-
Notifications
You must be signed in to change notification settings - Fork 96
/
Copy pathAprioriAlgorithm.m
355 lines (285 loc) · 14.4 KB
/
AprioriAlgorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
(*
Implementation of the Apriori algorithm in Mathematica
Copyright (C) 2014-2016 Anton Antonov
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Written by Anton Antonov,
antononcube @ gmail . com,
Windermere, Florida, USA.
*)
(*
Mathematica is (C) Copyright 1988-2016 Wolfram Research, Inc.
Protected by copyright law and international treaties.
Unauthorized reproduction or distribution subject to severe civil
and criminal penalties.
Mathematica is a registered trademark of Wolfram Research, Inc.
*)
(* Version 2.0 *)
(* This package contains definitions for the Apriori algorithm application. *)
(* October, 30, 2014
Updated the function definitions to use Mathematica 10.1 dispatch rules.
*)
(* February, 20, 2014
Updated the package with a faster implementation of the Apriori algorithm that uses sparse algebra operations.
The most significant change is of the function Support.
The new definition scales quite well with the number of baskets.
For example, the timing for 20,000 baskets was only ~12% larger than the timing for 2000 baskets, both sets having the same 1355 items.
Renamed the functions of the older, original version into "Appriori*Original" .
Overloaded the definition of Support.
At this time it is not clear to me what is the best interface of AssociationRules for the end user.
Nevertheless, I made AssociationRules to take both a list of integer sets and a list of sparse arrays.
Added a new function, AprioriSparseArrayRepresentation, the result of which can be used with the overloaded version of Support, and for AssociationRules.
*)
(* January, 06, 2016
Added a new function, ItemRules, that makes it easier to obtain association rules for specified items using the
results of AprioriApplication.
*)
BeginPackage["AprioriAlgorithm`"];
AprioriApplication::usage = "AprioriApplication[setOfItemSets,minProb,opts] returns a list of three elements: \
association sets with indexes, item to indexes rules, and indexes to item rules. \
The association sets appear in setOfItemSets with frequency that is at least minProb. \
AprioriApplication takes the option \"MaxNumberOfItems\" -> (All | _Integer) .";
AprioriApplicationOriginal::usage = "AprioriApplicationOriginal[setOfItemSets,minProb,opts] returns a list of three elements: \
association sets with indexes, item to indexes rules, and indexes to item rules. \
The association sets appear in setOfItemSets with frequency that is at least minProb. \
AprioriApplication takes the option \"MaxNumberOfItems\" -> (All | _Integer) . \
This is the original, slower version of AprioriApplication.";
AprioriSparseArrayRepresentation::usage = "AprioriSparseArrayRepresentation[setOfItemSets] returns a list of three elements: \
(1) a 0-1 matrix M (a list of sparse arrays) for which M[[i,j]]==1 if the i-th item belongs to setOfItemSets[[j]], \
(2) item to indexes rules, and (3) indexes to item rules.";
AssociationRules::usage = "AssociationRules[setOfItemSets,assocItemSet,minConfidence] finds the possible association rules \
