Skip to content

Releases: albumentations-team/albumentations

Albumentations 2.0.1 Release Notes

23 Jan 22:21
6bc38b8
Compare
Choose a tag to compare
  • Support Our Work
  • Core
  • Bugfixes and speedups

Support Our Work

  1. Help Us Grow - If you find value in Albumentations, consider becoming a sponsor. Every contribution, no matter the size, helps us maintain and improve the library for everyone.
  2. Show Your Support - If you enjoy using Albumentations, consider giving us a ⭐ on GitHub. It helps others discover the library and motivates our team.
  3. Join Our Community - Have suggestions or ran into issues? We welcome your input! Share your experience in our GitHub issues or connect with us on Discord.

Core

Added parameter filter_invalid_bboxes to BboxParams.

If True, filters out invalid bounding boxes (e.g., boxes with negative dimensions or boxes where x_max < x_min or y_max < y_min at the beginning of the pipeline. If clip=True, filtering is applied after clipping. Default: False.

Bugfixes and speedups:

Albumentations 2.0.0 Release Notes

08 Jan 20:24
72d9726
Compare
Choose a tag to compare

This is major release, meaning

  • only one new transform

  • a lot of changes.

    • all parameter renaming was moved through deprecations => you got deprecation warning for months
    • A few transform have change of default parameters. If you always specify parameters for each augmentations => it will not affect you.

If you have questions or proposals:

If you have complaints:

New transform

ConstrainedCoarseDropout

Screenshot 2025-01-03 at 5 58 27 PM

by @vedantdalimkar

Core

  • Deleted always_apply => use p=1 to always apply and p=0 for not applying.
  • Deleted update_params, get_params_dependent_on_targets => use get_params_dependent_on_data

Transforms

GaussNoise

  • Deleted: var_limit, mean
  • Use: std_range, mean_range

It is not just a renaming, var_limit and std_range sample from different distributions. Sampling from std_range matches with other libraries like torchvision.

AdvancedBlur

  • Deleted: sigmaX_limit, sigmaY_limit
  • Use: sigma_x_limit, sigma_y_limit

RandomCrop

  • Deleted pad_mode, pad_val_mask, pad_cvl
  • Use: border_mode, fill_mask, fill

CenterCrop

  • Deleted pad_mode, pad_val_mask, pad_cvl
  • Use: border_mode, fill_mask, fill

Crop

  • Deleted pad_mode, pad_val_mask, pad_cvl
  • Use: border_mode, fill_mask, fill

RandomResizedCrop

  • Deleted: height, width
  • Use: size

RandomSizedCrop

  • Deleted: height, width
  • Use: size

RandomCropNearBBox

  • Deleted: cropping_box_key
  • Use: cropping_bbox_key

CropAndPad

  • Deleted: pad_mode, pad_val_mask, pad_cvl
  • Use: border_mode, fill_mask, fill

TemplateTransform

  • Deleted: template_weight

ChannelDropout

  • Deleted: fill_value
  • Use: fill

CoarseDropout

  • Deleted: min_holes, max_holes, min_height, max_height, min_width, max_width, mask_fill_value, fill_value
  • Use: num_holes_range, hole_height_range, hole_width_range, fill, fill_mask

Also default parameters changed:
num_height_range = (8, 8) => num_height_range = (0.1, 0.2)
num_width_range = (8, 8) => num_width_range = (0.1, 0.2)

GridDropout

  • Deleted: unit_size_min, unit_size_max, holes_number_x, holes_number_y, shift_x, shift_y, fill_value, mask_fill_value
  • Use: unit_size_range, holes_number_xy, fill, fill_mask

MaskDropout

  • Deleted: image_fill_value, mask_fill_value
  • Use: fill, fill_mask

XYMasking

  • Deleted: mask_fill_value, fill_value
  • Use: fill, fill_mask

Rotate

  • Deleted: value, mask_value
  • Use: fill, fill_mask

Changed default value for border_mode from cv2.BORDER_REFLECT_101 to cv2.BORDER_CONSTANT

SafeRotate

  • Deleted: value, mask_value
  • Use: fill, fill_mask

Changed default value for border_mode from cv2.BORDER_REFLECT_101 to cv2.BORDER_CONSTANT

ElasticTransform

  • Deleted: border_mode, value, mask_value

Perspective

  • Deleted: pad_mode, pad_val, mask_pad_val

Affine

  • Deleted: cval, cval_mask, mode
  • Use: fill, fill_mask, border_mode

ShiftScaleRotate

  • Deleted: value, mask_value
  • Use: fill, fill_mask

Changed default border_mode from cv2.BORDER_REFLECT_101 to cv2.BORDER_CONSTANT

PiesewiseAffine

  • Deleted: cval, cval_mask, mode, keypoints_threshold

OpticalDistortion

  • Deleted: shift_limit, value, mask_value, border_mode

GridDistortion

  • Deleted: value, mask_value, border_mode

RandomRotate90

Changed default probability from p=0.5 to p=1

PadIfNeeded

  • Deleted: value, mask_value
  • Use: fill, fill_mask

Changed default value for border_mode from cv2.BORDER_REFLECT_101 to cv2.BORDER_CONSTANT

ImageCompression

  • Deleted: quality_lower, quality_upper
  • Use: quality_range

RandomSnow

  • Deleted: snow_point_lower, snow_point_upper
  • Use: snow_point_range

RandomRain

  • Deleted: slant_lower, slant_upper
  • Use: slant_range

RandomFog

  • Deleted: fog_coef_lower, fog_coef_upper
  • Use: fog_coef_range

RandomSunFlare

  • Deleted: angle_lower, angle_upper, num_flare_circles_lower, num_flare_circles_upper
  • Use: num_flare_circles_range, angle_range

