-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathmodels.py
97 lines (80 loc) · 3.63 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import division
from __future__ import print_function
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence,pad_sequence
from layers import *
class GCN(nn.Module):
def __init__(self, pretrained_emb, n_output, dropout, instance_norm=False):
super(GCN, self).__init__()
self.dropout = dropout
self.instance_norm = instance_norm
if self.instance_norm:
self.norm = nn.InstanceNorm1d(pretrained_emb.size(1), momentum=0.0, affine=True)
self.embedding = nn.Embedding(pretrained_emb.size(0), pretrained_emb.size(1))
self.embedding.weight = nn.Parameter(pretrained_emb)
self.embedding.weight.requires_grad = False
self.n_feature = pretrained_emb.size(1)
self.n_input = pretrained_emb.size(0)
self.conv1 = SpGraphConvLayer(self.n_feature, self.n_feature)
self.conv1_bn = nn.BatchNorm1d(self.n_feature)
self.conv2 = SpGraphConvLayer(self.n_feature, n_output)
self.conv2_bn = nn.BatchNorm1d(n_output)
self.mask = MaskLinear(self.n_input, n_output)
self.save_x = None
def forward(self, adj, vertices):
emb = self.embedding(vertices)
if self.instance_norm:
emb = self.norm(emb)
x = emb
x = F.relu(self.conv1_bn(self.conv1(x, adj)))
x = F.dropout(x, self.dropout, training=self.training)
x = F.relu(self.conv2_bn(self.conv2(x, adj)))
x = self.mask(x, vertices)
x = torch.sigmoid(x)
return x, self.save_x
class DynamicGCN(nn.Module):
def __init__(self, pretrained_emb, n_output, n_hidden=7, dropout=0.2, instance_norm=False):
super(DynamicGCN, self).__init__()
self.dropout = dropout
self.instance_norm = instance_norm
if self.instance_norm:
self.norm = nn.InstanceNorm1d(pretrained_emb.size(1), momentum=0.0, affine=True)
self.embedding = nn.Embedding(pretrained_emb.size(0), pretrained_emb.size(1))
self.embedding.weight = nn.Parameter(pretrained_emb)
self.embedding.weight.requires_grad = False
self.n_feature = pretrained_emb.size(1)
self.n_input = pretrained_emb.size(0)
self.layer_stack = nn.ModuleList() # TODO class initiate
self.bn_stack = nn.ModuleList()
self.temporal_cells = nn.ModuleList()
for i in range(n_hidden-1):
self.layer_stack.append(SpGraphConvLayer(self.n_feature, self.n_feature))
self.bn_stack.append(nn.BatchNorm1d(self.n_feature))
self.temporal_cells.append(TemporalEncoding(self.n_feature,self.n_feature))
self.layer_stack.append(SpGraphConvLayer(self.n_feature, n_output))
self.bn_stack.append(nn.BatchNorm1d(n_output))
self.mask = MaskLinear(self.n_input, n_output)
self.save_x = None
def forward(self, adjs, vertices):
emb = self.embedding(vertices)
if self.instance_norm:
emb = self.norm(emb)
x = emb
r = []
for i, gcn_layer in enumerate(self.layer_stack):
last_x = x
x = self.bn_stack[i](gcn_layer(x, adjs[i]))
if i < len(self.layer_stack)-1:
x = F.relu(x)
x = F.dropout(x, self.dropout, training=self.training)
x = self.temporal_cells[i-1](last_x,x) # temporal encoding
x = F.relu(x)
x = self.mask(x, vertices)
x = torch.sigmoid(x)
return x, None