-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplotstat.py
747 lines (629 loc) · 28.2 KB
/
plotstat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
import numpy as np
import matplotlib.pyplot as plt
import healpy as hp
import os
import seaborn as sns
import pickle as pl
import socket
from tqdm import tqdm
import matplotlib.gridspec as gridspec
import emcee
from scipy.stats import gaussian_kde
datapath = '../Data/PlotData'
plotpath = '../Notebooks/plots'
os.makedirs(datapath,exist_ok=True)
os.makedirs(plotpath,exist_ok=True)
if socket.gethostname() == 'vmi401751.contaboserver.net':
uselatex = True
plt.rcParams['text.usetex']=True
plt.rcParams['ytick.minor.visible'] =True
plt.rcParams['xtick.minor.visible'] = True
plt.rcParams['xtick.top'] = True
plt.rcParams['ytick.right'] = True
plt.rcParams['font.size'] = '20'
plt.rcParams['legend.fontsize'] = '18'
plt.rcParams['legend.borderaxespad'] = '1'
plt.rcParams['legend.numpoints'] = '1'
plt.rcParams['figure.titlesize'] = 'medium'
plt.rcParams['xtick.major.size'] = '10'
plt.rcParams['xtick.minor.size'] = '6'
plt.rcParams['xtick.major.width'] = '2'
plt.rcParams['xtick.minor.width'] = '1'
plt.rcParams['ytick.major.size'] = '10'
plt.rcParams['ytick.minor.size'] = '6'
plt.rcParams['ytick.major.width'] = '2'
plt.rcParams['ytick.minor.width'] = '1'
plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
plt.rcParams['axes.labelpad'] = '7.0'
plt.rcParams['axes.formatter.limits']=-10,10
plt.rcParams['xtick.labelsize'] = '20'
plt.rcParams['ytick.labelsize'] = '20'
plt.rcParams['axes.labelsize'] = '30'
plt.rcParams['axes.labelsize'] = '30'
plt.rcParams['xtick.major.pad']='10'
plt.rcParams['xtick.minor.pad']='10'
plt.rcParams['hatch.color'] = 'black'
plt.rcParams['lines.dashed_pattern']=3, 1.5
else:
uselatex = False
def find_density(arr):
density = gaussian_kde(arr,.3)
xs = np.linspace(min(arr),max(arr),1000)
ds = density(xs)
return xs,ds/max(ds)
class Alens_fit:
"""
Class to fit for the Alens parameter
Parameters
----------
reco : object : Reconstruction object
"""
def __init__(self,reco):
self.rec = reco
self.fid = reco.bin_cell(reco.cl_pp*reco.Lfac)
self.spectra = self.spectra_()
self.icov = self.icov_()
def spectra_(self):
"""
Get the spectra to fit for
"""
return self.rec.get_qcl_wR_stat(400,rdn0=True,n1=True).mean(axis=0)
def icov_(self):
"""
Get the inverse covariance matrix
"""
cov = np.cov(self.rec.get_qcl_wR_stat(400,rdn0=True,n1=True).T)
return np.linalg.inv(cov)
def chi_sq(self,alens):
"""
Get the Chi^2
"""
dcl = self.spectra - (alens*self.fid)
return np.dot(dcl,np.dot(self.icov,dcl))
def log_prior(self,theta):
"""
Get the log prior
"""
if 0.5 < theta < 1.5:
return 0.0
return -np.inf
def log_likelihood(self,theta):
"""
Get the log likelihood
"""
return -0.5 * self.chi_sq(theta)
def log_probability(self,theta):
"""
Get the log probability
"""
