-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdataHelper.py
692 lines (571 loc) · 30 KB
/
dataHelper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
import pandas as pd
import os
import datetime
import numpy as np
import pickle
from tools import log_time_delta
import time
from multiprocessing import Pool
from multiprocessing import freeze_support
from multiprocessing import cpu_count
from scipy.sparse import csr_matrix
import math
from config import Singleton
import sklearn
import itertools
import tensorflow as tf
import random
from tqdm import tqdm
mp=False
class DataHelper():
def __init__(self,conf,mode="run"):
self.conf=conf
self.data = self.loadData()
self.train= self.data[self.data.days<0]
self.test= self.data[self.data.days>=0]
self.u_cnt= self.data ["uid"].max()+1
self.i_cnt= self.data ["itemid"].max()+1
self.user_dict,self.item_dict=self.getdicts()
self.users=set(self.data["uid"].unique())
self.test_users=set(self.test["uid"].unique())
self.items = set([i for i in range(self.i_cnt)])
self.shared_users=set(self.train["uid"].unique()) & set(self.test["uid"].unique())
self.image_features_dict = None
get_pos_items=lambda group: set(group[group.rating>(4.99 if self.conf.rating_flag else 0.5)]["itemid"].tolist())
self.pos_items=self.train.groupby("uid").apply(get_pos_items)
user_item_pos_rating_time_dict= lambda group:{item:time for i,(item,time) in group[group.rating>(4.99 if self.conf.rating_flag else 0.5)][["itemid","user_granularity"]].iterrows()}
self.user_item_pos_rating_time_dict=self.train.groupby("uid").apply(user_item_pos_rating_time_dict).to_dict()
self.test_pos_items=self.test.groupby("uid").apply(get_pos_items).to_dict()
self.min_user_granularity=self.data.user_granularity.min()
def create_dirs(self,dirname):
if not os.path.exists(dirname):
os.makedirs(dirname)
# @log_time_delta
def loadData(self):
self.create_dirs("tmp")
dataset_pkl = "tmp/"+self.conf.dataset +"_"+self.conf.split_data+("" if self.conf.rating_flag else "_binary")+".pkl"
if os.path.exists(dataset_pkl):
print("data load over")
return pickle.load(open(dataset_pkl, 'rb'))
print("build data...")
data_dir="data/%s"% self.conf.dataset
filename = os.path.join(data_dir, self.conf.train_file_name)
df = pd.read_csv(filename,sep="\t", names=["uid","itemid","rating","timestamp"])
df = df.sort_values(["uid","itemid"])
print("there are %d users in this dataset" %(df ["uid"].max()+1))
y,m,d = (int(i) for i in self.conf.split_data.split("-"))
df["days"] = (pd.to_datetime(df["timestamp"]) - pd.datetime(y,m,d )).dt.days
df["item_granularity"] = df["days"] // self.conf.item_delta # //means floor div
df["user_granularity"] = df["days"] // self.conf.user_delta # //means floor div
if self.conf.threshold > 0: # remove the users while the rating of them is lower than threshold
counts_df = pd.DataFrame(df.groupby('uid').size().rename('counts'))
users = set(counts_df[counts_df.counts>self.conf.threshold].index)
df = df[df.uid.isin(users)]
if not self.conf.rating_flag :
df["rating"]=(df["rating"]>4.99).astype('int')#movielens 3.99, neflix:4.99
df=df[df.rating > 0.5]
# re-arrange the user and item index from zero
df['u_original'] = df['uid'].astype('category')
df['i_original'] = df['itemid'].astype('category')
df['uid'] = df['u_original'].cat.codes
df['itemid'] = df['i_original'].cat.codes
df = df.drop('u_original', 1)
df = df.drop('i_original', 1)
