-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrain_DPR_and_Yale.py
649 lines (545 loc) · 44.2 KB
/
train_DPR_and_Yale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
from __future__ import division
import os
import time
import csv
import random
import cv2
import scipy.io
from random import randint
from math import floor, sqrt, pi
from glob import glob
import tensorflow as tf
from tensorboard import summary as summary_lib
from tensorboard.plugins.custom_scalar import layout_pb2
import numpy as np
from six.moves import xrange
from prefetch_generator import background
from vgg_face import vgg_face
import imageio
from random import randrange
class RelightNet(object):
def __init__(self, sess):
self.sess = sess
self.batch_size = 5
self.img_height = 256
self.img_width = 256
self.SH_dim = 9
self.lr = 0.0001
self.df_dim = 64
self.build_model()
def build_model(self):
self.input_luminance_ph = tf.placeholder(tf.float32, [self.batch_size, self.img_height, self.img_width, 1], name='input_luminance')
self.source_border_weights_ph = tf.placeholder(tf.float32, [self.batch_size, self.img_height, self.img_width, 1], name='source_border_weights')
self.target_border_weights_ph = tf.placeholder(tf.float32, [self.batch_size, self.img_height, self.img_width, 1], name='target_border_weights')
self.gt_ratio_ph = tf.placeholder(tf.float32, [self.batch_size, self.img_height, self.img_width, 1], name='gt_ratio')
self.source_lighting_ph = tf.placeholder(tf.float32, [self.batch_size, self.SH_dim], name='SH_source')
self.target_lighting_ph = tf.placeholder(tf.float32, [self.batch_size, self.SH_dim], name='SH_target')
self.epoch_ph = tf.placeholder(tf.float32, [], name='epoch_num')
self.zero_tensor = tf.constant(0, shape=[self.batch_size, self.img_height, self.img_width, 1], dtype=tf.float32)
self.reverse_gamma_correction_tensor = tf.constant(2.2, shape=[self.batch_size, self.img_height, self.img_width, 1], dtype=tf.float32)
self.target_luminance_ph = tf.placeholder(tf.float32, [self.batch_size, self.img_height, self.img_width, 1], name='target_luminance')
self.gan_loss_scale_factor_ph = tf.placeholder(tf.float32, name='gan_scale_factor')
(self.predicted_ratio, self.predicted_source_lighting, self.identity_features) = self.relighting_UNET(self.input_luminance_ph, self.target_lighting_ph, True, self.epoch_ph)
self.predicted_ratio = tf.clip_by_value(self.predicted_ratio, clip_value_min=0.0000000001, clip_value_max=10000000000)
self.positive_weights_source = tf.cast(tf.greater(self.source_border_weights_ph, self.zero_tensor), tf.float32)
self.positive_weights_target = tf.cast(tf.greater(self.target_border_weights_ph, self.zero_tensor), tf.float32)
self.source_shadow_border_loss = 3.0*tf.reduce_sum(self.source_border_weights_ph*tf.abs(self.log10(self.predicted_ratio)-self.log10(self.gt_ratio_ph)))/(tf.reduce_sum(self.positive_weights_source)+0.00001)
self.target_shadow_border_loss = 3.0*tf.reduce_sum(self.target_border_weights_ph*tf.abs(self.log10(self.predicted_ratio)-self.log10(self.gt_ratio_ph)))/(tf.reduce_sum(self.positive_weights_target)+0.00001)
self.target_ratio_loss = 3.0*tf.reduce_sum(tf.abs(self.log10(self.predicted_ratio)-self.log10(self.gt_ratio_ph)))/(self.img_height*self.img_width*self.batch_size)
self.source_lighting_loss = tf.reduce_sum(tf.square(self.predicted_source_lighting-self.source_lighting_ph))/self.batch_size
self.dx_predicted, self.dy_predicted = tf.image.image_gradients(self.log10(self.predicted_ratio))
self.dx_gt, self.dy_gt = tf.image.image_gradients(self.log10(self.gt_ratio_ph))
self.image_gradient_loss = (tf.reduce_sum(tf.abs(self.dx_gt-self.dx_predicted))+tf.reduce_sum(tf.abs(self.dy_gt-self.dy_predicted)))/(self.img_height*self.img_width*self.batch_size)
self.repeated_batch_identity_features = tf.tile(self.identity_features, [self.batch_size, 1, 1, 1])
self.repeated_batch_identity_features2 = self.tf_repeat(self.identity_features, tf.fill([self.batch_size], self.batch_size))
self.consistency_loss_identity = tf.reduce_sum(tf.abs(self.repeated_batch_identity_features-self.repeated_batch_identity_features2))/((self.batch_size-1)*self.batch_size*self.img_height/16.0*self.img_width/16.0)
self.SSIM_loss = (1.0-tf.reduce_mean(tf.image.ssim(self.log10(self.gt_ratio_ph), self.log10(self.predicted_ratio), 2.0)))/2.0
self.predicted_luminance = self.predicted_ratio*self.input_luminance_ph
self.predicted_luminance = tf.pow(self.predicted_luminance, self.reverse_gamma_correction_tensor)
self.real_D_256, self.real_D_logits_256 = self.discriminator_256(self.target_luminance_ph, is_training=True, reuse=False)
self.fake_D_256, self.fake_D_logits_256 = self.discriminator_256(self.predicted_luminance, is_training=True, reuse=True)
self.d_loss_real_256 = self.gan_loss_scale_factor_ph*tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.real_D_logits_256, labels=tf.ones_like(self.real_D_256)))