lp = self.log_prior(theta)
if not np.isfinite(lp):
return -np.inf
return lp + self.log_likelihood(theta)
def get_samples(self):
"""
Samples from the posterior
"""
pos = [1] + 1e-1 * np.random.randn(64, 1)
nwalkers,ndim = pos.shape
sampler = emcee.EnsembleSampler(nwalkers,ndim,self.log_probability)
sampler.run_mcmc(pos, 4000, progress=True)
flat_samples = sampler.get_chain(discard=100, thin=15, flat=True)
return flat_samples
class crazymix:
"""
Class to fit for the Alens parameter
with mismatched simulations
"""
def __init__(self,s1d1,other,idx=0,do_MC=False):
self.s1d1 = s1d1
self.other = other
self.idx = idx
self.B = self.s1d1.B
self.do_MC = do_MC
self.fiducial = self.other.bin_cell(self.other.cl_pp*self.other.Lfac)
self.icov = self.icov_()
self.spectra = self.get_spectra()
def get_data(self):
return self.s1d1.get_phi_cl(self.idx)
def get_spectra(self):
if self.do_MC:
N0 = self.other.MCN0()
correction =N0*0
else:
N0 = self.other.RDN0(self.idx)
correction = ((N0/self.other.response_mean()**2)+self.other.cl_pp)/100
cl = (self.get_data() -
self.other.N1 -
N0)/self.other.response_mean()**2
return self.other.bin_cell((cl-correction)*self.s1d1.Lfac)
def icov_(self):
return np.linalg.inv(np.cov(self.other.get_qcl_wR_stat().T))
def chi_sq(self,alens):
dcl = self.spectra - (alens*self.fiducial)
return np.dot(dcl,np.dot(self.icov,dcl))
def log_prior(self,theta):
if 0.5 < theta < 1.5:
return 0.0
return -np.inf
def log_likelihood(self,theta,):
return -0.5 * self.chi_sq(theta)
def log_probability(self,theta):
lp = self.log_prior(theta)
if not np.isfinite(lp):
return -np.inf
return lp + self.log_likelihood(theta)
def get_samples(self):
pos = [1] + 1e-1 * np.random.randn(64, 1)
nwalkers,ndim = pos.shape
sampler = emcee.EnsembleSampler(nwalkers,ndim,self.log_probability)
sampler.run_mcmc(pos, 4000, progress=True)
flat_samples = sampler.get_chain(discard=100, thin=15, flat=True)
return flat_samples
class Planck:
"""
Class for Planck data
"""
def __init__(self):
datadir = '../Data/planck/'
MV = np.loadtxt(datadir+'mv_nlkk.dat').T
self.MV = {'L':MV[0],'N':MV[1]*(2/np.pi),'SN':MV[2]}
PP = np.loadtxt(datadir+'pp_nlkk.dat').T
self.PP = {'L':PP[0],'N':PP[1]*(2/np.pi),'SN':PP[2]}
TT = np.loadtxt(datadir+'tt_nlkk.dat').T
self.TT = {'L':TT[0],'N':TT[1]*(2/np.pi),'SN':TT[2]}
class simStat:
def __init__(self,sim_fg1=None,sim_fg2=None,fg1='s0d0',fg2='s1d1'):
self.sim_fg1 = sim_fg1
self.sim_fg2 = sim_fg2
if (self.sim_fg1 == self.sim_fg2 == None):
pass
else:
assert self.sim_fg1.lmax == self.sim_fg2.lmax
self.lmax = self.sim_fg1.lmax
self.fg1 = fg1
self.fg2 = fg2
def plot_fg1(self,save=False):
fname = os.path.join(datapath,'simFG1.pkl')
if os.path.isfile(fname):
data = pl.load(open(fname,'rb'))
print('Data Loaded from file')
stat1 = data['stat1']
stat2 = data['stat2']
else:
data = {}
stat1 = self.sim_fg1.cl_stat(100)