pickle.dump(df, open(dataset_pkl, 'wb'),protocol=2)
return df
def user_windows_apply(self,group,user_dict):
uid=(int(group["uid"].mode()))
# user_dict[uid]= len(group["days"].unique())
user_dict.setdefault(uid,{})
for user_granularity in group["user_granularity"]:
# print (group[group.user_granularity==user_granularity])
if self.conf.rating_flag:
user_dict[uid][user_granularity]= group[group.user_granularity==user_granularity][["itemid","rating"]]
else:
user_dict[uid][user_granularity]= group[(group.user_granularity==user_granularity) & (group.rating>0)][["itemid","rating"]]
return len(group["user_granularity"].unique())
def item_windows_apply(self,group,item_dict):
itemid=(int(group["itemid"].mode()))
# user_dict[uid]= len(group["days"].unique())
item_dict.setdefault(itemid,{})
for item_granularity in group["item_granularity"]:
# print (group[group.user_granularity==user_granularity])
if self.conf.rating_flag:
item_dict[itemid][item_granularity]= group[group.item_granularity==item_granularity][["uid","rating"]]
else:
item_dict[itemid][item_granularity]= group[(group.item_granularity==item_granularity) & (group.rating>0)][["uid","rating"]]
# print (item_dict[itemid][item_granularity])
return len(group["item_granularity"].unique())
# @log_time_delta
def getdicts(self):
dict_pkl = "tmp/user_item_"+self.conf.dataset+("" if self.conf.rating_flag else "_binary")+".pkl"
if os.path.exists(dict_pkl):
start=time.time()
import gc
gc.disable()
user_dict,item_dict= pickle.load(open(dict_pkl, 'rb'))
gc.enable()
print( "load dict cost time: %.5f "%( time.time() - start))
else:
print("build data...")
user_dict,item_dict={},{}
user_windows = self.data.groupby("uid").apply(self.user_windows_apply,user_dict=user_dict)
item_windows = self.data.groupby("itemid").apply(self.item_windows_apply,item_dict=item_dict)
pickle.dump([user_dict,item_dict], open(dict_pkl, 'wb'),protocol=2)
return user_dict,item_dict
def getSeqInTime(self,userid,itemid,chosen_t=0, choice_type="nothing"):
if choice_type=="given":
pos_items_time_dict=self.user_item_pos_rating_time_dict.get(userid,{})
chosen_t=pos_items_time_dict.get(itemid)
if choice_type=="random":
chosen_t= random.choice (range(self.min_user_granularity +self.conf.user_windows_size,0))
if choice_type=="best" :
u_seqss,i_seqss= self.getSeqOverAlltime(user,neg_item_id)
predicted = model.prediction(sess,u_seqss,i_seqss, [user]*len(u_seqss),[neg_item_id]*len(u_seqss),sparse=True)
index=np.argmax(predicted)
return (u_seqss[index],i_seqss[index])
u_seqs,i_seqs=[],[]
for i in range(chosen_t-self.conf.user_windows_size,chosen_t):
u_seqs.append(self.user_dict[userid].get(i,None))
i_seqs.append(self.item_dict[itemid].get(i,None))
if self.conf.is_sparse:
return self.getUserVector(u_seqs),self.getItemVector(i_seqs)
else:
return self.getUserVector_raw(u_seqs),self.getItemVector_raw(i_seqs)
def getSeqOverAlltime(self,userid, itemid):
u_seqs,i_seqs=[],[]
for t in range(self.data["user_granularity"].min(),0):
u_seqs.append(self.user_dict[userid].get(t,None))
i_seqs.append(self.item_dict[itemid].get(t,None))
u_seqss,i_seqss=[],[]
for t in range( self.data["user_granularity"].min() ,0- self.conf.user_windows_size):
u_seqss.append( u_seqs[t:t+self.conf.user_windows_size])
i_seqss.append( i_seqs[t:t+self.conf.user_windows_size])
if self.conf.is_sparse:
return [i for i in map(self.getUserVector, u_seqss)],[i for i in map(self.getItemVector, i_seqss)]
else:
return [i for i in map(self.getUserVector_raw, u_seqss)],[i for i in map(self.getItemVector_raw, i_seqss)]
def prepare_balance_pair(self,pool=None,sess=None,model=None, mode="train", epoches_size=1,shuffle=True,fresh=False,users=None):
if users is None:
users=self.train.uid.unique()
samples=[]
for user in tqdm(users):
pos_items= self.pos_items.get(user,[])
candidates = list( set(range(self.i_cnt)) - set(pos_items) )
pos_items=list(pos_items)
if self.conf.dns:
all_rating = model.predictionItems(sess,user) # todo delete the pos ones
exp_rating = np.exp(np.array(all_rating) *self.conf.temperature)
prob = exp_rating / np.sum(exp_rating)
# negative_items_argmax = np.argsort(prob)[::-1][:2]
neg_items=np.random.choice(np.arange(self.i_cnt), size=len(self.pos_items_time_dict), p=prob)
else:
neg_items= np.random.choice(candidates,len(pos_items))
for i in range(len(pos_items)):
u_seqs,pos_item_seq=self.getSeqInTime(user,pos_items[i],choice_type="given" )
u_seqs,neg_item_seq=self.getSeqInTime(user,neg_items[i], choice_type="random") #best
if self.conf.pairwise:
sample = (user,u_seqs,pos_items[i],pos_item_seq,neg_items[i],neg_item_seq)
samples.append(sample)
else:
samples.append((user,u_seqs,pos_items[i],pos_item_seq,1))
samples.append((user,u_seqs,neg_items[i],neg_item_seq,0))
return samples
def getBatch_with_multi_pickle(self,pool=None,dns=True,sess=None,model=None,fresh=True,mode="train", epoches_size=1,shuffle=True,pickle_name=None,samples=None):
users=self.train.uid.unique()
pickle_path = "tmp/samples_"+ ("dns" +str(self.conf.subset_size)+"_" if dns else "uniform") + ("_pair" if self.conf.pairwise else "") +("_sparse_tensor_" if self.conf.sparse_tensor else ( "_sparse" if self.conf.is_sparse else "_") ) +self.conf.dataset+"_"+str(self.conf.user_windows_size)+("" if self.conf.rating_flag else "_binary") +mode +("" if self.conf.user_windows_size==4 else "_seq"+str(self.conf.user_windows_size))
if not os.path.exists(pickle_path):
print("No pickled samples here, need to be created")
self.create_dirs(pickle_path)
groups = [users[i:i+1000] for i in range(0,len(users),1000)]
for i,group in enumerate(groups):
samples=self.prepare_balance_pair(users=group,mode=mode, sess=sess,model=model, epoches_size=epoches_size)
pickle_name=os.path.join(pickle_path,str(i))
pickle.dump(samples, open(pickle_name, 'wb'),protocol=2)
for i in os.listdir(pickle_path):
if os.path.isfile(os.path.join(pickle_path,i)):
pickle_name=os.path.join(pickle_path,i)
print("load samples from file %s" % pickle_name)
import gc
gc.disable()
samples=pickle.load(open(pickle_name, 'rb'))
gc.enable()
samples=[sample for sample in samples if sample[0] in self.test.uid.unique()]
print("process %d samples" % len(samples))
for batch in self.getBatch(samples=samples,pool=pool,dns=dns,sess=sess,model=model,mode=mode, epoches_size=epoches_size,shuffle=shuffle,pickle_name=pickle_name):
yield batch
def getBatch(self,pool=None,dns=True,sess=None,model=None,fresh=True,mode="train", epoches_size=1,shuffle=True,pickle_name=None,samples=None):
if samples is None:
if pickle_name==None:
pickle_name = "tmp/samples_"+ ("dns" +str(self.conf.subset_size)+"_" if dns else "uniform") + ("_pair" if self.conf.pairwise else "") +("_sparse_tensor_" if self.conf.sparse_tensor else ( "_sparse" if self.conf.is_sparse else "_") ) +self.conf.dataset+"_"+str(self.conf.user_windows_size)+("" if self.conf.rating_flag else "_binary") +mode+".pkl"
