-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnum.go
1192 lines (1082 loc) · 31.9 KB
/
num.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Droscheme - a Scheme implementation
* Copyright © 2012 Andrew Robbins, Daniel Connelly
*
* This program is free software: it is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. You can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License (LGPLv3): <http://www.gnu.org/licenses/>.
*/
package droscheme
import (
"fmt"
"math"
"math/big"
"math/cmplx"
"reflect"
"strconv"
"strings"
)
const (
// machine fixnums
NumberTypeCodeS8 = iota*2
NumberTypeCodeS16
NumberTypeCodeS32
NumberTypeCodeS64
// machine flonums
NumberTypeCodeExactF32
NumberTypeCodeExactF64
// abstract numbers
NumberTypeCodeRational
NumberTypeCodeInteger
// derived numbers bit field
NumberTypeCodeBaseMask = 0x0E
NumberTypeCodeUnsigned = 0x01
NumberTypeCodeInexact = 0x01
NumberTypeCodePolar = 0x01
NumberTypeCodeComplex = 0x10
NumberTypeCodeDerivedMask = 0x11
NumberTypeCodeU8 = NumberTypeCodeUnsigned | NumberTypeCodeS8
NumberTypeCodeU16 = NumberTypeCodeUnsigned | NumberTypeCodeS16
NumberTypeCodeU32 = NumberTypeCodeUnsigned | NumberTypeCodeS32
NumberTypeCodeU64 = NumberTypeCodeUnsigned | NumberTypeCodeS64
NumberTypeCodeNatural = NumberTypeCodeUnsigned | NumberTypeCodeInteger
NumberTypeCodeExactC64 = NumberTypeCodeComplex | NumberTypeCodeExactF32
NumberTypeCodeExactC128 = NumberTypeCodeComplex | NumberTypeCodeExactF64
/*
NumberTypeCodeInexactS8 = NumberTypeCodeInexact | NumberTypeCodeS8
NumberTypeCodeInexactS16 = NumberTypeCodeInexact | NumberTypeCodeS16
NumberTypeCodeInexactS32 = NumberTypeCodeInexact | NumberTypeCodeS32
NumberTypeCodeInexactS64 = NumberTypeCodeInexact | NumberTypeCodeS64
NumberTypeCodeInexactU8 = NumberTypeCodeInexact | NumberTypeCodeU8
NumberTypeCodeInexactU16 = NumberTypeCodeInexact | NumberTypeCodeU16
NumberTypeCodeInexactU32 = NumberTypeCodeInexact | NumberTypeCodeU32
NumberTypeCodeInexactU64 = NumberTypeCodeInexact | NumberTypeCodeU64
*/
NumberTypeCodeF32 = NumberTypeCodeInexact | NumberTypeCodeExactF32
NumberTypeCodeF64 = NumberTypeCodeInexact | NumberTypeCodeExactF64
NumberTypeCodeC64 = NumberTypeCodeInexact | NumberTypeCodeExactC64
NumberTypeCodeC128 = NumberTypeCodeInexact | NumberTypeCodeExactC128
NumberTypeCodeComplexPolar = NumberTypeCodeComplex | NumberTypeCodePolar
NumberTypeCodeComplexRational = NumberTypeCodeComplex | NumberTypeCodeRational
NumberTypeCodeComplexPolarRational = NumberTypeCodeComplexPolar | NumberTypeCodeRational
NumberTypeCodeMax = 0x20
)
func numberTypeToString(tc int) string {
var table = []string{
// real
"s8", // NumberTypeCodeS8
"u8", // NumberTypeCodeU8
"s16", // NumberTypeCodeS16
"u16", // NumberTypeCodeU16
"s32", // NumberTypeCodeS32
"u32", // NumberTypeCodeU32
"s64", // NumberTypeCodeS64
"u64", // NumberTypeCodeU64
"exact-float32",
"float32", // NumberTypeCodeF32
"exact-float64",
"float64", // NumberTypeCodeF64
"rational", // NumberTypeCodeRational
"uintptr", // NumberTypeCodeUintptr
"integer", // NumberTypeCodeInteger
"natural", // NumberTypeCodeNatural
// complex
"",
"",
"",
"",
"",
"",
"",
"",
"exact-complex64",
