-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathrunner.py
494 lines (420 loc) · 20.3 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
'''Class to define a complete run, that is, model, data and training metaparameters
NOT FUNCTIONAL, INCLUDED AS LEGACY. REFER TO SEPARATE RUN SCRIPTS, LIKE la_runs.py
'''
import sys
import time
import copy
import numpy as np
from numpy.random import shuffle, seed
from sklearn.metrics import confusion_matrix
import torch
from torchvision.utils import save_image
from torch.utils.data import DataLoader, ConcatDataset
from torch import nn
from torch import optim
from captum.attr import IntegratedGradients
from captum.attr import GradientShap
from captum.attr import Occlusion
from captum.attr import NoiseTunnel
from captum.attr import visualization as viz
from matplotlib.colors import LinearSegmentedColormap
from fungiimg import FungiImg, RawData, StandardTransform, DataAugmentTransform
from ic_template_models import initialize_model
class Runner(object):
'''Super class that defines dataset, model and optimizer for training and parameter tuning.
A helpful wrapper
'''
def __init__(self, run_label='Fungi Standard Run', random_seed=42, f_out=sys.stdout,
raw_csv_toc='toc_full.csv', raw_csv_root='.',
transform_imgs='standard_300',
transforms_aug_train=['random_resized_crop'],
label_key='Kantarell vs Fluesvamp',
f_test=0.10,
loader_batch_size=8, num_workers=0,
model_label='inception_v3', use_pretrained=True, feature_extract=False):
self.inp_run_label = run_label
self.inp_random_seed = random_seed
self.inp_f_out = f_out
self.inp_raw_csv_toc = raw_csv_toc
self.inp_raw_csv_root = raw_csv_root
self.inp_transform_imgs = transform_imgs
if not transforms_aug_train is None:
self.inp_transforms_aug_train = transforms_aug_train
else:
self.inp_transforms_aug_train = []
self.inp_label_key = label_key
self.inp_f_test = f_test
self.inp_loader_batch_size = loader_batch_size
self.inp_num_workers = num_workers
self.inp_model_label = model_label
self.inp_use_pretrained = use_pretrained
self.inp_feature_extract = feature_extract
#
# Set random seed and make run deterministic
#
seed(self.inp_random_seed)
torch.manual_seed(self.inp_random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
#
# Define the dataset and dataloader, train and test, using short-hand strings
#
if self.inp_label_key == 'Kantarell vs Fluesvamp':
label_keys = ('Family == "Cantharellaceae"', 'Family == "Amanitaceae"')
elif self.inp_label_key == 'Champignon vs Fluesvamp':
label_keys = ('Genus == "Agaricus"', 'Genus == "Amanita"')
elif self.inp_label_key == 'Kantarell Species':
label_keys = ('Species == "Almindelig Kantarel"', 'Species == "Bleg Kantarel"',
'Species == "Liden Kantarel"', 'Species == "Trompetsvamp"',
'Species == "Tragt Kantarel"', 'Species == "Gra Kantarel"')
elif self.inp_label_key is None:
label_keys = None
else:
raise ValueError('Unknown label_key: {}'.format(self.inp_label_key))
#
# Resize and normalize channels
#
if self.inp_transform_imgs == 'standard_300':
transform = StandardTransform(300, to_tensor=True, normalize=True)
mdim = 300
elif self.inp_transform_imgs == 'standard_244':
transform = StandardTransform(244, to_tensor=True, normalize=True)
mdim = 244
else:
raise ValueError('Unknown transform_key: {}'.format(self.inp_transform_imgs))
#
# Construct split of data into train and test datasets
#
all_ids = list(range(RawData.N_ROWS.value))
shuffle(all_ids)
n_test = int(RawData.N_ROWS.value * f_test)
test_ids = all_ids[:n_test]
train_ids = all_ids[n_test:]
self.dataset_test = FungiImg(csv_file=self.inp_raw_csv_toc, root_dir=self.inp_raw_csv_root,
iselector=test_ids, transform=transform,
label_keys=label_keys)
dataset_train_all = [FungiImg(csv_file=raw_csv_toc, root_dir=raw_csv_root,
iselector=train_ids, transform=transform,
label_keys=label_keys)]
#
# Augment training data set with a variety of transformed augmentation images
#
for t_aug_label in self.inp_transforms_aug_train:
