-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpost_processing.py
34 lines (26 loc) · 1.05 KB
/
post_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import os
import pandas as pd
import numpy as np
measure = 'p@100'
nbits = 32
def load_data(nbits=32, folder="./", ext='.csv'):
data = pd.DataFrame()
directory = os.path.join(folder)
for root,dirs,files in os.walk(directory):
for file in files:
if file.endswith(str(nbits)+'BITS'+ext):
dataset = pd.read_csv(folder + file, header=None)
data=pd.concat([data, dataset])
colnames=['dataset', 'algorithm', 'level', 'alpha', 'beta', 'gamma', 'p@100', 'r@100', 'p@1000', 'p@5000', 'map@100', 'map@1000', 'map@5000','added_val_flag','seed_used']
data.columns = colnames
return data
data = load_data(nbits=nbits)
cols = ['dataset', 'algorithm', 'level', measure]
data = data[cols]
data.algorithm.unique()
data=data.sort_values(by=['algorithm', 'dataset', 'level'])
data_avg = data.groupby(['dataset', 'algorithm', 'level']).mean()
data_avg.unstack(level=[0 , 1 , 2])
results = data_avg.unstack(level=[2]).transpose()
results.to_csv('table_'+str(nbits)+'bits.csv')
print(np.round(results,3).to_latex())