"complex64", // NumberTypeCodeC64
"exact-complex128",
"complex128", // NumberTypeCodeC128
"complex-rational",
"complex-polar-rational",
"",
"",
}
sym := table[tc]
if sym == "" {
return "#<not-a-type>"
}
return sym
}
type BaseNum interface {
Any
GetNumberType() int
}
type Num interface {
BaseNum
Add(Num) Num
Sub(Num) Num
Mul(Num) Num
Div(Num) Num
}
type ArithNum interface {
Abs(x Num) Num
Add(x, y Num) Num
Copy() Num
Mul(x, y Num) Num
Neg(x Num) Num
One() Num
Quo(x, y Num) Num
Set(x Num) Num
Sign() int
Sub(x, y Num) Num
Zero() Num
}
type TrigNum interface {
Num
ArcCos() Num
ArcSin() Num
ArcTan(Num) Num
Cos() Num
Sin() Num
Tan() Num
Sqrt() Num
Pow(Num) Num
Log(Num) Num
Exp() Num
Ln() Num
}
type IntNum interface {
Num
//DivEUC(Num) Num
//ModEUC(Num) Num
//ModRTZ(Num) Num
//ModRTN(Num) Num
//DivModEUC(IntNum) (IntNum, IntNum)
//DivModRTZ(IntNum) (IntNum, IntNum)
//DivModRTP(IntNum) (IntNum, IntNum)
//DivModRTN(IntNum) (IntNum, IntNum)
//DivModRTE(IntNum) (IntNum, IntNum)
}
type RealNum interface {
Num
Cmp(Num) int // -1, 0, 1
MakeRect(RealNum) ComplexNum
MakePolar(RealNum) ComplexNum
RTN() IntNum // floor
RTE() IntNum // round
}
type ComplexNum interface {
Num
Real() RealNum
Imag() RealNum
Scale() RealNum
Angle() RealNum
}
type ExactNum interface {
Num
Inexact() InexactNum
}
type InexactNum interface {
Num
Exact() ExactNum
Prec() int
}
func IsNumber(a Any) bool {
return IsType(a, TypeCodeNumber)
}
func Compare(x Num, y Num) int {
if x.GetNumberType() != y.GetNumberType() {
x, y = unify(x, y)
}
return x.(RealNum).Cmp(y)
}
// exact
type Sint8 int8
type Sint16 int16
type Sint32 int32
type Sint64 int64 // fixnum
type Suint8 uint8
type Suint16 uint16
type Suint32 uint32
type Suint64 uint64
type SFixnum struct {
it Num
code int
}
type SInteger struct {
it *big.Int
}
type SRational struct {
it *big.Rat
}
type SComplex [2]SRational
type SComplexPolar [2]SRational
// inexact
type Sfloat32 float32
type Sfloat64 float64 // flonum
type Scomplex64 complex64
type Scomplex128 complex128
type SFlonum struct {
it Num
code int
prec int
}
func ToByte(o Any) byte {
return byte(ToFixnum(o))
}
func IsByte(o Any) bool {
num := ToFixnum(o)
return int64(byte(num)) == num
}
func IsInteger(a Any) bool {
if !IsNumber(a) {
return false
}
switch a.(Num).GetNumberType() &^ NumberTypeCodeInexact {
case NumberTypeCodeS8:
return true
case NumberTypeCodeS16:
return true
case NumberTypeCodeS32:
return true
case NumberTypeCodeS64:
return true
case NumberTypeCodeInteger:
return true
}
return false
}
func IsRational(a Any) bool {
if !IsNumber(a) {
return false
}
switch a.(Num).GetNumberType() &^ NumberTypeCodeInexact {
case NumberTypeCodeRational:
return true
}
return false
}
func IsReal(a Any) bool {
if !IsNumber(a) {
return false
}
if a.(Num).GetNumberType()&NumberTypeCodeComplex != 0 {
return false
}
return true
}
func IsExact(a Any) bool {
if !IsNumber(a) {
return false
}
if a.(Num).GetNumberType()&NumberTypeCodeInexact == 0 {
return true
}
return false
}
func IsInexact(a Any) bool {
if !IsNumber(a) {
return false
}
if a.(Num).GetNumberType()&NumberTypeCodeInexact != 0 {
return true
}
return false
}
func IsComplex(a Any) bool {
if !IsNumber(a) {
