-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
47 lines (36 loc) · 1.11 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import os
import pprint
import random
import neptune
import numpy as np
import torch
from trainer import Trainer
from config import getConfig
import warnings
warnings.filterwarnings('ignore')
args = getConfig()
def main(args):
print('<---- Training Params ---->')
pprint.pprint(args)
# Random Seed
seed = args.seed
os.environ['PYTHONHASHSEED'] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = True
save_path = os.path.join(args.model_path, (args.exp_num).zfill(3))
if args.logging:
api = ""
neptune.init("noname/dacon-anomaly", api_token=api)
temp = neptune.create_experiment(name=args.experiment, params=vars(args))
experiment_num = str(temp).split('-')[-1][:-1]
neptune.append_tag(args.tag)
save_path = os.path.join(args.model_path, experiment_num.zfill(3))
# Create model directory
os.makedirs(save_path, exist_ok=True)
Trainer(args, save_path)
if __name__ == '__main__':
main(args)