self.d_loss_fake_256 = self.gan_loss_scale_factor_ph*tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.fake_D_logits_256, labels=tf.zeros_like(self.fake_D_256)))
self.predicted_luminance_128 = tf.image.resize_nearest_neighbor(self.predicted_luminance, (128, 128))
self.target_luminance_128 = tf.image.resize_nearest_neighbor(self.target_luminance_ph, (128, 128))
self.real_D_128, self.real_D_logits_128 = self.discriminator_128(self.target_luminance_128, is_training=True, reuse=False)
self.fake_D_128, self.fake_D_logits_128 = self.discriminator_128(self.predicted_luminance_128, is_training=True, reuse=True)
self.d_loss_real_128 = self.gan_loss_scale_factor_ph*tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.real_D_logits_128, labels=tf.ones_like(self.real_D_128)))
self.d_loss_fake_128 = self.gan_loss_scale_factor_ph*tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.fake_D_logits_128, labels=tf.zeros_like(self.fake_D_128)))
self.g_loss_256 = self.gan_loss_scale_factor_ph*tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.fake_D_logits_256, labels=tf.ones_like(self.fake_D_256)))
self.g_loss_128 = self.gan_loss_scale_factor_ph*tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.fake_D_logits_128, labels=tf.ones_like(self.fake_D_128)))
self.g_loss = (self.g_loss_256+self.g_loss_128)/2.0
self.total_g_loss = tf.cond(tf.greater(self.epoch_ph, 16), lambda: self.target_ratio_loss+self.source_lighting_loss+self.image_gradient_loss+self.consistency_loss_identity+self.SSIM_loss+self.source_shadow_border_loss+self.target_shadow_border_loss+self.g_loss, lambda: self.target_ratio_loss+self.source_lighting_loss+self.image_gradient_loss+self.SSIM_loss+self.source_shadow_border_loss+self.target_shadow_border_loss+self.g_loss)
self.total_d_loss_256 = self.d_loss_real_256+self.d_loss_fake_256
self.total_d_loss_128 = self.d_loss_real_128+self.d_loss_fake_128
def relighting_UNET(self, input_luminance, target_lighting, is_training, epoch):
c1_og = tf.nn.relu(self.batch_norm(self.conv2d(input_luminance, 16, kernel=(5,5), strides=(1, 1), use_bias = True, name='c1'), train=is_training, name='bn_c1'))
c1 = tf.nn.max_pool(c1_og, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
h1_1 = tf.nn.relu(self.batch_norm(self.conv2d(c1, 16, kernel=(3,3), strides=(1,1), use_bias=True, name='h1_1'), train=is_training, name='bn_h1_1'))
h1_2 = self.batch_norm(self.conv2d(h1_1, 16, kernel=(3,3), strides=(1,1), use_bias=True, name='h1_2'), train=is_training, name='bn_h1_2')
h1_out_og = tf.nn.relu(c1+h1_2)
h1_out = tf.nn.max_pool(h1_out_og, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
h2_1 = tf.nn.relu(self.batch_norm(self.conv2d(h1_out, 32, kernel=(3,3), strides=(1,1), use_bias=True, name='h2_1'), train=is_training, name='bn_h2_1'))
h2_2 = self.batch_norm(self.conv2d(h2_1, 32, kernel=(3,3), strides=(1,1), use_bias=True, name='h2_2'), train=is_training, name='bn_h2_2')
shortcut_h1_out = self.batch_norm(self.conv2d(h1_out, 32, kernel=(3,3), strides=(1,1), use_bias=True, name='sc_h1_out'), train=is_training, name='bn_sc_h1_out')
h2_out_og = tf.nn.relu(shortcut_h1_out+h2_2)
h2_out = tf.nn.max_pool(h2_out_og, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
h3_1 = tf.nn.relu(self.batch_norm(self.conv2d(h2_out, 64, kernel=(3,3), strides=(1,1), use_bias=True, name='h3_1'), train=is_training, name='bn_h3_1'))
h3_2 = self.batch_norm(self.conv2d(h3_1, 64, kernel=(3,3), strides=(1,1), use_bias=True, name='h3_2'), train=is_training, name='bn_h3_2')
shortcut_h2_out = self.batch_norm(self.conv2d(h2_out, 64, kernel=(3,3), strides=(1,1), use_bias=True, name='sc_h2_out'), train=is_training, name='bn_sc_h2_out')
h3_out_og = tf.nn.relu(shortcut_h2_out+h3_2)
h3_out = tf.nn.max_pool(h3_out_og, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
h4_1 = tf.nn.relu(self.batch_norm(self.conv2d(h3_out, 155, kernel=(3,3), strides=(1,1), use_bias=True, name='h4_1'), train=is_training, name='bn_h4_1'))
h4_2 = self.batch_norm(self.conv2d(h4_1, 155, kernel=(3,3), strides=(1,1), use_bias=True, name='h4_2'), train=is_training, name='bn_h4_2')
shortcut_h3_out = self.batch_norm(self.conv2d(h3_out, 155, kernel=(3,3), strides=(1,1), use_bias=True, name='sc_h3_out'), train=is_training, name='bn_sc_h3_out')
h4_out = tf.nn.relu(shortcut_h3_out+h4_2)
identity_features = h4_out[:, :, :, 0:128]
lighting_features = h4_out[:, :, :, 128:155]
LF_shape = self.get_shape(lighting_features)
LF_avg_pool = tf.nn.avg_pool(lighting_features, ksize = [1, LF_shape[1], LF_shape[2], 1], strides = [1,1,1,1], padding = 'VALID')
SL_lin1 = self.linear(LF_avg_pool, 128, scope= 'SL_lin1')
SL_lin2 = self.linear(SL_lin1, 9, scope='SL_lin2', relu=False)
TL_lin1 = self.linear(target_lighting, 128, scope='TL_lin1')
TL_lin2 = self.linear(TL_lin1, 27, scope='TL_lin2')
TL_lin2 = tf.expand_dims(TL_lin2, 1)
TL_lin2 = tf.expand_dims(TL_lin2, 1)
tile_multiples = tf.constant([1,16,16,1], tf.int32)
