-
Notifications
You must be signed in to change notification settings - Fork 0
/
home_price_prediction.py
161 lines (91 loc) · 5.33 KB
/
home_price_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# coding: utf-8
# In[1]:
from sklearn.datasets import load_boston
from sklearn.cross_validation import train_test_split
from sklearn import linear_model
from sklearn.metrics import mean_squared_error
import numpy as np
import random
boston = load_boston()
boston_train_X, boston_test_X, boston_train_Y, boston_test_Y = train_test_split(boston.data, boston.target, train_size=.75)
boston_train_X_main, boston_train_X_validation, boston_train_Y_main, boston_train_Y_validation = train_test_split(boston_train_X, boston_train_Y, train_size=.75)
def regression_model_validation(regr_model_id, isdefault, alpha_val):
if regr_model_id == 0:
if isdefault == True:
regr_model = linear_model.Lasso()
else:
regr_model = linear_model.Lasso(alpha = alpha_val)
elif regr_model_id == 1:
if isdefault == True:
regr_model = linear_model.Ridge()
else:
regr_model = linear_model.Ridge(alpha = alpha_val)
regr_model.fit(boston_train_X_main, boston_train_Y_main)
regr_model_predict = regr_model.predict(boston_train_X_validation)
mean_squared_error_value = mean_squared_error(boston_train_Y_validation, regr_model_predict)
if regr_model_id == 0:
if isdefault == True:
print("Lasso","alpha(Default):", mean_squared_error_value)
else:
print("Lasso","alpha =", alpha_val, " :", mean_squared_error_value)
elif regr_model_id == 1:
if isdefault == True:
print("Ridge","alpha(Default):", mean_squared_error_value)
else:
print("Ridge","alpha =",alpha_val," :", mean_squared_error_value)
def lassodefault():
regr_lasso_default = linear_model.Lasso()
regr_lasso_default.fit(boston_train_X, boston_train_Y)
regr_predict_lasso_default = regr_lasso_default.predict(boston_test_X)
mean_squared_error_lasso_default = mean_squared_error(boston_test_Y, regr_predict_lasso_default)
print("Lasso","alpha(Default):", mean_squared_error_lasso_default)
def ridgedefault():
regr_ridge_default = linear_model.Ridge()
regr_ridge_default.fit(boston_train_X, boston_train_Y)
regr_predict_ridge_default = regr_ridge_default.predict(boston_test_X)
mean_squared_error_ridge_default = mean_squared_error(boston_test_Y, regr_predict_ridge_default)
print("ridge","alpha(Default):", mean_squared_error_ridge_default)
def regression_test_tuned(regr_model_id, alpha_val):
if regr_model_id == 0:
regr_model = linear_model.Lasso(alpha = alpha_val)
elif regr_model_id == 1:
regr_model = linear_model.Ridge(alpha = alpha_val)
regr_model.fit(boston_train_X, boston_train_Y)
regr_model_predict_test = regr_model.predict(boston_test_X)
mean_squared_error_value_test = mean_squared_error(boston_test_Y, regr_model_predict_test)
if regr_model_id == 0:
print("Lasso","alpha =", alpha_val, " :", mean_squared_error_value_test)
elif regr_model_id == 1:
print("Ridge","alpha =",alpha_val," :", mean_squared_error_value_test)
print("----------------------------------------------------------------------------------------------------------------")
print(" Mean Squared Error(Validation)")
print("----------------------------------------------Lasso---------------------------------------------------------------")
regression_model_validation(0, True, -1)
regression_model_validation(0, False, 0.005)
regression_model_validation(0, False, 0.105)
regression_model_validation(0, False, 0.305)
regression_model_validation(0, False, 0.405)
regression_model_validation(0, False, 0.000305)
print("---------------------------------------------Ridge---------------------------------------------------------------")
regression_model_validation(1, True, -1)
regression_model_validation(1, False, 0.056)
regression_model_validation(1, False, 0.03)
regression_model_validation(1, False, 0.8883)
regression_model_validation(1, False, 0.89029)
regression_model_validation(1, False, 0.9029)
print("-----------------------------------------------------------------------------------------------------------------")
print("-----------------------------------------------------------------------------------------------------------------")
print("--------------------------------------Mean Square Error Test(Lasso params tuned)------------------------------------")
lassodefault()
print("------------------------------------------------------")
regression_test_tuned(0, 0.005)
regression_test_tuned(0, 0.105)
regression_test_tuned(0, 0.405)
regression_test_tuned(0, 0.000305)
print("--------------------------------------Mean Square Error Test(Ridge params tuned)---------------------------------------")
ridgedefault()
print("------------------------------------------------------")
regression_test_tuned(1, 0.056)
regression_test_tuned(1, 0.03)
regression_test_tuned(1, 0.883)
regression_test_tuned(1, 0.9029)