stat2 = self.sim_fg2.cl_stat(100)
data['stat1'] = stat1
data['stat2'] = stat2
data['fid_ee'] = self.sim_fg1.cl_len[1,:]*self.sim_fg1.Tcmb**2
data['fid_bb'] = self.sim_fg1.cl_len[2,:]*self.sim_fg1.Tcmb**2
data['l'] = np.arange(self.lmax+1)
data['fg1'] = self.fg1
data['fg2'] = self.fg2
pl.dump(data,open(fname,'wb'))
print('Data Saved to file')
plt.figure(figsize=(8,8))
plt.loglog(data['fid_ee'] ,c='k',ls='--',lw=2,label="Fiducial EE")
plt.loglog(data['fid_bb'] ,c='k',ls='-.',lw=2,label="Fiducial BB")
plt.loglog(stat1[0],label=f"{data['fg1']} EE",c='r',lw=2)
plt.fill_between(data['l'],stat1[0]-(stat1[1]),stat1[0]+stat1[1],color='r',alpha=0.5)
plt.loglog(stat1[2],label=f"{data['fg1']} BB",c='b',lw=2)
plt.fill_between(data['l'],stat1[2]-stat1[3],stat1[2]+stat1[3],color='b',alpha=0.5)
plt.loglog(stat2[0],label=f"{data['fg2']} EE",c='g',lw=2)
plt.fill_between(data['l'],stat2[0]-(stat2[1]),stat2[0]+stat2[1],color='g',alpha=0.5)
plt.loglog(stat2[2],label=f"{data['fg2']} BB",c='magenta',lw=2)
plt.fill_between(data['l'],stat2[2]-stat2[3],stat2[2]+stat2[3],color='magenta',alpha=0.5)
plt.xlim(2,800)
plt.ylim(1e-7,10)
plt.legend(ncol=3,fontsize=16)
plt.xlabel("$\ell$",fontsize=25)
plt.ylabel("$\\frac{1}{b_\ell^2}\\left(C^{fid}_\ell + C_\ell^{fg_{res}} + N_\ell \\right)$ [$\mu K^2$]",fontsize=25)
plt.tick_params(labelsize=20)
if save:
plt.savefig('plots/simFG1.pdf',bbox_inches='tight',dpi=300)
def plot_fg2(self,save=False):
fname = os.path.join(datapath,'simFG2.pkl')
if not os.path.isfile(fname):
data = {}
_,fg1_nl_e,fg1_nl_b = self.sim_fg1.noise_spectra(500)
_,fg2_nl_e,fg2_nl_b = self.sim_fg2.noise_spectra(500)
_,fg1_res_e,fg1_res_b = self.sim_fg1.fg_res_mean(500)
_,fg2_res_e,fg2_res_b = self.sim_fg2.fg_res_mean(500)
data['fg1_rnl_b'] = (fg1_nl_b + fg1_res_b)*self.sim_fg1.Tcmb**2
data['fg2_rnl_b'] = (fg2_nl_b + fg2_res_b)*self.sim_fg1.Tcmb**2
data['fg1_rnl_e'] = (fg1_nl_e + fg1_res_e)*self.sim_fg1.Tcmb**2
data['fg2_rnl_e'] = (fg2_nl_e + fg2_res_e)*self.sim_fg1.Tcmb**2
data['fid_ee'] = self.sim_fg1.cl_len[1,:]*self.sim_fg1.Tcmb**2
data['fid_bb'] = self.sim_fg1.cl_len[2,:]*self.sim_fg1.Tcmb**2
pl.dump(data,open(fname,'wb'))
print('Data Saved to file')
else:
data = pl.load(open(fname,'rb'))
print('Data Loaded from file')
fg1_rnl_b = data['fg1_rnl_b']
fg2_rnl_b = data['fg2_rnl_b']
fg1_rnl_e = data['fg1_rnl_e']
fg2_rnl_e = data['fg2_rnl_e']
plt.figure(figsize=(16, 8))
fig, (ax1, ax2) = plt.subplots(1, 2,figsize=(16, 8))
ax1.loglog(data['fid_ee'] ,c='k',lw=2,label="Signal EE")
ax1.loglog(fg1_rnl_e ,label=f"{self.fg1}",c='r',lw=2,)
ax1.loglog(fg2_rnl_e ,label=f"{self.fg2}",c='g',lw=2)
ax1.legend(fontsize=20)
ax1.set_xlabel("$\ell$",fontsize=25)
ax1.set_ylabel("$\\frac{1}{b_\ell^2}\\left(C_\ell^{fg_{res}} + N_\ell \\right)$ [$\mu K^2$]",fontsize=25)
ax1.set_xlim(2,600)
ax1.set_ylim(1e-6,1e-1)
ax2.loglog(data['fid_bb'] ,c='k',lw=2,label="Signal BB")