transform = DataAugmentTransform(t_aug_label, mdim, to_tensor=True, normalize=False)
dataset_train_x = FungiImg(csv_file=raw_csv_toc, root_dir=raw_csv_root,
iselector=train_ids, transform=transform,
label_keys=label_keys)
dataset_train_all.append(dataset_train_x)
self.dataset_train = ConcatDataset(dataset_train_all)
#
# Create the data loaders for training and testing
#
self.dataloaders = {'train' : DataLoader(self.dataset_train, batch_size=loader_batch_size,
shuffle=True, num_workers=num_workers),
'test' : DataLoader(self.dataset_test, batch_size=loader_batch_size,
shuffle=False, num_workers=num_workers)}
self.dataset_sizes = {'train' : len(self.dataset_train), 'test' : len(self.dataset_test)}
#
# Define the model
#
if self.inp_label_key.strip() == 'Kantarell vs Fluesvamp':
num_classes = self.dataset_test.n_family
elif self.inp_label_key.strip() == 'Champignon vs Fluesvamp':
num_classes = self.dataset_test.n_genus
elif self.inp_label_key.strip() == 'Kantarell Species':
num_classes = self.dataset_test.n_species
elif self.inp_label_key is None:
num_classes = self.dataset_test.n_species
else:
raise ValueError('Unknown label_key: {}'.format(self.inp_label_key))
self.model, self.input_size = initialize_model(self.inp_model_label, num_classes,
self.inp_use_pretrained,
self.inp_feature_extract)
self.is_inception = 'inception' in self.inp_model_label
#
# Define criterion and optimizer and scheduler
#
self.criterion = nn.CrossEntropyLoss()
self.set_optim()
self.set_device()
def set_optim(self, lr=0.001, momentum=0.9, scheduler_step_size=7, scheduler_gamma=0.1):
'''Set what and how to optimize'''
params_to_update = []
for name, param in self.model.named_parameters():
if param.requires_grad:
params_to_update.append(param)
self.optimizer = optim.SGD(params_to_update, lr=lr, momentum=momentum)
self.exp_lr_scheduler = optim.lr_scheduler.StepLR(self.optimizer,
step_size=scheduler_step_size,
gamma=scheduler_gamma)
def set_device(self):
'''Set device'''
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def train_model(self, n_epochs):
'''Train the model a set number of epochs
'''
best_model_wts = copy.deepcopy(self.model.state_dict())
best_acc = 0.0
#
# Iterate over epochs
#
since = time.time()
for epoch in range(n_epochs):
print('Epoch {}/{}'.format(epoch, n_epochs - 1), file=self.inp_f_out)
print('-' * 10, file=self.inp_f_out)
# Each epoch has a training and validation phase
for phase in ['train', 'test']:
if phase == 'train':
self.model.train()
else:
self.model.eval()
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in self.dataloaders[phase]:
inputs = inputs.to(self.device)
labels = labels.to(self.device)
# zero the parameter gradients
self.optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
if self.is_inception and phase == 'train':
outputs, aux_outputs = self.model(inputs)
loss1 = self.criterion(outputs, labels)
loss2 = self.criterion(aux_outputs, labels)
loss = loss1 + 0.4 * loss2
else:
outputs = self.model(inputs)
loss = self.criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
self.optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
self.exp_lr_scheduler.step()
epoch_loss = running_loss / self.dataset_sizes[phase]
epoch_acc = running_corrects.double() / self.dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc), file=self.inp_f_out)
# deep copy the model
if phase == 'test' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(self.model.state_dict())
print('', file=self.inp_f_out)
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60), file=self.inp_f_out)
print('Best val Acc: {:4f}'.format(best_acc), file=self.inp_f_out)
# load best model weights
self.model.load_state_dict(best_model_wts)
def load_model_state(self, load_file_name):
dd = torch.load(load_file_name + '.tar')
self.model.load_state_dict(dd['model_state_dict'])
self.optimizer.load_state_dict(dd['optimizer_state_dict'])
