-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNN2.py
53 lines (46 loc) · 1.65 KB
/
NN2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense,Activation
from keras.wrappers.scikit_learn import KerasClassifier
from keras.utils import np_utils
from sklearn.model_selection import cross_val_score,train_test_split
from sklearn.model_selection import KFold
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
import os
import keras
import pickle as pkl
import dataset_creator as DC
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
def train(X,Y):
encoder = LabelEncoder()
encoded_y = encoder.fit_transform(Y)
dummy_y = np_utils.to_categorical(encoded_y,29)
(trainData,testData,trainLabels,testLabels) = train_test_split(X,Y,test_size=0.01,random_state=42)
'''
model = Sequential()
model.add(Dense(50,input_dim = 17,activation='relu'))
model.add(Dense(40,activation='relu'))
model.add(Dense(29))
model.add(Activation('softmax'))
model.compile(loss='sparse_categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
'''
model = keras.models.load_model('model_50_40.h5')
model.fit(trainData,trainLabels,epochs=10,verbose=1)
(loss,accuracy) = model.evaluate(testData,testLabels,verbose=1)
print("Loss: {}, accuracy: {}".format(loss,accuracy))
model.save('model_50_40.h5')
def model_prediction(X):
D = DC.returnToArabicDictionary()
model = keras.models.load_model('model_50_40.h5')
pred = model.predict_classes(X)
return [D[k] for k in pred]
'''
chunk = pd.read_csv('image_label_pair.csv')
chunk = chunk.values
X = chunk[:,:17].astype(float)
Y = chunk[:,17]
train(X,Y)
'''