ax2.loglog(fg1_rnl_b ,label=f"{self.fg1}",c='r',lw=2)
ax2.loglog(fg2_rnl_b ,label=f"{self.fg2}",c='g',lw=2)
ax2.legend(fontsize=20)
ax2.set_xlabel("$\ell$",fontsize=25)
ax2.set_ylim(1e-7,1e-2)
ax2.set_xlim(2,600)
if save:
plt.savefig(os.path.join(plotpath,'simFG2.pdf'),bbox_inches='tight',dpi=300)
class recStat:
"""
Statistic class for the Reconstruction publication
Parameters
----------
rec_nofg : object : Reconstruction object with no foregrounds
rec_fg1 : object : Reconstruction object with foregrounds
"""
def __init__(self,rec_nofg=None,rec_fg1=None,rec_fg2=None,rec_fg3=None,fg1='s0d0',fg2='s1d1'):
self.rec_nofg = rec_nofg
self.rec_fg1 = rec_fg1
self.rec_fg2 = rec_fg2
self.rec_fg3 = rec_fg3
self.fg1 = fg1
self.fg2 = fg2
def plot_fg_impactNew(self,save=False,planck=True,logy=False,shift=0):
"""
Plot the impact of foregrounds on the reconstruction
"""
fname = os.path.join(datapath,'recFG.pkl')
if os.path.isfile(fname):
data = pl.load(open(fname,'rb'))
print('Data Loaded from file')
else:
rec_nofg = self.rec_nofg
rec_fg1 = self.rec_fg1
rec_fg2 = self.rec_fg2
rec_fg3 = self.rec_fg3
data = {}
data['nofg_cl'] = rec_nofg.get_qcl_wR_stat(n=400,n1=True,rdn0=True)
data['fg2_cl'] = rec_fg2.get_qcl_wR_stat(n=400,n1=True,rdn0=True)
data['fid'] = rec_fg1.bin_cell(rec_fg1.cl_pp*rec_fg1.Lfac)
data['fidm'] = rec_fg1.cl_pp*rec_fg1.Lfac
data['NOFG-MCN0'] = rec_nofg.Lfac*(rec_nofg.RDN0_mean()/rec_nofg.response_mean()**2 )
data['fg1-MCN0'] = rec_fg1.Lfac*(rec_fg1.RDN0_mean()/rec_fg1.response_mean()**2 )
data['fg2-MCN0'] = rec_fg2.Lfac*(rec_fg2.RDN0_mean()/rec_fg2.response_mean()**2 )
data['fg3-MCN0'] = rec_fg3.Lfac*(rec_fg3.RDN0_mean()/rec_fg3.response_mean()**2 )
data['NOFG-MCER'] = rec_fg1.Lfac*(rec_nofg.MCN0()/rec_nofg.response_mean()**2 )/100
data['fg2-MCER'] = rec_fg1.Lfac*(rec_fg2.MCN0()/rec_fg2.response_mean()**2 )/100
data['NOFG-MF'] = rec_nofg.Lfac*rec_nofg.mean_field_cl()
data['fg2-MF'] = rec_fg2.Lfac*rec_fg2.mean_field_cl()
data['B'] = rec_fg1.B
pl.dump(data,open(fname,'wb'))
print('Data Saved to file')
nofg_cl = data['nofg_cl']
fg2_cl = data['fg2_cl']
fid = data['fid']
fig, axs = plt.subplots(2, 1,figsize=(9,9), gridspec_kw={'height_ratios': [4, 1]}, sharex=True)
plt.setp(axs, xlim=(2,690))
fig.subplots_adjust(hspace=0)
axs[0].semilogy(data['fidm'],label='Signal',c='grey',lw=2)
axs[0].semilogy(data['NOFG-MCN0'], c='g', label="$\\textbf{No FG}$" if uselatex else "No FG",lw=2)
axs[0].semilogy(data['fg1-MCN0'], c='b', label="$\\textbf{s0d0}$" if uselatex else "s0d0",lw=2)
axs[0].semilogy(data['fg2-MCN0'], c='r', label="$\\textbf{s1d1}$" if uselatex else "s1d1",lw=2)
axs[0].semilogy(data['NOFG-MCER']+(data['fidm']/100),c='g',ls=':',lw=3)
axs[0].semilogy(data['fg2-MCER']+(data['fidm']/100),c='r',ls=':',lw=3)
axs[0].semilogy(data['NOFG-MF'],c='g',ls='-.')
axs[0].semilogy(data['fg2-MF'],c='r',ls='-.')
