- Classify patients with heart failure
- Identify correlated features
pip install -r requirements.txt
Train
python main.py -t data/train.csv -v data/valid.csv --lr=0.0002 -b=20 --lr_scheduler cosine --epochs 1000 --suffix hidden_32_16
Evaluate
python main.py -e -v data/test.csv --save_results test_results.csv --lr=0.0002 -b=20 --lr_scheduler cosine --resume models/arch\[NeuralNet\]_optim\[adam\]_lr\[0.0002\]_lrsch\[cosine\]_batch\[20\]_WeightedSampling\[False\]_hidden_32_16/model_best.pth.tar
- processed.cleveland.data file, which is available from the Data Folder
- Description file heart-disease.names
- https://github.com/AbdullahAlrhmoun/Heart-disease-prediction-model
- https://www.kaggle.com/aavigan/predicting-coronary-heart-disease-non-invasively
- https://www.kaggle.com/ronitf/predicting-heart-disease
- https://www.kaggle.com/sharansmenon/heart-disease-pytorch-nn
- https://github.com/knickhill/heart-disease-classification/blob/master/part2-models.ipynb