-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprinting_classes.py
315 lines (255 loc) · 12.4 KB
/
printing_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import enum, math, gc, copy
from constants import *
class StatusQueueItem:
def __init__(self):
self.statusLeft = None
self.statusRight = None
self.progress = None
# Position
class Position:
def __init__(self, x=0, y=0, z=0, e=0):
self.X: float = x
self.Y: float = y
self.Z: float = z
self.E: float = e
self.F: float = 0
self.FTravel: float = 0
self.comment: str = None
# compare X/Y/Z/E for equality
def __eq__(self, other):
if not isinstance(other, Position):
# don't attempt to compare against unrelated types
return NotImplemented
return self.X == other.X and self.Y == other.Y and self.Z == other.Z and self.E == other.E
# Bounding Box
class BoundingBox:
def __init__(self, origin: Position, size: Position, density: float = 1):
self.origin = origin
self.size = size
self.density: float = density
self.targetDensity: float = 1
self.offsetZ: float = INFILL_Z_OFFSET
self.sidesFillInDropletOverlapPerc = INFILL_BB_SIDES_FILL_IN_DROPLET_OVERLAP_PERC
#self.dropletOverlap = DROPLET_OVERLAP_PERC #percentage of droplet width
self.dropletRasterResolution = DROPLET_RASTER_RESOLUTION_PERC
self.dropletRaster: list[None|list[list[int]]] = None #[last|current][x][y]
def initializeDropletRasterLayer(self):
return [[0 for _ in range(0, round(self.size.Y/(DROPLET_WIDTH*self.dropletRasterResolution)) + 1)] for _ in range(0, round(self.size.X/(DROPLET_WIDTH*self.dropletRasterResolution)) + 1)]
#return [[0 for _ in range(0, math.ceil((1/self.dropletOverlap)/2) + math.ceil(self.size.Y/(DROPLET_WIDTH*self.dropletOverlap)))] for _ in range(0, math.ceil((1/self.dropletOverlap)/2) + math.ceil(self.size.X/(DROPLET_WIDTH*self.dropletOverlap)))]
def initializeDropletRaster(self):
self.dropletRaster = [None, self.initializeDropletRasterLayer()]
def freeDropletRaster(self):
self.dropletRaster = None
def advanceDropletRasterNextLayer(self):
if self.dropletRaster:
self.dropletRaster[0] = self.dropletRaster[1]
gc.collect()
self.dropletRaster[1] = self.initializeDropletRasterLayer()
def lastLayerHeight(self) -> float:
return self.origin.Z+self.size.Z
def numLayersToTargetDensity(self) -> float:
"""
Return number of layers needed to stack to together to get to the target density (going up). Start density is first layer. Target density is last layer.
:return: Number of layers to stack to get target density.
:rtype: float
"""
return self.targetDensity / self.density
def lastStartingDensityLayerHeight(self) -> float:
return self.lastLayerHeight()-self.numLayersToTargetDensity()*LAYER_HEIGHT
def percentThroughRampUpDensityZone(self, layerHeight: float, rampUpDistanceMultiplier: float = 1) -> float:
lastLayerHeight = self.lastLayerHeight()
lastStartDensityLayerHeight = self.lastStartingDensityLayerHeight()
# scaled for multiplier
finalLastStartDensityLayerHeight = lastLayerHeight - ((lastLayerHeight - lastStartDensityLayerHeight) * rampUpDistanceMultiplier)
if layerHeight <= finalLastStartDensityLayerHeight:
return 0
if layerHeight >= lastLayerHeight:
return 1
return (layerHeight - finalLastStartDensityLayerHeight) / ((lastLayerHeight - lastStartDensityLayerHeight) * rampUpDistanceMultiplier)
# Return density % at global layer height for this bounding box
def densityAtLayerHeightForTargetDensity(self, layerHeight: float) -> float:
lastLayerHeight = self.lastLayerHeight()
lastStartDensityLayerHeight = self.lastStartingDensityLayerHeight()
if layerHeight <= lastStartDensityLayerHeight:
return self.density
elif layerHeight >= lastLayerHeight:
return self.targetDensity
else:
return self.density + self.percentThroughRampUpDensityZone(layerHeight) * (self.targetDensity-self.density)
def lastFullBoundingBoxSizeHeight(self) -> float:
smallerXYSize = min(self.size.X, self.size.Y)
oneSideFillInDist = smallerXYSize / 2
fillInLayers = oneSideFillInDist / (DROPLET_WIDTH*(1-INFILL_BB_SIDES_FILL_IN_DROPLET_OVERLAP_PERC))
return self.lastLayerHeight() - fillInLayers * LAYER_HEIGHT
def percentThroughSideFillInZone(self, height: float):