for assocItemSet using setOfItemSets that have confidence at least minConfidence and calculates for each of the rules the measures: \
Support, Confidence, Lift, Leverage, and Conviction. AssociationRules[setOfItemSets,assocItemSets,minConfidence,minSupport] \
takes the association sets from assocItemSets that have support at least minSupport and finds the association rules for them.";
Support::usage = "Support[setOfItemSets, itemSet] gives the fraction of the sets in setOfItemSets that contain itemSet.";
QuantileReplacementFunc::usage = "QuantileReplacementFunc[qBoundaries] makes a piece-wise function \
for mapping of a real value to the enumerated intervals Partition[Join[{-Infinity}, qBoundaries, {Infinity}], 2, 1].";
RymonTree::usage = "RymonTree[numberOfItems] gives the Rymon tree for numberOfItems.";
TreeToRules::usage = "TreeToRules[tree] returns rules for the argument tree that can be used in GraphPlot.";
ItemRules::usage = "ItemRules[setOfItemSets, frequentSetsOfIDs, itemToIDRules, idToItemRules, itemSpec, minConfidence, minSupport, nAssocItems] \
finds rules for a specified item or list if items using the baskets data and the result of AprioriApplication.";
Begin["`Private`"];
(* Rymon tree *)
Clear[RymonTree, RymonChildren];
RymonChildren[set : {_Integer ...}, m_Integer, n_Integer] :=
Block[{},
If[m < n,
Map[Append[set, #] &, Range[m + 1, n]],
{}]
];
RymonTree[set : {_Integer ...}, n_Integer] :=
Block[{m},
m = If[set === {}, 0, Max[set]];
If[m < n,
Prepend[
DeleteCases[RymonTree[#, n] & /@ RymonChildren[set, m, n], {}],
set],
{set}
]
];
RymonTree[n_Integer] :=
Block[{},
RymonTree[{}, n]
];
(* Convert to rules *)
Clear[TreeToRules];
TreeToRules[tree_] :=
Which[
tree === {}, {},
Rest[tree] === {}, {},
True, Join[Map[tree[[1]] -> #[[1]] &, Rest[tree], {1}],
Flatten[TreeToRules[#] & /@ Rest[tree], 1]]
];
(* AprioriGenerator *)
(* It is assumed that the item sets are sorted and i.e. come from a Rymon tree. (See the "Most[F[[i]]] == Most[F[[j]]]" line.) *)
Clear[AprioriGenerator];
AprioriGenerator[Mu_, F_] :=
Block[{res},
res = {};
Do[
If[Most[F[[i]]] == Most[F[[j]]],
(*AppendTo[res,Union[F\[LeftDoubleBracket]i\[RightDoubleBracket],
F\[LeftDoubleBracket]j\[RightDoubleBracket]]]*)
(* the line above is probably slower than the line below *)
AppendTo[res, Join[Most[F[[i]]], {Last[F[[i]]]}, {Last[F[[j]]]}]]
],
{i, 1, Length[F]}, {j, i + 1, Length[F]}];
PRINT[res];
Select[res, Apply[And, MemberQ[F, #] & /@ Subsets[#, {Length[#] - 1}]] &]
];
(* AprioriAlgorithmOriginal *)
Clear[Support, AprioriAlgorithmOriginal];
Support[T_, s_] :=
Support[T, s] = Count[T, d_ /; Intersection[d, s] == s] / Length[T];
Options[AprioriAlgorithmOriginal] = {"MaxNumberOfItems" -> All};
AprioriAlgorithmOriginal[T : {{_Integer ...} ...}, Mu_?NumberQ, opts : OptionsPattern[]] :=
Block[{CSet, FSet, i = 1, F = {}, contQ = True,
maxNumberOfItems = OptionValue[AprioriAlgorithmOriginal, "MaxNumberOfItems"]},
If[maxNumberOfItems === All, maxNumberOfItems = \[Infinity]];
CSet = List /@ Range[Min[T], Max[T]];
While[CSet =!= {} && contQ,
FSet = Pick[CSet, Support[T, #] >= Mu & /@ CSet];
AppendTo[F, FSet];
If[FSet =!= {} && Length[FSet[[-1]]] < maxNumberOfItems,
CSet = AprioriGenerator[Mu, FSet],
contQ = False
];
i++
];
F
];
(* AprioriAlgorithmOriginal *)