if planck:
axs[0].semilogy((Planck().MV['N'])[:len(data['fg1-MCN0'])],label='Planck(MV)')
if logy:
axs[0].semilogx()
#axs[0].legend(ncol=3, fontsize=16,frameon=False)
axs[0].set_ylim(1e-9,1e-5)
axs[0].set_ylabel('$\\frac{L^2 (L + 1)^2}{2\pi} C_L^{\phi\phi}$',fontsize=25)
legend1 = axs[0].legend(loc='upper left', fontsize=15)
legend2_elements = [
plt.Line2D([0], [0], color='black', lw=2, label="$\langle N_L^{(0),RD} \\rangle$"),
plt.Line2D([0], [0], color='black', lw=2, linestyle='--', label='$C_L^{MC}$'),
plt.Line2D([0], [0], color='black', lw=2, linestyle='-.', label='$C_L^{MF}$')
]
legend2 = axs[0].legend(handles=legend2_elements, loc='upper right', fontsize=15, frameon=False)
axs[0].add_artist(legend1)
axs[0].add_artist(legend2)
axs[1].errorbar(data['B']+shift,fg2_cl.mean(axis=0)/fid,yerr=fg2_cl.std(axis=0)/fid,label=f'{self.fg2}',c='r',fmt='o')
axs[1].errorbar(data['B'],nofg_cl.mean(axis=0)/fid,yerr=nofg_cl.std(axis=0)/fid,label='NOFG',c='g',fmt='o')
axs[1].set_ylim(-0.1,2.3)
#axs[1].legend(ncol=2, fontsize=15,loc='upper right')
axs[1].axhline(1,c='k')
axs[1].set_ylabel('$\\frac{C_L^{\phi\phi,rec}}{C_L^{\phi\phi,signal}}$',fontsize=25)
axs[1].set_xlabel("$L$",fontsize=25)
if save:
plt.savefig(os.path.join(plotpath,'recFG.pdf'), bbox_inches='tight',dpi=300)
def plot_map_dif(self,idx=0,save=False,choose='best'):
"""
Plot the difference between the input and reconstructed maps
"""
fnamei = os.path.join(datapath,'phi_input_0.fits')
fnameo = os.path.join(datapath,'phi_output_0.fits')
rec_fg3 = self.rec_fg3
if os.path.exists(fnamei):
inputk = hp.read_map(fnamei)
print('Input Map Loaded from file')
else:
inputk = rec_fg3.get_input_phi_sim(0,True,80)
hp.write_map(fnamei,inputk)
print('Input Map Saved to file')
if os.path.exists(fnameo):
output = hp.read_map(fnameo)
print('Output Map Loaded from file')
else:
output = rec_fg3.wf_phi(0,True,80)
hp.write_map(fnameo,output)
print('Output Map Saved to file')
rcomb = [[68,81],[77,66],[79,92],[95,55],[88,51]]
if (choose == 'best') or None:
which = 0
elif choose == 'rand':
which = np.random.choice(np.arange(len(rcomb)))
elif type(choose) == int:
which = choose
r1,r2 = rcomb[which]
res = 5
xsize=200
gs = gridspec.GridSpec(1, 2,wspace=0.1)
plt.figure(figsize=(15,15))
ax = plt.subplot(gs[0, 0])
hp.gnomview(inputk,reso=res,rot=[r1,r2],norm='hist',title='',xsize=xsize,notext=True,hold=True)
plt.title('$\kappa_{LM}^\\texttt{Input}$' if uselatex else '$\kappa_{LM}^{Input}$',fontsize=20)
#plt.text(-.16,-.135,"$Resolution = 5^\prime/pixel, 200\\times200\;pixel$",rotation=90,fontsize=18)
ax = plt.subplot(gs[0, 1])
hp.gnomview(output,reso=res,rot=[r1,r2],norm='hist',xsize=xsize,title='Output',notext=True,hold=True)
plt.title('$\kappa_{LM}^\\texttt{Output}$' if uselatex else '$\kappa_{LM}^{Output}$',fontsize=18)
#ax = plt.subplot(gs[0, 2])
#hp.gnomview(inputk-output,reso=res,rot=[r1,r2],norm='hist',xsize=xsize,title='Output',notext=True,hold=True)
#plt.title('$\kappa_{LM}^\\texttt{Input-Output}$',fontsize=18)
if save:
plt.savefig(os.path.join(plotpath,'recMaps.pdf'), bbox_inches='tight',dpi=300)
def plot_SNR_impact(self,save=False,color='gold'):
"""
Difference in SNR between the foreground and no foreground case
"""
fname = os.path.join(datapath,'snr.pkl')
if os.path.exists(fname):
data = pl.load(open(fname,'rb'))
print('SNR Loaded from file')
else:
data = {}
rec_nofg = self.rec_nofg
rec_fg1 = self.rec_fg1
rec_fg2 = self.rec_fg2
rec_fg3 = self.rec_fg3
data['NOFG-SNR'] = rec_nofg.SNR_phi(rdn0=True)
data['fg1-SNR'] = rec_fg1.SNR_phi(rdn0=True)
data['fg2-SNR'] = rec_fg2.SNR_phi(rdn0=True)
data['fg3-SNR'] = rec_fg3.SNR_phi(rdn0=True)
pl.dump(data,open(fname,'wb'))
print('SNR Saved to file')
SNR_nofg = data['NOFG-SNR']
SNR_fg1 = data['fg1-SNR']
SNR_fg2 = data['fg2-SNR']
SNR_fg3 = data['fg3-SNR']
#cases = ['Planck(pol)','Planck(MV)','No FG', 's0d0', 's1d1']
if uselatex:
cases = ['$\\textbf{No FG}$', '$\\textbf{s0d0}$','$\\textbf{s1d1}$',"$\\textbf{s1d1}$ \n ($f_{sky}=0.9$)",'$\\textsc{Planck}$'+"\n $(Pol)$"]#,'Planck(MV)']
else:
cases = ['No FG', 's0d0', 's1d1',"$s1d1$ \n ($f_{sky}=0.9$)",'Planck'+"\n $(Pol)$"]
pl_pol = 9
pl_mv = 40
pl_pol_npipe = pl_pol*.2+pl_pol
pl_mv_npipe = pl_mv*.2+pl_mv
snr = [SNR_nofg,SNR_fg1,SNR_fg2,SNR_fg3,pl_pol_npipe]#,pl_mv_npipe]
plt.figure(figsize=(8, 6))
plot = plt.barh(cases[::-1],snr[::-1],color=color)
for i,value in enumerate(plot):
width = value.get_width()
plt.text(width + 5, value.get_y()+.25,f"${width:.2f}$", ha='center', va='bottom', fontsize=25)
plt.xlabel("Signal to Noise Ratio",fontsize=20)
plt.xlim(0,60)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15,rotation=45)
if save:
plt.savefig(os.path.join(plotpath,'SNR_impact_v2.pdf'), bbox_inches='tight',dpi=300)
def plot_qcl_stat(self,save=False):
fname = os.path.join(datapath,'recQCL.pkl')
if os.path.exists(fname):
data = pl.load(open(fname,'rb'))
print('Data Loaded from file')
else:
data = {}
data['stat']= self.rec_fg3.get_qcl_wR_stat(n=400,n1=True,rdn0=True)
data['fid'] = self.rec_fg3.cl_pp*self.rec_fg3.Lfac
data['mcn0'] = self.rec_fg3.Lfac*(self.rec_fg3.MCN0()/self.rec_fg3.response_mean()**2 )
data['mcn1'] = self.rec_fg3.Lfac*self.rec_fg3.N1
data['mf'] = self.rec_fg3.Lfac*self.rec_fg3.mean_field_cl()
data['B'] = self.rec_fg3.B
pl.dump(data,open(fname,'wb'))
print('Data Saved to file')
stat = data['stat']
plt.figure(figsize=(8,7))
plt.loglog(data['fid'],label='$\\texttt{Signal}$' if uselatex else 'Signal',c='grey',lw=2)
plt.loglog(data['mcn0'],label='$N_L^{(0)}$',c='r')
plt.loglog(data['mcn1'],label='$N_L^{(1)}$',c='g')
plt.loglog(data['mf'],label='$C_L^{MF}$',c='b')
plt.errorbar(data['B'],stat.mean(axis=0),yerr=stat.std(axis=0),fmt='o',c='k',ms=6,capsize=2,label='$\\texttt{Reconstructed}$' if uselatex else 'Reconstructed')
plt.xlim(2,600)
plt.legend(ncol=2, fontsize=20)
plt.xlabel('$L$',fontsize=25)
plt.ylabel('$\\frac{L^2 (L + 1)^2}{2\pi} C_L^{\phi\phi}$',fontsize=25)
plt.xticks(fontsize=20)
plt.yticks(fontsize=20)
if save:
plt.savefig(os.path.join(plotpath,'recQCL.pdf'), bbox_inches='tight',dpi=300)
def plot_bin_corr_comp(self,which=1,save=False):
