-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathBioGPT_Base_train.py
307 lines (249 loc) · 11.6 KB
/
BioGPT_Base_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import torch
import torch.nn as nn
from torch.optim import AdamW
from torch.utils.data import DataLoader
from tqdm import tqdm
import logging
from pathlib import Path
import json
import nltk
from rouge_score import rouge_scorer
# Ensure NLTK packages are downloaded if needed:
# nltk.download('wordnet')
from BioGPT_Base_data_processing import get_dataloaders
from BioGPT_Base_alignment_model import ImageTextAlignmentModel
from BioGPT_Base_report_generator import MedicalReportGenerator
from biovil_t.pretrained import get_biovil_t_image_encoder
def save_checkpoint(epoch: int, alignment_model: nn.Module, report_generator: MedicalReportGenerator,
alignment_optimizer: torch.optim.Optimizer, generator_optimizer: torch.optim.Optimizer,
metrics: dict, save_path: Path) -> None:
"""Save intermediate model checkpoint for training resumption"""
checkpoint = {
'epoch': epoch,
'alignment_model_state_dict': alignment_model.state_dict(),
'report_generator_model': report_generator.model.state_dict(),
'report_generator_projection': report_generator.input_projection.state_dict(),
'alignment_optimizer_state_dict': alignment_optimizer.state_dict(),
'generator_optimizer_state_dict': generator_optimizer.state_dict(),
'metrics': metrics
}
torch.save(checkpoint, save_path)
def save_best_model(alignment_model: nn.Module, report_generator: MedicalReportGenerator, metrics: dict, save_dir: Path) -> None:
"""Save the best model with metrics using the proper PEFT saving methods."""
# Save alignment model
torch.save(alignment_model.state_dict(), save_dir / "best_alignment_model.pt")
# Save report generator LoRA adapter weights and configuration
report_generator.model.save_pretrained(save_dir / "best_report_generator")
# Save the projection layer
torch.save(report_generator.input_projection.state_dict(),
save_dir / "best_report_generator_projection.pt")
# Save metrics
with open(save_dir / 'best_model_metrics.json', 'w') as f:
json.dump(metrics, f, indent=4)
def compute_metrics(references, predictions):
"""
Compute ROUGE-L scores.
references: List of reference strings
predictions: List of predicted strings
"""
try:
scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)
rouge_l_scores = []
for r, p in zip(references, predictions):
try:
score = scorer.score(r, p)['rougeL'].fmeasure
rouge_l_scores.append(score)
except:
rouge_l_scores.append(0.0)
avg_rouge_l = (sum(rouge_l_scores) / len(rouge_l_scores)) * 100.0 if rouge_l_scores else 0.0
except Exception:
avg_rouge_l = 0.0
return avg_rouge_l
def train_model(csv_path: str, save_dir: str, num_epochs: int = 30):
"""
Train the medical report generation model
Args:
csv_path: Path to CSV file containing image paths and reports
save_dir: Directory to save model checkpoints and final best model
num_epochs: Number of training epochs
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Initialize models
image_encoder = get_biovil_t_image_encoder()
alignment_model = ImageTextAlignmentModel(image_embedding_dim=512)
report_generator = MedicalReportGenerator()
# Move models to device
image_encoder = image_encoder.to(device)
alignment_model = alignment_model.to(device)
report_generator = report_generator.to(device)
# Get dataloaders
train_loader, val_loader = get_dataloaders(csv_path)
# Optimizers
alignment_optimizer = AdamW(alignment_model.parameters(), lr=2e-5)
peft_params = [p for p in report_generator.model.parameters() if p.requires_grad]
generator_optimizer = AdamW([
{'params': peft_params, 'lr': 2e-5},
{'params': report_generator.input_projection.parameters(), 'lr': 1e-4}
])
# Loss function for alignment
contrastive_loss = nn.CosineEmbeddingLoss()
# Create save directories
save_dir = Path(save_dir)
checkpoints_dir = save_dir / "checkpoints"
best_model_dir = save_dir / "best_model"
for dir_path in [checkpoints_dir, best_model_dir]:
dir_path.mkdir(exist_ok=True, parents=True)
# Track best validation metrics
best_val_loss = float('inf')
best_metrics = None
# Load last checkpoint if exists
last_checkpoint = max(checkpoints_dir.glob("checkpoint_*.pt"), default=None,
key=lambda x: int(x.stem.split('_')[1]))
start_epoch = 0
if last_checkpoint:
print(f"Loading checkpoint: {last_checkpoint}")
checkpoint = torch.load(last_checkpoint, map_location=device)
alignment_model.load_state_dict(checkpoint['alignment_model_state_dict'])
report_generator.model.load_state_dict(checkpoint['report_generator_model'])
report_generator.input_projection.load_state_dict(checkpoint['report_generator_projection'])
alignment_optimizer.load_state_dict(checkpoint['alignment_optimizer_state_dict'])
generator_optimizer.load_state_dict(checkpoint['generator_optimizer_state_dict'])
start_epoch = checkpoint['epoch'] + 1
