This repository has been archived by the owner on Jun 28, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetector.py
88 lines (67 loc) · 2.85 KB
/
detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import cv2
import numpy as np
import glob
import random
#These files must be on your current workspace
net = cv2.dnn.readNet("yolov4-obj.cfg", "bonoboChimp.weights")
classes = ["bonobo","chimp"]
images_path = glob.glob(r"C:\Users\emportent\Desktop\test\*.jpg") # image dir for for loop.
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
#you can change colors and frontsizes of rectangles...
colors = np.random.uniform(0, 255, size=(len(classes), 3))
#shuffling images randomly
random.shuffle(images_path)
for img_path in images_path:
# loading images on given path...
img = cv2.imread(img_path)
img = cv2.resize(img, None, fx=0.4, fy=0.4)
height, width, channels = img.shape
# blob detecting rectangles
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# rectangle info. You can add various information to your rectangle.
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
#you can also change your confidence
if confidence > 0.3:
# after detection, we may print into our console:
print(class_id)
print(scores)
print(confidence)
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
print(indexes)
# you can change drawing functions
font = cv2.FONT_HERSHEY_PLAIN
#info of rectangles. You can add confidence; however, sometimes imshow does not work properly with this. I will add this also, you can put it into the after "label" line
#confidence=confidences[i]
#then change the cv2.putText line as:
#cv2.putText(img, label + "" + str(round(confidence, 2)),(x, y + 30), font, 3, color, 2)
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[class_ids[i]]
cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
cv2.putText(img, label, (x, y + 30), font, 3, color, 2)
#show images
cv2.imshow("Image", img)
#waits until your keyboard response for the passing to the next image
key = cv2.waitKey(0)
cv2.destroyAllWindows()