-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
354 lines (263 loc) · 13.9 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from __future__ import print_function
import numpy as np
import math
import logging
from keras.models import Sequential
from keras.models import Model
from keras.layers import Dense, Dropout
from keras.layers import Reshape
from keras.layers.core import Activation
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import UpSampling2D
from keras.layers.convolutional import Convolution2D, MaxPooling2D, AveragePooling2D
from keras.layers.core import Flatten
from keras.layers import Input
from keras.optimizers import SGD
from keras.datasets import mnist
from keras.layers.advanced_activations import LeakyReLU
from keras.layers import Merge
from PIL import Image
import scipy.misc
logger = logging.getLogger()
class DCGAN(object):
# Deep Convolutional Generative Adversarial Network
def __init__(self, input_size=100, input_shape=(1, 28, 28),
discriminator_weights=None, generator_weights=None):
self.BATCH_SIZE=128
self.LATEST_DISCRIMINATOR = 'checkpoint/latest_discriminator.h5'
self.LATEST_GENERATOR = 'checkpoint/latest_generator.h5'
self.input_shape = input_shape
image_dimension = 1
for dimension in input_shape:
image_dimension = image_dimension*dimension
self.input_size = image_dimension/4 # We are downscaling by a factor of 4
self.noise_vector_size = 100
self.generator = self.get_generator()
self.discriminator = self.get_discriminator()
# E2E model
self.discriminator_on_generator = self.get_discriminator_on_generator(self.generator,
self.discriminator)
# Model compilation start
d_optim = SGD(lr=0.0005, momentum=0.9, nesterov=True) # discriminator optimizer
g_optim = SGD(lr=0.0005, momentum=0.9, nesterov=True) # generator optimizer
self.generator.compile(loss='binary_crossentropy', optimizer="SGD")
self.discriminator_on_generator.compile(loss='binary_crossentropy', optimizer=g_optim)
self.discriminator.compile(loss='binary_crossentropy', optimizer=d_optim, metrics=['accuracy'])
# Complete
if discriminator_weights:
self.discriminator.load_weights(discriminator_weights)
if generator_weights:
self.generator.load_weights(generator_weights)
def get_generator(self):
''' Generative part of the network '''
# Image encoder
image_branch = Sequential()
image_branch.add(Dense(input_dim=self.input_size, output_dim=1024))
# Noise encoder
noise_branch = Sequential()
noise_branch.add(Dense(input_dim=self.noise_vector_size, output_dim=200))
merged = Merge([image_branch, noise_branch], mode='concat')
model = Sequential()
model.add(merged)
model.add(Activation('tanh'))
model.add(Dense(128*7*7))
model.add(Dropout(0.5))
model.add(BatchNormalization(mode=2))
model.add(Activation('tanh'))
model.add(Reshape((128, 7, 7), input_shape=(128*7*7,)))
model.add(UpSampling2D(size=(2, 2)))
model.add(Convolution2D(64, 5, 5, border_mode='same'))
model.add(Activation('tanh'))
model.add(UpSampling2D(size=(2, 2)))
model.add(Convolution2D(1, 5, 5, border_mode='same'))
model.add(Activation('tanh'))
return model
def get_discriminator(self):
''' Discriminator model '''
# A model to encode the generated image
model = Sequential()
model.add(Convolution2D(64, 5, 5, border_mode='same',
input_shape=self.input_shape))
model.add(Activation('tanh'))
model.add(AveragePooling2D(pool_size=(2, 2)))
model.add(Convolution2D(128, 5, 5))
model.add(Activation('tanh'))
model.add(AveragePooling2D(pool_size=(2, 2)))
model.add(Flatten())
# Conditioning on low dimensional input image
condition = Sequential()
condition.add(Dense(100, input_dim=self.input_size))
merged = Merge([model, condition], mode='concat')
# Combining the two
final_model = Sequential()
final_model.add(merged)
final_model.add(Dense(1024))
final_model.add(Activation('tanh'))
final_model.add(Dense(1))
final_model.add(Activation('sigmoid'))
return final_model
def get_discriminator_on_generator(self, generator, discriminator):
''' Composite model - generator and discriminator '''
downsampled_input = Input(shape=(self.input_size,))
noise = Input(shape=(self.noise_vector_size,))
predicted_image = generator([downsampled_input, noise])
output = discriminator([predicted_image, downsampled_input])
discriminator.trainable = False
model = Model(input=[downsampled_input, noise], output=output)
return model
def combine_images(self, generated_images):
''' Output the images in an easy to visualize representation '''
num = generated_images.shape[0]
width = int(math.sqrt(num))
height = int(math.ceil(float(num)/width))
shape = generated_images.shape[2:]
image = np.zeros((height*shape[0], width*shape[1]), dtype=generated_images.dtype)
for index, img in enumerate(generated_images):
i = int(index/width)
j = index % width
image[i*shape[0]:(i+1)*shape[0], j*shape[1]:(j+1)*shape[1]] = img[0, :, :]
image = (image * 127.5) + 127.5 # Cast the image back into 0-255 range
return image
def train(self):
''' Start training the DCGAN '''