(* These two functions provide the sparse array implementation. *)
Clear[AprioriAlgorithm];
(* I overloaded the non-sparse array Support definition with this one because Support is provided as package function. *)
Support[Tcolumns : {_SparseArray ..}, s : {_Integer ..}] :=
Which[
Length[s] == 1, Total[Tcolumns[[s[[1]]]]],
Length[s] == 2, Tcolumns[[s[[1]]]].Tcolumns[[s[[2]]]],
True,
Total[Fold[Times[#1, Tcolumns[[#2]]] &, Tcolumns[[s[[1]]]], Rest[s]]]
] / Length[Tcolumns[[1]]];
(* This definition is almost exact copy of the previous one, AprioriAlgorithmOriginal, given above. *)
Options[AprioriAlgorithm] = {"MaxNumberOfItems" -> All};
AprioriAlgorithm[Tcolumns : {_SparseArray ...}, Mu_?NumberQ, opts : OptionsPattern[]] :=
Block[{CSet, FSet, i = 1, F = {}, contQ = True,
maxNumberOfItems = OptionValue[AprioriAlgorithm, "MaxNumberOfItems"]},
If[maxNumberOfItems === All, maxNumberOfItems = \[Infinity]];
CSet = List /@ Range[1, Length[Tcolumns]];
While[CSet =!= {} && contQ,
FSet =
Pick[CSet, Support[Tcolumns, #] >= Mu & /@ CSet];
AppendTo[F, FSet];
If[FSet =!= {} && Length[FSet[[-1]]] < maxNumberOfItems,
CSet = AprioriGenerator[Mu, FSet],
contQ = False
];
i++
];
F
];
(* AssociationRules *)
(* For the basket given as an argument is calculated and returned:
Confidence, Lift, Leverage, Conviction, Condition, Implication *)
Clear[AssociationRules];
AssociationRules[T : ({{_Integer ...} ...} | {_SparseArray ..}), basketArg : {_Integer ...}, confidence_?NumberQ] :=
Block[{basket = Sort[basketArg], basketSupport, antecedents, consequents, t},
basketSupport = N[Support[T, basket]];
antecedents = Most@Rest@Subsets[basket];
consequents = Complement[basket, #] & /@ antecedents;
t =
SortBy[
Select[
MapThread[{
N[basketSupport / Support[T, #1]],
N[(basketSupport / Support[T, #1]) / Support[T, #2]],
N[basketSupport - Support[T, #1] * Support[T, #2]],
N[If[(1 - basketSupport / Support[T, #1]) == 0,
1000,
(1 - Support[T, #2]) / (1 - basketSupport / Support[T, #1])
]],
#1,
#2} &,
{antecedents, consequents}
],
#[[1]] >= confidence &],
-#[[1]] &];
Prepend[#, basketSupport]& /@ t
] /; If[! MatchQ[T, {_SparseArray ..}], True, Apply[And, Map[1 <= # <= Length[T] &, basketArg]]];
AssociationRules[T : ({{_Integer ...} ...} | {_SparseArray ..}), aprioriResRecsArg : {{_Integer ..} ...}, minConfidence_? NumberQ, minSupport_?NumberQ] :=
Block[{eligible, aprioriResRecs = Sort /@ aprioriResRecsArg},
eligible = Select[Transpose[{aprioriResRecs, N[Support[T, #] & /@ aprioriResRecs]}], #[[2]] >= minSupport &];
If[Length[eligible] == 0, {},
Flatten[#, 1]& @
MapThread[
Function[{assoc, supp},
DeleteCases[AssociationRules[T, assoc, minConfidence], {}]],
Transpose[eligible]
]
]
];
(* AprioriApplcationOriginal *)
(* Returns the association sets with indexes, the item to idexes rules, and the idexes to item rules. *)
(* This is the original implementation that does not use sparse algebra, hence it is much slower. *)
Clear[AprioriApplicationOriginal];
AprioriApplicationOriginal[itemLists : {_List ...}, Mu_?NumberQ, opts : OptionsPattern[]] :=
Block[{uniqueItemToIDRules, uniqueItems, dataWithIDs},
uniqueItems = Union[Flatten[itemLists]];
uniqueItemToIDRules =
Dispatch[Thread[uniqueItems -> Range[1, Length[uniqueItems]]]];
dataWithIDs = itemLists /. uniqueItemToIDRules;
