-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFullyConnected.py
65 lines (50 loc) · 2.25 KB
/
FullyConnected.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
class FC:
def __init__(self, input_size, output_size, name,initialize_method="random"):
self.input_size = input_size
self.output_size= output_size
self.name = name
params = self.initialize(initialize_method)
self.parameters = [params[0], params[1]]
self.input_shape = None
self.reshaped_input = None
def initialize(self, initialize_method):
if initialize_method == "random":
return [np.random.randn(self.output_size, self.input_size), np.zeros((self.output_size, 1))]
elif initialize_method == "Xavier":
return [np.random.randn(self.output_size, self.input_size) * np.sqrt(1 / self.input_size), np.zeros((self.output_size, 1))]
elif initialize_method == "He":
return [np.random.randn(self.output_size, self.input_size) * np.sqrt(2 / self.input_size), np.zeros((self.output_size, 1))]
elif initialize_method == "zero":
return [np.zeros((self.output_size, self.input_size)), np.zeros((self.output_size, 1))]
return None
def forward(self, A_prev):
self.input_shape = A_prev.shape
A_prev_tmp = np.copy(A_prev)
if A_prev.ndim == 4:
BS = A_prev.shape[0]
A_prev_tmp = A_prev_tmp.reshape(BS, -1).T
self.reshaped_input = A_prev_tmp.shape
W, b = self.parameters[0], self.parameters[1]
Z = W @ A_prev_tmp + b
return Z
def backward(self, dZ, A_prev):
A_prev_tmp = np.copy(A_prev)
if A_prev.ndim == 4:
BS = A_prev.shape[0]
A_prev_tmp = A_prev_tmp.reshape(BS, -1).T
W, b = self.parameters[0], self.parameters[1]
m = A_prev.shape[1]
dW = (1 / m) * np.dot(dZ, A_prev_tmp.T)
db = (1 / m) * np.sum(dZ, axis=1, keepdims=True)
dA_prev = np.dot(W.T, dZ)
grads = [dW, db]
if len(self.input_shape) == 4:
dA_prev = dA_prev.T.reshape(self.input_shape)
return dA_prev, grads
def update(self, optimizer, grads):
self.parameters = optimizer.update(grads, self.name)
def output_shape(self, X):
shape_ = X.shape
shape_[0] = self.output_size
return shape_