-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataVisualisationandTesting.py
1460 lines (1292 loc) · 54.3 KB
/
DataVisualisationandTesting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import matplotlib
matplotlib.use('Qt5Agg')
import matplotlib.pyplot as plt
import pickle
import datetime
from DataReporting import DataReporting
from MAPElites import MAPElites
from CMAES import CMAES
from deap import creator, base, tools, benchmarks, algorithms, cma
import numpy as np
from matplotlib.patches import Polygon
from math import sqrt
from numpy.random import seed
from numpy.random import randn
from numpy import mean
from scipy.stats import sem
from scipy.stats import t
from scipy.stats import ttest_ind
import seaborn as sns
import pandas as pd
'''Blank Python Module primarily for data loading and visualisation via the DataReporting class '''
###
temp = [-0.46, 0.46]
diff = temp[1] - temp[0]
testArray=[(-0.46+round(e * (diff/10), 3)) for e in range(1, (10 + 1))]
testArray2=[round(e * (1.2/10), 3) for e in range(1, (10 + 1))]
print(np.digitize([-0.46, 0.46], [10, 10, 10], right=True))
print(testArray)
print(testArray2)
print([-0.46+e for e in testArray])
def plotLineGraph(data, title, yticks, legend):
x1 = np.arange(len(data[0]))
x2 = np.arange(len(data[1]))
x3 = np.arange(len(data[2]))
x4 = np.arange(len(data[3]))
x5 = np.arange(len(data[4]))
x6 = np.arange(len(data[5]))
x7 = np.arange(len(data[6]))
x8 = np.arange(len(data[7]))
x9 = np.arange(len(data[8]))
x10 = np.arange(len(data[9]))
y1 = data[0]
y2 = data[1]
y3 = data[2]
y4 = data[3]
y5 = data[4]
y6 = data[5]
y7 = data[6]
y8 = data[7]
y9 = data[8]
y10 = data[9]
plt.yticks(np.arange(0, 1, yticks))
plt.xticks(np.arange(0, len(data[9]), 1))
plt.plot(x1, y1, label = legend[0])
# plotting the line 2 points
plt.plot(x2, y2, label = legend[1])
plt.plot(x3, y3, label = legend[2])
plt.plot(x4, y4, label = legend[3])
plt.plot(x5, y5, label = legend[4])
plt.plot(x6, y6, label = legend[5])
plt.plot(x7, y7, label = legend[6])
plt.plot(x8, y8, label = legend[7])
plt.plot(x9, y9, label = legend[8])
plt.plot(x10, y10, label = legend[9])
plt.xlabel('Generation', fontsize=14)
# Set the y axis label of the current axis.
plt.ylabel('Value', fontsize=14)
# Set a title of the current axes.
plt.title(title, fontsize=14)
# show a legend on the plot
plt.legend()
# Display a figure.
plt.show()
def convertToDistance(input):
result = 1.4142*(1-input)
return result
def generateAVResultsGraphs():
data=[]
behaviours=[]
medianV=[]
distances=[]
noveltys=[]
AVERAGE_VELOCITY_TICKS = 0.0025
MEDIAN_VELOCITY_TICKS = 0.005
END_POINT_TICKS = 0.025
NOVELTY_TICKS = 0.0025
myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 3 - 10000ME, 10PS, 1TR, 11-18-2020, 03-44-17.txt") #805
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 9 - 10000ME, 10PS, 1TR, 11-18-2020, 21-09-37.txt")#888
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 6 - 10000ME, 10PS, 1TR, 11-18-2020, 11-42-02.txt") #1076
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 1 - 10000ME, 10PS, 1TR, 11-17-2020, 21-33-21.txt")#1602
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 0 - 10000ME, 10PS, 1TR, 11-17-2020, 20-38-10.txt") #2002
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 5 - 10000ME, 10PS, 1TR, 11-18-2020, 11-04-44.txt") #2726
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 8 - 10000ME, 10PS, 1TR, 11-18-2020, 20-39-09.txt") #5652
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 2 - 10000ME, 10PS, 1TR, 11-18-2020, 03-16-52.txt") #10k
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 4 - 10000ME, 10PS, 1TR, 11-18-2020, 09-31-13.txt") #10k
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 7 - 10000ME, 10PS, 1TR, 11-18-2020, 17-23-42.txt") #10k
myData.load_graph_data()
data.append(myData.complex_data)
for i in range(len(data)):
tempDistances=[]
tempNoveltys=[]
tempBehaviours=[]
tempMedianV=[]
for j in range(len(data[i][1])):
tempBehaviours.append(np.max(data[i][1][j]))
tempMedianV.append(np.median(data[i][1][j]))
tempDistances.append(convertToDistance(np.max(data[i][2][j])))
tempNoveltys.append(np.max(data[i][3][j]))
behaviours.append(tempBehaviours)
medianV.append(tempMedianV)
distances.append(tempDistances)
noveltys.append(tempNoveltys)
print(behaviours)
print(medianV)
print(distances)
print(noveltys)
legend=["805 sln", "888 sln", "1076 sln", "1602 sln", "2002 sln", "2726 sln", "5652 sln", "10K", "10K", "10K"]
plotLineGraph(behaviours, 'NIP-ES Hard Race Results - Average Velocity descriptor - Max Average Velocity', AVERAGE_VELOCITY_TICKS, legend)