TL_lin2 = tf.tile(TL_lin2, tile_multiples)
all_features = tf.concat([identity_features, TL_lin2], axis=-1)
h5_1 = tf.nn.relu(self.batch_norm(self.deconv2d(all_features, 64, kernel=(3,3), strides=(1, 1), use_bias = True, name='h5_1'), train=is_training, name='bn_h5_1'))
h5_2 = self.batch_norm(self.deconv2d(h5_1, 64, kernel=(3,3), strides=(1, 1), use_bias = True, name='h5_2'), train=is_training, name='bn_h5_2')
shortcut_all_features = self.batch_norm(self.deconv2d(all_features, 64, kernel=(3,3), strides=(1,1), use_bias=True, name='sc_all_features'), train=is_training, name='bn_sc_all_features')
h5_out = tf.nn.relu(shortcut_all_features+h5_2)
h5_out = tf.image.resize_nearest_neighbor(h5_out, (32, 32))
skip_s1_1 = tf.nn.relu(self.batch_norm(self.conv2d(h3_out_og, 64, kernel=(3,3), strides=(1,1), use_bias=True, name='skip_s1_1'), train=is_training, name='bn_skip_s1_1'))
skip_s1_2 = self.batch_norm(self.conv2d(skip_s1_1, 64, kernel=(3,3), strides=(1,1), use_bias=True, name='skip_s1_2'), train=is_training, name='bn_skip_s1_2')
skip_s1_out = tf.nn.relu(h3_out_og+skip_s1_2)
h5_out = tf.cond(tf.greater(epoch, 8), lambda: h5_out+skip_s1_out, lambda: h5_out)
h6_1 = tf.nn.relu(self.batch_norm(self.deconv2d(h5_out, 32, kernel=(3,3), strides=(1, 1), use_bias = True, name='h6_1'), train=is_training, name='bn_h6_1'))
h6_2 = self.batch_norm(self.deconv2d(h6_1, 32, kernel=(3,3), strides=(1, 1), use_bias = True, name='h6_2'), train=is_training, name='bn_h6_2')
shortcut_h5_out = self.batch_norm(self.deconv2d(h5_out, 32, kernel=(3,3), strides=(1,1), use_bias=True, name='sc_h5_out'), train=is_training, name='bn_sc_h5_out')
h6_out = tf.nn.relu(shortcut_h5_out+h6_2)
h6_out = tf.image.resize_nearest_neighbor(h6_out, (64, 64))
skip_s2_1 = tf.nn.relu(self.batch_norm(self.conv2d(h2_out_og, 32, kernel=(3,3), strides=(1,1), use_bias=True, name='skip_s2_1'), train=is_training, name='bn_skip_s2_1'))
skip_s2_2 = self.batch_norm(self.conv2d(skip_s2_1, 32, kernel=(3,3), strides=(1,1), use_bias=True, name='skip_s2_2'), train=is_training, name='bn_skip_s2_2')
skip_s2_out = tf.nn.relu(h2_out_og+skip_s2_2)
h6_out = tf.cond(tf.greater(epoch, 10), lambda: h6_out+skip_s2_out, lambda: h6_out)
h7_1 = tf.nn.relu(self.batch_norm(self.deconv2d(h6_out, 16, kernel=(3,3), strides=(1, 1), use_bias = True, name='h7_1'), train=is_training, name='bn_h7_1'))
h7_2 = self.batch_norm(self.deconv2d(h7_1, 16, kernel=(3,3), strides=(1, 1), use_bias = True, name='h7_2'), train=is_training, name='bn_h7_2')
shortcut_h6_out = self.batch_norm(self.deconv2d(h6_out, 16, kernel=(3,3), strides=(1,1), use_bias=True, name='sc_h6_out'), train=is_training, name='bn_sc_h6_out')
h7_out = tf.nn.relu(shortcut_h6_out+h7_2)
h7_out = tf.image.resize_nearest_neighbor(h7_out, (128, 128))
skip_s3_1 = tf.nn.relu(self.batch_norm(self.conv2d(h1_out_og, 16, kernel=(3,3), strides=(1,1), use_bias=True, name='skip_s3_1'), train=is_training, name='bn_skip_s3_1'))
skip_s3_2 = self.batch_norm(self.conv2d(skip_s3_1, 16, kernel=(3,3), strides=(1,1), use_bias=True, name='skip_s3_2'), train=is_training, name='bn_skip_s3_2')
skip_s3_out = tf.nn.relu(h1_out_og+skip_s3_2)
h7_out = tf.cond(tf.greater(epoch, 12), lambda: h7_out+skip_s3_out, lambda: h7_out)
h8_1 = tf.nn.relu(self.batch_norm(self.deconv2d(h7_out, 16, kernel=(3,3), strides=(1, 1), use_bias = True, name='h8_1'), train=is_training, name='bn_h8_1'))
h8_2 = self.batch_norm(self.deconv2d(h8_1, 16, kernel=(3,3), strides=(1, 1), use_bias = True, name='h8_2'), train=is_training, name='bn_h8_2')
h8_out = tf.nn.relu(h7_out+h8_2)
h8_out = tf.image.resize_nearest_neighbor(h8_out, (256, 256))
skip_s4_1 = tf.nn.relu(self.batch_norm(self.conv2d(c1_og, 16, kernel=(3,3), strides=(1,1), use_bias=True, name='skip_s4_1'), train=is_training, name='bn_skip_s4_1'))
skip_s4_2 = self.batch_norm(self.conv2d(skip_s4_1, 16, kernel=(3,3), strides=(1,1), use_bias=True, name='skip_s4_2'), train=is_training, name='bn_skip_s4_2')
skip_s4_out = tf.nn.relu(c1_og+skip_s4_2)
h8_out = tf.cond(tf.greater(epoch, 14), lambda: h8_out+skip_s4_out, lambda: h8_out)
c2_1 = tf.nn.relu(self.batch_norm(self.conv2d(h8_out, 16, kernel=(3,3), strides=(1,1), use_bias=True, name='c2_1'), train=is_training, name='bn_c2_1'))
c2_2 = tf.nn.relu(self.batch_norm(self.conv2d(c2_1, 16, kernel=(1,1), strides=(1,1), use_bias=True, name='c2_2'), train=is_training, name='bn_c2_2'))
c2_3 = tf.nn.relu(self.batch_norm(self.conv2d(c2_2, 16, kernel=(1,1), strides=(1,1), use_bias=True, name='c2_3'), train=is_training, name='bn_c2_3'))
c2_o = self.conv2d(c2_3, 1, kernel=(1,1), strides=(1,1), use_bias=True, name='c2_o')
return c2_o, SL_lin2, identity_features
def discriminator_256(self, images, is_training, reuse = False):
with tf.variable_scope("discriminator_256") as scope:
if(reuse):
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse == False
dis_conv1 = tf.nn.relu(self.conv2d(images, self.df_dim, kernel=(4,4), strides=(2, 2), use_bias = True, name='dis_conv1_256'))