if os.path.exists(pickle_name) and not fresh:
import gc
gc.disable()
print (pickle_name)
samples=pickle.load(open(pickle_name, 'rb'))
gc.enable()
else:
samples = self.prepare_balance_pair(mode=mode, sess=sess,model=model, epoches_size=epoches_size)
pickle.dump(samples, open(pickle_name, 'wb'),protocol=2)
start=time.time()
random.shuffle(samples)
print("shuffle time spent %f"% (time.time()-start))
n_batches = int(len(samples)/ self.conf.batch_size)
print("%d batch"% n_batches)
for i in range(0,n_batches):
start=time.time()
batch = samples[i*self.conf.batch_size:(i+1) * self.conf.batch_size]
if not self.conf.pairwise:
u_seqs=[pair[1] for pair in batch]
i_seqs=[pair[3] for pair in batch]
if not self.conf.sparse_tensor and self.conf.is_sparse:
if pool is not None:
u_seqs=pool.map(sparse2dense, u_seqs)
i_seqs=pool.map(sparse2dense, i_seqs)
else:
u_seqs=[v for v in map(sparse2dense, u_seqs)]
i_seqs=[v for v in map(sparse2dense, i_seqs)]
ratings=[pair[4] for pair in batch]
userids=[pair[0] for pair in batch]
itemids=[pair[2] for pair in batch]
if self.conf.sparse_tensor:
u_seqs,i_seqs=self.get_sparse_intput(u_seqs,i_seqs)
yield u_seqs,i_seqs,ratings,userids,itemids
else:
user=[pair[0] for pair in batch]
u_seqs=[pair[1] for pair in batch]
item=[pair[2] for pair in batch]
i_seqs=[pair[3] for pair in batch]
item_neg=[pair[4] for pair in batch]
i_seqs_neg=[pair[5] for pair in batch]
if not self.conf.sparse_tensor and self.conf.is_sparse:
if pool is not None:
u_seqs=pool.map(sparse2dense, u_seqs)
i_seqs=pool.map(sparse2dense, i_seqs)
item_neg=pool.map(sparse2dense, item_neg)
else:
u_seqs=[v for v in map(sparse2dense, u_seqs)]
i_seqs=[v for v in map(sparse2dense, i_seqs)]
i_seqs_neg=[v for v in map(sparse2dense, i_seqs_neg)]
if self.conf.sparse_tensor:
u_seqs=self.get_user_sparse_input(u_seqs)
i_seqs=self.get_item_sparse_input(i_seqs)
i_seqs_neg=self.get_item_sparse_input(i_seqs_neg)
yield (user,u_seqs,item,i_seqs,item_neg,i_seqs_neg)
def getBatch_with_Files(self,pool=None,dns=True,sess=None,model=None,fresh=True,mode="train", epoches_size=1,shuffle=True):
pickle_name = "tmp/samples_"+ ("dns" +str(self.conf.subset_size)+"_" if dns else "uniform") + ("_pair" if self.conf.pairwise else "") +("_sparse_tensor_" if self.conf.sparse_tensor else ( "_sparse" if self.conf.is_sparse else "_") ) +self.conf.dataset+"_"+str(self.conf.user_windows_size)+("" if self.conf.rating_flag else "_binary") +mode+".pkl"
print (pickle_name)
if os.path.exists(pickle_name) and not fresh:
import gc
gc.disable()
samples=pickle.load(open(pickle_name, 'rb'))
gc.enable()
else:
samples = self.prepare_balance_pair(mode=mode, sess=sess,model=model, epoches_size=epoches_size)
pickle.dump(samples, open(pickle_name, 'wb'),protocol=2)
start=time.time()
random.shuffle(samples)
print("shuffle time spent %f"% (time.time()-start))
n_batches = int(len(samples)/ self.conf.batch_size)
print("%d batch"% n_batches)
for i in range(0,n_batches):
start=time.time()
batch = samples[i*self.conf.batch_size:(i+1) * self.conf.batch_size]
if not self.conf.pairwise:
u_seqs=[pair[1] for pair in batch]
i_seqs=[pair[3] for pair in batch]
if not self.conf.sparse_tensor and self.conf.is_sparse:
if pool is not None:
u_seqs=pool.map(sparse2dense, u_seqs)
i_seqs=pool.map(sparse2dense, i_seqs)
else:
u_seqs=[v for v in map(sparse2dense, u_seqs)]
i_seqs=[v for v in map(sparse2dense, i_seqs)]