plotLineGraph(medianV, 'NIP-ES Hard Race Results - Average Velocity descriptor - Median Average Velocity', MEDIAN_VELOCITY_TICKS, legend)
plotLineGraph(distances, 'NIP-ES Hard Race Results - Average Velocity descriptor - Min Distance from End Point ', END_POINT_TICKS, legend)
plotLineGraph(noveltys, 'NIP-ES Hard Race Results - Average Velocity descriptor - Max Novelty Score', NOVELTY_TICKS, legend)
def generateMVResultsGraphs():
data=[]
behaviours=[]
medianV=[]
distances=[]
noveltys=[]
AVERAGE_VELOCITY_TICKS = 0.0025
MEDIAN_VELOCITY_TICKS = 0.005
END_POINT_TICKS = 0.025
NOVELTY_TICKS = 0.0025
myData = DataReporting("(HR) NIPES MEDIANV FULL DATA .90ST 6 - 10000ME, 10PS, 1TR, 12-14-2020, 15-46-03.txt")#560
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES MEDIANV FULL DATA .90ST 3 - 10000ME, 10PS, 1TR, 12-14-2020, 01-17-18.txt") #4243
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES MEDIANV FULL DATA .90ST 9 - 10000ME, 10PS, 1TR, 12-15-2020, 14-58-24.txt") #6668
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES MEDIANV FULL DATA .90ST 0 - 10000ME, 10PS, 1TR, 12-12-2020, 02-06-19.txt")#7416
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES MEDIANV FULL DATA .90ST 4 - 10000ME, 10PS, 1TR, 12-14-2020, 07-37-16.txt") #8254
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES MEDIANV FULL DATA .90ST 7 - 10000ME, 10PS, 1TR, 12-15-2020, 02-04-34.txt") #10k
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES MEDIANV FULL DATA .90ST 1 - 10000ME, 10PS, 1TR, 12-12-2020, 07-48-16.txt") #10k
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES MEDIANV FULL DATA .90ST 2 - 10000ME, 10PS, 1TR, 12-12-2020, 13-33-32.txt") #10K
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES MEDIANV FULL DATA .90ST 5 - 10000ME, 10PS, 1TR, 12-14-2020, 15-20-39.txt") #10k
myData.load_graph_data()
data.append(myData.complex_data)
myData = DataReporting("(HR) NIPES MEDIANV FULL DATA .90ST 8 - 10000ME, 10PS, 1TR, 12-15-2020, 09-50-37.txt") #10k
myData.load_graph_data()
data.append(myData.complex_data)
evals=[]
for i in range(len(data)):
tempDistances=[]
tempNoveltys=[]
tempBehaviours=[]
tempMedianV=[]
evals.append(data[i][0])
for j in range(len(data[i][1])):
tempBehaviours.append(np.max(data[i][1][j]))
tempMedianV.append(np.median(data[i][1][j]))
tempDistances.append(convertToDistance(np.max(data[i][2][j])))
tempNoveltys.append(np.max(data[i][3][j]))
behaviours.append(tempBehaviours)
medianV.append(tempMedianV)
distances.append(tempDistances)
noveltys.append(tempNoveltys)
print(evals)
legend=["560 sln", "4243 sln", "6668 sln", "7416 sln", "8254 sln", "10K", "10K", "10K", "10K", "10K"]
plotLineGraph(behaviours, 'NIP-ES Hard Race Results - Median Velocity descriptor - Max Median Velocity', AVERAGE_VELOCITY_TICKS, legend)
plotLineGraph(medianV, 'NIP-ES Hard Race Results - Median Velocity descriptor - Median Median Velocity', MEDIAN_VELOCITY_TICKS, legend)
plotLineGraph(distances, 'NIP-ES Hard Race Results - Median Velocity descriptor - Min Distance from End Point ', END_POINT_TICKS, legend)
plotLineGraph(noveltys, 'NIP-ES Hard Race Results - Median Velocity descriptor - Max Novelty Score', NOVELTY_TICKS, legend)
#generateMVResultsGraphs()
# myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 9 - 10000ME, 10PS, 1TR, 11-18-2020, 21-09-37.txt")#888
#
# myData.load_graph_data()
# data.append(myData.complex_data)
# tempDistances=[]
# for i in range(len(data[1])):
# distanceTwo.append(convertToDistance(np.max(data[2][i])))
# noveltyTwo.append(np.max(data[3][i]))
# behaviouralTwo.append(np.max(data[1][i]))
#
#
# myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 6 - 10000ME, 10PS, 1TR, 11-18-2020, 11-42-02.txt") #1076
# myData.load_graph_data()
# data = myData.complex_data
#
# for i in range(len(data[1])):
# distanceThree.append(convertToDistance(np.max(data[2][i])))
# noveltyThree.append(np.max(data[3][i]))
# behaviouralThree.append(np.max(data[1][i]))
#
#
#
# myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 1 - 10000ME, 10PS, 1TR, 11-17-2020, 21-33-21.txt")#1602
# myData.load_graph_data()
# data = myData.complex_data
#
# for i in range(len(data[1])):
# distanceFour.append(convertToDistance(np.max(data[2][i])))
# noveltyFour.append(np.max(data[3][i]))
# behaviouralFour.append(np.max(data[1][i]))
#
#
# myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 0 - 10000ME, 10PS, 1TR, 11-17-2020, 20-38-10.txt") #2002
# myData.load_graph_data()
# data = myData.complex_data
#
# for i in range(len(data[1])):
# distanceFive.append(convertToDistance(np.max(data[2][i])))
# noveltyFive.append(np.max(data[3][i]))
# behaviouralFive.append(np.max(data[1][i]))
''' NOVELTY PLOT CODE'''