dis_conv2 = tf.nn.relu(self.batch_norm(self.conv2d(dis_conv1, self.df_dim*2, kernel=(4,4), strides=(2, 2), use_bias = True, name='dis_conv2_256'), train=is_training, name='bn_dis_conv2_256'))
dis_conv3 = tf.nn.relu(self.batch_norm(self.conv2d(dis_conv2, self.df_dim*4, kernel=(4,4), strides=(2, 2), use_bias = True, name='dis_conv3_256'), train=is_training, name='bn_dis_conv3_256'))
dis_conv4 = tf.nn.relu(self.batch_norm(self.conv2d(dis_conv3, self.df_dim*8, kernel=(4,4), strides=(2, 2), use_bias = True, name='dis_conv4_256'), train=is_training, name='bn_dis_conv4_256'))
dis_conv5 = self.conv2d(dis_conv4, 1, kernel=(4,4), strides=(1, 1), use_bias = True, name='dis_conv5_256')
return tf.nn.sigmoid(dis_conv5), dis_conv5
def discriminator_128(self, images, is_training, reuse = False):
with tf.variable_scope("discriminator_128") as scope:
if(reuse):
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse == False
dis_conv1 = tf.nn.relu(self.conv2d(images, self.df_dim, kernel=(4,4), strides=(2, 2), use_bias = True, name='dis_conv1_128'))
dis_conv2 = tf.nn.relu(self.batch_norm(self.conv2d(dis_conv1, self.df_dim*2, kernel=(4,4), strides=(2, 2), use_bias = True, name='dis_conv2_128'), train=is_training, name='bn_dis_conv2_128'))
dis_conv3 = tf.nn.relu(self.batch_norm(self.conv2d(dis_conv2, self.df_dim*4, kernel=(4,4), strides=(2, 2), use_bias = True, name='dis_conv3_128'), train=is_training, name='bn_dis_conv3_128'))
dis_conv4 = tf.nn.relu(self.batch_norm(self.conv2d(dis_conv3, self.df_dim*8, kernel=(4,4), strides=(2, 2), use_bias = True, name='dis_conv4_128'), train=is_training, name='bn_dis_conv4_128'))
dis_conv5 = self.conv2d(dis_conv4, 1, kernel=(4,4), strides=(1, 1), use_bias = True, name='dis_conv5_128')
return tf.nn.sigmoid(dis_conv5), dis_conv5
def log10(self, x):
numerator = tf.log(x)
denominator = tf.log(tf.constant(10, dtype=numerator.dtype))
return numerator / denominator
def tf_repeat(self, arr, repeats):
arr = tf.expand_dims(arr, 1)
max_repeats = tf.reduce_max(repeats)
tile_repeats = tf.concat([[1], [max_repeats], tf.ones([tf.rank(arr) - 2], dtype=tf.int32)], axis=0)
arr_tiled = tf.tile(arr, tile_repeats)
mask = tf.less(tf.range(max_repeats), tf.expand_dims(repeats, 1))
result = tf.boolean_mask(arr_tiled, mask)
return result
def conv2d(self, input_, output_dim, kernel = (3,3), strides=(2, 2), use_bias=True, stddev=0.02, name="conv2d"):
with tf.variable_scope(name):
w = tf.get_variable('w', [kernel[0], kernel[1], input_.get_shape()[-1], output_dim], initializer=tf.truncated_normal_initializer(stddev=stddev))
conv = tf.nn.conv2d(input_, w, strides=[1, strides[0], strides[1], 1], padding='SAME')
if use_bias:
biases = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0))
conv = tf.reshape(tf.nn.bias_add(conv, biases), self.get_shape(conv))
return conv
def deconv2d(self, input_, output_shape, kernel=(3,3), strides=(2,2), stddev=0.02, use_bias = True, name="deconv2d", with_w=False, reuse = False):
with tf.variable_scope(name):
if type(output_shape) == list():
output_shape = output_shape[-1]
deconv = tf.layers.conv2d_transpose(input_, output_shape, kernel, strides, padding='SAME', data_format='channels_last', activation=None, use_bias=use_bias,
kernel_initializer=tf.random_normal_initializer(stddev=stddev), bias_initializer=tf.zeros_initializer(),
trainable=True, name=name, reuse=reuse)
return deconv
def linear(self, input_, output_size, scope="Linear", stddev=0.02, bias_start=0.0, relu=True):
if len(input_.shape) > 2:
input_ = tf.reshape(input_, [-1, np.prod([d.value for d in input_.shape[1:]])])
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [input_.shape[1].value, output_size], tf.float32,
tf.random_normal_initializer(stddev=stddev))
print(matrix.name, self.get_shape(matrix))
bias = tf.get_variable("bias", [output_size],
initializer=tf.constant_initializer(bias_start))
lin = tf.matmul(input_, matrix) + bias
if relu:
lin = tf.nn.relu(lin)
return lin
def batch_norm(self, x, train=True, reuse=False, trainable=True, epsilon=1e-5, momentum = 0.9, name="batch_norm"):
return tf.contrib.layers.batch_norm(x,
decay=momentum,
updates_collections=None,
epsilon=epsilon,
fused=True,
scale=True,
trainable=trainable,
is_training=train,
scope=name)
def get_shape(self, tensor):
static_shape = tensor.shape.as_list()
dynamic_shape = tf.unstack(tf.shape(tensor))
dims = [s[1] if s[0] is None else s[0] for s in zip(static_shape, dynamic_shape)]
return dims
@property
def model_dir(self):
return ""
def save(self, checkpoint_dir, step):
model_name = "RelightNet.model"
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.saver.save(self.sess, os.path.join(checkpoint_dir, model_name), global_step=step, write_meta_graph=False)
print(" Saved checkpoint %s-%d" % (os.path.join(checkpoint_dir, model_name), step))
def load(self, checkpoint_dir, saver):
import re
print(" [*] Reading checkpoints...")