fname = os.path.join(datapath,'bin_corr.pkl')
if os.path.exists(fname):
data = pl.load(open(fname,'rb'))
print('Data Loaded from file')
else:
data = [None,None,None]
data[0] = {}
data[0]['mcn0'] = self.rec_nofg.bin_corr()
data[0]['rdn0'] = self.rec_nofg.bin_corr(rdn0=True)
data[1] = {}
data[1]['mcn0'] = self.rec_fg1.bin_corr()
data[1]['rdn0'] = self.rec_fg1.bin_corr(rdn0=True)
data[2] = {}
data[2]['mcn0'] = self.rec_fg2.bin_corr()
data[2]['rdn0'] = self.rec_fg2.bin_corr(rdn0=True)
pl.dump(data,open(fname,'wb'))
print('Data Saved to file')
f,(ax1,ax2, axcb) = plt.subplots(1,3, gridspec_kw={'width_ratios':[1,1,0.08]},figsize=(10,5))
ax1.get_shared_y_axes().join(ax1,ax2)
g1 = sns.heatmap(data[which]['mcn0'],cmap="copper",cbar=False,ax=ax1)
g1.set_ylabel('$b$',fontsize=25)
g1.set_xlabel('$b$',fontsize=25)
g1.set_title('$N_L^{(0),MC}$',fontsize=25)
g2 = sns.heatmap(data[which]['rdn0'],cmap="copper",ax=ax2, cbar_ax=axcb)
#g2.set_ylabel('b')
g2.set_xlabel('$b$',fontsize=25)
g2.set_yticks([])
g2.set_title('$N_L^{(0),RD}$',fontsize=25)
if save:
plt.savefig(os.path.join(plotpath,f'recCor{which}.pdf'), bbox_inches='tight',dpi=300)
def plot_planck_comparsion(self,save=False):
fname = os.path.join(datapath,'recQCL.pkl')
data = pl.load(open(fname,'rb'))
plt.figure(figsize=(7,7))
plt.loglog((Planck().PP['N'])[:len(data['mcn0'])],label='$\\textsc{Planck}\\texttt{(Pol)}$' if uselatex else "$Planck(Pol)$" ,lw=3)
plt.loglog(data['mcn0'],label='$\\textsc{LiteBIRD}\\texttt{(EB)}$' if uselatex else "$LiteBIRD(EB)$",c='r',lw=3)
plt.loglog(data['fid'],label='Signal',c='grey',lw=3)
plt.xlim(2,600)
plt.ylabel('$\\frac{L^2 (L + 1)^2}{2\pi} N_L^{(0),MC}$',fontsize=25)
plt.xticks(fontsize=25)
plt.yticks(fontsize=25)
plt.xlabel('L',fontsize=25)
plt.legend(ncol=2, fontsize=20)
if save:
plt.savefig(os.path.join(plotpath,f'planck_comp.pdf'), bbox_inches='tight',dpi=300)
def plot_Alens_box(self,save=False):
fname = os.path.join(datapath,'Alens_samps.pkl')
if os.path.exists(fname):
data = pl.load(open(fname,'rb'))
print('Data Loaded from file')
else:
data = {}
rec1 = self.rec_nofg
rec2 = self.rec_fg1
rec3 = self.rec_fg2
data['nofg_samp'] = Alens_fit(rec1).get_samples().reshape(-1)
data['fg1_samp'] = Alens_fit(rec2).get_samples().reshape(-1)
data['fg2_samp'] = Alens_fit(rec3).get_samples().reshape(-1)
pl.dump(data,open(fname,'wb'))
print('Data Saved to file')
nofg_samp = data['nofg_samp']
fg1_samp = data['fg1_samp']
fg2_samp = data['fg2_samp']
data_to_plot = [nofg_samp, fg1_samp, fg2_samp]
if uselatex:
labels = ['$\\textbf{No FG}$', '$\\textbf{s0d0}$', '$\\textbf{s1d1}$']
else:
labels = ['No FG', 's0d0', 's1d1']
plt.figure(figsize=(6, 6))
sns.boxplot(data=data_to_plot)
plt.xticks(range(len(labels)),labels,fontsize=25)
plt.ylabel('$A_{\mathrm{lens}}$',fontsize=25)
plt.axhline(1,color='r',ls='--',lw=3)
plt.yticks(fontsize=25)
if save:
plt.savefig(os.path.join(plotpath,f'Alens_box.pdf'), bbox_inches='tight',dpi=300)
def plot_KS_pvalue(self,save=False):
fname = os.path.join(plotpath,'pvalue.pdf')
