-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtrain.py
291 lines (240 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import division
from __future__ import print_function
import os, itertools, random, argparse, time, datetime
os.environ["CUDA_VISIBLE_DEVICES"]='1'
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import numpy as np
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import roc_auc_score, accuracy_score
from sklearn.metrics import precision_recall_curve
import scipy.sparse as sp
from utils import *
from models import *
import shutil
import logging
import glob
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
# Training settings
ap = argparse.ArgumentParser()
ap.add_argument('--dataset', type=str, default='THAD6h', help="dataset string")
ap.add_argument('--embedding', type=str, default='thailand', help="word embedding string")
ap.add_argument('--tensorboard_log', type=str, default='', help="name of this run (use timestamp instead)")
ap.add_argument('--seed', type=int, default=42, help='random seed')
ap.add_argument('--epochs', default=1000, type=int, help='number of epochs to train')
ap.add_argument('--batch', type=int, default=1, help="batch size (due to sparse matrix operations)")
ap.add_argument('--lr', type=float, default=1e-3, help='initial learning rate')
ap.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay (L2 loss on parameters)')
ap.add_argument('--dropout', type=float, default=0.2, help='dropout rate (1 - keep probability)')
ap.add_argument('--f_dim', type=int, default=100, help="feature dimensions of graph nodes")
ap.add_argument('--n_hidden', default=7, type=int, help='number of hidden layers')
ap.add_argument('--n_class', type=int, default=1, help="number of class (default 1)")
ap.add_argument('--check_point', type=int, default=1, help="check point")
ap.add_argument('--model', default='DynamicGCN', choices=['DynamicGCN','GCN'], help='')
ap.add_argument('--shuffle', action='store_false', default=True, help="Shuffle dataset 0/1")
ap.add_argument('--train', type=float, default=.825, help="training ratio (0, 1)")
ap.add_argument('--val', type=float, default=.175, help="validation ratio (0, 1)")
ap.add_argument('--test', type=float, default=.0, help="testing ratio (0, 1) test file is seperated")
ap.add_argument('--fastmode', action='store_true', default=False, help='validate during training')
ap.add_argument('--mylog', action='store_false', default=True, help='tensorboad log')
ap.add_argument('--patience', type=int, default=10, help='patience for early stop')
ap.add_argument('--cuda', action='store_false', default=True, help='use cuda')
args = ap.parse_args()
print('--------------Parameters--------------')
print(args)
print('--------------------------------------')
np.random.seed(args.seed)
args.cuda = args.cuda and torch.cuda.is_available()
logger.info('CUDA status %s', args.cuda)
if args.cuda:
torch.cuda.manual_seed(args.seed)
time_token = str(time.time()).split('.')[0] # tensorboard model
log_token = '%s_%s_%s_%s_%s' % (args.dataset, args.f_dim, args.model, time_token, args.tensorboard_log)
if args.mylog:
tensorboard_log_dir = 'tensorboard/%s' % (log_token)
if not os.path.exists(tensorboard_log_dir):
os.makedirs(tensorboard_log_dir)
writer = SummaryWriter(tensorboard_log_dir)
shutil.rmtree(tensorboard_log_dir)
logger.info('tensorboard logging to %s', tensorboard_log_dir)
logger.info('dimension of feature %s', args.f_dim)
if args.model == 'DynamicGCN':
train_dict, val_dict, test_dict, pretrained_emb = load_sparse_temporal_data(args.dataset, args.embedding, args.f_dim, args.train, args.val, args.test)
else:
train_dict, val_dict, test_dict, pretrained_emb = load_dynamic_graph_data(args.dataset, args.embedding, args.f_dim, args.train, args.val, args.test)
if args.cuda:
pretrained_emb = pretrained_emb.cuda()
logger.info('load dataset %s', args.dataset)
if args.model == 'DynamicGCN':
model = DynamicGCN(pretrained_emb=pretrained_emb,
n_output=args.n_class,
n_hidden=args.n_hidden, #hidden layer
dropout=args.dropout)
else:
model = GCN(pretrained_emb=pretrained_emb,
n_output=args.n_class,
dropout=args.dropout)
logger.info('model %s', args.model)
if args.cuda:
model.cuda()
# optimizer and loss
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.weight_decay)
pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('total number of parameters:',pytorch_total_params)
if args.embedding == 'egypy':
class_weights = torch.FloatTensor([0.38, 0.62])
elif args.embedding == 'india':
class_weights = torch.FloatTensor([0.37, 0.63])
elif args.embedding == 'pakistan':
class_weights = torch.FloatTensor([0.15, 0.85])
elif args.embedding == 'germany':
class_weights = torch.FloatTensor([0.12, 0.88])
elif args.embedding == 'turkey':
class_weights = torch.FloatTensor([0.21, 0.79])
elif args.embedding == 'thailand':
class_weights = torch.FloatTensor([0.38, 0.62])
elif args.embedding == 'russian':
class_weights = torch.FloatTensor([0.33, 0.67])
else:
class_weights = torch.FloatTensor([0.5, 0.5])
if args.cuda:
class_weights = class_weights.cuda()
def evaluate(epoch, val_dict, log_desc='val_'):
model.eval()
total = 0.
