvAC4D3z+D4fwr8BniPmb1wBvvPGneP3H2wlmWYa+7e73FTrQgooJYaM7OjgOcCP5rg9dVxfvRvzGy3mT1sZl83s1eOs/kPgSOAs2ahaOXPxr4JXn8EeCvQSAiK09M5uLt/Dfi/wEmEi7aIVGkK9cnpZnaDmfWY2WNm9ikgN8khbwW6gUtnoXiHq1MALgd2AX8xNt96Cg4Avxc//zcza5/m/gCY2RcqcrpH5Vub2TVmdmvFz6dV5HDvjfNrHx+bG1zOuyV8OSnndO8ys3vGKULCzP4yrusPmtkPzOzIuS53vN7M7O1mdl+cU7zXzL5pZlsq9n2ljfRzeXycclxgZrdbyJ1/zMz+p5n9oY301/n+OMVvMLNPmdkTZrbfzL5mZisqjvmi+Pe3ASj309llZt+t2OawZa/Ydrqfgykzs1Yz+7v4/8Hu+Jz+3szaxmy3wsw+E7//TjN7xMy+aGbnVWzTaGYfM7Nfx9s8bmbfMLNXz0ZZZ5sCaqm1cvD7wNgXzGwVcAtwCnCGu3cS0jo2Elpzxro/Xp49C+X6LUKO3HUTbeDuXwS+CJwO/PUM3uOdwIPA28zsJTMppIiMMll9chzwY6BEyEfeDPwE+NhEB3P3iPAZna06BeCrk7zfXuCNhNSQL5lZ03TewN1vAP6G0LDwmZkU0t3fwEjayIvd/W8BLHT6filwupmtjbe9Azge2A+sdfcH3X0ToW6rPOaD7r6akNf+lLuvjh9bxynCO4CHgGMJaXdHE/rHzGm54/0+Q/j/8GfA8rgMDtxcDkzd/dsV5zKKhTsD1xH+z6yJ93+UkO4D8Gp3H6+u/xChT85G4BzgfEKDS/ncfhi/51PATRW/v4srjnHYssdlnPbnYKrMLEdIl3w5cEF8zX4RcBFwg5k1Vmz+78BRwGnuvoaQw30s8BcV2/xTvO8L421OJ9zZ/Z/VlnUuKKCWWjs2Xu4a57XyheFN7v40gLs/Rqhwx7NzzDGnzcxazOzdQBvwUnd/5jC7vJXQWn2lmZ0znfeK8wtfBxSAz1a2SIjIjExWn3wEaAHe5e7747SErwG3HeaYO4FNNs27UGVmljKzswidnT9E6DA5IXf/L8LoJEcDn5zBW/4VcDPwWjP7vcNtPIFr4+UrKtZtJzQy2Jj1LwV+FPdlmQ1PuPv/i/8+vwG+BGydSis1VZQ7/hv9AfBJd/+uB88C/x/hC85Hp/D+f0cIYt/h7n3uXoj75Nx3mP1ucfcfArj7LwmdOl9qUx+5ajpln+nnYCr+lPDF8QPu/uv4fH4NfIDQMHZlXN524IXAd+Jy4u5PAX8OPFlxvFcCPyxfh919P/BewjV3wVFALbW2PF6O6rxiZgngvwG/iSuYSj8HXjPOscrHmG5g+o349tmzhNu77wbe7+4/OdyOcaen1xG+7X9h7G2tKex/J6FFYTXwL9Mst4iMNlF9kiQEULvc/e4x+/z4MMfsIwQlHYfZrtLvxnXKHmAAuBH4KfARdy9NYf8PEAKcN5nZq6bxvrh7kZCi0gX8o81g2E13v48wKkllAPpKwheCnnHWf3u67zGJn435+Tfxcu3hdqyy3L8bL/9zzDH3E1qZX2STjE1uZp3ANuB2dx+b1nO4/2PjnXOa0PFxKqZU9io/B9Mpx3fHrP8PwheN34l/7if8Pd5lZi+Or/e4+w/cvXLoyD3A75vZb5e/0Lr7fe5+/iyUddYpoJZaK38DL45Zv5LQSnxIC3H8jXq8HMnyMab0rb7Cq+PbacsJgXoH8PUptojg7rcSvlnP9DbrJ4HvAa80s7fMYH8RCSarT5oYv+V6vHWVZlKvfCW+Jb+K0NJ8F+HO2pVT2TluNX0d0Av8HzNbM433xt0fJ7RYlkcNmcm1/j+AbRXvfTHwDeAHwHlm1hwHOecT6q/ZMjYYzcfLqd4hmGm5j46X/16Ro7wrzl1eD0TAsknet3y9mMn/sWrPeaplr+ZzMNVyHHT3gcqV7j5EyPE/Ov45T0htaiP8XZ6yMKb62BSgywlfSL8K7DKzz5rZC2ahnHNCAbXUWn+8nKjimM5FrLxt/6RbTSAO1L9BuG3XQGg5nqr/QegI9brp3maNe4pfRhi39e/NbMYpKyJ17nD1yUxUW688QegsWATePdW8aHd/GPhjwhf9zxNSFqbzvl8BPkvIK5/JqCHXxu/5cjM7nXC3cF+8Pgu8hJBOcbe7d83g+BOJqty/2nJfUJGjXH60uXuzu++psmwTqfacy2pR9hlx928ROlm+Ebgb+CPgLjP7k4ptbiLkWb+GcH29FPipmX1i/kt8eAqopdbKLdBjb6fuJdyyPKRlxsIsaOvHyS8rH+PpKst0NWGc6N+PO0YeVtx56Q2EloZ/JHT2mLK4snsjoaf1l5ndgECkXkxWn/QRUqvGGm9dpQ5CK9mzMy2UhyH8vkhoJfzv09jv3wj1wQXAFTN467cTOvj9JWH0k+m4kVAPvgK4hJH0iO8SUtxeweyne8yGmZb7oXi5buwBzazTDj+b4WPxcib/x6o11bJX8zmYil8D7XHnxMoyZAn/939dsS7pYejBL7j7RYROoo8AV1k8lKyZpeI89G+4++8Qrqs/B95pZptnobyzSgG11Fq5s8b6ypVxgPrvQKeZbRuzz/mECmTs+M3lYxyuA8ik4laLT8THf9s09ttJuEXVSgiOp/u+/wl8nNCT+fnT3V9EJqxPSoTRF1bboZMpbT/MMdcDv4zvJFXjI4SA7l02vbHy/4iQBzvtSUQqOj5HhMluprNvAfg+ob79HeIOf+5+gJAPfjFhNIdrJzrGOPqA4TxkM/uomf3WJNtPWxXl/kq8HG9Itr8kdLib7H13E4ZZPH2cDubbp34Gkxr+/cU50f9gZkcwxbJX+TmYivIINhePWf9ywl2DrwLEef1dZiMTJsWdF79NaEwq38UpmNnKim12EjqpAsxoWMi5pIBaau1GwigX480Y+H5Cj99Ploc7MrNjCMHux929e8z2p8bL/5qFcn2S0EL+1jFD/UzK3b8DfJpp3p6t8AHC9MFVzcwmUqcmq0/+nJCT/D/NbHl8p+s1wIsnOlicnnEMs1CnuPsjhFbqIxm/U/VE+5XHwZ5KZ8bx9r8DeB8zq1OuJW648JGh5crrlxHyZZ+YxvHuB1bFYxAfScgpn610h0rTLnecXvCPwBvM7LXx/4+kmV0OvJ7Rw7lN5D2E3/MnzazJzNJm9lbGaTmeofuBo+IW3OcTJggbmGbZp/05mIaPEyYw+kh8rcbMjiZ8mbybkBpZ1gR8OG69Lo8hXx7VY3/Fdn9rZi3xNp2EL4gPxMdbWHwBzH+uR30/CLc07wVsnNdWA/9MSOPYRahQrphg2x8AN07h/Y6Lj9VL6Hl8IP55w5jtPhS/vp8wTue34+2ccOvsjgmOnyV82D9XsS4Z73uAcGHcBfzDBPsfQ+gBfVmt/zZ66LHYHoepT04nTCfeQ/iy/q/Aq+LPdBehJbpy+/IIPsdM4X2/H9cLTkgR2QW8e8w2RxNyqfvj198fLwfi+mgXcPYEx38fcZeLinX/EO9TqqjHkuPsa4QOeDum+btsJ3xB+R9j1m+Oz/PD4+zzePy7LNet3614bQ1hJIq9hDGVPxiv/0K8bfnv8P14/XfHHOuzc1Xuit/TH8b1937gCUInx9Mrtnll/HvOV9Tlb6x4/QLCCC3dwMOEFuI3x+97TsV2O8ac2/+J19/DyLVpL/DXFfscTxj/ei8hxeTN0yn7TD8HY/YtXz8H4u13EYbJK7/eSgisHyf0C3oS+HugrWKbDGHI2R/H/w92EtJBPga0Vmz3RkKL+pPxNo8RxqZeXav6ZbKHxYUWqZn4m+m9hADyazM8xvMIt/POcvefz2b5RGTxmI36JD5OkhCc7HD3Kad+iYxlYdbGq4CT/dBhYGWJmHBMxblkZg9w6BAta4BBdx/vVp0sYe7+qJldCvyzmT3h7r+Yzv7xLaWvAm9TMC0yNxZLvV1tfQLDwfQXCC2Bk+bOipSZ2YXAme7+l2Neej5hTOVDZvCUpaMmATVhUPHtlSvM7POE6TqlDrn7t+MxMy8CpnsBfCnwB+4+m2Ohishoi6berrI+gTDj4hOEVu784TYWiXUAf2pmO9z9x/FIVG8kdMr7A5/apD6ySNUk5cPMjvQwhXT552ZCjuwJfvipnkVEZJ6p3haZnJltJHRMfBFh0pImQqv0/6gm/UgWhwWRQx33RP1v7j52qBUREVmAVG+LiIxYKMPmXU7oZSoiIouD6m0RkVjNW6jj2W5uAtZ7GJB9vG3eQhhvkVwud/qGDRum/T5RFJFILJTvD/OnHs9b51w/FuN5P/TQQ/vcfeXht1y4Dldvq86euXo873o8Z6jP816M5zzVOnshBNQfBprc/U8OuzGwbds2v+2226b9Pjt27GD79u3T3m+xq8fz1jnXj8V43mZ2u7uPnf1zUZlOva06e3rq8bzr8ZyhPs97MZ7zVOvsWo3yAUA87eQbgJfVshwiIjI1qrdFRA5V63b384Dd7n5fjcshIiJTo3pbRGSMWgfU6tQiIrK4qN4WERmjZgG1eWVb8AAAIABJREFUmbUCLwH+X63KICIiU6d6W0RkfDXLoXb3bmBFrd5fRESmR/W2iMj4atopUURqq7u7mz179lAojDti5YLX1tbG/fffX+tiDEun06xatYrW1tZaF0VElqAoivjNb35DX19frYsyI0u5zlZALVKnuru72b17N+vWrSOXyxEGb1hcenp6aGlpqXUxAHB3BgYGePrppwEUVIvIrNu3bx9mxnHHHbfoxnOGpV1nL76/hojMij179rBu3ToaGxsXZTC90JgZjY2NrFu3jj179tS6OCKyBB08eJDOzs5FGUwvNLNdZ+svIlKnCoUCuVyu1sVYcnK53KJNoRGRha1UKpFOp2tdjCVltupsBdQidUwt07NPv1MRmUuqY2bXbP0+FVCLiIiIiFRBnRJFZNHYtGkTmzZtGv75hhtu4LjjjmP16tUAPPDAA1xzzTVs3759Vt6vq6uLd77znXzpS19SGoeIyDTVU52tgFpEFpUdO3YMPzcz3vve93LZZZcBDC9nw2233cYf/MEfcNRRR+Hus3ZcEZF6Ui91tlI+RGTRuOKKKyZ9/ZJLLhnVGlKNfD7P9773PS688MJZOZ6ISL2ppzpbAbWILBpTrZyvu+46nvOc53DGGWewZcsWPvGJTwxvc+WVV7Jx40bOO+88rrzySs4991yOOOIIrrjiCkql0vB2Z555JqtWrZqzcxERWerqqc5WyoeILCn33nsvl1xyCddffz1nnXUWTz/9NNu2baOtrY3LL7+cq6++mkwmw1VXXcXb3/52rr76avbs2cNpp53G+vXrefe7313rUxARqRtLpc5WQC0iI664Au66a37f89RToaI1olpXXXUVZ5xxBmeddRYA69at4/Wvfz0f/ehHufzyy4e327BhA6961asAWLVqFZdeeimf+tSnFkzlLCJyWKqzF0ydrZQPEVlS7rvvPo4++uhR644++mgeffRR+vv7h9dt3Lhx1DabN2/mqaeeoq+vb17KKSIiS6fOVgu1iIyYxVYHERGZY6qzFwy1UIvIknLyySfz8MMPj1r3yCOPcNRRR9HY2Di87sknnzxkmw0bNtDU1DQv5RQRkaVTZyugFpEl5b3vfS+33HILN910EwDPPPMMX/rSl/jABz4warvdu3dz7bXXArBnzx6+/OUv8453vGPeyysiUs+WSp2tlA8RWXRuvvlm3ve+9wGhQ8vDDz/MRz7yEQC2bNnCN7/5Td75zneSSCTo7+/nPe95z6jOLQDPf/7zueeee/jUpz7FQw89xGte8xre9a53Db/+2GOPcfnll7Nz505KpRLbt29ny5YtfPrTn56/ExURWQLqoc5WQC0ii87zn/98duzYQU9PDy0tLYe8fvHFF3PxxRcf9jgf/OAH+eAHPzjua0ceeeSoGb5ERGRm6qHOVsqHiIiIiEgVFFCLSF258sor+cIXvsDtt9/OK1/5yloXR0REJrFY6mylfIhIXbn66qu5+uqra10MERGZgsVSZ6uFWkRERESkCgqoRURERESqoIBaRERERKQKCqhFRERERKqggFpEREREpAoKqEVEREREqqBh80Rk0di0aRObNm0a/vmGG27guOOOY/Xq1QA88MADXHPNNWzfvr2q94miiC9+8Yt8/vOfx93p6elh8+bNXH311RxxxBFVHVtEpF7UU52tgFpEFpXKqWXNjPe+971cdtllAMPLanV3d/OmN72JG264gTPPPJNSqcTrX/96XvKSl3DnnXeSzWZn5X1ERJa6eqmzlfIhIovGFVdcMenrl1xyyajWkJlKpVJceumlnHnmmQAkk0ne+c53cv/993PHHXdUfXwRkXpQT3W2AmoRWTSmWjlfd911POc5z+GMM85gy5YtfOITnxje5sorr2Tjxo2cd955XHnllZx77rkcccQRXHHFFZRKJQCam5v5/Oc/P+rYuVwOgKGhoVk+KxGRpame6mylfIjIknLvvfdyySWXcP3113PWWWfx9NNPs23bNtra2rj88su5+uqryWQyXHXVVbz97W/n6quvZs+ePZx22mmsX7+ed7/73eMe9+abb2bdunW84AUvmOczEhFZupZKna2AWkSGXXEF3HXX/L7nqadCRWNE1a666irOOOMMzjrrLADWrVvH61//ej760Y/+/+y9e5xkd13n/f6ec+rSXd0z03OfzDWZQAxJBEIQs6Ik4CIaXeCJu7L46II8gi9XCOxCNixRcQ2SzcOubFxcvO3qg7BZbygaFVQYRAKRBCQkhEsuM5O5ZGZ6+t51O5fv88fvnKpT1Zfpmqme7p7+vud15txP/U5V9a8+5/v7XnjjG9/YOm7v3r289rWvBWD79u28/vWv59577523c67VanzgAx/gv//3/06hUOhfYw3DMC4A67NXT59tLh+GYVxSPProo1x55ZUd26688kqeeuopqtVqa9v+/fs7jjl48CDPPPMMs7OzHdtVlTe84Q38xE/8BK95zWuWr+GGYRjrkEulzzYLtWEYLfppdbhUeOtb38rOnTt573vfu9JNMQzD6MD67LmsVJ9tgtowjEuKa6+9lieeeKJj25NPPskVV1zB4OBga9vRo0fnHLN3714qlUpr27vf/W5qtRq//du/DcCXvvQlCoUCL3jBC5bxDgzDMNYPl0qfbS4fhmFcUtxxxx08+OCDPPDAAwCcOHGCj370o7znPe/pOO7UqVN84hOfAOD06dN87GMf421ve1tr/6/8yq/wyU9+kre85S08/PDDPPTQQ3ziE5/g0UcfvXg3YxiGcYlzqfTZK2qhFpH9wD3AtnRqAu9U1c+sZLsMw1jdfOELX+Dd73434AJannjiCe666y4ArrvuOj7+8Y9z22234Xke1WqVd73rXR3BLQA33ngjjzzyCPfeey/f+ta3uPXWW3nHO94BwJEjR1qd+Ute8pKO8z7ykY8s9+2tWqzPNgzjfFgPffaKCWoR2Qp8GniTqh4SEQH+ALgGsM7ZMIwFufHGGzl06BDT09MMDw/P2X/LLbdwyy23nPM6d955J3feeeec7fv370dV+9LWSwXrsw3DOF/WQ5+9khbq24EHVfUQgKqqiPx7zA3FMAxjNWJ9tmEYxgKsZEd4K/D3+Q2qelRVD69McwzDWA/cfvvtfOQjH+Hhhx/m1a9+9Uo3Zy1hfbZhGBedtdJnr4iFWkQqwBWALyIfBQ4AVeA3VfUPV6JNhmGsD+655x7uueeelW7GmsL6bMMwVoq10mevlMvHpnR+F/AKVf2yiHwX8FkRKajqx1aoXYZhGMZcrM82DMNYBFkJJ24R2QmcBH5fVX8it/1jwHNV9Yau498MvBlgx44dL7rvvvt6fs2ZmRmGhoYuqN1rkfV433bPS2Pjxo1zqlOtNeI4xvf9lW7GHJ544gkmJyfn3XfzzTc/3N3HrXasz754rMf7Xo/3DOuz376U++yVslCfARrAsa7tR4Af6D5YVX8T+E2AG264QW+66aaeX/DQoUOcz3lrnfV433bPS+Pxxx+fN9p6LbFQxPhKUy6XeeELX7jSzegn1mdfJNbjfa/He4b12W9fyn32igQlqmoMfB7Y1bVrB3B07hmGYRjGSmF9tmEYxuKsZJaP/wy8WkQuh1bBgNcC965gmwzDMIz5sT7bMAxjAVYsD7WqfkpE/i3wxyJSTdvyLlX9XyvVJsMwDGN+rM82DMNYmBUtPZ5Ghlt0uGEYS+LAgQMcOHCgtf7Zz36Wq666ip07dwLwjW98g/vuu68v/pgf//jH+Y3f+A3CMKRer1Or1fgP/+E/8GM/9mMXfO21ivXZhmH0wnrqs1dUUBuGYfTKoUOHWssiwh133MEb3vAGgNa8H3zoQx/ip37qp3j9618PuM76R3/0R7n22mu55ppr+vY6hmEYlzLrpc+2krGGYawZ3v72ty+6/zWveU2HNeRCuPvuu3nd617XWr/ppptIkoSnn366L9c3DMO41FlPfbYJasMw1gxL7Zz/8i//khe/+MW85CUv4brrruODH/xg65jbb7+d/fv38/KXv5zbb7+dm2++mX379vH2t7+dOI5bx91www14nusim80mH/jAB7juuuu4+eabl+fmDMMwLjHWU59tLh+GYVxSfO1rX+M1r3kNn/70p3npS1/K8ePHueGGG9i4cSNvfOMbueeeeygWi9x999289a1v5Z577uH06dNcf/317Nmzh3e+850d1/uZn/kZ7rvvPq699lruv/9+KpXKCt2ZYRjGpcel0meboDYMo8Xb//rt/NOz/3RRX/MFO1/AB1/1wXMfuETuvvtuXvKSl/DSl74UgN27d/PjP/7jvO997+ONb3xj67i9e/fy2te+FoDt27fz+te/nnvvvXdO5/zhD3+YD33oQ63rfu5zn+PgwYN9a69hGMb5Yn326umzzeXDMIxLikcffXROad4rr7ySp556imq12tq2f//+jmMOHjzIM888w+zs7Jxr+r7Pe97zHjZt2sT73ve+5Wm4YRjGOuRS6bPNQm0YRot+Wh3WOmEYUigUOrZdffXVPPbYYyvUIsMwjE6sz26z0n22WagNw7ikuPbaa3niiSc6tj355JNcccUVDA4OtrYdPXp0zjF79+6lUqkQRREvfvGL51z7xIkT7N69e3kabhiGsQ65VPrsJQtqEXnVcjbEMAyjH9xxxx08+OCDPPDAA4DrUD/60Y/ynve8p+O4U6dO8YlPfAKA06dP87GPfYy3ve1trf2PPPII999/f2v9T//0T3nwwQd505vedBHuwjAMY31wqfTZvbh8fFhEXqWq31i21hiGYSyBL3zhC7z73e8GXEDLE088wV133QXAddddx8c//nFuu+02PM+jWq3yrne9qyO4BeDGG2/kkUce4d577+Vb3/oWt956K+94xzsACIKAX/3VX+Wuu+7i/e9/P6pKHMf8wR/8AbfccsvFvVnDMIw1znros3sR1APAb4pIGfgI8DFVPbs8zTIMw1iYG2+8kUOHDjE9Pc3w8PCc/bfccsuSOtE777yTO++8c959t912G7fddtsFt9UwDGO9sx767F58qO9X1e8DXgdsAT4vIn8mIreKSOEc5xqGYRiGYRjGJcmSBbWq/lQ6f0pV36uq3wF8APhB4LiI/LqI3LhM7TQMw+gLt99+Ox/5yEd4+OGHefWrX73SzTEMwzAWYa302Ut2+RCR3ap6PLf+XOCVwPcDW4FbgatEZCfwv4BfU9VGn9trGIZxQdxzzz3cc889K90MwzAMYwmslT67F5ePPxeRzSLyb0XkQeBx4N8DXwR+BLhMVV8BvAwoA3/Q99YahmEYhmEYxiqjl6DEq4ETQAH4HPBm4A9VdSp/kKqOAneJyNf61krDMAzDMAzDWKX0IqgbwP8L/L6qHlnsQBH5A2DThTTMMIzlJ0kSPM/qO/WTJElWugmGYVzCqCoistLNuGToV5/dyy/p/1TV951LTKf8O2BuyRrDMFYNlUqF48eP02w2UdWVbs6aR1VpNpscP36cSqWy0s0xDOMSpFwuc/bsWeuz+0C/++xeLNTvF5F/AcSq2ipFIyKvAz6jqqdyjTx2wS0zDGNZ2bNnD6Ojoxw5coQoila6OedFvV6nXC6vdDNaBEHAxo0b2bp160o3xTCMS5A9e/Zw7Ngxzpw5s9JNOS8u5T67F0H9NlwQ4h8C9+e2fzfwARH5IVV95IJbZBjGRcHzPLZv38727dtXuinnzaFDh3jhC1+40s0wDMO4KBQKBS6//PKVbsZ5cyn32b24fNwC3Kyq/ya/UVXfDvwkLie1YRiGYRiGYawrehHUoqoPzrdDVT+Ny0VtGIZhGIZhGOuKXgT1iIjMe7yI+MDm/jTJMAzDMAzDMNYOvQjqzwO/LyK78xtF5DLg94B/6GfDDMMwDMMwDGMt0EtQ4u040XxERE4BY8AIsAN4Bnhp/5tnGIZhGIZhGKubJVuoVfU4cD3wfuAorrz4M+n6i1T1xLK00DAMwzAMwzBWMb1YqFHVceDn08kwDMMwDMMw1j19qzksIp/q17UMwzAMwzAMY63Qk4VaRL4fuAnnN+137b6+T20yDMMwDMMwjDXDkgW1iNwF/EdgBhgHkq5DhvrYLsMwDMMwDMNYE/Riof43wA+o6t/Mt1NEvtKfJhmGYRiGYRjG2qEXH+pTC4nplJsusC2GYRiGYRiGseboRVD/rYi8cJH9d11oYwzDMAzDMAxjrdGLy0cT+OPUtePbQLVr/63AW/vVMMMwDMMwDMNYC/QiqO9M5wcW2K8X1hTDMAzDMAzDWHv04vLxVVX1FpqAR5arkYZhGIZhGIaxWulFUP/COfabu4dhGIZhGIax7liyoFbVP8+WRcQXka1d+/+hnw0zDMMwDMMwjLVAr5USXwb8IvDPgLPAbhH5MPC4qv63Hq7zBuAO4NmuXa9W1cle2mQYhmEsP9ZvG4ZhLEwvlRJfBfw58BDw+8DL0l2/AdwrInVV/Y0eXvtuVf3dHo43DMMwVhbrtw3DMOahFx/q9wL/WlVvVNX/B5gGUNWvAK8G3tT/5hmGYRiGYRjG6qYXQb1JVf9ovh2qOgYU+tMkwzAMwzAMw1g79CKoyyJSmW+HiAwBIz2+9g+LyKdF5B9E5I9E5MU9nm8YhmFcXKzfNgzDmAdRXVo9FhH5LeAa4D3AF4AHVPV6EbkG+C/AU6r6s0u81g/ifLDfq6p1Eflx4PeAl6rqF+c5/s3AmwF27Njxovvuu29Jbc4zMzPD0NBQz+etddbjfds9rx/W