return false
}
if a.(Num).GetNumberType()&NumberTypeCodeComplex != 0 {
return true
}
return false
}
func InexactEqual(x, y float64) bool {
if x == 0.0 && y == 0.0 {
return 1/x == 1/y
}
if math.IsNaN(x) && math.IsNaN(y) {
return true
}
return x == y
}
func ToFixnum(a Any) int64 {
switch a.(type) {
case SChar:
return int64(a.(SChar))
case Sint64:
return reflect.ValueOf(a).Int()
case Sfloat64:
return int64(float64(a.(Sfloat64)))
}
// TODO: fix ERROR
return 0
}
func ToFlonum(a Any) float64 {
switch a.(type) {
case Sint64:
return float64(int64(a.(Sint64)))
case Sfloat64:
return reflect.ValueOf(a).Float()
case SRational:
str := a.(SRational).it.FloatString(16)
val, err := strconv.ParseFloat(str, 64)
if err != nil {
panic(err)
}
return val
}
// TODO: fix ERROR
return 0.0
}
func ToFcmplx(a Any) complex128 {
return reflect.ValueOf(a).Complex()
}
func ToInteger(n Num) SInteger {
switch n.(type) {
case Sint64:
return SInteger{it: big.NewInt(int64(n.(Sint64)))}
case SInteger:
return n.(SInteger)
}
panic("ToInteger()")
}
func ToRational(n Num) SRational {
switch n.(type) {
case Sint64:
return SRational{it: big.NewRat(0, 1).SetInt64(int64(n.(Sint64)))}
//case SFixnum:
// return SRational{it: big.NewRat(0, 1).SetInt64(n.(SFixnum).it.(Sint64))}
case Sfloat64:
str := n.(Sfloat64).String()
rat, ok := big.NewRat(0, 1).SetString(str)
if !ok {
panic("rational could not be constructed from: " + str)
}
return SRational{it: rat}
case SInteger:
return SRational{it: big.NewRat(0, 1).SetInt(n.(SInteger).it)}
case SRational:
return n.(SRational)
}
panic("ToRational()")
}
func NewInteger64(n int64) SInteger {
return SInteger{it: big.NewInt(n)}
}
func NewInteger(n Num) Num {
return SInteger{it: big.NewInt(int64(n.(Sint64)))}
}
func NewRational64(n, d int64) SRational {
return SRational{it: big.NewRat(n, d)}
}
func NewRational(n, d Num) SRational {
return SRational{it: big.NewRat(int64(n.(Sint64)), int64(d.(Sint64)))}
}
func NewComplexI() SComplex {
return SComplex{NewRational64(0, 1), NewRational64(1, 1)}
}
func NewComplex(x, y Num) ComplexNum {
t := unifyComplexType(x.GetNumberType(), y.GetNumberType())
if isComplexType(t) {
panic(newTypeError("expected real number"))
}
if isInexactType(t) {
return Scomplex128(complex(ToFlonum(x), ToFlonum(y)))
}
return SComplex{ToRational(x), ToRational(y)}
}
func NewComplexPolar(s, a Num) ComplexNum {
t := unifyComplexType(s.GetNumberType(), a.GetNumberType())
if isComplexType(t) {
panic(newTypeError("expected real number"))
}
if isInexactType(t) {
scale := ToFlonum(s)
angle := ToFlonum(a)
x := scale * math.Cos(angle)
y := scale * math.Sin(angle)
return Scomplex128(complex(x, y))
}
return SComplexPolar{ToRational(s), ToRational(a)}
}
func isComplexType(t int) bool {
return t&NumberTypeCodeComplex != 0
}
func isInexactType(t int) bool {
return t&NumberTypeCodeInexact != 0
}
func isUnsignedType(t int) bool {
return t&NumberTypeCodeUnsigned != 0
}
func isMachineIntegerType(t int) bool {
if isComplexType(t) {
return false
}
if isInexactType(t) {
return false
}
switch t & NumberTypeCodeBaseMask {
case NumberTypeCodeS8:
return true
case NumberTypeCodeS16:
return true
case NumberTypeCodeS32:
return true
case NumberTypeCodeS64:
return true
}
return false
}
func isMachineRealType(t int) bool {
if isComplexType(t) {
return false
}
if !isInexactType(t) {
return false
}
if isUnsignedType(t) {
return false
}
switch t & NumberTypeCodeBaseMask {
case NumberTypeCodeExactF32:
return true
case NumberTypeCodeExactF64:
return true
}
return false
}
func isMachineType(t int) bool {
if isMachineRealType(t) {
return true
}
if isMachineIntegerType(t) {
return true
}
if !isComplexType(t) {
return false
}
switch t & NumberTypeCodeBaseMask {
case NumberTypeCodeExactF32:
return true
case NumberTypeCodeExactF64:
return true
}
return false
}
/* unifyComplexType()
*
* The 4 complex number types are, and this function returns one of:
* (code)
* - 0x00 exact real (Sint64, SInteger, SRational)
* - 0x01 inexact real (Sfloat64)
* - 0x10 exact complex (SComplex, SComplexPolar)
* - 0x11 inexact complex (Scomplex128)
*/
func unifyComplexType(r, s int) (t int) {
return (r | s) & NumberTypeCodeDerivedMask
}
func unifyType(r, s int) (t int) {
switch unifyComplexType(r, s) {
case 0: // exact real
if isMachineIntegerType(r) &&
isMachineIntegerType(s) {
return NumberTypeCodeS64
} else {
return NumberTypeCodeRational
}
case NumberTypeCodeComplex: // exact complex
if r == NumberTypeCodeComplexPolar &&
s == NumberTypeCodeComplexPolar {
return NumberTypeCodeComplexPolar
} else {
return NumberTypeCodeComplex
}
case NumberTypeCodeInexact: // inexact real
return NumberTypeCodeF64
default: // inexact complex
return NumberTypeCodeC128
}
panic("unreachable")
return
}
func unlist2float64(args Any) (x, y float64) {
a, b := unlist2(args)
x = ToFlonum(a)
y = ToFlonum(b)
return
}
func unlist1Flonum(args Any) (x Num) {
return Sfloat64(ToFlonum(unlist1(args)))
}
func unlist2Flonum(args Any) (x, y Num) {
a, b := unlist2(args)
x = Sfloat64(ToFlonum(a))
y = Sfloat64(ToFlonum(b))
return
}
func unlist2Number(args Any) (x, y Num) {
a, b := unlist2(args)
x = a.(Num)
y = b.(Num)
if x.GetNumberType() != y.GetNumberType() {
x, y = unify(x, y)
}
return
}
func unifyRealNum(args Any) (x, y RealNum) {
a, b := unlist2(args)
xn := a.(Num)
yn := b.(Num)
if xn.GetNumberType() != yn.GetNumberType() {
xn, yn = unify(xn, yn)
}
x = xn.(RealNum)
y = yn.(RealNum)
return
}
func unify(a, b Num) (x, y Num) {
switch unifyType(a.GetNumberType(), b.GetNumberType()) {
case NumberTypeCodeS64:
x = Sint64(ToFixnum(a))
y = Sint64(ToFixnum(b))
case NumberTypeCodeF64:
x = Sfloat64(ToFlonum(a))
y = Sfloat64(ToFlonum(b))
case NumberTypeCodeC128:
x = Scomplex128(ToFcmplx(a))
y = Scomplex128(ToFcmplx(b))
case NumberTypeCodeInteger:
x = ToInteger(a)
y = ToInteger(b)
case NumberTypeCodeRational:
x = ToRational(a) //.(SRational).Nmtr(), a.(SRational).Dmtr())
y = ToRational(b) //.(SRational).Nmtr(), b.(SRational).Dmtr())
case NumberTypeCodeComplex:
//x = NewComplex(a)
//y = NewComplex(b)
case NumberTypeCodeComplexPolar:
//x = NewComplexPolar(a)
//y = NewComplexPolar(b)
}
return
}
// base numbers
func (o Sint8) GetType() int { return TypeCodeNumber }
func (o Sint8) GetNumberType() int { return NumberTypeCodeS8 }
func (o Sint16) GetType() int { return TypeCodeNumber }
