Skip to content

My TensorFlow/Keras implementation of InfoGAN

Notifications You must be signed in to change notification settings

amir7d0/InfoGAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

62 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

InfoGAN

This repository contains an implementation of InfoGAN on the MNIST dataset using TensorFlow 2.0.

Open In Colab

Open In W&B

Requirements

tensorflow==2.11.0
tensorflow-probability==0.19.0
numpy==1.23.4
matplotlib==3.6.2

# if you want to use tfds for celeb_a, svhn, etc datasets
# tensorflow-datasets

Usage

  1. Clone the repository:
git clone https://github.com/amir7d0/InfoGAN.git
  1. Edit the config.py file to set the training parameters and the dataset to use. Choose dataset from ['mnist', 'fashion_mnist']
  2. Run the training script:
python main.py

Directory structure

.
├── infogan
│   ├── config.py
│   ├── datasets.py
│   ├── distributions.py
│   ├── infogan_model_openai.py
│   ├── infogan_model.py
│   ├── models.py
│   └── utils.py
├── main.py
├── README.md
└── results
    └── mnist_results

Files

  • config.py: Contains all the configuration parameters for training the model.
  • datasets.py: Contains code for loading and preprocessing the dataset.
  • distributions.py: Contains the code for the distributions.
  • utils.py: Contains the code for Callbacks, sample, and plot functions.
  • models.py: Contains the code for the generator, discriminator, and recognition networks.
  • infogan_model.py: Contains the code for the InfoGAN class and train_step function.
  • infogan_model_openai.py: Contains the code for the InfoGAN class and train_step function.
  • train.py: Contains the code for training the model.

In infogan_model.py Continuous Latent code is optimized by minimizing Gaussian negative log likelihood loss (GaussianNLLLoss) which is H(c | G(z,c)) in Eq (4) in InfoGAN paper.

In infogan_model_openai.py Continuous Latent code is optimized by minimizing Gaussian negative log likelihood loss (GaussianNLLLoss) and negative Log Prob which is H(c) + H(c | G(z,c)) in Eq (4) in InfoGAN paper.

Results

MNIST

Settings

  • Latent Variables (Dim=74)
    1. Random latent ~ Uniform(-1,1), dim = 62
    2. Discrete Latent Code ~ Categorical(k=10, p=0.1), dim = 10
    3. Continuous Latent Code ~ Uniform(-1,1), dim = 2
  • Optimizer
    • generator optimizer = Adam, lr=1e-3, beta1 = 0.5
    • discriminator optimizer = Adam, lr=2e-4, beta1 = 0.5
  • Lambda for latent codes: $\lambda_{disc} = 1.0, \lambda_{cont} = 1.0$
  • Batch size = 128

Generated Images

Row represents categorical latent code from 0 to 9 and column represents continuous latent code varying from -1 to 1 (left to right).

first continuous variable varying from -1 to 1 second continuous variable varying from -1 to 1

Loss

References

  1. X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, P. Abbeel. "Infogan: Interpretable representation learning by information maximizing generative adversarial nets." [arxiv]
  2. openai/InfoGAN [repo]
  3. lisc55/InfoGAN [repo]