# Initialize data
# For now load data from here - we should be able to modify this API soon.
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# We don't care about labels right now
self.X_train = (X_train.astype(np.float32) - 127.5)/127.5 # Normalize to (-1, 1) range
self.X_train = self.X_train.reshape((X_train.shape[0], 1) + X_train.shape[1:])
print ("Training images", self.X_train.shape)
self.train_model()
def train_model(self, num_epochs=500):
for self.epoch in range(num_epochs):
print("Epoch is", self.epoch)
logging.info("training epoch {}".format(str(self.epoch)))
self.train_epoch()
def get_uniform_noise(self):
noise = np.zeros((self.BATCH_SIZE, self.noise_vector_size))
for i in range(self.BATCH_SIZE):
# Uniform noise
noise[i, :] = np.random.uniform(-1, 1, self.noise_vector_size)
return noise
def get_input_vector(self): # Change to get inputs
input_pixels = np.zeros((self.BATCH_SIZE, self.input_size))
for i, image in enumerate(self.image_batch):
# Keras to Scipy
# print ('1:', image.shape)
# 1: (1, 28, 28)
img_2d = image[0]
# Downscaling
img_2d = scipy.misc.imresize(img_2d, 0.5, 'bicubic')
input_pixels[i, :] = img_2d.flatten()
return input_pixels
def generate_images(self, downsampled_vector, noise, batch_size=None):
'''
- Downsampled vector is a representation of the downsampled image
- Noise vector is a vector of random noise
'''
if not batch_size: batch_size = self.BATCH_SIZE
print('shapes', downsampled_vector.shape, noise.shape)
generated_images = self.generator.predict([downsampled_vector, noise], verbose=0)
return generated_images
def train_epoch(self):
number_of_batches = int(self.X_train.shape[0]/self.BATCH_SIZE)
print("Number of batches", str(number_of_batches))
for self.index in range(number_of_batches):
# Random noise to start off with, replace with latent vectors when you get time
batch_start, batch_end = (self.index)*self.BATCH_SIZE, (self.index+1)*self.BATCH_SIZE
self.image_batch = self.X_train[batch_start : batch_end]
self.downsampled = self.get_input_vector()
self.noise = self.get_uniform_noise()
self.generated_images = self.generate_images(self.downsampled, self.noise)
if self.index % 20 == 0: self.save_debug_output() # Every now and then - save the debug output
logging.info('Training discriminator...')
self.train_discriminator(self.image_batch, self.generated_images, self.downsampled)
logging.info('Training generator...')
