-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathTorus.h
216 lines (205 loc) · 6.21 KB
/
Torus.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#ifndef TORUS_HEADER
#define TORUS_HEADER
#include "basic.h"
#include <MiscLib/Vector.h>
#include "PointCloud.h"
#include <GfxTL/HyperplaneCoordinateSystem.h>
#include <GfxTL/VectorXD.h>
#include <GfxTL/MathHelper.h>
#include <ostream>
#include <istream>
#include <stdio.h>
#include <MiscLib/NoShrinkVector.h>
#ifndef DLL_LINKAGE
#define DLL_LINKAGE
#endif
class DLL_LINKAGE Torus
{
public:
enum { RequiredSamples = 4 };
bool Init(const MiscLib::Vector< Vec3f > &samples);
bool InitAverage(const MiscLib::Vector< Vec3f > &samples);
bool Init(bool binary, std::istream *i);
void Init(FILE *i);
void Init(float *array);
inline float Distance(const Vec3f &p) const;
inline void Normal(const Vec3f &p, Vec3f *n) const;
inline float DistanceAndNormal(const Vec3f &p, Vec3f *n) const;
inline float SignedDistance(const Vec3f &p) const;
inline float SignedDistanceAndNormal(const Vec3f &p, Vec3f *n) const;
inline void Project(const Vec3f &p, Vec3f *pp) const;
void Transform(float scale, const Vec3f &translate);
const Vec3f &Center() const { return m_center; }
const Vec3f &AxisDirection() const { return m_normal; }
const float MinorRadius() const { return m_rminor; }
const float MajorRadius() const { return m_rmajor; }
bool LeastSquaresFit(const PointCloud &pc,
MiscLib::Vector< size_t >::const_iterator begin,
MiscLib::Vector< size_t >::const_iterator end);
bool Fit(const PointCloud &pc,
MiscLib::Vector< size_t >::const_iterator begin,
MiscLib::Vector< size_t >::const_iterator end)
{ return LeastSquaresFit(pc, begin, end); }
bool IsAppleShaped() const { return m_appleShaped; }
float AppleCutOffAngle() const { return m_cutOffAngle; }
void Serialize(bool binary, std::ostream *o) const;
static size_t SerializedSize();
void Serialize(FILE *o) const;
void Serialize(float* array) const;
static size_t SerializedFloatSize();
private:
void ComputeAppleParams();
private:
Vec3f m_normal;
Vec3f m_center;
float m_rminor;
float m_rmajor;
bool m_appleShaped; // an apple shaped torus has rminor > rmajor
float m_cutOffAngle; // for an apple shaped torus
// the minor circle is cut off
float m_appleHeight; // height of the "apple" point
};
float Torus::Distance(const Vec3f &p) const
{
Vec3f s = p - m_center;
float spin1 = m_normal.dot(s);
float spin0 = (s - spin1 * m_normal).length();
spin0 -= m_rmajor;
if(!m_appleShaped)
return abs(std::sqrt(spin0 * spin0 + spin1 * spin1) - m_rminor);
// apple shaped torus distance
float minorAngle = std::atan2(spin1, spin0); // minor angle
if(abs(minorAngle) < m_cutOffAngle)
return abs(std::sqrt(spin0 * spin0 + spin1 * spin1) - m_rminor);
spin0 += 2 * m_rmajor - m_rminor;
if(minorAngle < 0)
spin1 += m_appleHeight;
else
spin1 -= m_appleHeight;
return std::sqrt(spin0 * spin0 + spin1 * spin1);
}
void Torus::Normal(const Vec3f &p, Vec3f *n) const
{
Vec3f s = p - m_center, tmp;
float spin1 = m_normal.dot(s);