ratings=[pair[4] for pair in batch]
userids=[pair[0] for pair in batch]
itemids=[pair[2] for pair in batch]
if self.conf.sparse_tensor:
u_seqs,i_seqs=self.get_sparse_intput(u_seqs,i_seqs)
yield u_seqs,i_seqs,ratings,userids,itemids
else:
#(user,u_seqs,item,i_seqs,item_neg,i_seqs_neg)
user=[pair[0] for pair in batch]
u_seqs=[pair[1] for pair in batch]
item=[pair[2] for pair in batch]
i_seqs=[pair[3] for pair in batch]
item_neg=[pair[4] for pair in batch]
i_seqs_neg=[pair[5] for pair in batch]
if not self.conf.sparse_tensor and self.conf.is_sparse:
if pool is not None:
u_seqs=pool.map(sparse2dense, u_seqs)
i_seqs=pool.map(sparse2dense, i_seqs)
item_neg=pool.map(sparse2dense, item_neg)
else:
u_seqs=[v for v in map(sparse2dense, u_seqs)]
i_seqs=[v for v in map(sparse2dense, i_seqs)]
i_seqs_neg=[v for v in map(sparse2dense, i_seqs_neg)]
if self.conf.sparse_tensor:
u_seqs=self.get_user_sparse_input(u_seqs)
i_seqs=self.get_item_sparse_input(i_seqs)
i_seqs_neg=self.get_item_sparse_input(i_seqs_neg)
yield (user,u_seqs,item,i_seqs,item_neg,i_seqs_neg)
def getUserVector_raw(self,user_sets):
u_seqs=[]
for user_set in user_sets:
u_seq=[0]*(self.i_cnt)
if not user_set is None:
for index,row in user_set.iterrows():
u_seq[row["itemid"]]=row["rating"]
u_seqs.append(u_seq)
return np.array(u_seqs)
def getItemVector_raw(self,item_sets):
i_seqs=[]
for item_set in item_sets:
i_seq=[0]*(self.u_cnt)
if not item_set is None:
for index,row in item_set.iterrows():
i_seq[row["uid"]]=row["rating"]
i_seqs.append(i_seq)
return np.array(i_seqs)
def getItemVector(self,item_sets):
rows=[]
cols=[]
datas=[]
for index_i,item_set in enumerate(item_sets):
if not item_set is None:
for index_j,row in item_set.iterrows():
rows.append(index_i)
cols.append(row["uid"])
datas.append(row["rating"])
if self.conf.sparse_tensor:
return ( rows,cols ,datas)
result=csr_matrix((datas, (rows, cols)), shape=(self.conf.user_windows_size, self.u_cnt))
return result
def getUserVector(self,user_sets):
rows=[]
cols=[]
datas=[]
for index_i,user_set in enumerate(user_sets):
if not user_set is None:
for index,row in user_set.iterrows():
rows.append(index_i)
cols.append(row["itemid"])
datas.append(row["rating"])
if self.conf.sparse_tensor:
return ( rows,cols ,datas)
return csr_matrix((datas, (rows, cols)), shape=(self.conf.user_windows_size, self.i_cnt))
def getBatch4MF(self,flag="train",shuffle=True):
np.random.seed(0)
train_flag= np.random.random(len(self.data))>0.2
if flag=="train":
df=self.data[train_flag]
if shuffle ==True:
df=df.iloc[np.random.permutation(len(df))]
print ("shuffle over")
else:
df=self.data[~train_flag]
n_batches= int(len(df)/ self.conf.batch_size)
for i in range(0,n_batches):
batch = df[i*self.conf.batch_size:(i+1) * self.conf.batch_size]
yield batch["uid"],batch["itemid"],batch["rating"]
batch= df[-1*self.conf.batch_size:]
yield batch["uid"],batch["itemid"],batch["rating"]
def testModel(self,sess,discriminator,flag="test"):
results=np.array([])
for uid,itemid,rating in self.getBatch4MF(flag=flag):
feed_dict={discriminator.u: uid, discriminator.i: itemid}
predicted = sess.run(discriminator.pre_logits,feed_dict=feed_dict)
error=(np.array(predicted)-np.array(rating))
se= np.square(error)
results=np.append(results,se)
mse=np.mean(results)
return math.sqrt(mse)
def evaluateRMSE(self,sess,model):
results=np.array([])
for u_seqss,i_seqss,ratingss,useridss,itemidss in self.getDataWithSeq(mode="test",rating_flag=True):
