-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathADMM_RL.jl
183 lines (158 loc) · 6.46 KB
/
ADMM_RL.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
using LinearAlgebra, StatsBase
function ADMMdecoder_RL(DecoderMethod, γ, maxIteration, ϵ, μ, ρ, α, N_ET, ϕ)
###
# This function applies non-penalized/l2-penalized ADMM-LP decoding using
# the randomized layered (RL) scheduling.
#
# DecoderMethod: "LP" for non-penalized, "L2" for l2-penalized decoder
# γ: the Log Likelihood Ratio (LLR) vector of size N
# maxIteration: the maximum allowed number of iterations
# ϵ: stopping precision, usually set to 10^(-5)
# μ: the Lagrangian penalty parameter, usually set to 3
# ρ: the over-relaxation parameter, generally 1 < ρ < 2, ρ = 1 for non-over-relaxed case, recommended to set to 1.9
# α: the parameter for l2-penalty term, usually set to 0.8
# N_ET: the number of iteration to check early termination
#
# Returns:
# x_dec: a binary (0/1) array of size N, the decoded output
# iter: the number of iterations it took for the decoder to decode
#
###
λ = Array{Array{Float64, 1}, 1}(undef, M)
zReplica = Array{Array{Float64, 1}, 1}(undef, M)
zOld = Array{Array{Float64, 1}, 1}(undef, M)
Pjx = Array{Array{Float64, 1}, 1}(undef, M)
for j = 1:M
λ[j] = zeros(CheckDegree[j])
zReplica[j] = ones(CheckDegree[j]).*0.5
zOld[j] = ones(CheckDegree[j]).*0.5
Pjx[j] = ones(CheckDegree[j]).*0.5
end
dis_vec = zeros(M)
x_dec = ones(N).*0.5
x_hard = similar(x_dec)
temp = zeros(N)
iter = 1
feas_1 = 1e3; #holds for sum over j of abs(P_jx^k - z_j^k)
feas_2 = 1e3; #holds for sum over j of abs(z_j^k - z_j^(k-1))
feas_tol = ϵ^2 * M * maximum(CheckDegree)
count_msg = 0
while( count_msg < maxIteration * M && (feas_1 >= feas_tol || feas_2 >= feas_tol) )
if count_msg < M # first iteration
feas_1 = 0
feas_2 = 0
for j = 1:M
# Update Variable's Information: L_{i}
for i in F_list[j]
temp[i] = 0
for k in G_list[i]
IDX = findall(x -> x ==i, F_list[k])[1]
temp[i] += zReplica[k][IDX] - (λ[k][IDX] / μ)
end
temp[i] -= γ[i] / μ
end
# Update VN to CN messages: L_{i -> j}
if occursin("LP", DecoderMethod)
for i in F_list[j]
x_dec[i] = min( max( ( temp[i] ) / (VariableDegree[i]), 0.0), 1.0)
end
elseif occursin("L2", DecoderMethod)
for i in F_list[j]
x_dec[i] = min( max( ( temp[i] - (α / μ) ) / ( VariableDegree[i] - ( 2 * α / μ ) ), 0.0), 1.0)
end
end
# Update CN to VN messages: L_{j -> i}
zOld[j] .= zReplica[j]
for k = 1:CheckDegree[j]
IDX = F_list[j][k]
Pjx[j][k] = x_dec[IDX]
end
zReplica[j] = parpolyproj( ( ρ .* Pjx[j] ) .+ ( ( 1 - ρ ) .* zOld[j] ) .+ ( λ[j] ./ μ ) )
dis_vec[j] = norm(zReplica[j] .- 0.5)
difference1 = ( ρ .* Pjx[j] ) .+ ( ( 1 - ρ ) .* zOld[j] ) .- zReplica[j]
λ[j] .+= μ .* ( difference1 )
feas_1 += norm( difference1 )^2
difference2 = zReplica[j] - zOld[j]
feas_2 += norm( difference2 )^2
count_msg += 1
end
else
feas_1 = 0
feas_2 = 0
for k = 1:M
weights = Weights(exp.(-ϕ.*dis_vec))
j = sample(1:M, weights) # the sampled check index
# Update Variable's Information: L_{i}
for i in F_list[j]
temp[i] = 0
for k in G_list[i]
IDX = findall(x -> x ==i, F_list[k])[1]
temp[i] += zReplica[k][IDX] - (λ[k][IDX] / μ)
end
temp[i] -= γ[i] / μ
end
# Update VN to CN messages: L_{i -> j}
if occursin("LP", DecoderMethod)
for i in F_list[j]
x_dec[i] = min( max( ( temp[i] ) / (VariableDegree[i]), 0.0), 1.0)
end
elseif occursin("L2", DecoderMethod)
for i in F_list[j]
x_dec[i] = min( max( ( temp[i] - (α / μ) ) / ( VariableDegree[i] - ( 2 * α / μ ) ), 0.0), 1.0)
end
end
# Update CN to VN messages: L_{j -> i}
zOld[j] .= zReplica[j]
for k = 1:CheckDegree[j]
IDX = F_list[j][k]
Pjx[j][k] = x_dec[IDX]
end
zReplica[j] = parpolyproj( ( ρ .* Pjx[j] ) .+ ( ( 1 - ρ ) .* zOld[j] ) .+ ( λ[j] ./ μ ) )
dis_vec[j] = norm(zReplica[j] .- 0.5)
difference1 = ( ρ .* Pjx[j] ) .+ ( ( 1 - ρ ) .* zOld[j] ) .- zReplica[j]
λ[j] .+= μ .* ( difference1 )
feas_1 += norm( difference1 )^2
difference2 = zReplica[j] - zOld[j]
feas_2 += norm( difference2 )^2
count_msg += 1
end
end
# Early Termination
if count_msg % (N_ET * M) == 0
HardDecode(x_dec, x_hard)
sum_syn = 0
for j = 1:M
sum_syn += sum( x_hard[ F_list[j] ] ) % 2
end
if sum_syn == 0
x_dec = x_hard
break
end
end
end
iter = count_msg / M
HardDecode(x_dec, x_hard)
x_dec = x_hard
return x_dec, iter
end
function HardDecode(x, x_hard)
###
# This function assigns binary 0/1 values to a vector of continous values. If a value is above 0.5, it is set to 1,
# otherwise, it is set to 0. The function updates x_hard in-place to enhance performance.
#
# x: input vector with continous variables
# x_hard: the output binary vector, it should be allocated with the same size as x
#
# Returns:
# nothing
#
###
for i =1:N
if x[i] <= 0.5
x_hard[i] = 0;
else
x_hard[i] = 1;
end
end
return nothing
end