forked from ARM-software/ML-KWS-for-MCU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfreeze.py
193 lines (169 loc) · 7.18 KB
/
freeze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
#
# Modifications Copyright 2017 Arm Inc. All Rights Reserved.
# Added model dimensions as command line argument for generating the pb file
#
#
"""Converts a trained checkpoint into a frozen model for mobile inference.
Once you've trained a model using the `train.py` script, you can use this tool
to convert it into a binary GraphDef file that can be loaded into the Android,
iOS, or Raspberry Pi example code. Here's an example of how to run it:
bazel run tensorflow/examples/speech_commands/freeze -- \
--sample_rate=16000 --dct_coefficient_count=40 --window_size_ms=20 \
--window_stride_ms=10 --clip_duration_ms=1000 \
--model_architecture=conv \
--checkpoint=/tmp/speech_commands_train/conv.ckpt-1300 \
--output_file=/tmp/my_frozen_graph.pb
One thing to watch out for is that you need to pass in the same arguments for
`sample_rate` and other command line variables here as you did for the training
script.
The resulting graph has an input for WAV-encoded data named 'wav_data', one for
raw PCM data (as floats in the range -1.0 to 1.0) called 'decoded_sample_data',
and the output is called 'labels_softmax'.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os.path
import sys
import tensorflow as tf
from tensorflow.contrib.framework.python.ops import audio_ops as contrib_audio
import input_data
import models
from tensorflow.python.framework import graph_util
FLAGS = None
def create_inference_graph(wanted_words, sample_rate, clip_duration_ms,
clip_stride_ms, window_size_ms, window_stride_ms,
dct_coefficient_count, model_architecture, model_size_info):
"""Creates an audio model with the nodes needed for inference.
Uses the supplied arguments to create a model, and inserts the input and
output nodes that are needed to use the graph for inference.
Args:
wanted_words: Comma-separated list of the words we're trying to recognize.
sample_rate: How many samples per second are in the input audio files.
clip_duration_ms: How many samples to analyze for the audio pattern.
clip_stride_ms: How often to run recognition. Useful for models with cache.
window_size_ms: Time slice duration to estimate frequencies from.
window_stride_ms: How far apart time slices should be.
dct_coefficient_count: Number of frequency bands to analyze.
model_architecture: Name of the kind of model to generate.
"""
words_list = input_data.prepare_words_list(wanted_words.split(','))
model_settings = models.prepare_model_settings(
len(words_list), sample_rate, clip_duration_ms, window_size_ms,
window_stride_ms, dct_coefficient_count)
runtime_settings = {'clip_stride_ms': clip_stride_ms}
wav_data_placeholder = tf.placeholder(tf.string, [], name='wav_data')
decoded_sample_data = contrib_audio.decode_wav(
wav_data_placeholder,
desired_channels=1,
desired_samples=model_settings['desired_samples'],
name='decoded_sample_data')
spectrogram = contrib_audio.audio_spectrogram(
decoded_sample_data.audio,
window_size=model_settings['window_size_samples'],
stride=model_settings['window_stride_samples'],
magnitude_squared=True)
fingerprint_input = contrib_audio.mfcc(
spectrogram,
decoded_sample_data.sample_rate,
dct_coefficient_count=dct_coefficient_count)
fingerprint_frequency_size = model_settings['dct_coefficient_count']
fingerprint_time_size = model_settings['spectrogram_length']
reshaped_input = tf.reshape(fingerprint_input, [
-1, fingerprint_time_size * fingerprint_frequency_size
])
logits = models.create_model(
reshaped_input, model_settings, model_architecture, model_size_info,
is_training=False, runtime_settings=runtime_settings)
# Create an output to use for inference.
tf.nn.softmax(logits, name='labels_softmax')
def main(_):
# Create the model and load its weights.
sess = tf.InteractiveSession()
create_inference_graph(FLAGS.wanted_words, FLAGS.sample_rate,
FLAGS.clip_duration_ms, FLAGS.clip_stride_ms,
FLAGS.window_size_ms, FLAGS.window_stride_ms,
FLAGS.dct_coefficient_count, FLAGS.model_architecture,
FLAGS.model_size_info)
models.load_variables_from_checkpoint(sess, FLAGS.checkpoint)
# Turn all the variables into inline constants inside the graph and save it.
frozen_graph_def = graph_util.convert_variables_to_constants(
sess, sess.graph_def, ['labels_softmax'])
tf.train.write_graph(
frozen_graph_def,
os.path.dirname(FLAGS.output_file),
os.path.basename(FLAGS.output_file),
as_text=False)
tf.logging.info('Saved frozen graph to %s', FLAGS.output_file)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--sample_rate',
type=int,
default=16000,
help='Expected sample rate of the wavs',)
parser.add_argument(
'--clip_duration_ms',
type=int,
default=1000,
help='Expected duration in milliseconds of the wavs',)
parser.add_argument(
'--clip_stride_ms',
type=int,
default=30,
help='How often to run recognition. Useful for models with cache.',)
parser.add_argument(
'--window_size_ms',
type=float,
default=30.0,
help='How long each spectrogram timeslice is',)
parser.add_argument(
'--window_stride_ms',
type=float,
default=10.0,
help='How long the stride is between spectrogram timeslices',)
parser.add_argument(
'--dct_coefficient_count',
type=int,
default=40,
help='How many bins to use for the MFCC fingerprint',)
parser.add_argument(
'--checkpoint',
type=str,
default='',
help='If specified, restore this pretrained model before any training.')
parser.add_argument(
'--model_architecture',
type=str,
default='dnn',
help='What model architecture to use')
parser.add_argument(
'--model_size_info',
type=int,
nargs="+",
default=[128,128,128],
help='Model dimensions - different for various models')
parser.add_argument(
'--wanted_words',
type=str,
default='yes,no,up,down,left,right,on,off,stop,go',
help='Words to use (others will be added to an unknown label)',)
parser.add_argument(
'--output_file', type=str, help='Where to save the frozen graph.')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)