func (o Sint16) GetNumberType() int { return NumberTypeCodeS16 }
func (o Sint32) GetType() int { return TypeCodeNumber }
func (o Sint32) GetNumberType() int { return NumberTypeCodeS32 }
func (o Sint64) GetType() int { return TypeCodeNumber }
func (o Sint64) GetNumberType() int { return NumberTypeCodeS64 }
func (o Suint8) GetType() int { return TypeCodeNumber }
func (o Suint8) GetNumberType() int { return NumberTypeCodeU8 }
func (o Suint16) GetType() int { return TypeCodeNumber }
func (o Suint16) GetNumberType() int { return NumberTypeCodeU16 }
func (o Suint32) GetType() int { return TypeCodeNumber }
func (o Suint32) GetNumberType() int { return NumberTypeCodeU32 }
func (o Suint64) GetType() int { return TypeCodeNumber }
func (o Suint64) GetNumberType() int { return NumberTypeCodeU64 }
func (o Sfloat32) GetType() int { return TypeCodeNumber }
func (o Sfloat32) GetNumberType() int { return NumberTypeCodeF32 }
func (o Sfloat64) GetType() int { return TypeCodeNumber }
func (o Sfloat64) GetNumberType() int { return NumberTypeCodeF64 }
func (o Scomplex64) GetType() int { return TypeCodeNumber }
func (o Scomplex64) GetNumberType() int { return NumberTypeCodeC64 }
func (o Scomplex128) GetType() int { return TypeCodeNumber }
func (o Scomplex128) GetNumberType() int { return NumberTypeCodeC128 }
// derived numbers
func (o SFixnum) GetType() int { return TypeCodeNumber }
func (o SFixnum) GetNumberType() int { return o.code }
func (o SFlonum) GetType() int { return TypeCodeNumber }
func (o SFlonum) GetNumberType() int { return o.code }
func (o SInteger) GetType() int { return TypeCodeNumber }
func (o SInteger) GetNumberType() int { return NumberTypeCodeInteger }
func (o SRational) GetType() int { return TypeCodeNumber }
func (o SRational) GetNumberType() int { return NumberTypeCodeRational }
func (o SComplex) GetType() int { return TypeCodeNumber }
func (o SComplex) GetNumberType() int { return NumberTypeCodeComplexRational }
func (o SComplexPolar) GetType() int { return TypeCodeNumber }
func (o SComplexPolar) GetNumberType() int { return NumberTypeCodeComplexPolarRational }
func (o Sint8) GetHash() uintptr { return uintptr(o) }
func (o Sint16) GetHash() uintptr { return uintptr(o) }
func (o Sint32) GetHash() uintptr { return uintptr(o) }
func (o Sint64) GetHash() uintptr { return uintptr(o) }
func (o Suint8) GetHash() uintptr { return uintptr(o) }
func (o Suint16) GetHash() uintptr { return uintptr(o) }
func (o Suint32) GetHash() uintptr { return uintptr(o) }
func (o Suint64) GetHash() uintptr { return uintptr(o) }
func (o Sfloat32) GetHash() uintptr { return uintptr(ToFixnum(o.RTE())) }
func (o Sfloat64) GetHash() uintptr { return uintptr(ToFixnum(o.RTE())) }
func (o Scomplex64) GetHash() uintptr { return uintptr(ToFixnum(o.Real().RTE())) }
func (o Scomplex128) GetHash() uintptr { return uintptr(ToFixnum(o.Real().RTE())) }
func (o SFixnum) GetHash() uintptr { return 0 }
func (o SFlonum) GetHash() uintptr { return 0 }
func (o SInteger) GetHash() uintptr { return 0 }
func (o SRational) GetHash() uintptr { return 0 }
func (o SComplex) GetHash() uintptr { return 0 }
func (o SComplexPolar) GetHash() uintptr { return 0 }
