-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeatures.py
122 lines (98 loc) · 4.71 KB
/
features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import matplotlib.image as mpimg
import numpy as np
import cv2
from skimage.feature import hog
# Compute binned color features
def bin_spatial(img, size=(32, 32)):
# Use cv2.resize().ravel() to create the feature vector
features = cv2.resize(img, size).ravel()
# Return the feature vector
return features
# Compute color histogram features
def color_hist(img, nbins=32):
# Compute the histogram of the color channels separately
channel1_hist = np.histogram(img[:, :, 0], bins=nbins)
channel2_hist = np.histogram(img[:, :, 1], bins=nbins)
channel3_hist = np.histogram(img[:, :, 2], bins=nbins)
# Concatenate the histograms into a single feature vector
hist_features = np.concatenate((channel1_hist[0], channel2_hist[0], channel3_hist[0]))
# Return the individual histograms, bin_centers and feature vector
return hist_features
# Return HOG features and visualization
def get_hog_features(img, orient, pix_per_cell, cell_per_block, vis=False, feature_vec=True):
# Call with two outputs if vis==True
if vis == True:
features, hog_image = hog(img, orientations=orient, pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block), transform_sqrt=True,
visualise=vis, feature_vector=feature_vec)
return features, hog_image
# Otherwise call with one output
else:
features = hog(img, orientations=orient, pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block), transform_sqrt=True,
visualise=vis, feature_vector=feature_vec)
return features
# Return HOG features for specified channel
def get_hog_features_for_channel(feature_image, hog_channel, orient, pix_per_cell, cell_per_block, vis=False):
# Call get_hog_features() with vis=False, feature_vec=True
if hog_channel == 'ALL':
hog_features = []
for channel in range(feature_image.shape[2]):
hog_features.append(get_hog_features(feature_image[:, :, channel], orient, pix_per_cell, cell_per_block, vis=vis, feature_vec=True))
hog_features = np.ravel(hog_features)
else:
hog_features = get_hog_features(feature_image[:, :, hog_channel], orient, pix_per_cell, cell_per_block, vis=vis, feature_vec=True)
return hog_features
# Extract features from a list of images
def extract_features(imgs, cspace='RGB',
spatial_size=(32, 32), hist_bins=32,
orient=9, pix_per_cell=8, cell_per_block=2, hog_channel=0,
spatial_feat=True, hist_feat=True, hog_feat=True, vis_hog=False):
# Create a list to append feature vectors to
features = []
hog_images = []
# Iterate through the list of images
for file in imgs:
feature_image = create_feature_image(file, cspace)
file_features = []
if spatial_feat == True:
# Apply bin_spatial() to get spatial color features
spatial_features = bin_spatial(feature_image, size=spatial_size)
file_features.append(spatial_features)
if hist_feat == True:
# Apply color_hist() also with a color space option now
hist_features = color_hist(feature_image, nbins=hist_bins)
file_features.append(hist_features)
if hog_feat == True:
# Apply get_hog_features_for_channel() to get HOG features
hog_features = get_hog_features_for_channel(feature_image, hog_channel, orient, pix_per_cell, cell_per_block, vis=vis_hog)
if vis_hog == True:
hog_features, hog_img = hog_features
hog_images.append(hog_img)
file_features.append(hog_features)
# Append the new feature vector to the features list
features.append(np.concatenate(file_features))
if vis_hog == True:
return features, hog_images
return features
# Convert image to specified color space and return it as is
def create_feature_image(img_file, cspace='RGB'):
# Read in each one by one
image = mpimg.imread(img_file)
# apply color conversion
feature_image = convert_color(image, cspace)
return feature_image
# Convert to specified color space
def convert_color(image, cspace='YCrCb'):
if cspace == 'HSV':
return cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
elif cspace == 'LUV':
return cv2.cvtColor(image, cv2.COLOR_RGB2LUV)
elif cspace == 'HLS':
return cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
elif cspace == 'YUV':
return cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
elif cspace == 'YCrCb':
return cv2.cvtColor(image, cv2.COLOR_RGB2YCrCb)
else:
return np.copy(image)