checkpoint_dir = os.path.join(checkpoint_dir, self.model_dir)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
print(os.path.join(checkpoint_dir, ckpt_name))
saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
counter = int(next(re.finditer("(\d+)(?!.*\d)",ckpt_name)).group(0))
print(" [*] Success to read {}".format(ckpt_name))
return True, counter
else:
print(" [*] Failed to find a checkpoint")
return False, 0
def load_checkpoint(self, saver, ckpt_file):
try:
saver.restore(self.sess, ckpt_file)
print(" [*] Success to read {}".format(ckpt_file))
except Exception as e:
print(e)
self.load(ckpt_file)
def load_all_training_data(self):
all_input_luminance_DPR = np.zeros((123800, 256, 256, 1))
all_source_lighting_coefficients_DPR = np.zeros((123800, 9))
all_border_weights_DPR = np.zeros((123800, 256, 256, 1))
all_input_luminance_Yale = np.zeros((16380, 256, 256, 1))
all_source_lighting_coefficients_Yale = np.zeros((16380, 9))
all_border_weights_Yale = np.zeros((16380, 256, 256, 1))
all_images_DPR = sorted(os.listdir('MP_data/DPR_training_images_cropped_full/'))
border_weights_DPR = sorted(os.listdir('MP_data/DPR_training_border_weights_full/'))
all_lighting_files_DPR = sorted(os.listdir('MP_data/DPR_training_lighting_full/'))
for i in range(len(all_images_DPR)):
print(i)
print(all_images_DPR[i])
curr_border_weights = scipy.io.loadmat('MP_data/DPR_training_border_weights_full/'+border_weights_DPR[i])
all_border_weights_DPR[i, :, :, :] = np.reshape(curr_border_weights['border_weights'], (256, 256, 1))
curr_RGB_image = imageio.imread('MP_data/DPR_training_images_cropped_full/'+all_images_DPR[i])/255.0
all_input_luminance_DPR[i, :, :, :] = np.reshape(0.299*curr_RGB_image[:, :, 0]+0.587*curr_RGB_image[:, :, 1]+0.114*curr_RGB_image[:, :, 2], (256, 256, 1))
name_parts = all_images_DPR[i].split('_')
curr_num = name_parts[1].split('.')[0][1]
curr_shadow_map = cv2.imread('MP_data/DPR_shadow_maps/'+name_parts[0]+'_'+curr_num+'.bmp')
curr_mask = np.reshape(np.array((curr_shadow_map[:, :, 0] == 0), dtype=int), (256, 256, 1))
if(np.sum(curr_mask) > 2000):
ambient_term = np.sum(curr_mask*all_input_luminance_DPR[i, :, :, :])/(np.sum(curr_mask)+0.0000001)
else:
ambient_term = 0.2986
print(ambient_term)
all_source_lighting_coefficients_DPR[i, :] = scipy.io.loadmat('MP_data/DPR_training_lighting_full/'+all_lighting_files_DPR[i])['SH_coefficients']
all_source_lighting_coefficients_DPR[i, 0] += ambient_term
print(all_source_lighting_coefficients_DPR[i, 0])
all_images_Yale = sorted(os.listdir('MP_data/Yale_cropped_images/'))
border_weights_Yale = sorted(os.listdir('MP_data/border_weights_Yale/'))
Yale_lightings = scipy.io.loadmat('MP_data/Yale_SH_coefficients_corrected.mat')['SH_coeffs']
for i in range(len(all_images_Yale)):
print(i)
print(all_images_Yale[i])
curr_border_weights = scipy.io.loadmat('MP_data/border_weights_Yale/'+border_weights_Yale[i])
all_border_weights_Yale[i, :, :, :] = np.reshape(curr_border_weights['border_weights'], (256, 256, 1))
curr_image = imageio.imread('MP_data/Yale_cropped_images/'+all_images_Yale[i])/255.0
all_input_luminance_Yale[i, :, :, :] = np.reshape(0.299*curr_image+0.587*curr_image+0.114*curr_image, (256, 256, 1))
name_parts = all_images_Yale[i].split('.')
curr_shadow_map = cv2.imread('MP_data/Yale_shadow_maps_proper_naming_convention/'+name_parts[0]+'.pgm.png')
curr_mask = np.reshape(np.array((curr_shadow_map[:, :, 0] == 0), dtype=int), (256, 256, 1))
if(np.sum(curr_mask) > 2000):
ambient_term = np.sum(curr_mask*all_input_luminance_Yale[i, :, :, :])/(np.sum(curr_mask)+0.0000001)
else:
ambient_term = 0.0704
print(ambient_term)
source_lighting_idx = i % 65
all_source_lighting_coefficients_Yale[i, :] = Yale_lightings[source_lighting_idx, :]
all_source_lighting_coefficients_Yale[i, 0] += ambient_term
print(all_source_lighting_coefficients_Yale[i, 0])
return all_input_luminance_DPR, all_source_lighting_coefficients_DPR, all_border_weights_DPR, all_input_luminance_Yale, all_source_lighting_coefficients_Yale, all_border_weights_Yale
def train(self):
(all_input_luminance_DPR, all_source_lighting_coefficients_DPR, all_border_weights_DPR, all_input_luminance_Yale, all_source_lighting_coefficients_Yale, all_border_weights_Yale) = self.load_all_training_data()
max_epoch = 1000
self.g_vars = [var for var in tf.global_variables() if ('dis' not in var.name)]
self.d_vars_256 = [var for var in tf.global_variables() if ('discriminator_256' in var.name)]
self.d_vars_128 = [var for var in tf.global_variables() if ('discriminator_128' in var.name)]
self.d_train_op_256 = tf.train.AdamOptimizer(self.lr).minimize(self.total_d_loss_256, var_list=self.d_vars_256)
self.d_train_op_128 = tf.train.AdamOptimizer(self.lr).minimize(self.total_d_loss_128, var_list=self.d_vars_128)
self.g_train_op = tf.train.AdamOptimizer(self.lr).minimize(self.total_g_loss, var_list=self.g_vars)
init_op = tf.initialize_all_variables()
self.sess.run(init_op)
self.saver = tf.train.Saver(keep_checkpoint_every_n_hours=1, max_to_keep = 1000)
self.checkpoint_dir = 'DPR_and_Yale_training_checkpoint_nonlinear_relighting_SH_gradual_skip_SSIM_ratio_image_log_loss_using_SSIM_loss_Yuv_shadow_map_loss_contrast_based_border_weights_with_corrected_patchgan_much_smaller_weights_larger_L1_losses_MR_dis/'
batch_list = np.arange(int(123800/5))
batch_order = np.arange(5)
could_load, checkpoint_counter = self.load(self.checkpoint_dir, self.saver)
if could_load:
epoch0 = checkpoint_counter + 1
print(" [*] Load SUCCESS")
else:
epoch0 = 1
print(" [!] Load failed...")
