-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPO.m
161 lines (135 loc) · 5.92 KB
/
PO.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
%___________________________________________________________________________________________________________________________________________________%
% Parrot Optimizer (PO) source codes (version 2.0)
% PO
% Parrot optimizer: Algorithm and applications to medical problems
% Website and codes of Parrot optimizer(PO):http://www.aliasgharheidari.com/PO.html
% Junbo Lian, Guohua Hui, Ling Ma, Ting Zhu, Xincan Wu, Ali Asghar Heidari, Yi Chen, Huiling Chen
% Last update: Apr 07 2024
% E-Mail: as_heidari@ut.ac.ir, aliasghar68@gmail.com, chenhuiling.jlu@gmail.com
%----------------------------------------------------------------------------------------------------------------------------------------------------%
% Authors: Junbo Lian (junbolian@qq.com), Ali Asghar Heidari(as_heidari@ut.ac.ir, aliasghar68@gmail.com), Huiling Chen(chenhuiling.jlu@gmail.com)
%----------------------------------------------------------------------------------------------------------------------------------------------------%
% After use of code, please users cite to the main paper on Parrot optimizer (PO):
% Junbo Lian, Guohua Hui, Ling Ma, Ting Zhu, Xincan Wu, Ali Asghar Heidari, Yi Chen, Huiling Chen*
% Parrot optimizer: Algorithm and applications to medical problems
% Computers in Biology and Medicine, ELSEVIER - 2024
%----------------------------------------------------------------------------------------------------------------------------------------------------%
% You can also follow the paper for related updates in researchgate:
% https://www.researchgate.net/profile/Ali_Asghar_Heidari.
% Website and codes of Parrot optimizer (PO):% http://www.aliasgharheidari.com/PO.html
% You can also use and compare with our other new optimization methods:
%(RIME)-2023-http://www.aliasgharheidari.com/RIME.html
%(INFO)-2022- http://www.aliasgharheidari.com/INFO.html
%(RUN)-2021- http://www.aliasgharheidari.com/RUN.html
%(HGS)-2021- http://www.aliasgharheidari.com/HGS.html
%(SMA)-2020- http://www.aliasgharheidari.com/SMA.html
%(HHO)-2019- http://www.aliasgharheidari.com/HHO.html
%____________________________________________________________________________________________________________________________________________________%
function [avg_fitness_curve, Best_pos, Best_score, curve, search_history, fitness_history] = PO(N, Max_iter, lb, ub, dim, fobj)
% BestF: Best value in a certain iteration
% WorstF: Worst value in a certain iteration
% GBestF: Global best fitness value
% AveF: Average value in each iteration
if (max(size(ub)) == 1)
ub = ub .* ones(1, dim);
lb = lb .* ones(1, dim);
end
%% Initialization
X0 = initialization(N, dim, ub, lb); % Initialization
X = X0;
% Compute initial fitness values
fitness = zeros(1, N);
for i = 1:N
fitness(i) = fobj(X(i, :));
end
[fitness, index] = sort(fitness); % sort
GBestF = fitness(1); % Global best fitness value
AveF = mean(fitness);
for i = 1:N
X(i, :) = X0(index(i), :);
end
curve = zeros(1, Max_iter);
avg_fitness_curve = zeros(1, Max_iter);
GBestX = X(1, :); % Global best position
X_new = X;
search_history = zeros(N, Max_iter, dim);
fitness_history = zeros(N, Max_iter);
%% Start search
for i = 1:Max_iter
if mod(i,100) == 0
display(['At iteration ', num2str(i), ' the fitness is ', num2str(curve(i-1))]);
end
avg_fitness_curve(i) = AveF;
alpha = rand(1) / 5;
sita = rand(1) * pi;
for j = 1:size(X, 1)
St = randi([1, 4]);
% foraging behavior
if St == 1
X_new(j, :) = (X(j, :) - GBestX) .* Levy(dim) + rand(1) * mean(X) * (1 - i / Max_iter) ^ (2 * i / Max_iter);
% staying behavior
elseif St == 2
X_new(j, :) = X(j, :) + GBestX .* Levy(dim) + randn() * (1 - i / Max_iter) * ones(1, dim);
% communicating behavior
elseif St == 3
H = rand(1);
if H < 0.5
X_new(j, :) = X(j, :) + alpha * (1 - i / Max_iter) * (X(j, :) - mean(X));
else
X_new(j, :) = X(j, :) + alpha * (1 - i / Max_iter) * exp(-j / (rand(1) * Max_iter));
end
% fear of strangers' behavior
else
X_new(j, :) = X(j, :) + rand() * cos((pi *i )/ (2 * Max_iter)) * (GBestX - X(j, :)) - cos(sita) * (i / Max_iter) ^ (2 / Max_iter) * (X(j, :) - GBestX);
end
% Boundary control
for m = 1:N
for a = 1:dim
if (X_new(m, a) > ub(a))
X_new(m, a) = ub(a);
end
if (X_new(m, a) < lb(a))
X_new(m, a) = lb(a);
end
end
end
% Finding the best location so far
if fobj(X_new(j, :)) < GBestF
GBestF = fobj(X_new(j, :));
GBestX = X_new(j, :);
end
end
% Update positions
for s = 1:N
fitness_new(s) = fobj(X_new(s, :));
end
for s = 1:N
if (fitness_new(s) < GBestF)
GBestF = fitness_new(s);
GBestX = X_new(s, :);
end
end
X = X_new;
fitness = fitness_new;
% Sorting and updating
[fitness, index] = sort(fitness); % sort
for s = 1:N
X0(s, :) = X(index(s), :);
end
X = X0;
curve(i) = GBestF;
Best_pos = GBestX;
Best_score = curve(end);
search_history(:, i, :) = X;
fitness_history(:, i) = fitness;
end
%% Levy search strategy
function o = Levy(d)
beta = 1.5;
sigma = (gamma(1 + beta) *sin(pi * beta / 2) / (gamma((1 + beta) / 2) * beta * 2^((beta - 1) / 2)))^(1 / beta);
u = randn(1, d) * sigma;
v = randn(1, d);
step = u ./ abs(v).^(1 / beta);
o = step;
end
end