predicted = model.prediction(sess, u_seqss, i_seqss, useridss, itemidss)
# print(predicted)
# print(ratingss)
error=(np.array(predicted)*5-np.array(ratingss)) # different optimitic indicator
se= np.square(error)
results=np.append(results,se)
mse=np.mean(results)
return math.sqrt(mse)
def getDataWithSeq(self,shuffle=True,mode="train",epoches=2,rating_flag=False):
if True:
# try:
if mp:
pool= Pool(cpu_count())
else:
pool=None
samples=self.prepare_uniform(pool,mode=mode, epoches_size=1)
batches=samples
for i in range(epoches):
if mode=="train" and shuffle:
batches =sklearn.utils.shuffle(batches)
n_batches= int(len(batches)/ self.conf.batch_size)
for i in range(0,n_batches):
batch = batches[i*self.conf.batch_size:(i+1) * self.conf.batch_size]
if mp:
u_seqs=pool.map(sparse2dense, [ii[0] for ii in batch])
i_seqs=pool.map(sparse2dense, [ii[1] for ii in batch])
else:
u_seqs=[record for record in map(sparse2dense, [ii[0] for ii in batch])]
i_seqs=[record for record in map(sparse2dense, [ii[1] for ii in batch])]
if rating_flag:
ratings=[int(ii[2]) for ii in batch]
else:
ratings=[int(ii[2]>(4.99 if self.conf.rating_flag else 0.5)) for ii in batch]
userids=[ii[3] for ii in batch]
itemids=[ii[4] for ii in batch]
yield u_seqs,i_seqs,ratings,userids,itemids
if mp:
pool.close()
def getTestFeedingData(self,userid, rerank_indexs):
u_seqs=[]
for t in range(-1*self.conf.user_windows_size,0):
u_seqs.append(self.user_dict[userid].get(t,None))
i_seqss=[]
for itemid in rerank_indexs:
i_seqs=[]
for t in range(-1*self.conf.user_windows_size,0):
i_seqs.append(self.item_dict[itemid].get(t,None))
i_seqss.append(i_seqs)
return self.getUserVector(u_seqs),[i for i in map(self.getItemVector, i_seqss)]
def evaluateMultiProcess(self,sess,model,mp=False,users_set=None):
if users_set is None:
users_set=self.test_users
print("evaluate %d users" %len(users_set))
results=None
if mp:
pool=Pool(cpu_count())
results= pool.map(self.getScore,zip(list(users_set), itertools.repeat(sess),itertools.repeat(model) ))
else:
results= [ i for i in map(self.getScore,zip(users_set, itertools.repeat(sess),itertools.repeat(model) ))]
return list(np.mean(np.array(results),0))
def get_user_sparse_input(self,user_sequence):
_indices,_values=[],[]
for index,(cols,rows,values) in enumerate(user_sequence):
_indices.extend([index,x,y] for x,y in zip(cols,rows) ) #sorted(zip(cols,rows),key =lambda x:x[0]*2000+x[1] )
_values.extend(values)
if len(_indices)==0:
return ([[0,0,0]],[0],[len(user_sequence),self.conf.user_windows_size,self.i_cnt ])
user_input= (_indices,_values,[len(user_sequence),self.conf.user_windows_size,self.i_cnt ])
return user_input
def get_item_sparse_input(self,item_sequence):
_indices,_values=[],[]
for index,(cols,rows,values) in enumerate(item_sequence):
_indices.extend([index,x,y] for x,y in zip(cols,rows))
_values.extend(values)
if len(_indices)==0:
return ([[0,0,0]],[0],[len(item_sequence),self.conf.user_windows_size,self.u_cnt ])
item_input= (_indices,_values,[len(item_sequence),self.conf.user_windows_size,self.u_cnt ])
return item_input
def get_sparse_intput(self,user_sequence,item_sequence):
user_input=self.get_user_sparse_input(user_sequence)
item_input=self.get_item_sparse_input(item_sequence)
return user_input,item_input
def getScore(self,args):
rerank=True
(user_id,sess,model)=args
if model is None:
print ("there is no model, it is random guessing instead!")