num_batches = 5000
for epoch in xrange(epoch0, max_epoch):
np.random.shuffle(batch_list)
total_g_loss_epoch_DPR = 0.0
total_d_loss_256_epoch_DPR = 0.0
total_d_loss_128_epoch_DPR = 0.0
target_ratio_loss_epoch_DPR = 0.0
source_lighting_loss_epoch_DPR = 0.0
image_gradient_loss_epoch_DPR = 0.0
consistency_loss_identity_epoch_DPR = 0.0
SSIM_loss_epoch_DPR = 0.0
source_shadow_border_loss_epoch_DPR = 0.0
target_shadow_border_loss_epoch_DPR = 0.0
g_loss_epoch_DPR = 0.0
g_loss_256_epoch_DPR = 0.0
g_loss_128_epoch_DPR = 0.0
d_loss_256_real_epoch_DPR = 0.0
d_loss_256_fake_epoch_DPR = 0.0
d_loss_128_real_epoch_DPR = 0.0
d_loss_128_fake_epoch_DPR = 0.0
total_g_loss_epoch_Yale = 0.0
total_d_loss_256_epoch_Yale = 0.0
total_d_loss_128_epoch_Yale = 0.0
target_ratio_loss_epoch_Yale = 0.0
source_lighting_loss_epoch_Yale = 0.0
image_gradient_loss_epoch_Yale = 0.0
consistency_loss_identity_epoch_Yale = 0.0
SSIM_loss_epoch_Yale = 0.0
source_shadow_border_loss_epoch_Yale = 0.0
target_shadow_border_loss_epoch_Yale = 0.0
g_loss_epoch_Yale = 0.0
g_loss_256_epoch_Yale = 0.0
g_loss_128_epoch_Yale = 0.0
d_loss_256_real_epoch_Yale = 0.0
d_loss_256_fake_epoch_Yale = 0.0
d_loss_128_real_epoch_Yale = 0.0
d_loss_128_fake_epoch_Yale = 0.0
for i in range(num_batches):
np.random.shuffle(batch_order)
curr_source_lighting = all_source_lighting_coefficients_DPR[(batch_list[i]*self.batch_size):((batch_list[i]+1)*self.batch_size)]
curr_input_luminance = all_input_luminance_DPR[(batch_list[i]*self.batch_size):((batch_list[i]+1)*self.batch_size)]
curr_input_luminance[curr_input_luminance < 0.01] = 0.01
tmp_target_luminance = curr_input_luminance[batch_order]
curr_input_luminance = curr_input_luminance**(1.0/2.2)
curr_border_weights = all_border_weights_DPR[(batch_list[i]*self.batch_size):((batch_list[i]+1)*self.batch_size)]
curr_target_luminance = curr_input_luminance[batch_order]
ffeed_dict={self.input_luminance_ph: curr_input_luminance, \
self.gt_ratio_ph: (curr_target_luminance/curr_input_luminance), \
self.source_lighting_ph: curr_source_lighting, \
self.target_lighting_ph: curr_source_lighting[batch_order], \
self.source_border_weights_ph: curr_border_weights, \
self.target_border_weights_ph: curr_border_weights[batch_order], \
self.target_luminance_ph: tmp_target_luminance, \
self.gan_loss_scale_factor_ph: 0.01, \
self.epoch_ph: epoch}
_, _ = self.sess.run([self.d_train_op_256, self.d_train_op_128], feed_dict = ffeed_dict)
_, total_g_loss, total_d_loss_256, total_d_loss_128, target_ratio_loss, source_lighting_loss, image_gradient_loss, consistency_loss_identity, SSIM_loss, source_shadow_border_loss, target_shadow_border_loss, border_weights_source, border_weights_target, g_loss, g_loss_256, d_loss_real_256, d_loss_fake_256, g_loss_128, d_loss_real_128, d_loss_fake_128 = self.sess.run([self.g_train_op, self.total_g_loss, self.total_d_loss_256, self.total_d_loss_128, self.target_ratio_loss, self.source_lighting_loss, self.image_gradient_loss, self.consistency_loss_identity, self.SSIM_loss, self.source_shadow_border_loss, self.target_shadow_border_loss, self.source_border_weights_ph, self.target_border_weights_ph, self.g_loss, self.g_loss_256, self.d_loss_real_256, self.d_loss_fake_256, self.g_loss_128, self.d_loss_real_128, self.d_loss_fake_128], feed_dict=ffeed_dict)
total_g_loss_epoch_DPR += total_g_loss
total_d_loss_256_epoch_DPR += total_d_loss_256
total_d_loss_128_epoch_DPR += total_d_loss_128
target_ratio_loss_epoch_DPR += target_ratio_loss
source_lighting_loss_epoch_DPR += source_lighting_loss
image_gradient_loss_epoch_DPR += image_gradient_loss
consistency_loss_identity_epoch_DPR += consistency_loss_identity
SSIM_loss_epoch_DPR += SSIM_loss
source_shadow_border_loss_epoch_DPR += source_shadow_border_loss
target_shadow_border_loss_epoch_DPR += target_shadow_border_loss
g_loss_epoch_DPR += g_loss
g_loss_256_epoch_DPR += g_loss_256
g_loss_128_epoch_DPR += g_loss_128
d_loss_256_real_epoch_DPR += d_loss_real_256
d_loss_256_fake_epoch_DPR += d_loss_fake_256
d_loss_128_real_epoch_DPR += d_loss_real_128
d_loss_128_fake_epoch_DPR += d_loss_fake_128
