-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats.py
161 lines (142 loc) · 4.67 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Based on an image dataset, compute useful statistics such
# as the average number of feature per image for both SIFT and SURF,
# average time to detect/compute SIFT and SURF, etc.
import itertools
import glob
import os
import cv2
import time
import pprint
from tqdm import tqdm
from numpy import median
basepath = './flickr-images/'
sift = cv2.xfeatures2d.SIFT_create()
surf = cv2.xfeatures2d.SURF_create()
def each_image(basepath, limit = None):
files_iter = glob.iglob(os.path.join(basepath, '*.jpg'))
filenames = []
for filename in itertools.islice(files_iter, 0, limit):
filenames.append(filename)
total = len(filenames)
for filename in filenames:
image = cv2.imread(filename)
yield image, filename, total
def surf_count(image, filename):
kp, des = surf.detectAndCompute(image, None)
return len(kp)
def sift_count(image, filename):
kp, des = sift.detectAndCompute(image, None)
return len(kp)
def analyze_image(image, filename):
analyze_fns = {
'filename': lambda image, filename: filename,
'sift_count': sift_count,
'surf_count': surf_count,
}
results = {}
for key, fn in analyze_fns.items():
start = time.time()
results[key] = fn(image, filename)
end = time.time()
delta = end - start
results[key + '_timing'] = delta
return results
def compute_stats(data):
# compute average of lst
def avg(lst): return sum(lst) / len(lst)
# e.g. pick('a', [{'a': 1},{'a': 3}]) === [1, 3]
def pick(key, lst): return list(map(lambda x: x[key], lst))
stat_fns = {
'avg': avg,
'median': median,
}
stats = {}
for algo in ['sift', 'surf']:
stats[algo] = {
'feature_count': {},
'time': {},
}
s = stats[algo]
feature_counts = pick(algo + '_count', data)
timings = pick(algo + '_count_timing', data)
for key, fn in stat_fns.items():
s['feature_count'][key] = fn(feature_counts)
s['time'][key] = fn(timings)
return stats
def analyze(basepath, limit, progress_fn = lambda x: x, results = []):
for image, filename, total in each_image(basepath, limit):
results.append(analyze_image(image, filename))
progress_fn(total)
return results
def create_progress_fn():
memo = {
'pbar': None,
'i': 0,
}
def p(total):
# print('%d / %d' % (i, total))
if memo['pbar'] is None:
pbar = tqdm(
total=total,
desc='Analyzing',
unit='image',
)
memo['pbar'] = pbar
pbar = memo['pbar']
pbar.update(1)
memo['i'] += 1
if (memo['i'] == total):
pbar.close()
return p
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
'-l', '--limit',
help = 'how many images to analyze (-1 means no limit)',
default = -1,
type = int,
)
parser.add_argument(
'-p', '--path',
help = 'path to images directory (defaults to ./flickr-images)',
default = './flickr-images',
type = str,
)
args = parser.parse_args()
if args.limit < 0:
args.limit = None
start = time.time()
data = []
try:
analyze(basepath = args.path, limit = args.limit, progress_fn = create_progress_fn(), results = data)
except KeyboardInterrupt:
# If analysis interrupted by Ctrl-C continue with files analysed so far
pass
print('%s images analyzed in ~%.0fs' % (len(data), time.time() - start))
print('')
# print(data)
stats = compute_stats(data)
pprint.pprint(stats, width = 1)
print('')
print('PS: time is in seconds')
print('')
print('On average,')
print('')
print('* An image has %d SIFT features' % stats['sift']['feature_count']['avg'])
print('* An image has %d SURF features' % stats['surf']['feature_count']['avg'])
print('* It takes %.2f seconds to detect and compute SIFT features' % stats['sift']['time']['avg'])
print('* It takes %.2f seconds to detect and compute SURF features' % stats['surf']['time']['avg'])
print(
'* SIFT finds %.1fx as many features as SURF'
%
(stats['sift']['feature_count']['avg'] / stats['surf']['feature_count']['avg'])
)
print(
'* SIFT takes %.1fx as long as SURF to detect and compute descriptors'
%
(stats['sift']['time']['avg'] / stats['surf']['time']['avg'])
)
print('')
if __name__ == '__main__':
main()