dataWithIDs = Sort /@ (dataWithIDs);
{AprioriAlgorithmOriginal[dataWithIDs, Mu, opts], uniqueItemToIDRules,
Dispatch[Reverse /@ Normal[uniqueItemToIDRules]]}
] /; 0 < Mu < 1;
(* AprioriApplcation *)
(* Returns the association sets with indexes, the item to idexes rules, and the idexes to item rules. *)
(* This definition is almost the same as the original one above. I don't see the point having the two
definitions accessed through an option value, so I kept the definitions separated. *)
Clear[AprioriSparseArrayRepresentation];
AprioriSparseArrayRepresentation[itemLists : {_List ...}] :=
Block[{uniqueItemToIDRules, uniqueItems, dataWithIDs, arrayRules, Tcolumns},
uniqueItems = Union[Flatten[itemLists]];
uniqueItemToIDRules =
Dispatch[Thread[uniqueItems -> Range[1, Length[uniqueItems]]]];
dataWithIDs = itemLists /. uniqueItemToIDRules;
dataWithIDs = Sort /@ (dataWithIDs);
arrayRules =
Flatten[MapIndexed[Thread[Thread[{#2[[1]], #1}] -> 1] &, dataWithIDs], 1];
Tcolumns = Map[# &, Transpose[SparseArray[arrayRules]]];
{Tcolumns, uniqueItemToIDRules, Dispatch[Reverse /@ Normal[uniqueItemToIDRules]]}
];
Clear[AprioriApplication];
Options[AprioriApplication] = {"MaxNumberOfItems" -> All};
AprioriApplication[itemLists : {_List ...}, Mu_?NumberQ, opts : OptionsPattern[]] :=
Block[{Tcolumns, uniqueItemToIDRules, uniqueIDToItemRules, mni},
mni = OptionValue[AprioriApplication, "MaxNumberOfItems"];
{Tcolumns, uniqueItemToIDRules, uniqueIDToItemRules} =
AprioriSparseArrayRepresentation[itemLists];
{AprioriAlgorithm[Tcolumns, Mu, "MaxNumberOfItems" -> mni], uniqueItemToIDRules,
Dispatch[Reverse /@ Normal[uniqueItemToIDRules]]}
] /; 0 < Mu < 1;
(* Supporting Definitions *)
Clear[QuantileReplacementFunc];
QuantileReplacementFunc[qBoundaries : {_?NumberQ ...}] :=
Block[{XXX, t = Partition[Join[{-\[Infinity]}, qBoundaries, {\[Infinity]}], 2, 1]},
Function[
Evaluate[Piecewise[
MapThread[{#2, #1[[1]] < XXX <= #1[[2]]} &, {t,
Range[1, Length[t]]}]] /. {XXX -> #}]]
];
(* Item rules *)
Clear[ItemRules];
ItemRules[setOfItemSets_, frequentSetsOfIDs : {{{_Integer ..} ..} ..},
itemToIDRules_, idToItemRules_, itemSpec_, minConfidence_?NumberQ,
minSupport_?NumberQ] :=
ItemRules[setOfItemSets, frequentSetsOfIDs, itemToIDRules, idToItemRules, itemSpec, minConfidence, minSupport, All];
ItemRules[setOfItemSets_, frequentSetsOfIDs : {{{_Integer ..} ..} ..},
itemToIDRules_, idToItemRules_, itemSpec : (_?AtomQ | {_?AtomQ ..}),
minConfidence_?NumberQ, minSupport_?NumberQ,
nAssocItems : (All | _Integer)] :=
Block[{itemAprioriRes, basketItemRows, t, r1, r2, items, itemsInds},
{basketItemRows, r1, r2} = AprioriSparseArrayRepresentation[setOfItemSets];
If[ListQ[itemSpec] && Length[itemSpec] == 1, items = itemSpec[[1]], items = itemSpec ];
If[AtomQ[items],
itemAprioriRes =
Cases[#, {___, items /. itemToIDRules, ___}, Infinity] & /@ frequentSetsOfIDs,
(* ELSE *)
itemsInds = items /. itemToIDRules;
itemAprioriRes =
Cases[#, r_List /; Length[Intersection[r, itemsInds]] == Length[itemsInds], 3] & /@ frequentSetsOfIDs
];
t = AssociationRules[basketItemRows, itemAprioriRes[[#]], minConfidence, minSupport] & /@
If[TrueQ[nAssocItems === All], Range[2, Length[itemAprioriRes]], {nAssocItems}];
DeleteCases[t /. idToItemRules, {}, 2]
];
End[];
EndPackage[];