self.train_generator(self.downsampled, self.noise)
if self.index % 10 == 9:
# Save weights every now and then
self.generator.save_weights(self.LATEST_GENERATOR, True)
self.discriminator.save_weights(self.LATEST_DISCRIMINATOR, True)
print('Saved weights...epoch:{} {}'.format(str(self.epoch), str(self.index)))
def save_debug_output(self):
# Monitor the progress of the model
output_template = 'epoch_{epoch}_img_{index}'.format(epoch=str(self.epoch),
index=str(self.index))
img_template = output_template + '.png'
#con_image = self.combine_images(self.downsampled)
# Prediction accuracy
test_images = np.concatenate((self.image_batch, self.generated_images))
targets = [1]*len(self.image_batch) + [0]*len(self.generated_images)
conditioning = np.concatenate((self.downsampled, self.downsampled))
metrics = self.discriminator.test_on_batch([test_images, conditioning], targets)
print ('metrics', metrics)
gen_image = self.combine_images(self.generated_images)
ref_image = self.combine_images(self.image_batch)
#conditioning_img = 'debug/conditioning/{}'.format(img_template)
hypothesis_img = "debug/hypothesis/{}".format(img_template)
reference_img = "debug/reference/{}".format(img_template)
Image.fromarray(gen_image.astype(np.uint8)).save(hypothesis_img)
Image.fromarray(ref_image.astype(np.uint8)).save(reference_img)
def train_discriminator(self, real_image_batch, generated_images_batch, downsampled):
# Train discriminator
self.discriminator.trainable = True
# Putting the training data into the right format - class 1 is 'real' class 0 if 'fake'
C = np.concatenate((downsampled, downsampled)) # Conditioning for the discriminator
X = np.concatenate((real_image_batch, generated_images_batch))
y = [1] * len(real_image_batch) + [0] * len(generated_images_batch)
d_loss = self.discriminator.train_on_batch([X, C], y)
print("batch {index} distriminative_loss : {loss}".format(index=str(self.index), loss=str(d_loss)))
def train_generator(self, downsampled, noise):
# Train generator
self.discriminator.trainable = False
g_loss = self.discriminator_on_generator.train_on_batch([downsampled, noise], [1] * self.BATCH_SIZE)
print("batch {index} generative_loss : {loss}".format(index=str(self.index), loss=str(g_loss)))
@classmethod
def generate(self, nice=False):
'''
Generate images with a given model
'''
generator = self.get_generator()
generator.compile(loss='binary_crossentropy', optimizer="SGD")
generator.load_weights('generator')
if nice:
discriminator = self.get_discriminator()
discriminator.compile(loss='binary_crossentropy', optimizer="SGD")
discriminator.load_weights('discriminator')
noise = self.get_uniform_noise()
generated_images = generator.predict(noise, verbose=1)
d_pret = discriminator.predict(generated_images, verbose=1)
index = np.arange(0, self.BATCH_SIZE*20)
index.resize((self.BATCH_SIZE*20, 1))
pre_with_index = list(np.append(d_pret, index, axis=1))
pre_with_index.sort(key=lambda x: x[0], reverse=True)
nice_images = np.zeros((self.BATCH_SIZE, 1) + (generated_images.shape[2:]), dtype=np.float32)
for i in range(int(BATCH_SIZE)):
idx = int(pre_with_index[i][1])
nice_images[i, 0, :, :] = generated_images[idx, 0, :, :]
image = self.combine_images(nice_images)
else:
noise = self.get_uniform_noise()
generated_images = generator.predict(noise, verbose=1)
image = self.combine_images(generated_images)
Image.fromarray(image.astype(np.uint8)).save("generated_image.png")
def get_args():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--mode", type=str, help='train or generate')
parser.add_argument("--batch_size", type=int, default=128)
parser.add_argument("--nice", dest="nice", action="store_true")
parser.add_argument('-g', '--generator_weights', default=None)
parser.add_argument('-d', '--discriminator_weights', default=None)
parser.add_argument('-e', '--epochs', default=500, type=int)
parser.set_defaults(nice=False)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
if args.mode == "train":
dcgan = DCGAN(discriminator_weights=args.discriminator_weights,
generator_weights=args.generator_weights)
dcgan.train()
elif args.mode == "generate":
DCGAN.generate(BATCH_SIZE=args.batch_size, nice=args.nice)