pvalue = pl.load(open(os.path.join(datapath,'pvalue.pkl'),'rb'))
s0d0 = pvalue['s0d0']
s1d1 = pvalue['s1d1']
B = pvalue['b']
plt.figure(figsize=(6,6))
plt.plot(B,s0d0,label='$\\textbf{s0d0}$' if uselatex else "s0d0",marker='o',c='C10')
plt.plot(B,s1d1,label='$\\textbf{s1d1}$' if uselatex else "s1d1",marker='o',c='C3')
plt.axhline(0.05,color='k',ls='--',label='$0.05$',lw=3)
plt.legend(fontsize=15)
plt.ylabel('$\\mathrm{KS} \;\; p-\\mathrm{value}$' if uselatex else "KS p-value",fontsize=25)
plt.xlabel('$L$',fontsize=25)
plt.xticks(fontsize=25)
plt.yticks(fontsize=25)
if save:
plt.savefig(fname, bbox_inches='tight',dpi=300)
def plot_mismatching_alens(self,save=False,do_MC=False):
fname = os.path.join(datapath,f'mismatch_samples{do_MC}.pkl')
if os.path.exists(fname):
data = pl.load(open(fname,'rb'))
print('Data Loaded from file')
else:
rec1 = self.rec_nofg
rec2 = self.rec_fg1
rec3 = self.rec_fg2
data ={}
data['nofg'] = crazymix(rec3,rec1,100,do_MC).get_samples().reshape(-1)
data['fg1'] = crazymix(rec3,rec2,100,do_MC).get_samples().reshape(-1)
data['fg2'] = crazymix(rec3,rec3,100,do_MC).get_samples().reshape(-1)
pl.dump(data,open(fname,'wb'))
print('Data Saved to file')
snofg = data['nofg']
sfg1 = data['fg1']
sfg2 = data['fg2']
smm1=np.mean(snofg)
smm2=np.mean(sfg1)
smm3=np.mean(sfg2)
plt.figure(figsize=(8,6))
plt.plot(*find_density(snofg),lw=3,label='$\\textbf{No FG}$'if uselatex else "No FG")
plt.plot(*find_density(sfg1),lw=3,label='$\\textbf{s0d0}$' if uselatex else "s0d0")
plt.plot(*find_density(sfg2),lw=3,label='$\\textbf{s1d1}$' if uselatex else "s1d1")
plt.text(smm1-.013,1.02,f"{smm1:.2f}",fontsize=25)
plt.text(smm2-.013,1.02,f"{smm2:.2f}",fontsize=25)
plt.text(smm3-.013,1.02,f"{smm3:.2f}",fontsize=25)
plt.xlabel('$A_\mathrm{lens}$',fontsize=25)
plt.ylim(0,1.2)
plt.legend(fontsize=18,loc='lower center',bbox_to_anchor=(0.6, 0.4))
plt.xticks(fontsize=25)
plt.yticks([])
if save:
plt.savefig(os.path.join(plotpath,f'MM_alens{do_MC}.pdf'), bbox_inches='tight',dpi=300)
class snrStat:
def __init__(self,fg0=None,fg1=None,fg2=None):
self.fg0 = fg0
self.fg1 = fg1
self.fg2 = fg2
def table_total_snr(self):
print('SNR total')
print('NOFG :',self.fg0.snr_total())
print('s0d0 :',self.fg1.snr_total())
print('s1d1 :',self.fg2.snr_total())
def table_tomo_snr(self):
print('SNR tomo')
print('NOFG :',self.fg0.snr_tomo())
print('s0d0 :',self.fg1.snr_tomo())
print('s1d1 :',self.fg2.snr_tomo())
def plot_total_survey(self,save=False):
plt.plot(self.fg0.ell,self.fg0.snr_tot_survey(),label='NOFG')
plt.plot(self.fg1.ell,self.fg1.snr_tot_survey(),label='s0d0')
plt.plot(self.fg2.ell,self.fg2.snr_tot_survey(),label='s1d1')
plt.legend()
def plot_tomo_survey(self,save=False):
plt.plot(self.fg0.ell,self.fg0.snr_tomo_survey(),label='NOFG')
plt.plot(self.fg1.ell,self.fg1.snr_tomo_survey(),label='s0d0')
plt.plot(self.fg2.ell,self.fg2.snr_tomo_survey(),label='s1d1')
plt.legend()
def table_isw_snr(self):
print('SNR ISW')
print('NOFG :',self.fg0.snr_iswphi())
print('s0d0 :',self.fg1.snr_iswphi())
print('s1d1 :',self.fg2.snr_iswphi())