func (o Sint8) Equal(a Any) bool { return false }
func (o Sint16) Equal(a Any) bool { return false }
//func (o Sint32) Equal(a Any) bool { return false }
//func (o Sint64) Equal(a Any) bool { return false }
func (o Suint8) Equal(a Any) bool { return false }
func (o Suint16) Equal(a Any) bool { return false }
func (o Suint32) Equal(a Any) bool { return false }
func (o Suint64) Equal(a Any) bool { return false }
//func (o Sfloat32) Equal(a Any) bool { return false }
//func (o Sfloat64) Equal(a Any) bool { return false }
//func (o Scomplex64) Equal(a Any) bool { return false }
//func (o Scomplex128) Equal(a Any) bool { return false }
func (o SFixnum) Equal(a Any) bool { return false }
func (o SFlonum) Equal(a Any) bool { return false }
//func (o SInteger) Equal(a Any) bool { return false }
//func (o SRational) Equal(a Any) bool { return false }
//func (o SComplex) Equal(a Any) bool { return false }
//func (o SComplexPolar) Equal(a Any) bool { return false }
// S32
func (o Sint32) RTE() IntNum {
return o
}
func (o Sint32) RTN() IntNum {
return o
}
func (o Sint32) String() string {
return fmt.Sprintf("%d", o)
}
func (o Sint32) Equal(n Any) bool { return o == n.(Sint32) }
func (o Sint32) Cmp(n Num) int {
if o < n.(Sint32) {
return -1
}
if o > n.(Sint32) {
return 1
}
return 0
}
func (o Sint32) Add(n Num) Num { return Sint32(o + n.(Sint32)) }
func (o Sint32) Sub(n Num) Num { return Sint32(o - n.(Sint32)) }
func (o Sint32) Mul(n Num) Num { return Sint32(o * n.(Sint32)) }
func (o Sint32) Div(n Num) Num { return Sint32(o / n.(Sint32)) }
func (o Sint32) Mod(n Num) Num { return Sint32(o % n.(Sint32)) }
func (o Sint32) Shl(n Num) Num { return Sint32(o << uint(n.(Sint32))) }
func (o Sint32) Shr(n Num) Num { return Sint32(o >> uint(n.(Sint32))) }
// S64
func (o Sint64) RTE() IntNum {
return o
}
func (o Sint64) RTN() IntNum {
return o
}
func (o Sint64) MakeRect(n RealNum) ComplexNum {
var x, y int64 = int64(o), int64(n.(Sint64))
return NewComplex(NewRational64(x, 0), NewRational64(y, 0))
}
func (o Sint64) MakePolar(n RealNum) ComplexNum {
var x, y int64 = int64(o), int64(n.(Sint64))
return NewComplexPolar(NewRational64(x, 0), NewRational64(y, 0))
}
func (o Sint64) String() string {
return fmt.Sprintf("%d", o)
}
func (o Sint64) Equal(n Any) bool { return o == n.(Sint64) }
func (o Sint64) Cmp(n Num) int {
if o < n.(Sint64) {
return -1
}
if o > n.(Sint64) {
return 1
}
return 0
}
func (o Sint64) Add(n Num) Num {
m := n.(Sint64)
if int64(o) != int64(int16(o)) || int64(m)!= int64(int16(m)) {
return ToInteger(o).Add(ToInteger(n))
}
return Sint64(o + n.(Sint64))
}
func (o Sint64) Sub(n Num) Num {
m := n.(Sint64)
if int64(o) != int64(int16(o)) || int64(m)!= int64(int16(m)) {
return ToInteger(o).Sub(ToInteger(n))
}
return Sint64(o - n.(Sint64))
}
func (o Sint64) Mul(n Num) Num {
m := n.(Sint64)
if int64(o) != int64(int16(o)) || int64(m)!= int64(int16(m)) {
return ToInteger(o).Mul(ToInteger(n))
}
return Sint64(o * n.(Sint64))
}
func (o Sint64) Div(n Num) Num {
m := n.(Sint64)
var r Sint64 = o / m
if (r*m != o) {
return ToRational(o).Div(ToRational(m))
}
return r
}
func (o Sint64) Mod(n Num) Num {
return Sint64(o % n.(Sint64))