loss, prec, rec, f1, acc, auc = 0., 0., 0., 0., 0., 0.
y_true, y_pred, y_score = [], [], []
batch_size = 1
x_val, y_val, idx_val = val_dict['x'], val_dict['y'], val_dict['idx']
for i in range(len(x_val)):
adj = x_val[i]
y = y_val[i]
idx = idx_val[i]
if args.cuda:
y = y.cuda()
idx = idx.cuda()
if args.model == 'DynamicGCN':
for i in range(len(adj)):
adj[i] = adj[i].cuda()
else:
adj = adj.cuda()
output,_ = model(adj, idx)
loss_train = F.binary_cross_entropy(output, y, weight=class_weights[int(y.item())])
loss += batch_size * loss_train.item()
y_true += y.data.tolist()
bi_val = np.where(output.data.cpu().numpy() > 0.5, 1, 0)
y_pred += torch.from_numpy(bi_val).tolist()
y_score += output.data.tolist()
total += batch_size
# print(y_pred,y_true);exit()
prec, rec, f1, _ = precision_recall_fscore_support(y_true, y_pred, average="binary")
acc = accuracy_score(y_true, y_pred)
auc = roc_auc_score(y_true, y_score)
logger.info("%sloss: %.4f AUC: %.4f Prec: %.4f Rec: %.4f F1: %.4f Acc: %.4f", #
log_desc, loss / total, auc, prec, rec, f1, acc)
if args.mylog:
if log_desc != 'train_':
writer.add_scalars('data/loss', {log_desc: loss / total}, epoch + 1)
writer.add_scalars('data/auc', {log_desc: auc}, epoch + 1)
writer.add_scalars('data/prec', {log_desc: prec}, epoch + 1)
writer.add_scalars('data/rec', {log_desc: rec}, epoch + 1)
writer.add_scalars('data/f1', {log_desc: f1}, epoch + 1)
writer.add_scalars('data/acc', {log_desc: acc}, epoch + 1)
return prec, rec, f1, acc, auc
def train(epoch, train_dict, val_dict, test_dict):
model.train()
loss, total = 0., 0.
batch_size = 1
x_train, y_train, idx_train = train_dict['x'], train_dict['y'], train_dict['idx']
if sys.version_info > (3, 0):
combined = list(zip(x_train, y_train, idx_train))
random.shuffle(combined)
x_train[:], y_train[:], idx_train[:] = zip(*combined)
else:
z = zip(x_train, y_train, idx_train)
random.shuffle(z)
x_train, y_train, idx_train = zip(*z)
for i in range(len(x_train)):
adj = x_train[i]
y = y_train[i]
# feature = f_train[i]
idx = idx_train[i]
if args.cuda:
y = y.cuda()
idx = idx.cuda()
if args.model == 'DynamicGCN':
for i in range(len(adj)):
adj[i] = adj[i].cuda()
else:
adj = adj.cuda()
optimizer.zero_grad()
output,_ = model(adj, idx)
loss_train = F.binary_cross_entropy(output, y, weight=class_weights[int(y.item())])
loss += batch_size * loss_train.item()
total += batch_size
loss_train.backward()
optimizer.step()
logger.info("train loss epoch %d %f", epoch, loss / total)
if args.mylog:
writer.add_scalars('data/loss', {'train_': loss / total}, epoch + 1)
if not args.fastmode:
if (epoch + 0) % args.check_point == 0:
logger.info("epoch %d, checkpoint!", epoch)
if args.val > 0.:
# evaluate(epoch, train_dict, log_desc='train_')
prec, rec, f1, acc, auc = evaluate(epoch, val_dict, log_desc='val_')
else:
evaluate(epoch, train_dict, log_desc='train_')
prec, rec, f1, acc, auc = evaluate(epoch, test_dict, log_desc='test_')
return acc
# Train model
t_total = time.time()
logger.info("training...")
# if args.mylog:
# model sub folder
model_dir = 'model/%s' % (log_token)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
bad_counter = 0
best_epoch = 0
best_acc = 0.
for epoch in range(args.epochs):
cur_acc = train(epoch, train_dict, val_dict, test_dict)
# if args.mylog:
model_file = '%s/%s.pkl' % (model_dir, epoch)
torch.save(model.state_dict(), model_file)
if cur_acc > best_acc:
best_acc = cur_acc
best_epoch = epoch
bad_counter = 0
else:
bad_counter += 1
if bad_counter == args.patience:
break
# remove other models
files = glob.glob(model_dir+'/*.pkl')
for file in files:
filebase = os.path.basename(file)
epoch_nb = int(filebase.split('.')[0])
if epoch_nb != best_epoch:
os.remove(file)
logger.info("Training Finished!")
logger.info("optimization Finished!")
logger.info("total time elapsed: {:.4f}s".format(time.time() - t_total))
logger.info("Load best model and test......")
logger.info("Best epoch {}".format(best_epoch))
model.load_state_dict(torch.load(model_dir+'/{}.pkl'.format(best_epoch)))
logger.info("testing...")
evaluate(epoch+1, test_dict, log_desc='test_')
if args.mylog:
writer.export_scalars_to_json(tensorboard_log_dir+"/all_scalars.json")
writer.close()
print(args)
print(log_token)