print("DPR Epoch: "+str(epoch)+", Batch: "+str(i)+", total g loss: "+str(total_g_loss)+", total d loss 256: "+str(total_d_loss_256)+", total d loss 128: "+str(total_d_loss_128)+", target ratio loss: "+str(target_ratio_loss)+", source lighting loss: "+str(source_lighting_loss)+", image gradient loss: "+str(image_gradient_loss)+", consistency loss identity: "+str(consistency_loss_identity)+", SSIM loss: "+str(SSIM_loss)+", source shadow border loss: "+str(source_shadow_border_loss)+", target shadow border loss: "+str(target_shadow_border_loss)+", g loss: "+str(g_loss)+", g loss 256: "+str(g_loss_256)+", d loss real 256: "+str(d_loss_real_256)+", d loss fake 256: "+str(d_loss_fake_256)+", g loss 128: "+str(g_loss_128)+", d loss real 128: "+str(d_loss_real_128)+", d loss fake 128: "+str(d_loss_fake_128))
print(np.sum(border_weights_source))
print(np.sum(border_weights_target))
random_subject = randrange(252)
random_source_lightings = np.zeros((self.batch_size), dtype=int)
random_target_lightings = np.zeros((self.batch_size), dtype=int)
for j in range(self.batch_size):
random_source_lightings[j] = randrange(65)
random_target_lightings[j] = randrange(65)
random_source_indices = random_source_lightings+random_subject*65
random_target_indices = random_target_lightings+random_subject*65
curr_source_lighting = all_source_lighting_coefficients_Yale[random_source_indices]
curr_target_lighting = all_source_lighting_coefficients_Yale[random_target_indices]
curr_input_luminance = all_input_luminance_Yale[random_source_indices]
curr_input_luminance[curr_input_luminance < 0.01] = 0.01
curr_input_luminance = curr_input_luminance**(1.0/2.2)
curr_target_luminance = all_input_luminance_Yale[random_target_indices]
curr_target_luminance[curr_target_luminance < 0.01] = 0.01
tmp_target_luminance = curr_target_luminance
curr_target_luminance = curr_target_luminance**(1.0/2.2)
curr_border_weights = all_border_weights_Yale[random_source_indices]
curr_target_border_weights = all_border_weights_Yale[random_target_indices]
ffeed_dict={self.input_luminance_ph: curr_input_luminance, \
self.gt_ratio_ph: (curr_target_luminance/curr_input_luminance), \
self.source_lighting_ph: curr_source_lighting, \
self.target_lighting_ph: curr_target_lighting, \
self.source_border_weights_ph: curr_border_weights, \
self.target_border_weights_ph: curr_target_border_weights, \
self.target_luminance_ph: tmp_target_luminance, \
self.gan_loss_scale_factor_ph: 0.01, \
self.epoch_ph: epoch}
_, _ = self.sess.run([self.d_train_op_256, self.d_train_op_128], feed_dict = ffeed_dict)
_, total_g_loss, total_d_loss_256, total_d_loss_128, target_ratio_loss, source_lighting_loss, image_gradient_loss, consistency_loss_identity, SSIM_loss, source_shadow_border_loss, target_shadow_border_loss, border_weights_source, border_weights_target, g_loss, g_loss_256, d_loss_real_256, d_loss_fake_256, g_loss_128, d_loss_real_128, d_loss_fake_128 = self.sess.run([self.g_train_op, self.total_g_loss, self.total_d_loss_256, self.total_d_loss_128, self.target_ratio_loss, self.source_lighting_loss, self.image_gradient_loss, self.consistency_loss_identity, self.SSIM_loss, self.source_shadow_border_loss, self.target_shadow_border_loss, self.source_border_weights_ph, self.target_border_weights_ph, self.g_loss, self.g_loss_256, self.d_loss_real_256, self.d_loss_fake_256, self.g_loss_128, self.d_loss_real_128, self.d_loss_fake_128], feed_dict=ffeed_dict)
total_g_loss_epoch_Yale += total_g_loss
total_d_loss_256_epoch_Yale += total_d_loss_256
total_d_loss_128_epoch_Yale += total_d_loss_128
target_ratio_loss_epoch_Yale += target_ratio_loss
source_lighting_loss_epoch_Yale += source_lighting_loss
image_gradient_loss_epoch_Yale += image_gradient_loss
consistency_loss_identity_epoch_Yale += consistency_loss_identity
SSIM_loss_epoch_Yale += SSIM_loss
source_shadow_border_loss_epoch_Yale += source_shadow_border_loss
target_shadow_border_loss_epoch_Yale += target_shadow_border_loss
g_loss_epoch_Yale += g_loss
g_loss_256_epoch_Yale += g_loss_256
g_loss_128_epoch_Yale += g_loss_128
d_loss_256_real_epoch_Yale += d_loss_real_256
d_loss_256_fake_epoch_Yale += d_loss_fake_256
d_loss_128_real_epoch_Yale += d_loss_real_128
d_loss_128_fake_epoch_Yale += d_loss_fake_128
print("Yale Epoch: "+str(epoch)+", Batch: "+str(i)+", total g loss: "+str(total_g_loss)+", total d loss 256: "+str(total_d_loss_256)+", total d loss 128: "+str(total_d_loss_128)+", target ratio loss: "+str(target_ratio_loss)+", source lighting loss: "+str(source_lighting_loss)+", image gradient loss: "+str(image_gradient_loss)+", consistency loss identity: "+str(consistency_loss_identity)+", SSIM loss: "+str(SSIM_loss)+", source shadow border loss: "+str(source_shadow_border_loss)+", target shadow border loss: "+str(target_shadow_border_loss)+", g loss: "+str(g_loss)+", g loss 256: "+str(g_loss_256)+", d loss real 256: "+str(d_loss_real_256)+", d loss fake 256: "+str(d_loss_fake_256)+", g loss 128: "+str(g_loss_128)+", d loss real 128: "+str(d_loss_real_128)+", d loss fake 128: "+str(d_loss_fake_128))