print(f"Resuming from epoch {start_epoch}")
for epoch in range(start_epoch, num_epochs):
print(f"\nEpoch {epoch + 1}/{num_epochs}")
# Training Phase
image_encoder.eval() # Keep image encoder in eval mode
alignment_model.train()
report_generator.train()
train_align_losses = []
train_gen_losses = []
progress_bar = tqdm(train_loader, desc='Training')
for batch_idx, (images, impressions) in enumerate(progress_bar):
images = images.to(device)
# Get image embeddings
with torch.no_grad():
image_embeddings = image_encoder(images).img_embedding
# Alignment phase
alignment_optimizer.zero_grad()
projected_image, projected_text = alignment_model(image_embeddings, impressions)
batch_size = images.size(0)
labels = torch.ones(batch_size).to(device)
align_loss = contrastive_loss(projected_image, projected_text, labels)
align_loss.backward()
alignment_optimizer.step()
# Generation phase
generator_optimizer.zero_grad()
target_encoding = report_generator.tokenizer(
impressions,
padding=True,
truncation=True,
return_tensors="pt",
max_length=150
).to(device)
target_ids = target_encoding['input_ids']
gen_loss, logits = report_generator(projected_image.detach(), target_ids)
gen_loss.backward()
generator_optimizer.step()
train_align_losses.append(align_loss.item())
train_gen_losses.append(gen_loss.item())
progress_bar.set_postfix({
'Align Loss': f'{align_loss.item():.4f}',
'Gen Loss': f'{gen_loss.item():.4f}'
})
# Print sample outputs every 50 batches
if batch_idx % 50 == 0:
with torch.no_grad():
sample_report = report_generator.generate_report(projected_image[0:1].detach())[0]
print("\nSample Generation:")
print(f"Generated: {sample_report}")
print(f"Target: {impressions[0]}\n")
# Calculate average training losses
avg_train_align_loss = sum(train_align_losses) / len(train_align_losses)
avg_train_gen_loss = sum(train_gen_losses) / len(train_gen_losses)
# Validation Phase
alignment_model.eval()
report_generator.eval()
val_align_losses = []
val_gen_losses = []
val_references = []
val_predictions = []
print("\nRunning validation...")
with torch.no_grad():
for val_images, val_impressions in val_loader:
val_images = val_images.to(device)
val_image_embeddings = image_encoder(val_images).img_embedding
val_projected_image, val_projected_text = alignment_model(val_image_embeddings, val_impressions)
# Alignment loss
val_labels = torch.ones(val_images.size(0)).to(device)
val_align_loss = contrastive_loss(val_projected_image, val_projected_text, val_labels)
val_align_losses.append(val_align_loss.item())
# Generation loss
val_target_encoding = report_generator.tokenizer(
val_impressions,
padding=True,
truncation=True,
return_tensors="pt",
max_length=150
).to(device)
val_target_ids = val_target_encoding['input_ids']
val_gen_loss, _ = report_generator(val_projected_image, val_target_ids)
val_gen_losses.append(val_gen_loss.item())
# Generate predictions for metrics
batch_predictions = report_generator.generate_report(val_projected_image)
val_predictions.extend(batch_predictions)
val_references.extend(val_impressions)
# Calculate average validation losses
avg_val_align_loss = sum(val_align_losses) / len(val_align_losses)
avg_val_gen_loss = sum(val_gen_losses) / len(val_gen_losses)
# Compute metrics
rouge_l = compute_metrics(val_references, val_predictions)
# Current metrics
current_metrics = {
'epoch': epoch + 1,
'train_align_loss': avg_train_align_loss,
'train_gen_loss': avg_train_gen_loss,
'val_align_loss': avg_val_align_loss,
'val_gen_loss': avg_val_gen_loss,
'rouge_l': rouge_l
}
print(f"\nEpoch {epoch + 1} Summary:")
print(json.dumps(current_metrics, indent=4))
# Save checkpoint for each epoch
checkpoint_path = checkpoints_dir / f"checkpoint_{epoch}.pt"
save_checkpoint(
epoch=epoch,
alignment_model=alignment_model,
report_generator=report_generator,
alignment_optimizer=alignment_optimizer,
generator_optimizer=generator_optimizer,
metrics=current_metrics,
save_path=checkpoint_path
)
print(f"\nSaved checkpoint to {checkpoint_path}")
# Save best model if validation loss improved
val_loss = avg_val_align_loss + avg_val_gen_loss
if val_loss < best_val_loss:
best_val_loss = val_loss
best_metrics = current_metrics
print("\nSaving best model...")
save_best_model(alignment_model, report_generator, current_metrics, best_model_dir)
# Save pointer to best checkpoint
with open(save_dir / "best_checkpoint.txt", "w") as f:
f.write(f"checkpoint_{epoch}.pt")
print("\nTraining completed!")
if best_metrics:
print("\nBest model metrics:")
print(json.dumps(best_metrics, indent=4))
return alignment_model, report_generator
if __name__ == "__main__":
# Set paths
csv_path = "Data/final.csv"
save_dir = "checkpoints"
# Start training
print("Starting training...")
alignment_model, report_generator = train_model(csv_path=csv_path,
save_dir=save_dir,
num_epochs=30)
print("Training completed!")