forked from WoosukKwon/retraining-free-pruning
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
243 lines (213 loc) · 7.85 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import argparse
import logging
import os
import time
import numpy as np
import torch
from torch.utils.data import DataLoader, Subset
from torch.nn.utils.rnn import pad_sequence
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoModelForQuestionAnswering,
AutoTokenizer,
DataCollatorWithPadding,
set_seed,
)
from dataset.glue import glue_dataset, max_seq_length, avg_seq_length
from dataset.squad import squad_dataset
from efficiency.mac import compute_mask_mac
from efficiency.latency import estimate_latency
from prune.fisher import collect_mask_grads
from prune.search import search_mac, search_latency
from prune.rearrange import rearrange_mask
from prune.rescale import rescale_mask
from evaluate.nlp import test_accuracy
from utils.schedule import get_pruning_schedule
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, required=True)
parser.add_argument("--task_name", type=str, required=True, choices=[
"mnli",
"qqp",
"qnli",
"sst2",
"stsb",
"mrpc",
"squad",
"squad_v2",
])
parser.add_argument("--ckpt_dir", type=str, required=True)
parser.add_argument("--output_dir", type=str, default=None)
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--metric", type=str, choices=[
"mac",
"latency",
], default="mac")
parser.add_argument("--constraint", type=float, required=True,
help="MAC/latency constraint relative to the original model",
)
parser.add_argument("--mha_lut", type=str, default=None)
parser.add_argument("--ffn_lut", type=str, default=None)
parser.add_argument("--num_samples", type=int, default=2048)
parser.add_argument("--seed", type=int, default=0)
def main():
args = parser.parse_args()
IS_SQUAD = "squad" in args.task_name
IS_LARGE = "large" in args.model_name
seq_len = 170 if IS_SQUAD else avg_seq_length(args.task_name)
# Create the output directory
if args.output_dir is None:
args.output_dir = os.path.join(
"outputs",
args.model_name,
args.task_name,
args.metric,
str(args.constraint),
f"seed_{args.seed}",
)
os.makedirs(args.output_dir, exist_ok=True)
# Initiate the logger
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
handlers=[
logging.StreamHandler(),
logging.FileHandler(os.path.join(args.output_dir, "log.txt")),
],
)
logger.info(args)
# Set a GPU and the experiment seed
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
set_seed(args.seed)
logger.info(f"Seed number: {args.seed}")
# Load the finetuned model and the corresponding tokenizer
config = AutoConfig.from_pretrained(args.ckpt_dir)
model_generator = AutoModelForQuestionAnswering if IS_SQUAD else AutoModelForSequenceClassification
model = model_generator.from_pretrained(args.ckpt_dir, config=config)
tokenizer = AutoTokenizer.from_pretrained(
args.model_name,
use_fast=True,
use_auth_token=None,
)
# Load the training dataset
if IS_SQUAD:
training_dataset = squad_dataset(
args.task_name,
tokenizer,
training=True,
max_seq_len=384,
pad_to_max=False,
)
else:
training_dataset = glue_dataset(
args.task_name,
tokenizer,
training=True,
max_seq_len=max_seq_length(args.task_name),
pad_to_max=False,
)
# Sample the examples to be used for search
collate_fn = DataCollatorWithPadding(tokenizer)
sample_dataset = Subset(
training_dataset,
np.random.choice(len(training_dataset), args.num_samples).tolist(),
)
#creating dummy input for the onnx convertion
dummy_inp_seq = [torch.tensor(seq) for seq in sample_dataset[0:32]['input_ids']]
print(len(dummy_inp_seq))
dummy_inp_onnx = pad_sequence(dummy_inp_seq, batch_first=True, padding_value=0).to('cuda')
sample_batch_size = int((12 if IS_SQUAD else 32) * (0.5 if IS_LARGE else 1))
sample_dataloader = DataLoader(
sample_dataset,
batch_size=sample_batch_size,
collate_fn=collate_fn,
shuffle=False,
pin_memory=True,
)
# Prepare the model
model = model.cuda()
model.eval()
for param in model.parameters():
param.requires_grad_(False)
full_head_mask = torch.ones(config.num_hidden_layers, config.num_attention_heads).cuda()
full_neuron_mask = torch.ones(config.num_hidden_layers, config.intermediate_size).cuda()
start = time.time()
# Search the optimal mask
head_grads, neuron_grads = collect_mask_grads(
model,
full_head_mask,
full_neuron_mask,
sample_dataloader,
)
teacher_constraint = get_pruning_schedule(target=args.constraint, num_iter=2)[0]
if args.metric == "mac":
teacher_head_mask, teacher_neuron_mask = search_mac(
config,
head_grads,
neuron_grads,
seq_len,
teacher_constraint,
)
head_mask, neuron_mask = search_mac(
config,
head_grads,
neuron_grads,
seq_len,
args.constraint,
)
pruned_mac, orig_mac = compute_mask_mac(head_mask, neuron_mask, seq_len, config.hidden_size)
logger.info(f"Pruned Model MAC: {pruned_mac / orig_mac * 100.0:.2f} %")
elif args.metric == "latency":
mha_lut = torch.load(args.mha_lut)
ffn_lut = torch.load(args.ffn_lut)
teacher_head_mask, teacher_neuron_mask = search_latency(
config,
head_grads,
neuron_grads,
teacher_constraint,
mha_lut,
ffn_lut,
)
head_mask, neuron_mask = search_latency(
config,
head_grads,
neuron_grads,
args.constraint,
mha_lut,
ffn_lut,
)
pruned_latency = estimate_latency(mha_lut, ffn_lut, head_mask, neuron_mask)
logger.info(f"Pruned Model Latency: {pruned_latency:.2f} ms")
# Rearrange the mask
head_mask = rearrange_mask(head_mask, head_grads)
neuron_mask = rearrange_mask(neuron_mask, neuron_grads)
# Rescale the mask by solving a least squares problem
head_mask, neuron_mask = rescale_mask(
model,
config,
teacher_head_mask,
teacher_neuron_mask,
head_mask,
neuron_mask,
sample_dataloader,
classification_task=not IS_SQUAD,
)
# Print the pruning time
end = time.time()
logger.info(f"{args.task_name} Pruning time (s): {end - start}")
# Evaluate the accuracy
test_acc, model_to_save = test_accuracy(model, head_mask, neuron_mask, tokenizer, args.task_name)
logger.info(f"{args.task_name} Test accuracy: {test_acc:.4f}")
torch.save(model_to_save.state_dict(), os.path.join(args.output_dir, "pruned_model.pt"))
# Export the model to ONNX format
torch.onnx.export(model_to_save, dummy_inp_onnx,os.path.join(args.output_dir, "pruned_model.onnx"),opset_version=11,
do_constant_folding=True, input_names = ['input_ids', 'input_mask', 'segment_ids'], output_names=['output_start_logits', 'output_end_logits'],
dynamic_axes={'input_ids' : {0 : 'batch_size'}, 'input_mask': {0 : 'batch_size'}, 'segment_ids': {0 : 'batch_size'}, 'output_start_logits' : {0 : 'batch_size'}, 'output_end_logits': {0 : 'batch_size'}})
print("Pruned model saved in:"+ args.output_dir)
# Save the masks
torch.save(head_mask, os.path.join(args.output_dir, "head_mask.pt"))
torch.save(neuron_mask, os.path.join(args.output_dir, "neuron_mask.pt"))
if __name__ == "__main__":
main()