def save_model_state(self, save_file_name):
torch.save({'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict()},
save_file_name + '.tar')
def print_inp(self):
'''Output input parameters for easy reference in future
'''
the_time = time.localtime()
print('Run at {}/{}/{} {}:{}:{} with arguments:'.format(the_time.tm_year, the_time.tm_mon, the_time.tm_mday,
the_time.tm_hour, the_time.tm_min, the_time.tm_sec),
file=self.inp_f_out)
for attr_name, attr_value in self.__dict__.items():
if 'inp_' == attr_name[0:4]:
key = attr_name[4:]
print('{} : {}'.format(key, attr_value), file=self.inp_f_out)
def eval_model(self, phase='test', custom_dataloader=None):
self.model.eval()
if custom_dataloader is None:
dloader = self.dataloaders[phase]
else:
dloader = custom_dataloader
y_true = []
y_pred = []
for inputs, labels in dloader:
inputs = inputs.to(self.device)
labels = labels.to(self.device)
outputs = self.model(inputs)
_, preds = torch.max(outputs, 1)
y_true += labels.data.tolist()
y_pred += preds.data.tolist()
mismatch_idxs = [n for n, (yt, yp) in enumerate(zip(y_true, y_pred)) if yt != yp]
return y_true, y_pred, mismatch_idxs
def confusion_matrix(self, phase='test', custom_dataloader=None):
'''Create the confusion matrix for current model
'''
y_true, y_pred, mismatch_idxs = self.eval_model(phase, custom_dataloader)
return confusion_matrix(y_true, y_pred), mismatch_idxs
def attribution_idx_(self, idx, attr_type, phase='test', custom_dataloader=None,
occlusion_size=15):
'''Run attribution method on image
'''
self.model.eval()
if custom_dataloader is None:
dloader = self.dataloaders[phase]
else:
dloader = custom_dataloader
input, label = dloader.dataset[idx]
input = input.unsqueeze(0)
input = input.to(self.device)
output = self.model(input)
_, pred = torch.max(output, 1)
if attr_type == 'noise tunnel':
self._attr_noise_tunnel(input, pred)
elif attr_type == 'occlusion':
self._attr_occlusion(input, pred, occlusion_size)
def _attr_occlusion(self, input, pred_label_idx, w_size=15):
occlusion = Occlusion(self.model)
attributions_occ = occlusion.attribute(input,
strides=(3, int(w_size / 2), int(w_size / 2)),
target=pred_label_idx,
sliding_window_shapes=(3, w_size, w_size),
baselines=0)
_ = viz.visualize_image_attr_multiple(
np.transpose(attributions_occ.squeeze().cpu().detach().numpy(), (1, 2, 0)),
np.transpose(input.squeeze().cpu().detach().numpy(), (1, 2, 0)),
["original_image", "heat_map"],
["all", "positive"],
show_colorbar=True,
outlier_perc=2,
)
def _attr_noise_tunnel(self, input, pred):
attr_algo = NoiseTunnel(IntegratedGradients(self.model))
default_cmap = LinearSegmentedColormap.from_list('custom blue',
[(0, '#ffffff'),
(0.25, '#000000'),
(1, '#000000')], N=256)
attr_ = attr_algo.attribute(input, n_samples=10, nt_type='smoothgrad_sq', target=pred)
_ = viz.visualize_image_attr_multiple(
np.transpose(attr_.squeeze().cpu().detach().numpy(), (1, 2, 0)),
np.transpose(input.squeeze().cpu().detach().numpy(), (1, 2, 0)),
["original_image", "heat_map"],
["all", "positive"],
cmap=default_cmap,
show_colorbar=True)
def test1():
r1 = Runner(raw_csv_toc='../../Desktop/Fungi/toc_full.csv', raw_csv_root='../../Desktop/Fungi',
transforms_aug_train=None)
r1.print_inp()
r1.train_model(1)
r1.save_model_state('test')
def test2():
r2 = Runner(raw_csv_toc='../../Desktop/Fungi/toc_full.csv', raw_csv_root='../../Desktop/Fungi',
transform_imgs='standard_300',
transforms_aug_train=['random_resized_crop'], f_test=0.15,
loader_batch_size=32,
model_label='inception_v3', label_key='Champignon vs Fluesvamp')
r2.print_inp()
print (r2.dataset_sizes)
r2.train_model(21)
r2.save_model_state('save_champ_binary_aug1_inception_1')
r2 = Runner(raw_csv_toc='../../Desktop/Fungi/toc_full.csv', raw_csv_root='../../Desktop/Fungi',
transform_imgs='standard_300',
transforms_aug_train=[], f_test=0.15,
loader_batch_size=32,
model_label='inception_v3', label_key='Champignon vs Fluesvamp')
r2.print_inp()
print (r2.dataset_sizes)