# x1 = np.arange(len(noveltyOne))
# x2 = np.arange(len(noveltyTwo))
# x3 = np.arange(len(noveltyThree))
# x4 = np.arange(len(noveltyFour))
# x5 = np.arange(len(noveltyFive))
# y1 = noveltyOne
# # plotting the line 1 points
# plt.plot(x1, y1, label = "805 sln")
# # line 2 points
# y2 = noveltyTwo
# y3 = noveltyThree
# y4 = noveltyFour
# y5 = noveltyFive
#
# #set y ticks
# # plt.yticks(np.arange(0, self.max_evals + 10, self.y_ticks))
# plt.yticks(np.arange(0, 1, 0.0025))
# plt.xticks(np.arange(0, len(distanceOne), 1))
#
# # plotting the line 2 points
# plt.plot(x2, y2, label = "888 sln ")
# plt.plot(x3, y3, label = "1076 sln ")
# plt.plot(x4, y4, label = "1602 sln ")
# plt.plot(x5, y5, label = "2002 sln ")
# plt.xlabel('Generation', fontsize=14)
# # Set the y axis label of the current axis.
# plt.ylabel('Value', fontsize=14)
# # Set a title of the current axes.
# plt.title('NIP-ES Hard Race Results - Average Velocity descriptor - Max Novelty Score')
# # show a legend on the plot
# plt.legend()
# # Display a figure.
# plt.show()
'''DISTANCE FROM END POINT CODE '''