}
func (o Sint64) Shl(n Num) Num {
return Sint64(o << uint(n.(Sint64)))
}
func (o Sint64) Shr(n Num) Num {
return Sint64(o >> uint(n.(Sint64)))
}
//// U32
//func (o Suint32) Add(n Num) Num { return Suint32(o + n.(Suint32)) }
//func (o Suint32) Sub(n Num) Num { return Suint32(o - n.(Suint32)) }
//func (o Suint32) Mul(n Num) Num { return Suint32(o * n.(Suint32)) }
//func (o Suint32) Div(n Num) Num { return Suint32(o / n.(Suint32)) }
//func (o Suint32) Mod(n Num) Num { return Suint32(o % n.(Suint32)) }
//func (o Suint32) Shl(n Num) Num { return Suint32(o << n.(Suint32)) }
//func (o Suint32) Shr(n Num) Num { return Suint32(o >> n.(Suint32)) }
//
//// U64
//func (o Suint64) Add(n Num) Num { return Suint64(o + n.(Suint64)) }
//func (o Suint64) Sub(n Num) Num { return Suint64(o - n.(Suint64)) }
//func (o Suint64) Mul(n Num) Num { return Suint64(o * n.(Suint64)) }
//func (o Suint64) Div(n Num) Num { return Suint64(o / n.(Suint64)) }
//func (o Suint64) Mod(n Num) Num { return Suint64(o % n.(Suint64)) }
//func (o Suint64) Shl(n Num) Num { return Suint64(o << n.(Suint64)) }
//func (o Suint64) Shr(n Num) Num { return Suint64(o >> n.(Suint64)) }
// F32
func (o Sfloat32) MakeRect(n RealNum) ComplexNum {
return NewComplex(o, Sfloat32(ToFlonum(n)))
}
func (o Sfloat32) MakePolar(n RealNum) ComplexNum {
return NewComplexPolar(o, Sfloat32(ToFlonum(n)))
}
func (o Sfloat32) String() string {
//return strings.Trim(fmt.Sprintf("%f", o), "0") + "s0"
return fmt.Sprintf("%f", o) + "s0"
}
func (o Sfloat32) Equal(n Any) bool { return o == n.(Sfloat32) }
func (o Sfloat32) Cmp(n Num) int {
if o < n.(Sfloat32) {
return -1
}
if o > n.(Sfloat32) {
return 1
}
return 0
}
func (o Sfloat32) Add(n Num) Num { return Sfloat32(o + n.(Sfloat32)) }
func (o Sfloat32) Sub(n Num) Num { return Sfloat32(o - n.(Sfloat32)) }
func (o Sfloat32) Mul(n Num) Num { return Sfloat32(o * n.(Sfloat32)) }
func (o Sfloat32) Div(n Num) Num { return Sfloat32(o / n.(Sfloat32)) }
func (o Sfloat32) Mod(n Num) Num { return Sfloat32(0) } // wrong
func (o Sfloat32) Shl(n Num) Num { return Sfloat32(0) } // wrong
func (o Sfloat32) Shr(n Num) Num { return Sfloat32(0) } // wrong
func (o Sfloat32) RTE() IntNum { return Sint64(int64(math.Floor(float64(o)))) }
func (o Sfloat32) RTN() IntNum { return Sint64(int64(math.Floor(float64(o)))) }
// F64
func (o Sfloat64) ArcCos() Num {
return Sfloat64(math.Acos(float64(o)))
}
func (o Sfloat64) ArcSin() Num {
return Sfloat64(math.Asin(float64(o)))
}
func (o Sfloat64) ArcTan(n Num) Num {
return Sfloat64(math.Atan2(float64(o), ToFlonum(n)))
}
func (o Sfloat64) Cos() Num {
return Sfloat64(math.Cos(float64(o)))
}
func (o Sfloat64) Sin() Num {
return Sfloat64(math.Sin(float64(o)))
}
func (o Sfloat64) Tan() Num {
return Sfloat64(math.Tan(float64(o)))
}
func (o Sfloat64) Sqrt() Num {
return Sfloat64(math.Sqrt(float64(o)))
}
func (o Sfloat64) Pow(n Num) Num {
return Sfloat64(math.Pow(float64(o), ToFlonum(n)))
}
func (o Sfloat64) Log(n Num) Num {
return Sfloat64(math.Log(float64(o))/math.Log(ToFlonum(n)))
}
func (o Sfloat64) Exp() Num {
return Sfloat64(math.Exp(float64(o)))
}
func (o Sfloat64) Ln() Num {
return Sfloat64(math.Log(float64(o)))