all_rating= np.random.random( len(self.items)+1) #[user_id]
else:
all_rating = model.predictionItems(sess,user_id)[0] # MF rating
candiate_index = self.items - self.pos_items.get(user_id, set())
scores =[ (index,all_rating[index]) for index in candiate_index ]
sortedScores = sorted(scores ,key= lambda x:x[1], reverse = True )
pre_rank_list= [1 if ii[0] in self.test_pos_items.get(user_id, set()) else 0 for ii in sortedScores[:10]]
pre_result = getResult(pre_rank_list)
if not rerank or self.conf.model_type=="mf":
return pre_result
rerank_indexs= ([ii[0] for ii in sortedScores[:self.conf.re_rank_list_length]])
u_seqs,i_seqss=self.getTestFeedingData(user_id, rerank_indexs)
if model is None:
print ("there is no model, it is random guessing instead!")
scores=np.random.random( len(rerank_indexs))
else:
if self.conf.use_cnn:
img_feats = [self.image_features_dict.get(i,[0]*2048)for i in rerank_indexs]
scores = model.prediction(sess,[u_seqs] * self.conf.re_rank_list_length, i_seqss ,
[user_id] * self.conf.re_rank_list_length, rerank_indexs,True,False,img_feats)
else:
scores = model.prediction(sess,[u_seqs] * self.conf.re_rank_list_length, i_seqss , [user_id] * self.conf.re_rank_list_length, rerank_indexs,use_sparse_tensor=False)
sortedScores = sorted(zip(rerank_indexs,scores) ,key= lambda x:x[1], reverse = True )
rank_list= [1 if ii[0] in self.test_pos_items.get(user_id, set()) else 0 for ii in sortedScores[:10]]
result = getResult(rank_list)
# print(rank_list)
# print("rerank score: %s"%(str(result-pre_result)))
return pre_result,result
def sparse2dense(sparse):
return sparse.toarray()
def getResult(r):
p_3 = np.mean(r[:3])
p_5 = np.mean(r[:5])
p_10 = np.mean(r[:10])
ndcg_3 = ndcg_at_k(r, 3)
ndcg_5 = ndcg_at_k(r, 5)
ndcg_10 = ndcg_at_k(r, 10)
mrr =reciprocal_rank(r)
ap = average_precision(r)
return np.array([p_3, p_5, p_10, ndcg_3, ndcg_5, ndcg_10, mrr,ap])
def reciprocal_rank(r):
nonzero_list=np.asarray(r).nonzero()[0]
return 1. / (nonzero_list[0] + 1) if nonzero_list.size else 0
def dcg_at_k(r, k):
r = np.asfarray(r)[:k]
return np.sum(r / np.log2(np.arange(2, r.size + 2)))
def ndcg_at_k(r, k):
dcg_max = dcg_at_k([1]* k,k)
# dcg_max = dcg_at_k(sorted(r, reverse=True), k)
if not dcg_max:
return 0.
return dcg_at_k(r, k) / dcg_max
def precision_at_k(r, k):
"""Score is precision @ k
Relevance is binary (nonzero is relevant).
>>> r = [0, 0, 1]
>>> precision_at_k(r, 1)
0.0
>>> precision_at_k(r, 2)
0.0
>>> precision_at_k(r, 3)
0.33333333333333331
>>> precision_at_k(r, 4)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: Relevance score length < k
Args:
r: Relevance scores (list or numpy) in rank order
(first element is the first item)
Returns:
Precision @ k
Raises:
ValueError: len(r) must be >= k
"""
assert k >= 1
r = np.asarray(r)[:k] != 0
if r.size != k:
raise ValueError('Relevance score length < k')
return np.mean(r)
def average_precision(r):
"""Score is average precision (area under PR curve)
Relevance is binary (nonzero is relevant).
>>> r = [1, 1, 0, 1, 0, 1, 0, 0, 0, 1]
>>> delta_r = 1. / sum(r)
>>> sum([sum(r[:x + 1]) / (x + 1.) * delta_r for x, y in enumerate(r) if y])
0.7833333333333333
>>> average_precision(r)
0.78333333333333333
Args:
r: Relevance scores (list or numpy) in rank order
(first element is the first item)
Returns:
Average precision
"""
r = np.asarray(r) != 0
out = [precision_at_k(r, k + 1) for k in range(r.size) if r[k]]
if not out:
return 0.
return np.mean(out)