#
# def convertToDistance(input):
# result = 1.4142*(1-input)
# return result
#
# distanceOne = []
# distanceTwo= []
# distanceThree=[]
# distanceFour=[]
# distanceFive=[]
#
# noveltyOne=[]
# noveltyTwo=[]
# noveltyThree=[]
# noveltyFour=[]
# noveltyFive=[]
#
# behaviouralOne=[]
# behaviouralTwo=[]
# behaviouralThree=[]
# behaviouralFour=[]
# behaviouralFive=[]
#
#
# myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 3 - 10000ME, 10PS, 1TR, 11-18-2020, 03-44-17.txt") #805
# #myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 9 - 10000ME, 10PS, 1TR, 11-18-2020, 21-09-37.txt")#888
# #myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 6 - 10000ME, 10PS, 1TR, 11-18-2020, 11-42-02.txt") #1076
# #myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 1 - 10000ME, 10PS, 1TR, 11-17-2020, 21-33-21.txt")#1602
# #myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 0 - 10000ME, 10PS, 1TR, 11-17-2020, 20-38-10.txt") #2002
#
#
#
# myData.load_graph_data()
# #temp_sln_evals, temp_behavioural_descriptors, temp_objective_fitnesses, temp_novelty_scores
# #print(myData.complex_data)
# data = myData.complex_data
#
# for i in range(len(data[1])):
# distanceOne.append(convertToDistance(np.max(data[2][i])))
# noveltyOne.append(np.max(data[3][i]))
# behaviouralOne.append(np.max(data[1][i]))
#
#
# myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 9 - 10000ME, 10PS, 1TR, 11-18-2020, 21-09-37.txt")
#
# myData.load_graph_data()
# data = myData.complex_data
#
# for i in range(len(data[1])):
# distanceTwo.append(convertToDistance(np.max(data[2][i])))
# noveltyTwo.append(np.max(data[3][i]))
# behaviouralTwo.append(np.max(data[1][i]))
#
#
# myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 6 - 10000ME, 10PS, 1TR, 11-18-2020, 11-42-02.txt") #1076
# myData.load_graph_data()
# data = myData.complex_data
#
# for i in range(len(data[1])):
# distanceThree.append(convertToDistance(np.max(data[2][i])))
# noveltyThree.append(np.max(data[3][i]))
# behaviouralThree.append(np.max(data[1][i]))
#
#
#
# myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 1 - 10000ME, 10PS, 1TR, 11-17-2020, 21-33-21.txt")#1602
# myData.load_graph_data()
# data = myData.complex_data
#
# for i in range(len(data[1])):
# distanceFour.append(convertToDistance(np.max(data[2][i])))
# noveltyFour.append(np.max(data[3][i]))
# behaviouralFour.append(np.max(data[1][i]))
#
#
# myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 0 - 10000ME, 10PS, 1TR, 11-17-2020, 20-38-10.txt") #2002
# myData.load_graph_data()
# data = myData.complex_data
#
# for i in range(len(data[1])):
# distanceFive.append(convertToDistance(np.max(data[2][i])))
# noveltyFive.append(np.max(data[3][i]))
# behaviouralFive.append(np.max(data[1][i]))
#
#
#
# x1 = np.arange(len(distanceOne))
# x2 = np.arange(len(distanceTwo))
# x3 = np.arange(len(distanceThree))
# x4 = np.arange(len(distanceFour))
# x5 = np.arange(len(distanceFive))
# y1 = distanceOne
# # plotting the line 1 points
# plt.plot(x1, y1, label = "805 sln (cm)")
# # line 2 points
# y2 = distanceTwo
# y3 = distanceThree
# y4 = distanceFour
# y5 = distanceFive
#
# #set y ticks
# # plt.yticks(np.arange(0, self.max_evals + 10, self.y_ticks))
# plt.yticks(np.arange(0, 1, 0.025))
# plt.xticks(np.arange(0, len(distanceOne), 1))
#
# # plotting the line 2 points
# plt.plot(x2, y2, label = "888 sln (cm)")
# plt.plot(x3, y3, label = "1076 sln (cm)")
# plt.plot(x4, y4, label = "1602 sln (cm)")
# plt.plot(x5, y5, label = "2002 sln (cm)")
# plt.xlabel('Generation', fontsize=14)
# # Set the y axis label of the current axis.
# plt.ylabel('Value', fontsize=14)
# # Set a title of the current axes.
# plt.title('NIP-ES Hard Race Results - Average Velocity descriptor - Min Distance from End Point')
# # show a legend on the plot
# plt.legend()
# # Display a figure.
# plt.show()
# myData = DataReporting("(HR) NIPES AV FULL DATA .90ST 3 - 10000ME, 10PS, 1TR, 11-18-2020, 03-44-17.txt")
# myData.load_graph_data()
# #temp_sln_evals, temp_behavioural_descriptors, temp_objective_fitnesses, temp_novelty_scores
# #print(myData.complex_data)
# data = myData.complex_data
#
# count = 0
# objective_maxes=[]
# novelty_maxes=[]
#
# for i in range(len(data[1])):
# objective_maxes.append(np.max(data[2][i]))
# novelty_maxes.append(np.max(data[3][i]))
#
# print(objective_maxes)
# print(novelty_maxes)
#
# ''' DATA RESULTS VARIANCE BOX PLOT CODE '''
# myData = DataReporting()
#
#
# myData.data.append(objective_maxes)
#
# myData.data.append(novelty_maxes)
#
#
# myData.total_runs = 10
# myData.max_evals = 1
# myData.y_ticks = 0.1
# myData.graph_padding = 0
# myData.x_axis_label = "Novelty Behavioural Descriptor"
# myData.y_axis_label = "Number of Samples"
#
# testData = myData.display_algorithm_box_plots(["Objective Fitnesses", "Novelty Scores"], "Data Results Box Plots - Variance of Objective Fitness and Novelty Score")
#so plot generation on bottom of graph which is index in the array and then repeat code for the novelty score and plot line graph