lastLayerHeight = self.lastLayerHeight()
lastFullBoundingBoxSizeHeight = self.lastFullBoundingBoxSizeHeight()
return (height-lastFullBoundingBoxSizeHeight)/(lastLayerHeight-lastFullBoundingBoxSizeHeight)
def currentBoundingBoxOriginAtHeight(self, height: float) -> Position:
lastFullBoundingBoxSizeHeight = self.lastFullBoundingBoxSizeHeight()
if height <= lastFullBoundingBoxSizeHeight:
return self.origin
else:
newBbOrigin = copy.copy(self.origin)
newBbOrigin.X += (self.size.X / 2) * min(1,self.percentThroughSideFillInZone(height=height))
newBbOrigin.Y += (self.size.Y / 2) * min(1,self.percentThroughSideFillInZone(height=height))
return newBbOrigin
def currentBoundingBoxSizeAtHeight(self, height: float) -> Position:
lastFullBoundingBoxSizeHeight = self.lastFullBoundingBoxSizeHeight()
if height <= lastFullBoundingBoxSizeHeight:
return self.size
else:
newBbSize = copy.copy(self.size)
newBbSize.X -= (self.size.X) * min(1,self.percentThroughSideFillInZone(height=height))
newBbSize.Y -= (self.size.Y) * min(1,self.percentThroughSideFillInZone(height=height))
return newBbSize
# State of current Print FILE
class PrintState:
def __init__(self):
self.height: float = -1
self.doneLayerCount: int = 0
self.layerHeight: float = 0
self.previousLayerHeight: float = 0
self.layerStart: int = 0
self.layerEnd: int = 0
self.lastFeature: Feature = None
self.prevLayerLastFeature: Feature = None
# Infill movements read in but not written out
self.infillMovementQueue: list[Movement] = None
self.infillMovementQueueOriginalStartPosition: Position = None
# Infill modified droplet stats
self.infillModifiedDropletsOriginal: int = 0
self.infillModifiedDropletsNeededForDensity: int = 0
self.infillModifiedDropletsSupportedAvailable: int = 0
# Movement info
self.originalPosition: Position = Position()
# E delta
self.deltaE: float = 0 # how much we have deviated from the original E position
# Z offset
# no longer used because Z raise is now a property of Position
#self.offsetZ: float = 0 # how much the Z axis is current offset by
# Prime tower / Toolchange values for current layer
self.features: list[Feature] = [] # Printing features
self.primeTowerFeatures: list[Feature] = [] # The available prime tower features.
self.stopPositions: list[int] = []
self.toolchangeInsertionPoint: int = 0
self.featureWipeEndPrime: Position = None # prime values at end of wipe_end
#Loop settings
self.skipWrite: bool = False
self.skipWriteForCurrentLine: bool = False
self.prevLayerSkipWrite: bool = False
#self.toolchangeBareInsertionPoint: Feature = None
#self.toolchangeFullInsertionPoint: Feature = None
#self.toolchangeNewColorIndex: int = -1
#self.skipOriginalPrimeTowerAndToolchangeOnLayer: bool = False
#self.skipOriginalToolchangeOnLayer: bool = False
class Feature:
def __init__(self):
self.featureType: str = None
self.start: int = 0
self.end: int = 0
self.toolchange: Feature = None
self.isPeriodicColor: bool = False
self.originalColor: int = -1
self.printingColor: int = -1
self.startPosition: Position = Position()
self.wipeStart: Feature = None
self.wipeEnd: Feature = None
class PeriodicColor:
def __init__(self, colorIndex = -1, startHeight = -1, endHeight = -1, height = -1, period = -1, enabledFeatures=[]):
self.colorIndex: int = colorIndex
self.startHeight: float = startHeight
self.endHeight: float = endHeight
self.height: float = height
self.period: float = period
self.enabledFeatures: list[str] = enabledFeatures
class PrintColor:
def __init__(self, index=-1, replacementColorIndex=-1, humanColor=None):
self.index: int = index
self.replacementColorIndex: int = replacementColorIndex #the current replacement color
self.humanColor: str = humanColor
loadedColors: list[PrintColor] = [
PrintColor(0, -1, 'Base Color'),
PrintColor(1, -1, 'River Color'),
PrintColor(2, -1, 'Isoline Color'),
PrintColor(3, -1, 'High Elevation Color')
]
class ReplacementColorAtHeight:
def __init__(self, colorIndex, originalColorIndex, startHeight, endHeight):
self.colorIndex: int = colorIndex
self.originalColorIndex: int = originalColorIndex
self.startHeight: float = startHeight
self.endHeight: float = endHeight
# Movements
class Movement:
# Extrusion amount is based on start and end position E.
# For travel and extrude-only movements, X,Y location only uses end position.
# Droplet is an extrude-only movement.
def __init__(self, startPos: Position = None, endPos: Position = None, boundingBox: BoundingBox = None, originalGcode: str = None, feature: Feature = None):
self.start: Position = startPos #original gcode start. is None if not a travel or printing command
self.end: Position = endPos #original gcode end
self.boundingBox: BoundingBox = boundingBox
self.originalGcode: str = originalGcode #original gcode only written out for misc gocde
self.feature: Feature = feature # the active feature
self.supportedPositions: list[tuple[int, Position]] = [] #supported positions underneath from the previous layer. (Original Index, Position)
# E movement for a droplet
self.dropletE: None
# Droplet movements that replace this move
self.dropletMovements: list[Movement] = None
# Placed supported position droplet Movements. Initially unsorted. Sort after all placement done.
self.supportedPositionMovements: list[tuple[int, Movement]] = None
# Return if this Movement is actually a Droplet (extrude only move)
def isDroplet(self):
return (self.start.X == self.end.X) and (self.start.Y == self.end.Y)
def adjustE(self, startE: float):
"""
Set the start E position of this movement to the passed startE value.
Increment start E position by relative E movement to get end E.
Set the end E position of this movement.
:param startE: Starting E value
:type startE: float
:return: Number of layers to stack to get target density.
:rtype: float
"""
# Get relative E movement
relativeE = self.end.E - self.start.E
# Set start to the last tracked queue position
self.start.E = startE
self.end.E = self.start.E + relativeE
# return gcode and adjustE if specified
def gcode(self, adjustE: bool = False, deltaE: float = None):
gcode = MOVEMENT_G1
gcode += f" X{self.end.X:.5f} Y{self.end.Y:.4f} E{(self.end.E + deltaE if adjustE else self.end.E):.5f}"
gcode += f"{' ;' if (self.end.comment or self.boundingBox) else ''}{self.end.comment if self.end.comment else ''}{f'; EInc={self.end.E-self.start.E}'}"
return gcode
def travelGcodeToStart(self):
gcode = ''
gcode += f"{FEATURE_TYPE_WRITE_OUT}{TRAVEL}\n"
gcode += f"{PULSE_OFF}\n"
gcode += MOVEMENT_G0
gcode += f" X{self.start.X:.5f} Y{self.start.Y:.4f} Z{self.start.Z} ;Travel to start"
return gcode
def travelGcodeToEnd(self, addZAxis: bool = False):
gcode = ''
gcode += f"{FEATURE_TYPE_WRITE_OUT}{TRAVEL}\n"
gcode += f"{PULSE_OFF}\n"
gcode += MOVEMENT_G0
gcode += f" X{self.end.X:.5f} Y{self.end.Y:.4f} {f'Z{(self.end.Z + self.boundingBox.offsetZ if self.boundingBox else 0):.2f}' if addZAxis else ''} ;Travel to end"
return gcode
# Return G-code for extrude only move. Assume E position is pre-adjusted and final.
def extrudeOnlyGcode(self, adjustE: bool = False, deltaE: float = None):
gcode = ''
gcode += f"{FEATURE_TYPE_WRITE_OUT}{INFILL}\n"
gcode += f"{PULSE_ON}\n"
gcode += MOVEMENT_G1
gcode += f" E{(self.end.E + deltaE if adjustE else self.end.E):.5f} ; EInc={self.end.E-self.start.E}"
return gcode
# Return G-code for extrude and move to end. Assume E position is pre-adjusted and final.
def extrudeAndMoveToEndGcode(self, adjustE: bool = False, deltaE: float = None):
gcode = ''
gcode += f"{FEATURE_TYPE_WRITE_OUT}{INFILL}\n"
gcode += f"{PULSE_ON}\n"
gcode += MOVEMENT_G1
gcode += f" X{self.end.X:.5f} Y{self.end.Y:.4f} Z{(self.end.Z + self.boundingBox.offsetZ if self.boundingBox else 0):.2f}"
gcode += f" E{(self.end.E + deltaE if adjustE else self.end.E):.5f} ; EInc={self.end.E-self.start.E}"
return gcode