float spin0 = (s - (tmp = spin1 * m_normal)).length();
spin0 -= m_rmajor;
if(m_appleShaped)
{
float minorAngle = std::atan2(spin1, spin0); // minor angle
if(abs(minorAngle) > m_cutOffAngle)
{
*n = m_normal;
if(minorAngle < 0)
*n *= -1;
return;
}
}
Vec3f pln = s.cross(m_normal);
Vec3f plx = m_normal.cross(pln);
plx.normalize();
*n = spin0 * plx + tmp;
*n /= std::sqrt(spin0 * spin0 + spin1 * spin1);
}
float Torus::DistanceAndNormal(const Vec3f &p, Vec3f *n) const
{
Vec3f s = p - m_center, tmp;
float spin1 = m_normal.dot(s);
float spin0 = (s - (tmp = spin1 * m_normal)).length();
spin0 -= m_rmajor;
if(m_appleShaped)
{
float minorAngle = std::atan2(spin1, spin0); // minor angle
if(abs(minorAngle) > m_cutOffAngle)
{
*n = m_normal;
if(minorAngle < 0)
*n *= -1;
spin0 += 2 * m_rmajor - m_rminor;
if(minorAngle < 0)
spin1 += m_appleHeight;
else
spin1 -= m_appleHeight;
return std::sqrt(spin0 * spin0 + spin1 * spin1);
}
}
Vec3f pln = s.cross(m_normal);
Vec3f plx = m_normal.cross(pln);
plx.normalize();
*n = spin0 * plx + tmp;
float d = std::sqrt(spin0 * spin0 + spin1 * spin1);
*n /= d;
return abs(d - m_rminor);
}
float Torus::SignedDistance(const Vec3f &p) const
{
Vec3f s = p - m_center;
float spin1 = m_normal.dot(s);
float spin0 = (s - spin1 * m_normal).length();
spin0 -= m_rmajor;
if(!m_appleShaped)
return std::sqrt(spin0 * spin0 + spin1 * spin1) - m_rminor;
// apple shaped torus distance
float minorAngle = std::atan2(spin1, spin0); // minor angle
if(abs(minorAngle) < m_cutOffAngle)
return std::sqrt(spin0 * spin0 + spin1 * spin1) - m_rminor;
spin0 += 2 * m_rmajor - m_rminor;
if(minorAngle < 0)
spin1 += m_appleHeight;
else
spin1 -= m_appleHeight;
return -std::sqrt(spin0 * spin0 + spin1 * spin1);
}
float Torus::SignedDistanceAndNormal(const Vec3f &p, Vec3f *n) const
{
Vec3f s = p - m_center, tmp;
float spin1 = m_normal.dot(s);
float spin0 = (s - (tmp = spin1 * m_normal)).length();
spin0 -= m_rmajor;
if(m_appleShaped)
{
float minorAngle = std::atan2(spin1, spin0); // minor angle
if(abs(minorAngle) > m_cutOffAngle)
{
*n = m_normal;
if(minorAngle < 0)
*n *= -1;
spin0 += 2 * m_rmajor - m_rminor;
if(minorAngle < 0)
spin1 += m_appleHeight;
else
spin1 -= m_appleHeight;
return -std::sqrt(spin0 * spin0 + spin1 * spin1);
}
}
Vec3f pln = s.cross(m_normal);
Vec3f plx = m_normal.cross(pln);
plx.normalize();
*n = spin0 * plx + tmp;
float d = std::sqrt(spin0 * spin0 + spin1 * spin1);
*n /= d;
return d - m_rminor;
}
void Torus::Project(const Vec3f &p, Vec3f *pp) const
{
Vec3f s = p - m_center, tmp;
float spin1 = m_normal.dot(s);
float spin0 = (s - (tmp = spin1 * m_normal)).length();
spin0 -= m_rmajor;
if(m_appleShaped)
{
float minorAngle = std::atan2(spin1, spin0); // minor angle
if(abs(minorAngle) > m_cutOffAngle)
{
*pp = m_center + GfxTL::Math< float >::Sign(minorAngle) * m_normal;
return;
}
}
Vec3f pln = s.cross(m_normal);
Vec3f plx = m_normal.cross(pln);
plx.normalize();
float d = std::sqrt(spin0 * spin0 + spin1 * spin1);
*pp = m_center + (m_rminor / d) * (spin0 * plx + tmp)
+ m_rmajor * plx;
}
#endif