#print(data)
#temp = data[0][0]
#for i in range(len(data)):
# for j in range(len(data[i])):
# if(data[i][j] > temp):
# temp = data[i]
#
#print("highest = " + str(temp))
#average velocity RNN results:
#[-1, -1, 34, -1, 167, 425, -1, -1, -1, 31]
# DFS DATA:
#[-1, 33, 1429, 2875, -1, 129, 1294, 2115, -1, -1]
#regular novelty data
#[144, 2412, 514, 806, 13, 3040, 180, 3736, 2297, 1466]
#MAP=Elites results
#[1221, 1064, 1078, 1356, 397, 3753, 1102, 67, 3647, 2102]
#NIPES results
#[2016, 1666, 1364, 493, 963, 387, 544, 3505, 5, 2030]
#NIPES AV RESULTS
#[969, 287, 893, 656, 835, 545, 1051, 18, 219, 1540]
#NIPES DFS RESULTS:
#[188, 6134, 367, 1427, 3120, 146, 861, 1791, 1136, 81]
#NIPES HARDRACE RNDPOINTS
# [10000, 6249, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000]
#NIPES AV HARDRACE
#[8214, 10000, 10000, 10000, 10000, 10000, 6627, 2566, 10000, 10000]
#NIPES DFS HARDRACE
#[10000, 10000, 10000, 7786, 3162, 10000, 10000, 1114, 10000, 7497]
#NEW NIPES AV TESTING HARD RACE 0.9 SLN THRESHOLD
#[2002, 1602, 10000, 805, 10000, 2726, 1076, 10000, 5652, 888]
#NEW NIPES DFS TESTING HARD RACE 0.9 SLN THRESHOLD
#[2888, 8553, 7585, 10000, 10000, 7565, 8502, 10000, 10000, 10000]
#NEW NIPES ENDPOINTS TESTING HARD RACE 0.9 SLN THRESHOLD
#[10000, 10000, 10000, 10000, 1897, 10000, 1980, 10000, 10000, 7517]
#NEW NIPES MEDIAN V TESTING HARD RACE 0.9 SLN THRESHOLD
#[8990, 10000, 10000, 10000, 9463, 5565, 8387, 10000, 10000, 4932, 2952, 10000]
#CORRECTED NEW NIPES MEDIAN V TESTING HARD RACE 0.9 SLN THRESHOLD
#[4243, 8254, 10000, 560, 10000, 10000, 6668, 7416, 10000, 10000]
##NEW NIPES AV TESTING HARD RACE 0.9 SLN THRESHOLD MULTI DESCRIPTOR
#AV & DFS
#[3063, 7424, 10000, 10000, 4411, 8344, 10000, 10000, 938, 10000]
#NEW MAP ELITES HARD RACE 0.9 AV AND DFS
#[10000,10000,7150,10000,2121,3704,6313,10000,10000,10000]
'''Additional Experimentation Code'''
#AV
#print("myData.complex_data")
'''HARD RACE 0.9 GRAPH CODE '''
# myData = DataReporting()
#
# #ORDER
# #SLN EVALS
# #BEHAVIOURAL
# #OBJECTIVE FITNESSES
# #NOVELTY SCORES
#
#
# #AV
# myData.data.append([2002, 1602, 10000, 805, 10000, 2726, 1076, 10000, 5652, 888])
# #MV
# myData.data.append([4243, 8254, 10000, 560, 10000, 10000, 6668, 7416, 10000, 10000])
# #DFS
# myData.data.append([2888, 8553, 7585, 10000, 10000, 7565, 8502, 10000, 10000, 10000])
# #ENDPOINTS
# myData.data.append([10000, 10000, 10000, 10000, 1897, 10000, 1980, 10000, 10000, 7517])
#
#
# #myData.load_data()
# #DFS
# #myData.data.append([-1, 33, 1429, 2875, -1, 129, 1294, 2115, -1, -1])
#
# #ENDPOINTS
# #myData.data.append([144, 2412, 514, 806, 13, 3040, 180, 3736, 2297, 1466])
#
# #MAP-Elites
# #myData.data.append([1221, 1064, 1078, 1356, 397, 3753, 1102, 67, 3647, 2102])
#
# myData.total_runs = 10
# myData.max_evals = 10000
# myData.y_ticks = 1000
# myData.graph_padding = 2000
# myData.x_axis_label = "Novelty Behavioural Descriptor"
# myData.y_axis_label = "Number of Samples"
#
# testData = myData.display_algorithm_box_plots(["Average Velocity", "Median Velocity", "Distance FS", "Endpoints"], "NIP-ES Single Descriptor Results - Hard Race 0.9 sln threshold")
#'''HARD RACE 0.9 MULTI DESCRIPTOR GRAPH CODE '''
#myData = DataReporting()
#
##ORDER
##SLN EVALS
##BEHAVIOURAL
##OBJECTIVE FITNESSES
##NOVELTY SCORES
#
#
##AV & DFS
#myData.data.append([3063, 7424, 10000, 10000, 4411, 8344, 10000, 10000, 938, 10000])
##MAP ELITES
#myData.data.append([10000,10000,7150,10000,2121,3704,6313,10000,10000,10000])
#
#
##myData.load_data()
##DFS
##myData.data.append([-1, 33, 1429, 2875, -1, 129, 1294, 2115, -1, -1])
#
##ENDPOINTS
##myData.data.append([144, 2412, 514, 806, 13, 3040, 180, 3736, 2297, 1466])
#
##MAP-Elites
##myData.data.append([1221, 1064, 1078, 1356, 397, 3753, 1102, 67, 3647, 2102])
#
#myData.total_runs = 10
#myData.max_evals = 10000
#myData.y_ticks = 1000
#myData.graph_padding = 2000
#myData.x_axis_label = "Algorithm/Novelty Behavioural Descriptors"
#myData.y_axis_label = "Number of Samples"
#
#testData = myData.display_algorithm_box_plots(["NIP-ES - AV/DFS", "MAP-Elites - AV/DFS"], "Multi-Descriptor Algorithm Results - Hard Race 0.9 sln threshold")
''' END OF MULTI DESCRIPTOR GRAPH CODE '''