4n3ffPPND6vqDSvdjl7ppd+2Pvv8WY/3vR7vGdbnfa/Fe15qn92LoB4B/g54Pq4qogIJLrDxYeD7VXXqfBssIp8DzqrqaxY77oYbbtCHHnqo5+sfOnSIm2666Txbt3ZZj/dt97x+WIv3LSJrUlDPx1L6beuze2M93vd6vGdYn/e9Fu95qX32krN8qOq4iHw38JPAK4CtwCjwN8BHVDU838amPAlcEj8yhmEY6wTrtw3DMOgxD7WqNoHfTqfzRkTeD/yyqlZzm3cDRy/kuoZhGMbyYP22YRjGwvQSlLgoIvKnPRx+I7k0e2nBmJcDv96v9hiGYRh9xfptwzCMBeilsMsvnOOQ7+rhde8G3ioi/xIn6gPgx1T1L3q4hmEYhnHxsH7bMAxjAXpx+XjvOfYvLboRUNW/Bv66h9c2DMMwVhDrtw3DMBamF5ePr6qql5+AIVxAyocAy0dqGIZhGIZhrDt6sVC/vntDGpzyZRH5CvBXwKv61TDDMAzDMAzDWAss2UKtqo+f4zrPvfDmGIZhGIZhGMbaopegxJ+cbzOu5PiPAKf61SjDMAzDMAzDWCv04vLxu4vsexD46QtrimEYhmEYhmGsPXoR1I8DP9S1LQZOpwVfDMMwDMMwDGPd0Yug/iVVPbJsLTEMwzAMwzCMNUgvafOe18uFReS9vTXFMAzDMAzDMNYePaXNE5G/wwUiLul4zl0MxjAMwzAMwzDWNL0I6iuBQ4vsF9rVEvPLhmEYhmEYhnHJ0ougfiPwHly2j0eBSWATcC3wo8D7gDPpsQL8Vt9aaRiGYRiGYRirlF4E9WuBV6rq4a7tfyYiHwPuVtUfyzaKyP/qQ/sMwzAMwzAMY1XTS1DiFfOIaQBU9WngO7q2/coFtMswDMMwDMMw1gS9COodInLdfDtE5DuBHf1pkmEYhmEYhmGsHXpx+fj/gL8XkY8CXwEmcGXHrwf+NfAb/W+eYRiGYRiGYaxuehHUd+AqI/4c8LO4LB4CzAL/DfjFvrfOMIzVj6YJfWSpGTUNwzAM49JiyYJaVWPgDhG5G3g+zsXjJPCIqk4uU/sMw1itxDFMTcHYmFsOAvB9N89Pvu8mz+ucTIAbhmEYlwi9WKgBUNUJ4LPL0BbDMNYCYQiTk05IAwwMOMGcJG4KQ2g02usL4XnuvELBTXkBnhfe2fpyCHDV9tS9Pt+2/HqhAKVS/9tkGIZhrDl6EtQi8lyc68dNAKp6hYj8J+CfVPVP+t88wzBWDfU6jI87q7TnQaXSKXIzAbxUVJ1lO4qg2XTrSdIpXKH9Gpm4zlu/49i1KRPveRE/33r+NVQ723IuwZ4/JopgZAR27Vr6/RqGYRiXLEsW1CLyYuAzwDjwDeBguuvzwAdFRFT1j/vfRMMwVgxVqNVgdBSqVWeVHR7uz7VFnCjupS2ZQK7X3TyK4OzZttDNz/MTuNfKr1+IxbvROP9zDcMwjEuOXizUd+MCD39VVRMR+TKAqn5SRF4J3AeYoDaMS4EkgZkZJ6TDEIpF2LBhZdsk0vbHzvA8GBxcuTYZhmEYBr0J6n2q+l/m26Gqz4hIuU9tMgxjpYgimJ52Vt84dv7RZfvTNgzDMIzF6EVQF0TEU9U5UUYiUgC29q9ZhmFcVJpNmJhwk4gT0r34QxuGYRjGOqaXX8wHgT8SkcvzG0VkE/BbwD/0s2GGYVwE6nU4cQKeftoFG1YqbjIxbRiGYRhLphcL9TtxAYhPiMhpYIOIPAHsAU4AL12G9hmG0W9UXYDhmTMuuK6fgYaGYRiGsQ7ppbDLMyLyAuDfAa/AuXiMAh/DBSqOL08TDcPoC3HsAg3PnnWBhqWSCWnDMAzD6AO9pM37F+ni+1X1zmVqj2EY/SaK2hUNk8QFGVqgoWEYhmH0jV5cPv4U+DPgAWB2eZpjGEbfaDTagYaeZ4GGhmEYhrFM9CKov6Gqr122lhjGWiZJnEtFVpWvu7BId5GR5ULVBRqePQuzs66YydDQ8r+uYRiGYaxjehHUT4jIsKpOz7dTRH5HVd/Up3YZxuoiXyY7m9frLt1cs+m25Y/NmE/IZiW6RdrLi02LifNsUm0XYrFAQ8MwDMO4qPQiqH8V+KiI/C6u9PhM1/6X9KtRhrEi5AVzHDthmk1R1HlsJoaDwAX39eJKodo5Zdbt/Lb5jstedz6aTTh+3PlGm5A2DMMwjItKL4L679L5LcvREOMSIhOm0BaAK+H+0E2SdArmZtOJ5czKnLcsQ7vMdaHQ3yC+5bh3zzMhbRiGYRgrRC+C+hngFxbYJ8B7L7g1xtohb80NQ+f+UK+75WROMc3Fmc8FIhOd87lAdJ/TLdBVnf9wGLYFc6PRbpdq+9qZaB4cND9jwzAMwzDOiwUFtYj8JPAC4HZVjYBPqervLXL885ahfcZKkll0o6gtTrMpjjutz5kwHRjoXZjO5wIxn9tDfj1bnu9amftDvl3lsmW4MAzDMAxjWVjMQv0fgZ9PxTTAXy12IVW9vW+tMi4eeTeILNAuC7bLAu0yi67vO5/h8xHNi9FvFwjPc5ktDMMwDKObzPDSaECtBsWii4UJAufiZ6OVxnmwmKCuq+of5tbvBP5koYNF5LOq+rK+tczoH6ptS3MUdVqaw9Adk3UgmUW310A7wzAM4/zJ+uls7vsm7PpFkrQF9PS0E9FJ0jYUZaOimfGoWHSGo3LZLRcK9nkY52QxQe2JyBuBzwN1oCgie3H+0vOxpd+NMy6AOIbJSdeJfPvbnfsy0VwsWsU8wzCMi0k2Gpi50tVqbeNGZjl96il3bBC0++ps8v3O+A8zfMwlCzqv152Artc7xfK5YmaiyMXhTE62zxNxhqaBATdl1mzfv3j3ZaxqFhPUvwh8FCjlth1ejkaIyM8BvwbcrKqHluM11g2qrgM5fbr9BG7uD4Zh9BHrs89B96hg5kqXBUdn8R+ZMA4CqFTa27I+O0upWa9Dtdrphgft4OpCwV0jE92ZEM8L70uZKHICulZzv39Z1ibPc+9H12+gqpIkMQkJqoonHr74SCayg8BNnSe515magvHxzuD2TGTn3UbsQWfdsaCgVtWPi8iVwIuBEeCXWIYsHyJyGfCu8znX6KJahVOnXGcyOHjpd6KGYVx0rM/Okbc2ZxbRLNtRXvSeb3B0PrPRQmRFp7LXzwv2bH+WMz9zX8imrF2Z+F4rLg1hCM0mOjtLMj1FEjbQJCHxPZJCQFLyiJOEKGkQRVWiZkScxMQocRKRaGcmKkURhEACSkGRolek6BUIvABfPHzPxxcfL3vf8iRJe6Qhn0mqUHAie3Cw/X4Hwdp5j42eWTRtnqqeAP4MQES+5xxZPr7nPNvwa8CvAB8+z/ONeh3OnHFDVAMDlo/YMIzlZH312YtZm/MVUvPW5lJp4estQBwr1WaTOEmYqtUpBj4F38c/l6AWmd+i2n0PmfCbT3RnZJbtTHxn183ubb4Upn0i0WTeKY4jkmaDqFEjmpkimp0mChvEcUjie2ihgGTGo1ggVhAQFTwRRDwEtxzgUfTLbUt0F3ESE8YR9ahBogmK4uyF7poeHgWvQDGb/KIT276HHxQ7rdxx7ET2zEx7tBjabiPlsvsM6vXOtLHZ3FhzLDkPtar+9IXsnw8R+REgBD7Z67kGrnMcG3PDT8UibNiw0i0yjIvCfFrAWH4uap+dKPHE9LkH2vKpNM+Hhc7vt7U5JUusVA9jZupNJqoNxms1ZuoNVJVmGPGFb58APBAIfKEU+JQLHgPFIkPFAsVCQNH3CHxpCe/AX6Qt+Xafq3FZAF/md9ydvz9/zUxwZ1POx1tFiEVJPCERSFDiJCZKIqIkIkxCwjgkTmIaUYMnzj7Rfp2oCY0Qrc0i1TqeKiIenh/glcoExWGK4i0ojBe6tTiBMIY4FsLUhT2KhUKg7vnBD/B9peAX5o1BVFVijanHDapRlQRF1cluclbuol+g5JeclbsY4EvBCW88vCR1y8xinI4e7Xx/56uTkD3kZCMN2b5uEW6ifEXppbBLXxGRCvA+4Afo9NM2zkUWcHjmjPujGh62YSTjopIZ7cJIWoa6TJLk6/p0LsvcbZpfdvt1wfPntqPREJ542qdQUIoFdb/p6ciqJ7omR7NXKxe7z44aMU98/lm8wKdQhFIhoVig9Tn7nra0RdrAC3/R/DUy8XIe1mZoC+cwEuqNhKlak8laxHS9Ri2eddZPUYqBRzkI2DpYKw1QAAAgAElEQVQ8gIjw7PgU2za0fX7jWImThFojYbpW40RSJUmSND2AggoK+J5QKviUA5+BYoGhUoFSIaAYeASeE96B51EsLCKqM8vzAtbuRBNijZ31OIlJ4iZRbYYoDoniJmEUEiahc6tAUU0QST8gcSLQKxaRoIAXFPALRYpBAQ8YaiRulLVWaz/ABAEMjSxJHMZJuwhukjjB3GxCMxTCSNr9R2ZwFvcd8jzXjyQz4l42tz8IoBAopYKmzwqC7wvBIs8m7qEhphFPn9PKHZFw1m92nC8i7kEhSZy1PUzwNF1HXUerSsc7kopwUTq/w0Hg3v+WGHedoQTOx1s8H/F9d4wI4nnOot+9zfN7enhZDlS19X66h5j2PNGkY1trdCOJ299XTSj4BbZXti9bG1dMUAO/DHxYVU+KyIEVbMfaoTvgsFKxp1Bj2ekWz9WaUKuLG+0W8MSJ1yz/T7cRa97lebYFXhao1VkzaL7zM7xpGCiri9tqCEnN/Zhq+rsj6f+Zgc5ZopTAzxnTuoS3sSAXtc9WoDhcolgpus83gdlISJqk+sR9ti4mTykVlVLqIhz4F+8zzTwpolhcXFxdmarF1MOQWlSlltSICPH8hILnURoIGJASniytYU7E+YsLYSBJlChJaEYJ1WaNU1NV4tgJb1VnPc2kXbkQUC74DBQKDBYDysUCpYKHJ6AkRBoSa0xMRJyERMTEGuH5oIkinpc+Qbu/WV88JPDwgiKBlOe3HmfW7iSBZgKNOiRV9wQdhjA6umCdA1X38B1F7u87jqEZkormtmAWyay86bOBKL4H5ZIu+rzl3KLnjlJkLvKNhhAn0tGneJ7rT9x3DwoBeJ4SBD6B51P0C3Ou5+6lbeWONWGiOdm5f4FzOhDQ/JHpunhd71uYOJFdy0YZEjRJt6l2vFrmRz7Pi6cWb8HznA+45/lIoYjneW6b5+EFBTeC4Aduvwji+Xi+jyc+nuf+GBONma5NOpGLuinv4pMTwapKQtJ6gMy+x9nzSTZX1H3f0m2CeyjJ7if7W6tFtUtPUIvI9cBLgHcu8fg3A28G2LFjB4cOHer5NWdmZs7rvFVDZu7IAkyWyEy9zqHHHlvGhq0+7J4vjM6ileKsyFm/m/Zlq8XaW49qfP3Uo0s+vlVks/VfF7n7E9F2VfvcvpaYE4FvfvPCbmCNsBJ9di2s8vXJr+FN++lnItD6iWzPof15zvu5pg99HZ9n/rPsge6/DSf0cpaxVCLkvy9OAAiE0ARmz/EaURTy7PjJ3hrWIzORMlN1QqSlrbqQjv+l9V5J7oD5llt9g8z39s4VtiJQDxMePTnljkgt7t0FdOdt33l+jn1Du/qUHO1+xBnn3bo7KnsPms2Yp45OsmbQiA4R3v3BaOb80rGxY60RKQ985rO5Lel3LP9BSk7aL/iFOtd61z4gIeFYcGyhgy4YmfOGXARE5OeB1wJT6aYyrrP+KjABvEVV5/2luuGGG/Shhx7q+TUPHTrETTfddF7tXVGygMNq1fnsdUcYn4NDjz3GTddcs0yNW53YPS+Nc1mefQ+CQCms4sD0x559lGt2Xtu362VGtGz4OBNNeYsoQJA0GdleYOTqnT2/hog8rKo39K3RF4GV6LP/6v6/ouQPUq6UWkO97mNofw6eeBS8gIJXJBCfgrggsSwNmoeHqO+smonznW2PXjiCAEpFN3KRuQv5nhIn7u+iVhcaTXHWUVUibRIT0WCWSKpEhM4ihlDwCgQSXNDw+LPjJ9k5suu8z19uOkRutkxnnKMi8wrhlkeC5j8BmKydYOPAZW3LI+4zyGf+W2skCSQxRLFzZ8u7k4D7KR+bPsG2jfN81guI9I5Dcu/1oscscBFJLfjOtUXxpD2iE/i5h4H0mA4Xbdr7e+Wxp57lmiu6+s3WzWRfqtx2VTRR1zfH6YNrkn7HYnXbyEYvnItUokIUe+lnoETZqGWxycte9bKe27zUPntFLNSq+su44UMA0uHDp4G3W07TlDCEs2dhYsKNTVvmDuMCWKp4HigvPjTaTaIJYRK2hgvzw2z59Wx5tdMRuzXvMLBbr08r9cZFbtwKslJ9diABZX/h4lPZ8HkjaVDLDRt7klk500CxNP2ZE94BBSnge6nwVZ966FOreyRJ5u8LKCREJF6DWBrUpUo9qbd0oC8+Ba9AWdZXCNDShNRSDHXtY6YbUBm8+Ma95aTljr6IOwl0xox0s9j73Dbcnvt9m+86mXZNEufS0npQQjrjVSR/gnTETjqXOfD9tugOfO1MCpMT4yJOGNcbmVZ214tTN54kSR9AsnVtb8+akA5UpRs67zF7QBAPvCBtmwdFAU0SJiaWt9PuWVCLyPcBNwGDqnqHiLwM+LKqTve7ceuSOHYienTUfSMtc4dxHoTh4j7PhcL5i+dII+cbGtdoapgGwkAaHwV0+bpBp28bgiceXktwe3ipz2W61kp3lf3LAnXa/wARlIRm0kzP8Zbsl3qhrIFngzXN5z4H//u+gxzYrRw8KOzZ3WDTxngedwGXVeFcZEK7kTSoatUFMGnb7x8AhcALCCTAE4+mNgmTME2/5hFIwGAwuCYeDI3Vj+8DkgnuFWzHnC2L2sU71zIRnqSu8LHzac+EeX6UIhudaIbC8VN+x+XabljatoSLG6Xo1wjpxXhcW7KgFpFh4E+AV6SbngXuAH4Q+F0RebmqPt1rA0Tkg8B3p6sfFJFvq+q/7PU6ax5VV4HpzBm3PDS0Zn+1VTszTUHnrZwr4Gwpy6uZ7poKC22bb/85j8spgPw5SQLjE7Is4rke16jGVRpxEw9BxVnnAgmo+JWlX5S2z53S6XeaBaBkx2T/8uvti9Byl2smIc9Un+kYww8kaFkPA/HxJSDwgg7RfbEF+KXExeizP/tZ5SO//9yObZVKzJ7LGuy+rMme3Q327G6y+zI337GjSWGRX7OlftZZFotYYwqeS322nHi1GsWTJyidOEbx5HG8Z48zrBGl3VcQbdlKuHUr4ZZthFu2osXisrZluVBVZqIZRpujnG2cZbRxhrPNs4w2RtNto4zWzxL4ftofZH1DkmZwUBe6lu6DzmwPWbXD7J/bR/v8rmt1nI8y4A+wo7SD7eUdbC9tZ0d+Xt7BjtIOhoIhe5Cah9Zoxbx/WvNL2Ok6VAYurdGIjF4s1HcDgzgB/RjwFwCplfqf0v0/1msDVPXtvZ5zyTE76yocRpGLcF5jDmOtIl0NYbbqBF2SuGGXFi2xJC1h153WtBfycZnttFnpE3BTePqZ+d/DxYbX8k09V2jBYsfMd1/n3pYJTVn8uPzTfu6YMBRGx7zzEs+qSqgu3VU9rlGLazTiJllUdWa1GypceAn77EepFXJygb9RUzJFJWiL+rxAz9wA8umVWi6MuTewIEFLdJsAPzcXo88evPytjNz5O2yJtjEc7yVoXE40cyW10efw+NGD/P1XDhJN7SH7EH1f2bmjyZ5UbO/e3XTie7dbH6os4Q+fpQvvJRNFFM+cpnjiGKUTx0mePcrp0Sd5cmaUp8Jpni6FHN4ExzdFnNpUZ/KqWUSFwVqJ4ZNFNjzls6nmsbkGW0KfLVJma1Bm28AQGytbGBrawfDGXQxt2Utp2z6irdtJBgb61/5FiDVmrDnGaCMVxZlgbo460dxaPksjqc85v+gV2VLcwtbSVkYKIwwWBsgXYXFuYulIFp0FWsiNcmXLeRczt0579Aty57vPNxv5mo1mOFU/zenGKb41/S3Gmmc7H+CBAX+A7aUd7ChvT+dOdG8vt5c3FTaZ6F7n9CKoXwU8X1VnAESk1UOp6n0isqTo7xUjDOHYMZdTNCu/miVLXykB213hsLywr+BqIfPFbYZCtQYzVY9mgw5r6ODAYoLuwp9Mz2XFFcmlYOumh3zESzmu//3n+b0/3vTSfBAz8RwlEfWkTjWq0ogbLZcNz/MoSIFKoTfL82pBRPBxZYKXwkICPCtN3C3AXeEGn6SmbBnYzC56D0o0zs21T83wo1+tc3TjMxzZ+AxHNj1AbTOwD7jeHTMQ+WytjVCp78Kv7ieeupITY1fx2ONXMfOZK2F6H6j7HmzcGDmrdia4c/Pt28LzSq0XhsLUlMfs8VlqhyeYfWaa8VOTHJs9yYlklFOFcc4OTDC+aZLpjWPUNp0iPnAGDuQukvgwuQ8m9sOTB2ByH+rFzAyMMTMwxsmBszA0BtvGYPAslE7P35izwBmfQq1CuTZEuTHEQFihElUY1mGGvA1sLG5k48AWNg5vZWTzDjZv3sb2oY1sHRqgMuiCMgFqcc2J5KazJo82nCh220ZbluWJ5jgJcx9UNsgQW7yNbGUj38ketiZXszWusDUcZFtzkK2NEtvrJYZrHl4zhGZIrTZLYXgL8cAAUWmQuDRAXBogGhgkLpSJS2Wi8iBxqUxcHCAulUi8QtvdQNvZiBIFTcRtJ5dGU7PRvNS/Pg2irAwmbL8sZMvmkCCAMAkZbZzhVOM0p+unOJ3Os/UvjX+J0cYZYo077rvoFTtE9/by9rboTte3FLf05YEtG0F0hpAmYRLRTJqLrIeEGrWXkxAgF/OS/p8zeGTZaSS33s60087C0XGNruORrmMRJmcn2BJvxZO00I34rry7+K1lLw0ozpbb8/Y5rcDjXABy5pq1Ug82vQjqMBPTC7DpQhuzrGTJQrvLxQJpIlMntkulNJFprgRrvz+c7oDDVewnnRXNajSd9blaawcs+J7LwTl84YbLnmhbuBUkzWGZ/lNNSIhpaLXLWpGzYqyRALkLRVWJ1FUkqyd1alGNRtIgIXF+oZ75hZ6vAK+r8yE3lodX/vzvon/yGjZNR2xqzOKPjjI9/gynp45wsn6SE+EZjssEx4Jpjg2McmTb1zi7v/MafixsnhmiMrsdb2Yf01NX8qWxq/mbf7iaZOJyJ2SjAQqFhMt2NXOCu0m5nDA55TM97TM1BtNnImbGE8arNcYLp5gaPE19w0nYeAQ2HYZNR2D3YXjumc5GxAWKM7sZqO1h1+R1bJzex5bCbnYUdrN7cBeXDW9hZIewYUPMxuGIoeGYk2dPMVy8jGrNp1r1qNY8ZqtueboWM16bYbwxyWQ4yXTtLLPhWarxGDUmqXmTNIqTTBYnOVuaItl4LBXiXSFOs7Tz9yU+1EagOQyDo3OPzY6Z2QEzu2D6OTDzvW55ZidM72ovz+xkKiozhYtYXUt4nrJlc8j27SE7tmXzJtu3h1yTrm/bGlIsukDYscbZlsg+1TjF6frpdH6KRya/yulTpwk17HgNXwK2lbayo7SDbeXtNMMmQeC3BHCkoRPCSSp+510PiTVaoXdpbeB+71MhTlt4Xz/0Ir6fm5btdXsR1LMicquq/nH3DhH5IWCsf81aJorFhcNd49ilppuZmVuSLauWlU15y3Yv1u04dmXCx8ZWbcBhZn2u1WCmKtTr0sqhGQRKuaTLUighbynMBHK2LUoiYo2INHZJ34mIk4SYLEyalk+tAmEScbJ+0q0v4FeSPc364iF4rSF+3/M7/gDnDiOuvDDvTnWZZpJ1Ps9JSD1xZXEbSaM1dJk9uQ/4A+tWPPeDTICb68fyk5RKNCrbmB1uj5ZsS6fv7DgwwZ+eonnmGUZHn+D05GFOzh7nZONZTugYx8qnOLbhMCeu/AxJ18c2PDNAZXIr4dRevjn1HB46fg2Nx57joms3Hcbb9BSFTd9G9h0m2nicaHCq4/wgDtjc3MY2drBz4Lu4bNMB9m3Zw+WbdrJn8DK2lLae47tSnbNlcDBm20gELCaaNqTT3kWOcT9tjQbMnJll7Pgxzp55lrGJM4zPjDNen2QimmZKZ5n2qsz6DQbqe6hUN1KpbWSoPsJQfROV+giD4UYk/c2TwEcDV2GPwIcNHrp5DPEn0OAJJPCh4KNBkB4buOPTZQq+i8QLXEU+RJmuTbGpsgFPI7ywiR828cMGftTECxv4YSPd3sBvNvDDejpP15s1vGaDIKzjN+r4zXR/o0bQrOGRuIC3rrmgTLGBI6UrObLheTxTupJjU3s4MrqNB/9xE7O1uRGDm0fyotuNcOzYHnLltpAd25ts2xYyUHaGnolwglP1Uy0L95nGabfeOM23p79NGDcZKAxSEFc5seAVGPQrFAvFVjpIt2/ueuAFbrsU3PY56+k1pUDgpdeQNMWkF7S+IIpLB5lkqekU4kTTbW7dzZU4PSZOFG3t045jEoU4TXWX7VeV1raxmQmGBofRtHhLTEysCQmRm6dGMacFYhLa1Tljjd0+sn1x5/EkxBql5rX8NWISjdleu2zRv5cLpRdBfRfwRyLyD8ADwDYRuRN4PvAjwK3L0L6Lg0vEuGC5VeLYWZXr9fmt28Vip3U7L7iz/DL5gMNKZVVE2Km2S7POVqFa81ztGFyqmUKgDA+dnwtCFtjjgs1cuYM4iYmI3FyjdH/c+iNqudWmAjnL25kXsF4qgIt+sOAP1XSXX+38964dor2RNNxy7B6msiF/cnpcc+eKCKqaG3LyWv56GUnOYTsTvR3rubc26XL16D4379PXyqCR299ImhyZPYKImHg21heeR7xxE/7GTey48jp2ANfNc1iYhIzOHOf06W9yevxpTs0c5WTpJCc2j3J8yyOMFb5Iw+80ppRjnz3JRnYVtrJr8AZ2jhxkx8gV7Brcza7yLjYXN6/qhysR50lY3lth696rgKtWsDVxOs1l/tzbQToNXtjLJgleo4FXq+LVavi1qluu1vCrs+wfPc2LjxymfOSLlI48TfHsaOvUSW+Ep3e+iKe3vIAjQ1dztHA5x3U3J+pbOfHsAP/0SIXJqbm6YeOGiO3bQ7Zvc4I7E93Xp6J7++UhQ5Wkdd9xDI2GR6MhNJpee7nhUW94NJvt5Wx7sylUG9mxHo30mNa8e7mR7XfnZjnZk2T9/Ea8+PqzLpXGMrFkQa2qHxeR1wP3AN+bbv5PwFHgx1X1/mVo3+pgMUt05lQ8O+tEc3dqiyBop70YHFzRgMN88ODMrAsezMy7QaAUC0r5PIPao3TIqhbXqEazNLTZ8p3K3pH5rL2+F1BgnjK1y0xmabzQoLgs2K3ldrJI1GNeBAvSUSbWm2d/d3sXY0am+xI0aBiriSwHbT9GxQpegV0bDrBrw4F596sq4+E4J2uuSuFlA7vYVBixh9K1jueRDAwsOVjTm5mmfPQI5SNPUz5ymANHDnPV0T+m9PgzeFF71CDcspX6wQOM7X4uRzY/nyOV53IsOMDxxjZOjxY5fbrIqTMFHv/GIGPjcy3dgwMxyDU0mz5RdP5f8CBIKJWUcimhWFRKpYRSKWmtDw+Frf2l7JhikubJzhdt0Va5dvG6t4F42jHP73fX0Pm3Ce0iMh5MzI6xeWikM9tXLsNqVkgmv490luWyzva1/jKzbCO587v3aZygOglsOe/3+pyfRS8Hq+r/Af6PiFwFbAVGF6qOtW4QcVbphSoYZhbtFQg4zCoHnR4VZmtzgwcrg9kXtzcrdD4rRDWqUo2rREnUsiYXpMCQvz7EXf4BwTCM/uF5gN9kql5A1AUjkWZsyKroZcUj+oGIsLm4mc3Fzf25oLEmSYaGqT7vWqrP66rAGoWUTpxwQvvoYUpHD1M+cpjdn/0L9k9/rH1+qUx97z7q+w/Q+J7Lqe8/wNSugxyrHOTZyWFOnylw6nSBM2cKzDZmGRkebAngUklbojcTwKWSE8Cl3P5SKaGUiucl2+hUIY7wwgiJItQT1PfB89GsEstFeHh8dvwMO0eWKD3jGAmbeM0QaTbwwhBpNvGaDSQM3bwZpse45fa+Zu6cBtJoMrZ1B67A6/LQSx7qN6vqbwKkInp9C+mlcpEt0nHsSuVOTLogwjAUpmeEYkEpnafGVVWaSZNm0qQaV6lGVRfdreB7/kXJ12oYxvqiGPi8YO8IjQBqYZNqWCOKIY6gEUK94ZE0fVAfjwDPl7RP6r/YNpafzJVu1RIUaOzbT2Pffibz21UJJsYpHTlM+ejhlmW78vjXGfn03yDpqPXzgcbOXdT3X05j3wHq+/czEdbYVKwgUYREIVILkakQiSInBMPQbY+i9nIY4mXrYYjEueUoRMIILz3ObXPX9sJwvrvqQCUnsn2vJbbV98AP3HIqvt08aO9vHeu398+zbXfYoIyXCuCmE75zRHPDrcf9Cb5MCgW0UIQXnLN6+AXRi4X6bSLyVyw8SK7AGVWdm3DSWFaSxLlxTEw6Vw4FigXn/+zNwECPxvFEXfW5ZtxkNp6lFtdaPryBBJT8kllkDcNYVgRhpLTRxaakZPEXURKnqR8b1MMms81ZoighSoR6ExqhkNQD4tgn8Hw8zzOxvUJksTTdbnGShpFkRVxqcc250Iki6sbsW/E0uet1x9Tkt63I75II0chmopHNzL7g+s5djTqlY89QPtIW2uWjhxn66pfx63X2LXBJ9X00KJAUAjQouMDOQsEtF9yUpNuSYhEdrLS2u/PSc+Y9L43z0gRJa31LErvlOJ0niRPqcQLJfNsSd06cQBwhSdJ1fozEsRPz+WvHMV4c4Q9USIoFksEK0aYRtFgkKZZcG4tFd0+FdF4skhSK7e2L7SvMc0yh4Nx+4oSJiSl2LONXoRdB/Tzg8DmOURE5DPyyqv7e+TbKODeqLkZyelaYnPJQIPDzbhxLJ9aYZtKkETeYiWZoxA3n+yzO79CC2wzDWA34no+PTykd+NsIkLrGxokLhI40JoojGkmTWtSg2qjTiELiJA3uCiGu+2gSpIVc/A43kmz0+2KQrwKaFSBCXVq21Z7iU9N2ZlkYsnLuImmQtbpc0L4E+AT4UqZMAU8CPFzOYVEfwaPGY2yXg4in4MV4ouAleF5nJcQ4iduZHNK0oLHGJIn73LNj8+9ZPpe8irYKunRnbvKWIZZHS2XqB59D/eBzOnckCYWzo5wZO8HWLbtT0dsWz2utuFsvzB+AemnQi6B+J3A78AngUWASl3v6WuDlwH8FirgA6w+JyKCq/o/+NtdoNGBmVpiY8ohiV8BkoNxbKrsozWlZS+rMRjM0syTviEvbs47zEhuGsUpwZU/dlAV4Z1mU5iET20Xo/GUbdqNuLv1mTJTENOMm1ahBLWxSb4aEMUSRR6MJUcMnSfPrqYK0SlqTmkw7s/UIkoZ2ZybXNCKqlcpT08p/beGcBST74qUBVB6+CL64o8IoTlOQxbkMSDmrbReaK/3ZDv52a560g8HzgeHzifW0Mnc6ApAQa0KcJGlbnEhufzyeS+UmJQJx6dnyRTgKvk+h5OGnQW1BkAa4eS7bXisALok4WUu4bFtImPg0Q/fgE0ZCFGZx/i7dkqcQpIFvvu+yUXV/HbKy4h3ztBx5QkKSJEREqCbu4SuJSJKYhrbTjObL03ZXSu2L8PY8wm3bqQcx0ci2C7tWn8jSseazSuUf+FrHZQ9+XcfmrzNvVqr0LUs0YTZySdAXSku7HA83F4NeBPULgR9S1S937xCRFwFvUdU3p+u/CfxPwAR1HwhDqNaEsUkXWOh5UC7pkl05sspI1WiWalylmYSt9GoFKZwzxZxhGMZFJwjg4EHXATabrk5Arebm4ASP77u0peew6HniUfSLHduyWP+sAFKcWjmbcZN61ETEA82JT5zIFvVaZaydrmjXhsvWBQF1RbBExFXuU7fNVelL13Fpy7LSB4nC9Owku8rtKjWZQMmETP4fuSxDmftEok40ttwsWuvt/L0uXai2Kh22U5U6oVryC5QLAeViiXJQoOAFlAoeBd+50PieR+BJmnWBVlaH/HJ6R+kscVHycdyZelYESgU8XxgqNt1nXfBgc9n53Kb5jbPT4kTc1yGEKBKakVBvdIpuTfxWBgvfd5fzlhhvl+U6dhZ3l/HYGaBcgZUkiannvVoXEd5LLRZ1vmjHZ9/+fmSfaT7jVJZ7QNuJvdKLtJc92u4zXvY4lnv4yrvXtI9Nv/sieHjuc0jc30erYqXiHjvVLc8wy3CyK8157epKJMSoxG7kQWISbaIkrRoY4gGtdLW0EiBk7Z5TI2INVEq8Zj4xDaCqD6eiOlv/osgyf5sucaLIieiJSZfezvOgVDx3VcJYY/fHHzepJTWaScPlJwaXos4rMGQBhIZhrAWy+gADA7Bxo9uW1QVoNtsCu1ZrpyzNLNkL1RXoQkTSYhhppqbCxTIwaHueU41Pj8dcvr1Ky5zboVBzecT61YqcMHOpTM/zpztLIdtMhXO+qFZWHG142M2zzzXLLHH4MFx+uftMZ2ZgchKqVcTz8Mtl/GLWprw1VFsv2y2649iJ7mbTie6o0S49nhlLs7Ruvk8rDZznOXFWYIGsXSn5QiOZ8HaFtaIO4Z2NYOTTx+aFN+oKcvUihvM+5oEEeCJ4+K0RmkzMB16QPga6J53M6pt3eVlIfGbvaVbYJSvxnqRuPNm7L/kbo/119X0l8N2oRJCW5cj2jT0pPHfvQOdrOFfu9LlL0nUlTiCM3EiJauKKxIh7QHQFYZy7T7MlzEMSjSFL1wcgiu+JE+R9/tvpphdBvU9Edqvq8e4dIrIX2v71IuIB5w4pvYgkCcxWpaPA4WobUUgSl6Fjcspl5hAhzSM5f1q7TDyHSUgtrlGLa4Qa4qWDi1lNe8tPbBjGJUPWgZfL7WqzSeJEdhi2RfbMTFtkZ8W2CoWL2/F3q70k6axVkJG1rVxu31sUufuJFsl0kP2QZY7fnebhJdFz6s84blubM9O6arvI2dCQa3/2UJOpqXM3pF0gbfPmOeLaDc2W54xGZAMV7c1zRXfW7NbHoJJWBXaiO4qh0ZQO43nekJvPs+zEd+rS0oPwzoIym0mTOHFxS+AsrN2Ves8lhpfiEpF99brFcaTtERF3c7SfNFLSBB4EnlJMXXUygdz6mqEdz3xL/eqJB4MDi6Xq7d4nqPqo+h33kz0gJanlO/s6xrET41GS0Azd3G2LKQ81zt3AC6AXQf1nwAMi8mvAV4AJYAS4HvhZ4OMAIvBXoVYAACAASURBVLIP52t9pr9NvTDCSDh20nO+a+mDc1CAcjGhWEgrinvaEtwXKwI8Cy6cnBamZ9wwSSFQhiqdwYVZ5o1II2pRjVpcJdQoHQZpP5GWpNv6vMqeGgzDMPqN57XF2FBqQMgKamVVbqtVN2VqwvPaQvZ8OvzsVzz/S95N5vtdLLoKuXk/8Hy6kXxn//jjsKsraCtTRNlrZS4U2dRsdorcvHU4W85eJ3vNbFro3rJrd99XJvy7RfMSRwSWxHmK68VYiujOi89MeGdvddh6u51/dy2fz0w6L+V7WXEUZzkOvMK8YnNiapzdg7sXbHOHIFYIE/camYjsfO25otjzXVsKgbMau2rxTudkXwlPtEMQn8cz2bKTdyeay0LiPDs4/dA1gNrChdf6QU9p84DfAf7zPPv+N3BbuvwWYDfwoQtrWv8ZGnRf8ow4dunmqlU3TJQflwkCJ2zLZaWY1m3JC+4LQbUdXDg5nQYX+srgQBohrQnNJCTUkFpUox7XaGro0gylwzyBF1CcI54NwzAMgHSIry1mt2xpC8UwdJ1w5i6SicZ88GNewLb8BVJU3Q9BJi6z4l75IdB+pgtpRfMt4Sc7b67L30N235nVOxPh+fMyfN+J2Q0b3P3lRfPFVlvLIK4Xe6ns43O12uYTa+1tc55zUst3FDkXhjAUwliIm/nnnPQBJxXKM7OS+q93auPsq+h5iu9BMWgHYuYDPD1pVztczaJ4PdBL6fFZ4HUi8ou4UjM7gZPAg6r6rdxx7+l7K5eJhZ9Y238kU9NCkrQd4TPrdqGglIquVHeh4ARxNqq40Be52XRuJ+OTHmHk/jCKxRivEBJpxNlGlVpSoxE3nduGgC+ucEpFivNf1DAMw1ga+cq2g4MwMuK2Z2IzC36s111nnhfL3Vbl1ZrIOlNiS6HbJJudu1rTtp1LXGcPAhep/XOfc7oFeKf1u+M5JxGOVZU9lyULimJjbdHzGM1CVRJF5LtV9Yt9adUyEGvM2caoC3IQvx256rWTxDsH9pyzvi8E/txUQyAt6/ZsNfVHEue0n/VHpaJSLCqlovtDGp8U6nWIpYlfCAkD5/PcqDbJVLovPoEE5vNsGIZxMZkv+HE9MNcku3ZYZeL6XMx9znFW5sX9iY21RB+dnvh1nD/1qiTWmOlopuVWMye/Yi76N1tvpdycJ81MPpVMS5KnEcLEHsmsh065FD6JJmhQJRYXhEDT5UwNJKBy0SLKDcMwDOMSZI2Ja+Mi0R2tuMwsWVCLCym9Dfhp4ApcEZc1Rckr4fn9GUfJ5wPN1rOyqoorn6pBe38gAWXPxLNhGIZhLBsmri9dunPtZVPm/58PxoXOwOOBAefCtYz0YqF+By7g8E+ANwAfTrfvAv4VLgvIuiFzAWlvWLm2GIZhGIbRhYnr1U9eGGf5y/PpGPMCOfObyTLn5OMb2kmwe8vj10d6EdT/N/C9qnpaRH5AVX8p2yEi/xX4pYVPNQzjUiMYH2Pw8cconnqWaNMmopHNhCObiUY2Ew8NW1SNYRirh3OJa5G2gMtE2WoO0LwQsqw1ectufvtC2/LnL7Sv+7huUZsk7Rzx+SDYLFA4y5bTLY5XcyBwSk8+1Kp6er7zVPVbaf7p1cn73sfz/vFL1P/Fv6LxHVdbPhnD6BGvWmXwm19n8PGvU3n8UQa//iilZ08ueLz6PtGmEcKREaJNTmS79c1EIyNufWSEMN2XDA6unr/LKMSfnXXTzAx+dQYvW5+dxp+dZev4OM2Xfh989/NXurWGYfRKXlxv2ZKrCJLL691ouKlW6zw3n9pjtVaIy/KjZz7E0Cluuy24mVDNi9b8PEsE3Z0QuvsYmH+eXz5+3FXFXCEr8nLSi6AWESmoaghMichLVPXBdMe1wOXL0sJ+8MwzXP6X9+N94s+oXX6QsR/8YcZe+UOE27avdMv6jletsvHzn2Xk7z7F8EP/yFUjmwgvv5LG/supHbicxv4D1PddTpxVGDOMbqKQgSefoPL1Rxn8xmNUvv4Y5cNPIekwXGPXZVSfdx1nbn0d1eddQ+OyPQRTkwTjYwTj4wQT4xTGx9L1MYKJcQa//iiF8TH86uy8L5kUS6nAzsT2XAEeptuikc1oaZ4c7FGEX82E8LQTwdVZ/NmZVBjPum0zThR3rGfnzc7iNepzr92Fej4nN2++oLfZMIxVQibu5st0konSTGxnOcyzPOZ5C20mNpejQlx3gF3mJtEtSDOf4SwHe7HYtvbm0z6uFFnqykuQXgT1l4G/EpHXAf8H+LSI/A0u78U/B/5wGdrXHz78YT710pdx9T99jS2fvJ/dv/7fuOx/3Mv0i17M2Kt+mImXvcJZyNYo0qiz8QufZ+TvPsXGz/89XqNOc9t2xl75g0RnT7HpxAk2/OMX8MJ2NfhwZDP1A5dT33eA+v5UaB+4nOb2nat+WGU+JAwpnD1DMDrKyPizDOycIh4eJq4ME1cqa/KeLgqqlI4dZfDrjznL8+OPMfitb+I1XYnWaOMmZq++hombXsHs1dcw9R3fwWhFGG+OM94cYzw8Qy08yuBQhaFNQww/ZzdDwVUMBUNUgiEG/IGOErnSqM8juscpTIy3Bfj4GANPP0kwPobXbM7b7HiwQjiymeeSUKo38GZn8OtLEcIecWWIuFIhqQwRV4aINm+hsXcfcWUo3VZJp6F0W4VosEJtsMRUWZgqw5naNHu37OGy/nwKhmGsVvJ+u/ORF9tR1Bbb9XrbFzgjE7Td5di7y9Pnz8tXuszEcqXihHJeJJ9n6Xmjf/QiqO8CvgsIcSnydgM/AZSAPwbe3vfW9ZFweJgzr/5Rzv5f/4rSsaNs/uRfsvmv7+fAXb9A/IFfYfL7Xs7ZV/0w0zd815rwmZIwZPhLX2Tkbz/Jps8dwq/OEo5sZvSWVzP+ilcy+50vAM/j2fGT7BzZBXFM8eQJykcPUz78NOUjT1M+epiRz/wtwdRk67pJqUx9337q+53QbontvfvQ0vJGyM5LFFIYG6MweqZzOtu1PjGx6GXiwUoqsIeIh4aIh3LLlaG5+4aGnBhPtycDA5dERxWMnqHy+GMMPv4Yla8/SumbjzEZT3O6Ak9uKnD84G6Ov/Q7eXbnMKdGSowGDcbDccaan2SieR+TD0+e+0Vy+OJT8SsMBUMdUyUYYmjTEENbs21OiFc6jquwoemzcapOaXLCCfFMgI+PEUyMUa/PUhzZ1hLJeRHcHBxgejBgsuwxXYKZEsx4EbNJlWo0SzWuMpubu+VnmI2qVONZqlGV2XiW6nSV2YkqsUYd9/Zzz/k5Xsk/7+fHYxjGWiMTs/ONmuVLxMexE9mZO0kUuf2zs51VN7OAu3y1zZW2KhtLopdKiU8DT+c23ZFOq57f/m144PNXcPP3CN9xVYPGnn2cfNPPcPKn3kLla19l81//BSOf/hSbP/WXNLdsZfyVP8jYq36Y2pXPXemmdxJFDH/lISeiP/tpgukpouENjL/ilYy/4pVMv/CGhZ+ifZ/mnr009+xl6p99b8euYHyM0pHDTmwfeZry4aepfP1RRv7uU0g6nKUiNHftToW2E9tT+/Zw8rJNnB1QJprjjDfHmQgnGG+OMxPNEGvcMSUkxElETEIch2izjjbrJM06GjZIwjpJ2CSJmiRxSJyEJElM5EEsuLkH0WaIt3mEgRB7QuQLsRSIRYlF8RAGKTKgAYNxwGDsMRgJlTCh0pxksDHOUD1msBYxXA0ZGg2pNBIqIQyGUGnSsTwcwmDsUQ4qlAaGYXB4YVE+WCEZGCQZGCAeHHTLg4PEA245HhyAYPmGu2KNmQon3WcxdYLZI48yc+KbTJ09wsTsKcakxukKnBmCM6/wOftDcTvfOiFwGDiMIGyc2cjm4mZGiiNcOXRla3kknW8ujDBSHPn/27v3MDmu+szj319VX+emkTSW5Bu2DDbYBsdgGcwCji+AweYSwibLQ5YkbAjJJnkCuyQhXEJgA4FkwwMkGyCBJ5iQgCEXCBcHOwYEhEuwfAXbEAw24IssyRpp7jPdVb/943RN97RmRtPu6emZ6ffzPP1UdXV11akZ6czbp0+dQzkuM5lMMVGdYKIyHpa1x2QyWX9ee23/zP4F2xNffnxQw+jL9TMQ94cAvqseuqcrEWl0kKnqvUwmC4PyzNEZWEH+jy2mL+6jL+6nP9dPOQqPLYUdlKyfkg1QpJ+S9VNkgIIP4DMFnpR7bHu/LBHZ3KKo3u0CYHCw/lqawgMPwGMesykaa6TNiV3M7CzgHOBb7v7A6hRp9X3uc/CpT53Dh66G/v6EJ50/wQVPnGDPEyc469zzmTzvfO571e+y5etfZdt1n2PHJz7Gzo99hKnHnMnhK57H6LOe073+1mlK/+23su0L1zH8pRvIjx4m6evnyMWXMHr5FYxfeBG+SH+k2Vnjxz8pcuDoIBNbS8SRE9emR49jD89ztfXCCNFZ25k+60zGksOMVY9wpDLKkemDTBy8l/HR+zgyuZ+js6McTvdxOP4aByNn/CBw8NgiG8aglYndyLkRJ04+ceIkJV9NiasJ+UpCnELskEshTiHnEEV5olyBKF8mKg5j+RJRsYQVylixjJX6sEKZOM4RExFHOSLC7JexxUQWMT49RpSPmUlnmE7CjJQzyQz7a8v5bWnCTDK3cIKfpX8RwDgwTjExyklEf8Xon3P65pyBmZS+IxCNhgmBnKWXmJHGEWkc4VEclnFEGkV4lG2vrUdWW7fa64bbwnWPjNnqLJOVMY4k46TWdD1D4bGtkmebbWO4fAInDZ3IOaURBm07fWyjz0coVbdTrI6Qnxshmt3O7Eye6SMR0zMR09NheWQq4sGZhm3TMXNzVr9fJfIwl+j8fSv1KXUNyJuzPYKRbBKlKMXjKZL8GGl+nCR/lCQ3RpIfo5obI8kdJcmNU82F5xO5MY7kxqjGY1RyD+JpSi4dIq4OElVOIKoMElcG2VIZYMvcIMyGh88OwswQ6ewg6fQQ6cwgyfQQyfQQ1ZkyU9WI8aS1P2r5X3uQl/98S28REQmyFmeF6U2jlYldfgV4A/A37v5WM3sB8I+1Y0yY2XPc/esdKmdbnv6772Ts6Xvx8d0cvu8k7rr7ZL76uZPhEyfQxw4uOKvInifOcMETn89Zb3smhfFRtn7herZ//nOc8pfv4uT3vYfxPU/h8HOu4sjFl4Wv/zvJnb677mDrDZ9n6xf/jcLBA6TFEkefdjGjlz+bo0992oLuF9Uq3HNviTvu6uPOu/q447t9fP9HTpI/Cn1z0Hc/9B2C/oNh2Xdw8edxdfHyVMpYcgJR5RSimRHi2e3E09sZnhomPzVMYXKQ0ng/paN9lCbKFKf7yLsTk5CjSkxClDeiQg4r5olKOayUJyrlsXIR6y9AXwkrF4lzRhQ7udhr94k4uZzXvvmqfRCIIYqduLYtiuofFKLImZwdZef2LRSLKaViSqmcUiw6xWJa2xbWoyhMyDObztZCdz1wN4fx6abXZpJpppP6cjqZ4mhlCk+rWOpYmhI1LS1JidJ0ft3SlChJyKUpUTXFkipRkoR9kgRLUlKPSYlJPcaJSRqeJ+TmX+9PS+yaPoH85Bbi2Z04jyJhN1XfTaW6m7mpXcxMFpiciTlUC8Ozs619hVgopJRL4edZLoVHX1/KwEBoYfbUwgeH+WFEDXcLN5sDOKRp1DBik4V9vQA+jLuRZqMwOaS117PnsRuRhw9e4RyGU6VYiMjFXuvm6Mc+4tqyz8kNhfU42xZPk8tNLf++xv1z4TzVuWnOOccIw/CLiEiva6WF+mXAnwEfrD1/O3AXYZKXZxD6WF+2moVbLbc9dBs3Tn+ZCfscfqrDqfXXpoCvAl+d2gY3n0D09RG25bdx0pYtnPGrT+es/JM57c4fcvq3bueUv/oGI+8tkbvwMsaveD7jT7pw9fpbu1O++z/ZesN1bP3i9RQeuJ/xvhz/+V/28OOn/zceePxjORrPMV4Z58ff/ST3PDTNA6OTHJiYZGxujLRwFMqj2JmjcN4oHs8ueaqyD1P27ZTTbZTTkyilj6c0s51idTuFam1Z2Ua+MkJubjtRdaB2v4SRpFZfT4wkD8mAkZSNZATS2YR0coapuZQkKlCNC1QtT+Jh/zR776yRTkNyqHacJASk7PhpYlRr52jd6SvaK5+vB+1SMaVYWDx4h0d9v/6isy17T+21UjGlUEhJMGbmImZmQ2CdmYmYmTFmsvUFS2N6prbf/L7Ze41KpfU+c7k4pVyuPRrC7/BgSvmEWUql8FpfOaFcTuefl0spfeWGsJzt03CMpXoTddP8PQJrbGJ8kqEtA2t+XhERWZ9a+RM55O7vBTCznwLOBl7o7rcAt5jZKzpRwNXwty/6Wz4TfZYThncw4ROMzo1yeO5wrc9v6Pv7wNgR7jk4xkMTRzlavZtDySFuH30YohR2AM/LjjYDXMvwg9cy8s8xW4vbGRo5jaHhU0P/0ny9j+nWwlaG88NUvcpYZYzxyhjj1fGwXltOjt7P7AN3MzX6AEeZZnQrHP7lHEfzEVWrAt8Mj+80X5VBeQuFwjBb4iG2lgbZOXgqO4Yex5b8EIP5QYZyQzAHu7fuZrhWnqHcELmolV/7UVbUEbWD0hSSNITsEOpDKE8bwn22Xk2M/Q8/zEBxB7O1YJoF1mx9di6sZ6F3fvtsxExtfWoqZnS0tt/cwv3StPWQH0UhdJdKtUcxpVRySqWUwcGEE0YqDa/Vwntp4f7Fos8/Lze8Xiw6R2ce4PRdO8jnV9J9RURERFbTI21zeilwAPhcw7bKEvuuG7kox7Z4G9sK23g0j1523wMH89x4S4lv3Fbllu9Ps3/8KPQfpLRtP7t2389I/10MVm/HR+/lobEDfHvoZg6V0mP7ry4jTmHrNGydgaH+for9ZzJU2E1+Yhd994/w8P0nMHV4BGaGiWaHOXWkzOMeVeIJZxQ4/7E5HvPoWfLH+Q12qwVvNc2PNZ+rffd/HOWhcXZt7UzroTtUq1ZrSa4H8dlZY3YuIpfzemBuCM25nHe0q1w6WlWYFhER6ZJWAvWDZvY6wkgfvw78lbuHnpJmT+5E4bppxwkVrnp2haueHZ4/dGCEm245nZtuGeCmLw2w774wRM7QQIWLdnyPl018hmcd/Bgn993Jjy46jx8+Yw8/OXs3o0yStzxbp1JOuu0uHvXNWzjpjruJZ/q57eSf42unvJh96R6+c89W7n8gHNPMOe1Rs1x69hTnXDzFuWdPceaZ05SKWWBKag9Za2FMeiefTxbcsC0iIiK9q5VA/RrgM8CjgTuAdwCY2bsJAfvtq166dWTnjgpXXjHKlVeMArD/oTw33zrAvpsHuOmWM7n+wOt4La9juDLJxf/+FS77wue5vPQpTrl4Bzx4kB9+27mRC/nU0P/lxvgi7q7sxO8xuAdO3DXHOWdP8eKfeZhzHjfF2Y+bYqA/PU6JRERERGQ9aGUc6u8CZ5rZdnd/uOGltwHvAh5a7cKtZ7t2Hhuwb7plgJtuGWDfzZfx6QeeCzMwfP0ok/RTIYxDuS2ucM7ZU1x29n7OedwU55w9zbatS4yuISIiIiLrXst9qJvCNO5+EMDMngN8fpXKteHs2lnhqueMctVzQsB+cH9owb719n4GB0c593FTnHP2FLt2VjTspIiIiMgmspoDYf0xPRyom524a2HAFhEREZHNqZWJXXQXnIiIiIhIk1ZaqA8A72/a1g88DjgP+PBqFUpEREREZKNoJVB/wt3fstgLZrYHePFKD2RmFwOvBrYBMTAMfNDd39NCeUREZI2o3hYRWVoro3y8apnX9pnZe1s470uBW939/8D8zIs3m9kP3P2zLRxHRETWhuptEZElrMpNiWZ2KbCrhbf8OfCT7Im732ZmR4DHrEZ5FhNHxqHJaXIxFAuAQWQRscVEhKVp+A0RkaWseb0tIrJRtHJT4g8X2wxsBQZpYWIXd7+z4bgR8CvALPAPKz1Gq/oKOS4841GMTqaMHnWqSYrHM1hcYS6dZTqZw5umtY4sIme5+eAtItKrulFvi4hsFK20UG8BPt20LSHcrPhld7+u1ZOb2RuB3wIOA1e6+/2tHqMV/X0R/f0xJ43A9IwxeqSPySmj36BUcixOqKZVUk9ISJlNZplL56imFWbSmVBmwHHMovmgHVtMZFEniy4isi6sdb0tIrIRmLsffy/AzL7o7petegFCP4uXAu8FnuvuX19kn1cCrwTYuXPnBddcc03L55kYG2OgXD5muzukKSSJ4U6tK8hiR8jar8PS3XHS2rL+Wha5jewgVpvIpTvdSarVCrlcvivn7hZdc+/o1nWnSUocR5T7j61TjufSSy+9yd33dKBYa+Z49faq1NkTEwwMDKxCaTeWXrzuXrxm6M3r3ojXvNI6e8WButPM7DPAFne/eLn99uzZ4/v27Wv5+Huvv55LzjgDymWWmqpwdhbGJ4yj4xHVBPI5p1hYcvcFUk9JPJl/VNIKlbTCbDpDJa2SeBL6aNcyd4jdIZibGZFFGIsv27F/9EF2bT2xrWNsNLrm3tGt654Yn2RoywDnX/RTLb/XzDZ8oM6spN5+xHX23r1ccsklbZRuY+rF6+7Fa4bevO6NeM0rrbNXc6bEFTOzgrvPNW2+E3hFx05aKMDgIIyOQrEYHk3CZmf7toTpGWNsHMbGo9rbncIyDWFRrQtInsV3ylqyU09JSUk9xT0lxUnShJSUxKtUvdbtJE2oetgeDsCaBnERkUZdqbdFRDaIrgRq4CYzO88XNo+fBHS2L97OnbBlC+zfD+Pj0NcH8bE3G5pBX9npK8MJ2xOmpo3RI8b4hBFFUCr6Ym9blpk9oqC7XBB3nGpaXTaIp54yWZ2cD+IAhoUwTjT/QSAi0ignIrKc7tTbIiIbQLcC9SDhppa/ADCzC4D/Cvx+x89cKsFpp4VAfeBA2LZMN5A4hsEBZ3DAqVRgYtIYPRoxNQO5yCkWIepgY3C7QfzOiTs4te/UY1rEK16h6tX5ED7nc6Seznf1tlqLeL1f+bEt4ArhIj2le/W2iMg6161A/XrgFWb2UsJIIWXgNcD71uTsZjA0FFqoDx8O3UAKhUW7gTTK52HrsDO8JWF2FsYmjLHxiCRtrb/1WsiCuGEUosKK3uPu863gWYt4tm2xlvDmEI47mC3ojgIsCOLNzxXIRTaM7tbbIiLrWFcCtbt/FPhoN869QC4HO3aEcH3gAIyNQX//ot1AGpmFhu5SyRmp9bc+Oha6hJhBseDkOzzwgHt9hBJ3SGvPPQ1jjKS1rtdpCnMVlu3/Xb8uIyZuacztLHAnnizaLzwlJU3DMIT1oJ5QSZP50I6Dm2Nux7aQQ33wFFgQ0htb7hu7sYisptTT+W9zHMfdqXpCMVr+A/hms27qbRGRdaiViV1udvcndbIwXVMqwamnwsQEPPRQSKZ9fStqbo4i6O9z+vucahWmpo3Dx+lvvdIwDCxs/cWyRmAgfB6IIieOIB9DHIf1OHZyubDfTybDtolJm7+psZBfvcD/SEJ4syyU14cgDH3GnfCDccJghY0h3T0NfcVrId1JSdKEudrzicpEaBFv/BXOh/QwrKE1BPXs5fk+Lg3bm1vSszCfXb+x8LWVeqSt84ufI/zM1OrfnmpapephVJ7sP1vOcpTiEkO5IYpRgVyUJyGlXOitQC0iIktrpYX6NDP7m2Ved8IkL98BPu7u1bZKttbMwiggfX2hC8ihQ6EbSKm04kPkcjA06AwNOnNz9f7Wycyxp4rjehgu5JwoglxtWxaGowiM8Nr884blSsQxnHpySpqGYQFnZkPYn5g0HML58+Gc3ZKF8tUaqntqYpJHDzwagAWjhDcE9sbn2X5ZeG9+X5rOt7XX3peSNoX/1Guv0fhp6FiNs3H68rse877lBrh0d2aT2Xq5Gz8sNKw3fojIWv/DREX17jgL1mvPG7vrLPZ8owmtzCE8p2kS/kM5FOI8A3E/pVyZnOXIR/lFPyym1jzYhYiI9LJWYtQY8BKgBBwBjgLDhBkUxwmzZm0j3LjyJjO7wt3vXdXSroU4hpGREK6zbiB9fbSaOAsF2FZwtg4nVKvh73WrYXg1RVG497JcdrYOO0kCc3NhxsixiVp3lShMatPtgL0aGkNhfWOXCrMGJsbH2T2we/5544eHpdYbW/8X+/CQfXBo7FfvpLV96t8izEf9WkI3a5wkaeFNrNmoMmspqfX7r3o1jHbjoVzFqEh/vp9SVCIX5chbfkN+OBARke5rJTa9FrgSeL27P5BtNLNTgDcB/+Tu15nZo4A/Af6McAf4xlQswimnhG4gBw7AzEzoX93iH1wzOt6f+pGI43rA3rY1BOzZOWNqCsanImYmQz7KRU6hcNxu5bLOLOiK0uGM2Di0Y1IbsrHxZtZqWqFKQrU22VE1+/JqkVb0dgL4glZnTzEHN8jXumyUozL5OE/e8uSiDf6JUURE1pVW/qq8Gnha0xikuPt9ZvY/gS8B17n7j83sF4EfrGI5u6O5G8jDD4eW6kWmMN/o4rg+9vbI9tCqPlcxJqdgfDJiahowyMVhghsFbMk0Du2YW2GVkrV4LxbAE69S8eqKAng2zjpQG9Emz1BukFJc77KhSY5ERKTTWgnUJzWH6Yy7J7WW6ex5xcwebrt060XWDWRoCA4eDGNYl8stdwPZSHI5yOXqk9tUq6EFe3IKJiYjpmv9wuM4DBfYybG4ZfPJWp7bDeCT4xOcVDqRWF02RESki1pJhBNm9ibg7e5eyTaaWZ4wPulYw7bHApvvFvhCAU4+GSYnw2ggs7MhWPdAmswCdn8f7BhJqFTqAXtyKqJSCQ36uVxowe6BH4msoaUCeGwx5Vxfl0olIiIStBKofw/4FPBqM7uDcGPiVuAcoA94AYCZvRl4FfDxVS3petLfD6efDkeOhNFAsg7JPSSfh3zeGegHSJibC11EJiZDC3aa1r6Vz0aUaBjub9nhKhbRjLJsRAAAFKFJREFU2Oi4YL3xQI3D33kYeztquAlUDZciIiLSKSsO1O5+bW2q2dcBFwEXAA8C1wJvc/e7art+BPgk8JNVLuv6EkWwbRsMDIRuIGNjIVR38w7ENIUkgWo1rDc+OtxkXChAoRACtntowW4cT7uxs5A3pN8F25dYbzzOYuvu9YzuDtFRJ5+DahJCfrVaP54ZC/vhkoXuMDxhFsK7NRoLNIxPni4+Rvn8h5OG60jT+ljj2XXFkRPFYWjE7JqkNUkS/h0lSW18eAu/C6sYQ+vwZmMREemOljoBu/u3gZceZ5+NfzNiK7JuIFNTsH9/6AbS19eZ9OK+MDAnycLUl8uFQD84GEYpyeXgvvvCCCVpGgL/GtxNaBZ+LEtrsYm6RbmH4OQTFw7y3Pz5IkyoE0JStRpCU7UK1apRTY1kjiUm2KmF9ggi8zDUYLSwNbw5DKdpeF/qVv+g0DBhj7sd82u0KIywkk3Ys9gY5ZH5/PoD33POOC0hSSBJbX5YxLlK+FAxM2v1fy5LhO447s2W/CVDs0G+EGY+LRZSisXw88rlIJdUsfLmvYdCRERa0/JfBDPbAfw0MAIcBL7i7gdWu2AbTl9f6AZy9GhosX6k3UCaA3PGPRwznw/nKhbDei4XtoeZYo49XhzD7t1h+L+HHw7Bv1Ran2P5ddDiLbSLBfuGiVf82CDeGMKzIFatWlhWbP7LgGzWylwuzJSZrUfRsWHYVqNV3LJ+7otdVzbGdP2f1WKhe3qm3gLeOOLeZgjdrYTmXBx+Z9mHl0W1MCmPiIhsfi0F6lr/6N8H8tTb2ObM7O3u/pZVLtvGE0WwdWvoBnLoUAjXpdLC5trGNDafXqg3e+ZyISwXi+F9jYH5kbYuxzFs2RJGKZmcDGUbHw/HL26+e0dXSzaj5cIf+/IhfD3LQvvxQneS1EN3tQqVClSqC0M3MN/S3dhH3fB6GG/c3jCbe/P25m2P1GKhObvMfAFKxZRC3lcemkVERFZoxYHazH6TcLPhXwLfoj4z4pOB3zazg+7+3o6UcqPJ5+HEE2F4OHQDGR8P263WjFgohBsbs8DcGJo7+dfdLIT9/n6Yng4t1uPj4fylkpKFzIfu8AXGykN31voNDf2+vWFbagteT9Lwb80b37dEq2/jDa1hvb5hvu849dBcLITJiHKxz//X0j9tERHppFZaqH8DuNTdb23a/nEz+1vgo4ACdaNyGU47LXyvvp6aw8xCt5G+vtC/+siR0JqedVNZD2WUdWv50L2UlbfiZ2F8Jev3T4W+4wrNIiLSTa0E6miRMA2Au99mpunIFhVFofV3vSqVYNeuMGLJ2BgcPhySSY+Mry3rTyvdP7IvfURERLqplT9FBTMbcfdDzS/UblRUZ9yNrFAIs0EOD4duIA8/HL5PL5U2RmJJ01pn39p4fZOT9e41aroUERGRDmolKf0jsNfM3grsA0YJfagvJMyU+InVL56suVwu3Fi5ZUsYGeTQodDfOrtJcr3IhqjIRkKJotA3fPt2uP9+2LEjlH9qqj4OtwK2iIiIdEArgfpNwOMJfaUbO0QaYXKXN61iuaTboiiMCjI4GEJpNnlNodCdLizV6sIAnY233dcXypTPLxwyYsuW8HAP75uZUcAWERGRjmhlpsRZ4CozeyZwOWEc6kPADe7+hQ6VT7rNLLT8No4MMjYWAmynRgZxr3ffyO5CKxZDy3m5XB8dZaXlz4YhbAzYs7Oha4sCtoiIiLSp5c6x7n4DcAOAmRnwDDO7uPbaV1a3eLKulMtwyikhjI6O1kcGKZXau4ExTUPIzeYIj6JwruHh+jjeq3WDZGPAHhpSwBYREZG2tXu3WQ7IJnR5CtDX5vFkIygWw8gg27eHUD06GoLpSqc2b+z/nM0AmbWCZ3211yrEKmCLiIhIm9oK1O5eAS4FMLN7VqVEsnHk82FkkK1b60PuVashWDd2yWgcfQPCa4OD9clt1tM06MsF7ImJMHpI1g0ln1fAFhERkbZbqBttjPmXZfXF8bEjg0xN1QcULhbDONdZ942NMAxfptWAnc9r/G4REZEes4GSjax7jSODzMyEMLqa/Z/Xg+MF7OnpelcWs2OXjcdpfETRsUsRERHZEJYN1Gb2S+7+4bUqjGwS2UyLvaA5YGfSNITopZZJEtar1WOX7mG5ElkAdw+hvnHowMUeIiIisuqO10L9KkCBWqRVWQvzSm7SXMpygTxbZkE8m+I+TeuvZcE92z/b3mqwbnzPYuE8a1GPonC9Cu4iItJjjheozzezZE1KIiILma08kOdycOKJx98v6++dBe7mx1KvZduzYN4Y0NO0PnLL3NziwT0bzSUL33FcD+HrQeN1NH9oad4vu4ZisTtlFRGRded4gXoU+PQKjmPAz7ZfHBHpqMaW5k5p7NLSGFKr1fqMl43L5vc29itvfqy03EsF/zRd/BhZyM/lQkt/Ph/WG4N/80NERKTmeIH6x+7+8pUcyMx+ehXKIyIbndnKR3JpbvXOwneS1IdbrFbry8b3mYV9Jybq2xrPH8f1YJw9soDcHJTVTUVERNpwvL96z27hWBe1UxAR6UFZt5aVdm1pDt733QennvrIW7JFRERWwbKB2t0PrvRA7v5Q+8UREVlGFpizFvBsmnoREZEuUkdAEREREZE2KFCLiIiIiLRBgVpEREREpA0K1CIiIiIibVCgFhERERFpgwK1iIiIiEgbVjj7wuoys+cBvwEUgX7CjIyvdffbu1EeERFZnuptEZGldauF+mrg79z9cne/CLgN+IKZ7exSeUREZHlXo3pbRGRR3QrUX3H3jzY8fycwQmszM4qIyNpRvS0isoSuBGp3/9mmTdO1ZXGtyyIiIseneltEZGnr5abEpwIzwKe7XRAREVkR1dsiIjXm7t0tgJkBXwb+xd3fucQ+rwReCbBz584LrrnmmpbPMzExwcDAQDtF3ZB68bp1zb1jI173pZdeepO77+l2OdpxvHpbdfYj14vX3YvXDL153RvxmldaZ6+HQP124BR3f9lK9t+zZ4/v27ev5fPs3buXSy65pOX3bXS9eN265t6xEa/bzDZDoF5xva06uzW9eN29eM3Qm9e9Ea95pXV2V4bNy5jZq4FzgBd3sxwiIrIyqrdFRI7VtT7UZvYK4Erg5929amZnmNkzu1UeERFZnuptEZHFdWtil5cAbwB+GXhC6I7HBcCJwA3dKJOIiCxN9baIyNK61eXjI7Vz723a/pa1L4qIiKyA6m0RkSV0JVC7e74b5xURkUdG9baIyNLWyzjUIiIiIiIbkgK1iIiIiEgbFKhFRERERNqgQC0iIiIi0gYFahERERGRNihQi4iIiIi0QYFaRERERKQNCtQiIiIiIm1QoBYRERERaYMCtYiIiIhIGxSoRURERETaoEAtIiIiItIGBWoRERERkTYoUIuIiIiItEGBWkRERESkDQrUIiIiIiJtUKAWEREREWmDArWIiIiISBsUqEVERERE2qBALSIiIiLSBgVqEREREZE2KFCLiIiIiLRBgVpEREREpA0K1CIiIiIibVCgFhERERFpgwK1iIiIiEgbFKhFRERERNqgQC0iIiIi0gYFahERERGRNihQi4iIiIi0QYFaRERERKQNCtQiIiIiIm1QoBYRERERaYMCtYiIiIhIGxSoRURERETaoEAtIiIiItIGBWoRERERkTZ0NVCbWcHM3mFmVTM7vZtlERGR5anOFhFZXNcCda0y/jJwIhB3qxwiInJ8qrNFRJbWzRbqAeBlwIe6WAYREVkZ1dkiIkvIdevE7v4dADM7pVtlEBGRlVGdLSKyNN2UKCIiIiLSBgVqEREREZE2dK3LRyvM7JXAK2tPJ8zse4/gMCPAodUr1YbRi9eta+4dG/G6T+t2ATpNdXZbevG6e/GaoTeveyNe84rqbHP3Thdk+QKYXQJ8Cdjt7vd28Dz73H1Pp46/XvXideuae0evXnc3qc7urF687l68ZujN697M16wuHyIiIiIibVCgFhERERFpQ9f6UJtZAbgeGK5tusbMHnD3n+3QKf+6Q8dd73rxunXNvaNXr3vNqc5eM7143b14zdCb171pr7nrfahFRERERDYydfkQEREREWnDpg/UZvYCM7vRzL5iZl8zs015d2nGzJ5nZtea2RfM7Jtm9q9mdl63y7WWzOy3zMxroxFsemZ2mpl93My+aGbfNrObzOzSbperU8ysaGbvMrNbzezLZvYfZvaibpdLVk8v1duqs1Vnb/Y6G3qj3t7UgdrMLgA+CvySu18MvB24zsx2dbdkHXU18Hfufrm7XwTcBnzBzHZ2t1hrw8xOAn632+VYK2Y2AnwReJ+7XwacB/wQOLerBeusNwIvBJ7h7j8N/DqhP+9PdbdYshp6sN6+GtXZqrM3d50NPVBvb+pADbwOuM7d7wRw988CDwG/2dVSddZX3P2jDc/fSRhI/dldKs9a+wvgj7tdiDX0e8B/uPteAA83RbwG+Gw3C9Vh5wM3uvs4gLvfAhwFLutqqWS19Fq9rTpbdfZmr7OhB+rtzR6onwnsa9p2I/CsLpRlTSxyx/10bVlc67KsNTN7PlABrut2WdbQi4GvNG5w9x93csKNdeCfgGeY2SkAZnYFcAIhdMnG11P1tups1dk9UGdDD9TbG2Lq8UfCzLYBW4AHm17aDzx37UvUNU8FZoBPd7sgnWRm/cDbgCvogT9EMH/NZwCxmf09cDowBfy1u/9DN8vWSe5+tZn1Ad8xsweBs4B/AD7R3ZJJu1RvA6qzN61erbOhN+rtTRuogf7acrZp+yzQt8Zl6QozM+APgDe6+4Ful6fD/gh4v7s/aGand7ksayUbD/itwOXufrOZPRn4spnlm75G3jTM7BXA64E97n537QauZwJpd0smq6Cn623V2ZteT9bZ0Bv19mbu8jFZWzZ/8i0SPhH2gj8GfuTu7+x2QTrJzJ4EPAV4f7fLssaS2vKz7n4zgLt/C/gk8L+7VqoOqgWOPwU+4O53A7j77cALCJW1bGy9Xm+rzt7ceq7Oht6ptzdtoHb3w8ARoPnO8F3AD9a+RGvLzF4NnAO8vNtlWQNXAWXgi2a2F7imtv3dZrbXzB7btZJ11kFCy919Tdt/BOxe++KsiROArcC9TdvvIfRNlA2sl+tt1dmA6uzNqifq7c3c5QPgBqB5/NI9wD93oSxrpvbVypXA8929amZnAGe4+w1dLlpHuPsfEb4+BKD29eE9wKuzO6k3I3dPzOxrwIlNL+0EftyFIq2FQ4Q/SM3XfCK90YLZC3qu3ladbaejOnuz1tnQI/X2pm2hrnkHcIWZnQ1gZlcSfoF/2dVSdZCZvQR4A+FmjyfUJkR4FvD0rhZMOuVPgBea2W4IEwYALwL+vKul6hB3T4EPA/+jdgNb9vXx5Wyim1t6XE/V26qze05P1dnQO/W2hSEQNy8zewHhJo9pICZ8Ar6xu6XqHDOrsPg3D29x9zevcXHWnJm9G7iI0D/vNuD77v5z3S1VZ5nZS4HfIXzSzwEfdPcPdrdUnVO7U/zNhBtapoBBQmX9Lt/sFVqP6KV6W3W26mw2eZ0NvVFvb/pALSIiIiLSSZu9y4eIiIiISEcpUIuIiIiItEGBWkRERESkDQrUIiIiIiJtUKAWEREREWmDArWIiIiISBsUqEXaYGbXmtl+M9P4kyIi65zqbOkUBWpZ18xsh5ndamaHzcxr682PCTO7pBvlc/crgfd349wiIuuN6mzpVYvNziSybrj7AeB8M7sa+CV3P795HzPbu9blEhGRY6nOll6lQC2bwRuB73a7ECIisiKqs2XTUZcP2bDM7BIz2+vu/+7uhxr7xpnZ5Wb272Z2t5n9wMx+cZH3/4qZfcfMvmdm95jZu82sv2mfYTN7n5n9yMxurz3eZWa7FznehWZ2nZnda2bfNLNzm15/qpl92cxuMbPbzOzzZvai1f/JiIisP6qzZTNToJZNo6lv3G8Dz3L3xwBvBT5sZs/K9jWz3wPeA/yquz8WuAC4GPismUW1fQrADcC5wLnufh7wYuAXgBcuUoT/DjwXeAwwC3yg4XyDwLXAB9z9icD5wO3Aq1bn6kVENhbV2bKZKFDLhtJ4YwvwwWV2fYe7TwO4+4eAO4E/rB1jS239Y+7+jdo+h4E3A5cAP1M7xssIlfbr3X2itt/3gb8Gqouc80Punrp7FfgM8NRaBQ/wWGAY+GHtOA68C/jHVn8GIiIbheps6RUK1LKhuPv52QN4xTK73tH0/CbgybWWjKcCfcCNTft8q7Z8VtNywX7u/kZ3/3+LnPM/G9YP15Y7a8vvAQ8BnzKzPzCzs9z9wSWOIyKyKajOll6hQC0blrvvdfdLlnhtrGnTKJAHTgBGGrY1yirUkYbllLvPrrA8Uw1P09oyrr02DjwF+CTwO8D3zOxbZva0lRxbRGSjU50tm5kCtWxKZjbUtGkbUAEOAocatjXvQ8Prh4A+MyuuRpnc/Ufu/mvALsJXkzuBfzWz5nKIiPQU1dmy0SlQy4ZnZn9hZi9p2nxu0/MLgG+5ewp8A5gCLmzaJ3v+b03LC5rO91oze02LZXyCmb0ewN2n3f3vgP8FDAKnt3IsEZGNTHW2bEYK1LIZDAKlpm2/ZWZlADN7OXA28BYAdz9aW3+JmT21ts9Wwg0ue4FP1Y7xEUI/vrdlQzOZ2eOBVwPXt1jG7cBrzOzM2nEMeBqwH7irxWOJiGxkqrNl09HELrKumdku4JvU+siZ2b2L7DZCqFQbvYfw1dwpgBFm7MpaL3D3PzWzw8AHand1F4B/Ad5QaxHB3efM7JnAO4A7zWwUmAB+wd2/XSvP3wOX19ZvJXwteBXwG7VTXWtmb6qV72rgn80sIfQNvAd4dnZnu4jIRqc6W3qVhZFgRDYHM3sz8Ifubt0ui4iILE91tmwW6vIhIiIiItIGBWoRERERkTYoUMumYWbXAr9eW7/VzK7ocpFERGQJqrNlM1EfahERERGRNqiFWkRERESkDQrUIiIiIiJtUKAWEREREWmDArWIiIiISBsUqEVERERE2qBALSIiIiLShv8P9BbHKkGTmhYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "all_approaches_path = ['cnn_bc/', 'cnn_custom_loss/', 'rnn_bc/', 'rnn_custom_loss/']\n", - "\n", - "titles = ['(a) CNN', '(b) CNN with weighted loss', '(c) RNN', '(d) RNN with weighted loss']\n", - "\n", - "assemble_loss()\n", - "\n", - "assemble_accuracy()\n", - "\n", - "assemble_usage()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.7" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/plots/precision.png b/plots/precision.png index d6eb630..ee7328c 100644 Binary files a/plots/precision.png and b/plots/precision.png differ diff --git a/plots/usage.png b/plots/usage.png index 6e7b6e2..b6b739a 100644 Binary files a/plots/usage.png and b/plots/usage.png differ