r2.train_model(21)
r2.save_model_state('save_champ_binary_noaug_inception_1')
def test3():
r3 = Runner(raw_csv_toc='../../Desktop/Fungi/toc_full.csv', raw_csv_root='../../Desktop/Fungi',
transforms_aug_train=[], f_test=0.15,
model_label='vgg', label_key='Kantarell vs Fluesvamp')
print (r3.dataset_sizes)
print (r3.dataset_test.label_semantics)
r3.load_model_state('save_kant_binary_noaug_vgg16_21epoch')
matrix, mismatch = r3.confusion_matrix()
print (matrix)
print (mismatch)
print (r3.dataset_test.img_toc.iloc[mismatch])
for mis_idx in mismatch:
save_image(r3.dataset_test[mis_idx][0], 'fail_{}.png'.format(mis_idx))
def test4():
r4 = Runner(raw_csv_toc='../../Desktop/Fungi/toc_full.csv', raw_csv_root='../../Desktop/Fungi',
transforms_aug_train=[], f_test=0.15,
model_label='alexnet', label_key='Kantarell vs Fluesvamp')
r4.print_inp()
print (r4.dataset_sizes)
r4.train_model(21)
r4.save_model_state('save_kant_binary_noaug_alex_21epoch')
m1, m2 = r4.confusion_matrix()
print (m1)
def test5():
r5 = Runner(raw_csv_toc='../../Desktop/Fungi/toc_full.csv', raw_csv_root='../../Desktop/Fungi',
transforms_aug_train=[], f_test=0.15,
model_label='alexnet', label_key='Kantarell vs Fluesvamp')
r5.load_model_state('save_kant_binary_augresizecrop_alex_21epoch')
m1, m2 = r5.confusion_matrix()
print (m1)
print (m2)
print ([r5.dataset_test.img_toc.iloc[m2]])
r5.attribution_idx_(287, 'occlusion', occlusion_size=30)
def test6():
r6 = Runner(raw_csv_toc='../../Desktop/Fungi/toc_full.csv', raw_csv_root='../../Desktop/Fungi',
transforms_aug_train=['random_resized_crop'], f_test=0.15,
model_label='alexnet', label_key='Kantarell vs Fluesvamp')
r6.print_inp()
print (r6.dataset_sizes)
r6.train_model(21)
r6.save_model_state('save_kant_binary_augresizecrop_alex_21epoch')
m1, m2 = r6.confusion_matrix()
print (m1)
def test7():
r7 = Runner(raw_csv_toc='../../Desktop/Fungi/toc_full.csv', raw_csv_root='../../Desktop/Fungi',
transforms_aug_train=['random_resized_crop'], f_test=0.15,
model_label='resnext', label_key='Kantarell vs Fluesvamp', feature_extract=False)
r7.print_inp()
print (r7.dataset_sizes)
r7.train_model(21)
r7.save_model_state('save_kant_binary_augresizecrop_resnext_21epoch')
m1, m2 = r7.confusion_matrix()
print (m1)
def test8():
r8 = Runner(raw_csv_toc='../../Desktop/Fungi/toc_full.csv', raw_csv_root='../../Desktop/Fungi',
transforms_aug_train=['random_resized_crop'], f_test=0.15,
model_label='inception_v3', label_key='Kantarell vs Fluesvamp', feature_extract=True)
r8.print_inp()
r8.train_model(21)
r8.save_model_state('save_kant_binary_augresize_crop_inception_feature_21epoch')
m1, m2 = r8.confusion_matrix()
print (m1)
r8 = Runner(raw_csv_toc='../../Desktop/Fungi/toc_full.csv', raw_csv_root='../../Desktop/Fungi',
transforms_aug_train=['random_resized_crop'], f_test=0.15,
model_label='inception_v3', label_key='Kantarell vs Fluesvamp', feature_extract=False)
r8.print_inp()
r8.train_model(21)
r8.save_model_state('save_kant_binary_augresize_crop_inception_21epoch')
m1, m2 = r8.confusion_matrix()
print (m1)
def test9():
r9 = Runner(raw_csv_toc='../../Desktop/Fungi/toc_full.csv', raw_csv_root='../../Desktop/Fungi',
transforms_aug_train=['random_resized_crop'], f_test=0.15, random_seed=9901,
model_label='inception_v3', label_key='Kantarell Species', feature_extract=False)
r9.print_inp()
r9.train_model(21)
r9.save_model_state('save_kant_species_augresize_crop_inception_21epoch_2')
m1, m2 = r9.confusion_matrix()
print (m1)
def test10():
r10 = Runner(raw_csv_toc='../../Desktop/Fungi/toc_full.csv', raw_csv_root='../../Desktop/Fungi',
transforms_aug_train=['random_resized_crop'], f_test=0.15, random_seed=9901,
model_label='resnet101', label_key='Kantarell Species', feature_extract=False)
r10.print_inp()
r10.train_model(21)
r10.save_model_state('save_kant_species_augresize_crop_resnet101_21epoch')
m1, m2 = r10.confusion_matrix()
print (m1)
test2()
#test3()
#test6()
#test8()
#test10()