'''NIPES Experimentation Code'''
#AV
#myData = DataReporting()
#
# '''Manually ensure the DataReporing class is set with relevant parameters '''
#
#AV
#myData.data.append([-1, -1, 34, -1, 167, 425, -1, -1, -1, 31])
#myData.load_data()
#DFS
#NIPES results
#[2016, 1666, 1364, 493, 963, 387, 544, 3505, 5, 2030]
#NIPES AV RESULTS
#[969, 287, 893, 656, 835, 545, 1051, 18, 219, 1540]
#NIPES DFS RESULTS:
#[188, 6134, 367, 1427, 3120, 146, 861, 1791, 1136, 81]
# #KNN
# myData.data.append([969, 287, 893, 656, 835, 545, 1051, 18, 219, 1540])
#
# #MAP-Elites
# myData.data.append([188, 6134, 367, 1427, 3120, 146, 861, 1791, 1136, 81])
#
# myData.data.append([2016, 1666, 1364, 493, 963, 387, 544, 3505, 5, 2030])
#
# myData.total_runs = 10
# myData.max_evals = 10000
# myData.y_ticks = 1000
# myData.graph_padding = 5000
# myData.x_axis_label = "Novelty Behavioural Descriptor"
# myData.y_axis_label = "Number of Samples"
# #
#
#
# #MAP ELITES
#
# #CONTROL
#
# testData = myData.display_algorithm_box_plots(["Average Velocity", "Distance FS", "Endpoints"], "NIP-ES Comparison - Behavioural Descriptors Results")
#
'''FULL NIPES AND NCMAES RESULTS Experimentation Code'''
#AV
# myData = DataReporting("NCMAES AV RUN 9 - 10000ME, 50PS, 1TR, 10-06-2020, 04-15-21.txt")
# #
# # '''Manually ensure the DataReporing class is set with relevant parameters '''
# #
# #AV
# #myData.data.append([-1, -1, 34, -1, 167, 425, -1, -1, -1, 31])
# myData.load_data()
#
# #NIPES AV
# myData.data.append([969, 287, 893, 656, 835, 545, 1051, 18, 219, 1540])
# #DFS
# myData.data.append([-1, 33, 1429, 2875, -1, 129, 1294, 2115, -1, -1])
# #NIPES DFS
# myData.data.append([188, 6134, 367, 1427, 3120, 146, 861, 1791, 1136, 81])
#
#
# #ENDPOINTS
# myData.data.append([144, 2412, 514, 806, 13, 3040, 180, 3736, 2297, 1466])
#
# #NIPES ENDPOINTS
# myData.data.append([2016, 1666, 1364, 493, 963, 387, 544, 3505, 5, 2030])
# #MAP-Elites
# #myData.data.append([1221, 1064, 1078, 1356, 397, 3753, 1102, 67, 3647, 2102])
#
#
#
#
#
#
# myData.total_runs = 10
# myData.max_evals = 10000
# myData.y_ticks = 1000
# myData.graph_padding = 5000
# myData.x_axis_label = "Novelty Behavioural Descriptor"
# myData.y_axis_label = "Number of Samples"
# myData.blue_label = "N-CMA-ES"
# myData.tan_label = "NIP-ES"
#
# testData = myData.display_algorithm_box_plots(["Average Velocity", "Average Velocity", "Distance FS", "Distance FS", "Endpoints", "Endpoints"], "NIP-ES/N-CMA-ES Comparison - Behavioural Descriptors Results")
'''BOXPLOT Exmaple from Sigma test data'''
# myData = DataReporting("Sigma Test - EscapeRoom - 150ME, 25PS, 25SR, 0.1-2.0, 07-21-2020, 12-17-57.txt")
# #myData = DataReporting("NCMAES FULL TEST - EasyRace, 1.0N, RNN, - 10000ME, 50PS, 10TR, 07-27-2020, 09-37-54.txt")
# '''Manually ensure the DataReporing class is set with relevant parameters '''
# #myData.upper_limit = 2.0
# #myData.lower_limit = 0.1
#
# myData.total_runs = 10
# myData.max_evals = 10000
# myData.y_ticks = 1000
# myData.load_data()
#
# myData.fullResults = [248, 2707, 5613, 5510, 13, 3354, 206, 802, -1, 1225]
# file = open("NCMAES FULL TEST - EasyRace, 1.0N, RNN, - 10000ME, 50PS, 10TR, 07-27-2020, 09-37-54.txt",'wb')
# pickle.dump(myData.fullResults, file)
# file.close()
#
# testData = myData.displaySigmaBoxPlots()
# testData = myData.display_algorithm_box_plots("NCMA-ES")
#
# [-1, 2707, 5613, 5510, 13, 3354, 206, 802, -1, 1225]
'''BOXPLOT Exmaple from Algorithm Test Data'''
#myData = DataReporting("Algorithm Testing Data/CMA-ES/CMA-ES TEST - MiddleWall - 150ME, 25PS, 20TR, 07-21-2020, 00-28-46.txt")
#myData.total_runs = 20
#myData.max_evals = 150
#myData.load_data()
#myData.display_algorithm_box_plots("CMA-ES", "NCMA-ES")
# myData = DataReporting("Algorithm Testing Data/SEND-THIS-TO-DREW-H-CMAES-FNN-Easy-Race-0-10000ME-50PS-1TR-08-03-2020-17-47-53.txt")
# myData.load_data()
# print(myData.data)
''' HEATMAP FOR EASY RACE E PUCK FNN'''