}
func (o Sfloat64) MakeRect(n RealNum) ComplexNum {
return NewComplex(o, Sfloat64(ToFlonum(n)))
}
func (o Sfloat64) MakePolar(n RealNum) ComplexNum {
return NewComplexPolar(o, Sfloat64(ToFlonum(n)))
}
func (o Sfloat64) String() string {
switch f := float64(o); {
case math.IsNaN(f):
return "+nan.0"
case math.IsInf(f, 1):
return "+inf.0"
case math.IsInf(f, -1):
return "-inf.0"
}
//return strings.Trim(fmt.Sprintf("%f", o), "0")
s := strings.TrimRight(fmt.Sprintf("%f", o), "0")
if s[len(s) - 1] == '.' {
return string(append([]byte(s), '0'))
}
return s
}
func (o Sfloat64) Equal(n Any) bool {
m := n.(Sfloat64)
if math.IsNaN(float64(o)) && math.IsNaN(float64(m)) {
return false
}
return o == m
}
func (o Sfloat64) Cmp(n Num) int {
if o < n.(Sfloat64) {
return -1
}
if o > n.(Sfloat64) {
return 1
}
return 0
}
func (o Sfloat64) Add(n Num) Num { return Sfloat64(o + n.(Sfloat64)) }
func (o Sfloat64) Sub(n Num) Num { return Sfloat64(o - n.(Sfloat64)) }
func (o Sfloat64) Mul(n Num) Num { return Sfloat64(o * n.(Sfloat64)) }
func (o Sfloat64) Div(n Num) Num { return Sfloat64(o / n.(Sfloat64)) }
func (o Sfloat64) Mod(n Num) Num { return Sfloat64(0) } // wrong
func (o Sfloat64) Shl(n Num) Num { return Sfloat64(0) } // wrong
func (o Sfloat64) Shr(n Num) Num { return Sfloat64(0) } // wrong
func (o Sfloat64) RNN() IntNum {
h := Sfloat64(float64(o) + 0.5)
return h.RTN()
}
func (o Sfloat64) RTE() IntNum {
rnn := o.RNN().(Sint64)
h := Sfloat64(float64(o) + 0.5)
// is integer
if Sfloat64(h.RTN().(Sint64)) == Sfloat64(h) {
if rnn % 2 != 0 {
return Sint64(rnn - 1)
}
return rnn
}
return rnn
}
func (o Sfloat64) RTN() IntNum {
return Sint64(int64(math.Floor(float64(o))))
}
//func (o Scomplex64) Add(n Num) Num { return Scomplex64(o + n.(Scomplex64)) }
//func (o Scomplex64) Sub(n Num) Num { return Scomplex64(o - n.(Scomplex64)) }
//func (o Scomplex64) Mul(n Num) Num { return Scomplex64(o * n.(Scomplex64)) }
//func (o Scomplex64) Div(n Num) Num { return Scomplex64(o / n.(Scomplex64)) }
//func (o Scomplex64) Mod(n Num) Num { return Scomplex64(o % n.(Scomplex64)) }
//func (o Scomplex64) Shl(n Num) Num { return Scomplex64(o << n.(Scomplex64)) } // wrong
//func (o Scomplex64) Shr(n Num) Num { return Scomplex64(o >> n.(Scomplex64)) } // wrong
//func (o Scomplex128) Add(n Num) Num { return Scomplex128(o + n.(Scomplex128)) }
//func (o Scomplex128) Sub(n Num) Num { return Scomplex128(o - n.(Scomplex128)) }
//func (o Scomplex128) Mul(n Num) Num { return Scomplex128(o * n.(Scomplex128)) }
//func (o Scomplex128) Div(n Num) Num { return Scomplex128(o / n.(Scomplex128)) }
//func (o Scomplex128) Mod(n Num) Num { return Scomplex128(o % n.(Scomplex128)) }
//func (o Scomplex128) Shl(n Num) Num { return Scomplex128(o << n.(Scomplex128)) } // wrong
//func (o Scomplex128) Shr(n Num) Num { return Scomplex128(o >> n.(Scomplex128)) } // wrong
// Integer
func (o SInteger) MakeRect(n RealNum) ComplexNum {
return NewComplex(o, Sfloat64(ToFlonum(n)))
}
func (o SInteger) MakePolar(n RealNum) ComplexNum {
return NewComplexPolar(o, Sfloat64(ToFlonum(n)))
}
func (o SInteger) String() string {
return o.it.String()
}
func (o SInteger) Equal(n Any) bool {