print(np.sum(border_weights_source))
print(np.sum(border_weights_target))
self.save(self.checkpoint_dir, epoch)
total_g_loss_epoch_DPR /= num_batches
total_d_loss_256_epoch_DPR /= num_batches
total_d_loss_128_epoch_DPR /= num_batches
target_ratio_loss_epoch_DPR /= num_batches
source_lighting_loss_epoch_DPR /= num_batches
image_gradient_loss_epoch_DPR /= num_batches
consistency_loss_identity_epoch_DPR /= num_batches
SSIM_loss_epoch_DPR /= num_batches
source_shadow_border_loss_epoch_DPR /= num_batches
target_shadow_border_loss_epoch_DPR /= num_batches
g_loss_epoch_DPR /= num_batches
g_loss_256_epoch_DPR /= num_batches
g_loss_128_epoch_DPR /= num_batches
d_loss_256_real_epoch_DPR /= num_batches
d_loss_256_fake_epoch_DPR /= num_batches
d_loss_128_real_epoch_DPR /= num_batches
d_loss_128_fake_epoch_DPR /= num_batches
loss_curr_epoch = np.zeros((17))
loss_curr_epoch[0] = total_g_loss_epoch_DPR
loss_curr_epoch[1] = total_d_loss_256_epoch_DPR
loss_curr_epoch[2] = total_d_loss_128_epoch_DPR
loss_curr_epoch[3] = target_ratio_loss_epoch_DPR
loss_curr_epoch[4] = source_lighting_loss_epoch_DPR
loss_curr_epoch[5] = image_gradient_loss_epoch_DPR
loss_curr_epoch[6] = consistency_loss_identity_epoch_DPR
loss_curr_epoch[7] = SSIM_loss_epoch_DPR
loss_curr_epoch[8] = source_shadow_border_loss_epoch_DPR
loss_curr_epoch[9] = target_shadow_border_loss_epoch_DPR
loss_curr_epoch[10] = g_loss_epoch_DPR
loss_curr_epoch[11] = g_loss_256_epoch_DPR
loss_curr_epoch[12] = g_loss_128_epoch_DPR
loss_curr_epoch[13] = d_loss_256_real_epoch_DPR
loss_curr_epoch[14] = d_loss_256_fake_epoch_DPR
loss_curr_epoch[15] = d_loss_128_real_epoch_DPR
loss_curr_epoch[16] = d_loss_128_fake_epoch_DPR
output_mat = {}
output_mat['losses'] = loss_curr_epoch
scipy.io.savemat('DPR_and_Yale_loss_curves_nonlinear_relighting_SH_model_gradual_skip_SSIM_ratio_image_log_loss_using_SSIM_loss_Yuv_shadow_map_loss_contrast_based_border_weights_with_corrected_patchgan_much_smaller_weights_larger_L1_losses_MR_dis_DPR_losses/losses_epoch'+str(epoch)+'.mat', output_mat)
total_g_loss_epoch_Yale /= num_batches
total_d_loss_256_epoch_Yale /= num_batches
total_d_loss_128_epoch_Yale /= num_batches
target_ratio_loss_epoch_Yale /= num_batches
source_lighting_loss_epoch_Yale /= num_batches
image_gradient_loss_epoch_Yale /= num_batches
consistency_loss_identity_epoch_Yale /= num_batches
SSIM_loss_epoch_Yale /= num_batches
source_shadow_border_loss_epoch_Yale /= num_batches
target_shadow_border_loss_epoch_Yale /= num_batches
g_loss_epoch_Yale /= num_batches
g_loss_256_epoch_Yale /= num_batches
g_loss_128_epoch_Yale /= num_batches
d_loss_256_real_epoch_Yale /= num_batches
d_loss_256_fake_epoch_Yale /= num_batches
d_loss_128_real_epoch_Yale /= num_batches
d_loss_128_fake_epoch_Yale /= num_batches
loss_curr_epoch = np.zeros((17))
loss_curr_epoch[0] = total_g_loss_epoch_Yale
loss_curr_epoch[1] = total_d_loss_256_epoch_Yale
loss_curr_epoch[2] = total_d_loss_128_epoch_Yale
loss_curr_epoch[3] = target_ratio_loss_epoch_Yale
loss_curr_epoch[4] = source_lighting_loss_epoch_Yale
loss_curr_epoch[5] = image_gradient_loss_epoch_Yale
loss_curr_epoch[6] = consistency_loss_identity_epoch_Yale
loss_curr_epoch[7] = SSIM_loss_epoch_Yale
loss_curr_epoch[8] = source_shadow_border_loss_epoch_Yale
loss_curr_epoch[9] = target_shadow_border_loss_epoch_Yale
loss_curr_epoch[10] = g_loss_epoch_Yale
loss_curr_epoch[11] = g_loss_256_epoch_Yale
loss_curr_epoch[12] = g_loss_128_epoch_Yale
loss_curr_epoch[13] = d_loss_256_real_epoch_Yale
loss_curr_epoch[14] = d_loss_256_fake_epoch_Yale
loss_curr_epoch[15] = d_loss_128_real_epoch_Yale
loss_curr_epoch[16] = d_loss_128_fake_epoch_Yale
output_mat = {}
output_mat['losses'] = loss_curr_epoch
scipy.io.savemat('DPR_and_Yale_loss_curves_nonlinear_relighting_SH_model_gradual_skip_SSIM_ratio_image_log_loss_using_SSIM_loss_Yuv_shadow_map_loss_contrast_based_border_weights_with_corrected_patchgan_much_smaller_weights_larger_L1_losses_MR_dis_Yale_losses/losses_epoch'+str(epoch)+'.mat', output_mat)
def main():
gpu_options = tf.GPUOptions(visible_device_list='0', per_process_gpu_memory_fraction = 0.99, allow_growth = True)
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_options)) as sess:
RN = RelightNet(sess)
RN.train()
if __name__ == '__main__':
main()