# def myfunc():
# pass
#
# myMap = MAPElites(58, myfunc, bin_count = 10, tournament_size = 5, max_velocity = 0.125, max_distance = 1.2)
#
# myMap.load_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/FNN/FINAL/MAPElites easy race FNN 1KIP 9 5TS, 10BC, 10000gens08-05-2020, 02-47-57.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/FNN/FINAL/MAPElites easy race FNN 1KIP 8 5TS, 10BC, 10000gens08-05-2020, 01-55-06.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/FNN/FINAL/MAPElites easy race FNN 1KIP 7 5TS, 10BC, 10000gens08-05-2020, 00-05-48.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/FNN/FINAL/MAPElites easy race FNN 1KIP 6 5TS, 10BC, 10000gens08-04-2020, 23-13-05.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/FNN/FINAL/MAPElites easy race FNN 1KIP 5 5TS, 10BC, 10000gens08-04-2020, 21-48-43.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/FNN/FINAL/MAPElites easy race FNN 1KIP 4 5TS, 10BC, 10000gens08-04-2020, 20-13-12.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/FNN/FINAL/MAPElites easy race FNN 1KIP 3 5TS, 10BC, 10000gens08-04-2020, 20-04-07.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/FNN/FINAL/MAPElites easy race FNN 1KIP 2 5TS, 10BC, 10000gens08-04-2020, 19-17-57.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/FNN/FINAL/MAPElites easy race FNN 1KIP 1 5TS, 10BC, 10000gens08-04-2020, 18-09-00.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/FNN/FINAL/MAPElites easy race FNN 1KIP 0 5TS, 10BC, 10000gens08-04-2020, 17-45-56.txt")
#
# print(myMap.searchSpace)
# df = pd.DataFrame(myMap.searchSpace)
# ax = sns.heatmap(df)
# ax.set_xticklabels(myMap.distanceFromStart,
# rotation=0, fontsize=12)
# ax.set_yticklabels(myMap.velocity,rotation=0, fontsize=12)
# ax.set_xlabel("Distance from Start (m)", fontsize=14)
# ax.set_ylabel("Average Velocity (m/s)", fontsize=14)
# ax.set_title("MAP-Elites Heatmap - Easy Race - Custom e-puck - FNN", fontsize=14)
# #sns.heatmap(df, xticklabels=1)
# plt.show()
''' MAP-ELITES EASY RACE BOX PLOT'''
# myData = DataReporting()
#
# myData.data = [[2175, 448, 1321, 818, 169, 1909, 1726, 1080, 2224, 1174], [1059, 1280, 3572, 1503, 494, 1138, 1474, 555, 1229, 141], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]]
# myData.total_runs = 10
# myData.max_evals = 10000
# myData.y_ticks = 1000
# myData.graph_padding = 1000
# myData.x_axis_label = "Agent/Neural Network"
# myData.y_axis_label = "Number of Samples"
#
#
# testData = myData.display_algorithm_box_plots("MAP-Elites - Easy Race", "e-puck FNN", "e-puck RNN", "Hemisson FNN", "Hemisson RNN")
#
#
#
''' HEATMAP FOR EASY RACE E PUCK RNN'''
# def myfunc():
# pass
#
# myMap = MAPElites(122, myfunc, bin_count = 10, tournament_size = 5, max_velocity = 0.125, max_distance = 1.2)
#
# myMap.load_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/RNN/Final/MAPElites easy race RNN 1KIP 9 5TS, 10BC, 10000gens08-05-2020, 02-33-59.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/RNN/Final/MAPElites easy race RNN 1KIP 8 5TS, 10BC, 10000gens08-05-2020, 02-27-00.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/RNN/Final/MAPElites easy race RNN 1KIP 7 5TS, 10BC, 10000gens08-05-2020, 01-25-57.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/RNN/Final/MAPElites easy race RNN 1KIP 6 5TS, 10BC, 10000gens08-05-2020, 00-58-13.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/RNN/Final/MAPElites easy race RNN 1KIP 5 5TS, 10BC, 10000gens08-04-2020, 23-45-28.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/RNN/Final/MAPElites easy race RNN 1KIP 4 5TS, 10BC, 10000gens08-04-2020, 22-49-12.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/RNN/Final/MAPElites easy race RNN 1KIP 3 5TS, 10BC, 10000gens08-04-2020, 22-24-43.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/RNN/Final/MAPElites easy race RNN 1KIP 2 5TS, 10BC, 10000gens08-04-2020, 21-08-37.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/RNN/Final/MAPElites easy race RNN 1KIP 1 5TS, 10BC, 10000gens08-04-2020, 17-57-06.txt")
#
# myMap.combine_loaded_map("Algorithm Testing Data/MAP-Elites/eASY RACE TESTING/RNN/Final/MAPElites easy race RNN 1KIP 0 5TS, 10BC, 10000gens08-04-2020, 16-48-35.txt")
#
#
# myMap.heatmap_title = "MAP-Elites Heatmap - Easy Race - Custom e-puck - RNN"
# # print(myMap.searchSpace)
# # df = pd.DataFrame(myMap.searchSpace)
# # ax = sns.heatmap(df)
# # ax.set_xticklabels(myMap.distanceFromStart,
# # rotation=0, fontsize=12)
# # ax.set_yticklabels(myMap.velocity,rotation=0, fontsize=12)
# # ax.set_xlabel("Distance from Start (m)", fontsize=14)
# # ax.set_ylabel("Average Velocity (m/s)", fontsize=14)
# # ax.set_title("MAP-Elites Heatmap - Easy Race - Custom e-puck - RNN", fontsize=14)
# # #sns.heatmap(df, xticklabels=1)
# # plt.show()
#
# myMap.generate_heatmap()
'''Blank Python Module primarily for data loading and visualisation via the DataReporting class '''
# test = np.random.uniform(-1, 1, 100)
# print(test)
'''BOXPLOT Exmaple from Sigma test data'''
# def mefunc():
# pass
#
# #tempEA = MAPElitesMVDFS(122, mefunc)
#
# count = 0
# for j in range(20):
# for i in range(20):
# if i <= j:
# pass
# else:
# count += 1
#
# print(count)
#
# for i in range(20):
# print(i)
# myData = DataReporting("MAPElites easy race FNN source1 0 5TS, 10BC, 10gens 08-03-2020, 21-13-36.txt")
# myData.load_data()
# print(myData.data)
#12 + 24 +
