-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathEUR_eval.py
executable file
·125 lines (99 loc) · 4.55 KB
/
EUR_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from __future__ import division, print_function, unicode_literals
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
from network import CNN_KIM,CapsNet_Text
import random
import time
from utils import evaluate
import data_helpers
import scipy.sparse as sp
from w2v import load_word2vec
import os
torch.manual_seed(0)
torch.cuda.manual_seed(0)
np.random.seed(0)
random.seed(0)
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='eurlex_raw_text.p',
help='Options: eurlex_raw_text.p, rcv1_raw_text.p, wiki30k_raw_text.p')
parser.add_argument('--vocab_size', type=int, default=30001, help='vocabulary size')
parser.add_argument('--vec_size', type=int, default=300, help='embedding size')
parser.add_argument('--sequence_length', type=int, default=500, help='the length of documents')
parser.add_argument('--is_AKDE', type=bool, default=True, help='if Adaptive KDE routing is enabled')
parser.add_argument('--num_epochs', type=int, default=30, help='Number of training epochs')
parser.add_argument('--ts_batch_size', type=int, default=32, help='Batch size for training')
parser.add_argument('--learning_rate', type=float, default=1e-3, help='Learning rate for training')
parser.add_argument('--start_from', type=str, default='save', help='')
parser.add_argument('--num_compressed_capsule', type=int, default=128, help='The number of compact capsules')
parser.add_argument('--dim_capsule', type=int, default=16, help='The number of dimensions for capsules')
parser.add_argument('--re_ranking', type=int, default=200, help='The number of re-ranking size')
import json
args = parser.parse_args()
params = vars(args)
print(json.dumps(params, indent = 2))
X_trn, Y_trn, Y_trn_o, X_tst, Y_tst, Y_tst_o, vocabulary, vocabulary_inv = data_helpers.load_data(args.dataset,
max_length=args.sequence_length,
vocab_size=args.vocab_size)
Y_trn = Y_trn.toarray()
Y_tst = Y_tst.toarray()
X_trn = X_trn.astype(np.int32)
X_tst = X_tst.astype(np.int32)
Y_trn = Y_trn.astype(np.int32)
Y_tst = Y_tst.astype(np.int32)
embedding_weights = load_word2vec('glove', vocabulary_inv, args.vec_size)
args.num_classes = Y_trn.shape[1]
capsule_net = CapsNet_Text(args, embedding_weights)
capsule_net = nn.DataParallel(capsule_net).cuda()
model_name = 'model-eur-akde-29.pth'
capsule_net.load_state_dict(torch.load(os.path.join(args.start_from, model_name)))
print(model_name + ' loaded')
model_name = 'model-EUR-CNN-40.pth'
baseline = CNN_KIM(args, embedding_weights)
baseline.load_state_dict(torch.load(os.path.join(args.start_from, model_name)))
baseline = nn.DataParallel(baseline).cuda()
print(model_name + ' loaded')
nr_tst_num = X_tst.shape[0]
nr_batches = int(np.ceil(nr_tst_num / float(args.ts_batch_size)))
n, k_trn = Y_trn.shape
m, k_tst = Y_tst.shape
print ('k_trn:', k_trn)
print ('k_tst:', k_tst)
capsule_net.eval()
top_k = 50
row_idx_list, col_idx_list, val_idx_list = [], [], []
for batch_idx in range(nr_batches):
start = time.time()
start_idx = batch_idx * args.ts_batch_size
end_idx = min((batch_idx + 1) * args.ts_batch_size, nr_tst_num)
X = X_tst[start_idx:end_idx]
Y = Y_tst_o[start_idx:end_idx]
data = Variable(torch.from_numpy(X).long()).cuda()
candidates = baseline(data)
candidates = candidates.data.cpu().numpy()
Y_pred = np.zeros([candidates.shape[0], args.num_classes])
for i in range(candidates.shape[0]):
candidate_labels = candidates[i, :].argsort()[-args.re_ranking:][::-1].tolist()
_, activations_2nd = capsule_net(data[i, :].unsqueeze(0), candidate_labels)
Y_pred[i, candidate_labels] = activations_2nd.squeeze(2).data.cpu().numpy()
for i in range(Y_pred.shape[0]):
sorted_idx = np.argpartition(-Y_pred[i, :], top_k)[:top_k]
row_idx_list += [i + start_idx] * top_k
col_idx_list += (sorted_idx).tolist()
val_idx_list += Y_pred[i, sorted_idx].tolist()
done = time.time()
elapsed = done - start
print("\r Reranking: {} Iteration: {}/{} ({:.1f}%) Loss: {:.5f} {:.5f}".format(
args.re_ranking, batch_idx, nr_batches,
batch_idx * 100 / nr_batches,
0, elapsed),
end="")
m = max(row_idx_list) + 1
n = max(k_trn, k_tst)
print(elapsed)
Y_tst_pred = sp.csr_matrix((val_idx_list, (row_idx_list, col_idx_list)), shape=(m, n))
if k_trn >= k_tst:
Y_tst_pred = Y_tst_pred[:, :k_tst]
evaluate(Y_tst_pred.toarray(), Y_tst)