Skip to content

amiralansary/Heart-Disease-Diagnosis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Heart Disease Diagnosis

Main Task

  1. Classify patients with heart failure
  2. Identify correlated features

Install

pip install -r requirements.txt

Usage

Train

python main.py -t data/train.csv -v data/valid.csv --lr=0.0002 -b=20 --lr_scheduler cosine --epochs 1000 --suffix hidden_32_16

Evaluate

python main.py -e -v data/test.csv --save_results test_results.csv --lr=0.0002 -b=20 --lr_scheduler cosine --resume models/arch\[NeuralNet\]_optim\[adam\]_lr\[0.0002\]_lrsch\[cosine\]_batch\[20\]_WeightedSampling\[False\]_hidden_32_16/model_best.pth.tar

Code

  1. Data pre-processing [here]
  2. Neural Network [here]
  3. Conventional ML models [here]
  4. Report [here]

Data

  1. processed.cleveland.data file, which is available from the Data Folder
  2. Description file heart-disease.names

Other Published Code

  1. https://github.com/AbdullahAlrhmoun/Heart-disease-prediction-model
  2. https://www.kaggle.com/aavigan/predicting-coronary-heart-disease-non-invasively
  3. https://www.kaggle.com/ronitf/predicting-heart-disease
  4. https://www.kaggle.com/sharansmenon/heart-disease-pytorch-nn
  5. https://github.com/knickhill/heart-disease-classification/blob/master/part2-models.ipynb

Releases

No releases published

Packages

No packages published