''' Sigma significance testing line graph code'''
#Escape room: ({1.4: 7, 1.3: 4, 0.6: 3, 1.0: 2, 1.9: 2, 0.2: 1, 0.5: 1, 0.8: 1, 0.9: 1, 1.2: 1, 1.7: 1})
#Middle Wall: ({1.7: 7, 1.3: 5, 1.9: 5, 0.5: 5, 1.8: 5, 2.0: 5, 0.3: 4, 1.0: 4, 1.2: 3, 1.6: 3, 0.4: 1, 0.6: 1})
#Multi Maze: ({2.0: 6, 0.3: 2, 1.7: 1, 0.6: 1, 0.7: 1, 1.3: 1, 1.4: 1, 1.8: 1})
# myData = DataReporting()
# #myData.load_data()
# myData.upper_limit = 2.0
# myData.lower_limit = 0.1
# myData.max_evals = 65
# myData.y_ticks = 5
# myData.x_axis_label = "Sigma Value"
# myData.y_axis_label = "Total Null Hypothesis Rejections"
# #myData.data = [0.1:0, 0.2:1, 0.3:6, 0.4:1, 0.5:6, 0.6:5, 0.7:1, 0.8:1, 0.9:1, 1.0:4, 1.1:0, 1.2:4, 1.3:10, 1.4:8, 1.5:0, 1.6:3, 1.7:9, 1.8:1, 1.9:5, 2.0:11]
# myData.data = [0, 1, 6, 1, 6, 5, 1, 1, 1, 4, 0, 4, 10, 8, 0, 3, 9, 1, 5, 11]
#
#
# myData.display_line_graph("Sigma Significance Testing (p value and Student's T Testing)")
''' sigma clipping graph'''
#
# myData = DataReporting()
# #myData.load_data()
# myData.upper_limit = 2.0
# myData.lower_limit = 0.1
# myData.max_evals = 100
# myData.y_ticks = 10
# myData.x_axis_label = "Sigma Value"
# myData.y_axis_label = "Percentage of Avg 'Clipped' Genes"
# myData.data = [0.0, 0.0, 0.09, 1.04, 4.69, 9.7, 15.1, 21.31, 26.8, 30.85, 36.49, 40.25, 45.33, 48.2, 50.57, 52.36, 55.54, 57.8, 59.62, 61.46]
#
#
# myData.displayLineGraph("Proportion of 'Clipped' Genes per Individual in Initial CMA-ES Pop")
# #tempEA.saveFile = "EasyRace initial test DFS 1K TS5.txt"
# #tempEA.load_map("EasyRace initial test DFS 1K TS5.txt")
#
# #solutions = tempEA.visualiseMap()
#
# #print(solutions)
#
# successes = []
#
# #newMember = solutions[0]
# coordinates = [3, 3]
# gen = 100
#
#
# robot = np.array([0.000140432, -4.53794e-05])
#
# farpoint = np.array([0.443902, -0.443007])
#
# farpoint2 = np.array([])
# maxd = np.linalg.norm(robot - farpoint)
#
# print(maxd)
#print(tempEA.velocity)
#print(tempEA.distanceFromStart)
#successes.append([newMember, coordinates, gen])
#print(successes[0])
#print(len(successes))
#myData = DataReporting("Algorithm Testing Data/NCMA-ES/e-puck/NCMAES FULL TEST - EasyRace, 1.0N, FNN, - 100ME, 50PS, 10TR, 07-24-2020, 09-21-51.txt")
#myData = DataReporting("Sigma Testing Data/Sigma Test - MiddleWall - 150ME, 25PS, 25SR, 0.1-2.0, 07-21-2020, 00-28-46.txt")
#myData = DataReporting("Sigma Testing Data/Sigma Test - MultiMaze - 300ME, 50PS, 25SR, 0.1-2.0, 07-23-2020, 03-46-21.txt")
#myData = DataReporting("Algorithm Testing Data/NCMA-ES/e-puck/NCMAES FULL TEST - MultiMaze, 1.0N, FNN, - 10000ME, 50PS, 10TR, 07-29-2020, 10-12-18.txt")
#myData = DataReporting("Algorithm Testing Data/NCMA-ES/NCMAES FULL TEST - EasyRace, 1.0N, RNN, - 10000ME, 50PS, 10TR, 07-27-2020, 09-37-54.txt")
'''Manually ensure the DataReporing class is set with relevant parameters '''
#myData.upper_limit = 2.0
#myData.lower_limit = 0.1
#
# myData.total_runs = 10
# myData.max_evals = 550
# myData.y_ticks = 100
# myData.graph_padding = 10
# myData.x_axis_label = "Agent/Neural Network"
# myData.y_axis_label = "Number of Samples"
# myData.load_data()
# #
# myData.load_data("Algorithm Testing Data/NCMA-ES/e-puck/NCMAES FULL TEST - MultiMaze, 1.0N, RNN, - 10000ME, 50PS, 10TR, 07-29-2020, 10-29-26.txt")
#
#
# myData.load_data("Algorithm Testing Data/NCMA-ES/H-NCMAES FULL TEST - MultiMaze, 1.0N, FNN, - 10000ME, 50PS, 10TR, 07-29-2020, 20-09-36.txt")
#
# myData.load_data("Algorithm Testing Data/NCMA-ES/H-NCMAES FULL TEST - MultiMaze, 1.0N, RNN, - 10000ME, 50PS, 10TR, 07-30-2020, 01-55-53.txt")
#myData.load_data("Algorithm Testing Data/CMA-ES/H-CMAES FULL TEST - EscapeRoom, 1.0N, RNN, - 10000ME, 50PS, 10TR, 07-30-2020, 20-17-18.txt")
#myData.fullResults = [248, 2707, 5613, 5510, 13, 3354, 206, 802, -1, 1225]
#file = open("NCMAES FULL TEST - EasyRace, 1.0N, RNN, - 10000ME, 50PS, 10TR, 07-27-2020, 09-37-54.txt",'wb')
#pickle.dump(myData.fullResults, file)
#file.close()
#testData = myData.displaySigmaBoxPlots("Sigma Testing - Escape Room")
#testData = myData.display_algorithm_box_plots("N-CMA-ES TEST - Multi Maze", "e-puck FNN", "e-puck RNN", "Hemisson FNN", "Hemisson RNN")
#[-1, 2707, 5613, 5510, 13, 3354, 206, 802, -1, 1225]
'''SIGMA CODE '''
# myData = DataReporting("Sigma Testing Data/Sigma Test - EscapeRoom - 150ME, 25PS, 25SR, 0.1-2.0, 07-21-2020, 12-17-57.txt")
# #myData = DataReporting("Sigma Testing Data/Sigma Test - MiddleWall - 150ME, 25PS, 25SR, 0.1-2.0, 07-21-2020, 00-28-46.txt")