RandomShadow

  • Deleted: num_shadows_lower, num_shadows_upper
  • Use: num_shadows_limit

Solarize

  • Deleted: threshold
  • Use: threshold_range

Downscale

  • Deleted interpolation, scale_min, scale_max
  • Use: interpolation_pair, scale_range

by @ternaus

Small improvements

  • Fixed links in readme by @guspan-tanadi
  • Better bounding box processing in Dropouts

Albumentations 1.4.24 Release Notes

24 Dec 21:59
40e2c40
Compare
Choose a tag to compare
  • Support Our Work
  • Core
  • Transforms
  • Bugfixes

Support Our Work

  1. Help Us Grow - If you find value in Albumentations, consider becoming a sponsor. Every contribution, no matter the size, helps us maintain and improve the library for everyone.
  2. Show Your Support - If you enjoy using Albumentations, consider giving us a ⭐ on GitHub. It helps others discover the library and motivates our team.
  3. Join Our Community - Have suggestions or ran into issues? We welcome your input! Share your experience in our GitHub issues or connect with us on Discord.

Core

  • Added new keypoints format xyz for ImageOnly and Dual transforms (z coordinate stays unchanged)

Transforms

New transform AtLeastOneBBoxRandomCrop

Crop an area from image while ensuring at least one bounding box is present in the crop.

Screenshot 2024-12-24 at 1 46 24 PM

by @guillaume-rochette-oxb

Improvements

  • SmallestMaxSize: Added option for separate max_size for height/width
  • LongestMaxSize: Added option for separate max_size for height/width
  • Added keypoints support to: CenterCrop3D, CoarseDropout3D, CubicSymmetry, Pad3D, PadIfNeeded3D, RandomCrop3D (by @ternaus)

Bugfixes

  • Do not import eval-type-backport for python 3.10 and older. by @PerchunPak
  • Bugfix in ToTensorV2 by @matejpekar

Albumentations 1.4.23 Release Notes

17 Dec 21:35
a4302fc
Compare
Choose a tag to compare
  • Support Our Work
  • Core
  • Transforms
  • Bugfixes

Support Our Work

  1. Help Us Grow - If you find value in Albumentations, consider becoming a sponsor. Every contribution, no matter the size, helps us maintain and improve the library for everyone.
  2. Show Your Support - If you enjoy using Albumentations, consider giving us a ⭐ on GitHub. It helps others discover the library and motivates our team.
  3. Join Our Community - Have suggestions or ran into issues? We welcome your input! Share your experience in our GitHub issues or connect with us on Discord.

Core

Target images as numpy array

Now supports numpy arrays with shape (num_images, height, width, num_channels) or (num_images, height, width) as images in Compose

  • Ideal for video processing applications
  • Same transform applies to all images in the array

New 3D Data Support

  • volume: (depth, height, width) or (depth, height, width, num_channels)
  • mask3d: (depth, height, width) or (depth, height, width, num_channels)
  • volumes: (num_volumes, depth, height, width) for batch processing
  • masks3d: (num_volumes, depth, height, width) for batch processing
volume = np.random.rand(96, 256, 256) # Your 3D medical volume
mask = np.zeros((96, 256, 256)) # Your 3D segmentation mask
transformed = transform(volume=volume, mask3d=mask)
transformed_volume = transformed['volume']
transformed_mask = transformed['mask3d']

Transforms

Added 3D transforms by @ternaus

Padding & Cropping

  • Pad3D: Pad 3D volumes with flexible padding options
  • PadIfNeeded3D: Conditional padding to meet minimum dimensions or divisibility requirements
  • CenterCrop3D: Center cropping for 3D volumes
  • RandomCrop3D: Random cropping of 3D volumes
transform = A.Compose([
    # Crop volume to a fixed size for memory efficiency
    A.RandomCrop3D(size=(64, 128, 128), p=1.0),    
    # Randomly remove cubic regions to simulate occlusions
    A.CoarseDropout3D(
        num_holes_range=(2, 6),
        hole_depth_range=(0.1, 0.3),
        hole_height_range=(0.1, 0.3),
        hole_width_range=(0.1, 0.3),
        p=0.5
    ),    
])

volume = np.random.rand(96, 256, 256) # Your 3D medical volume
mask = np.zeros((96, 256, 256)) # Your 3D segmentation mask
transformed = transform(volume=volume, mask3d=mask)
transformed_volume = transformed['volume']
transformed_mask = transformed['mask3d']

Augmentation

  • CoarseDropout3D: Random cuboid dropout regions for occlusion simulation
  • CubicSymmetry: 48 possible cube symmetry transformations (24 rotations + 24 rotoreflections)

Fixes

Albumentations 1.4.22 Release Notes

06 Dec 21:42
ff5cf99
Compare
Choose a tag to compare
  • Support Our Work
  • Transforms
  • Core
  • Bugfixes

Support Our Work

  1. Help Us Grow - If you find value in Albumentations, consider becoming a sponsor. Every contribution, no matter the size, helps us maintain and improve the library for everyone.
  2. Show Your Support - If you enjoy using Albumentations, consider giving us a ⭐ on GitHub. It helps others discover the library and motivates our team.
  3. Join Our Community - Have suggestions or ran into issues? We welcome your input! Share your experience in our GitHub issues or connect with us on Discord.

Transforms

Elastic Transform

  1. Added argument noise_distribution that allows sampling displacement fields from gaussian and from uniform distributions.
  2. Deprecated parameters border_mode, value, mask_value - you can specify them, but will not have any effect.

New transform ShotNoise

Screenshot 2024-12-06 at 10 34 34
Apply shot noise to the image by modeling photon counting as a Poisson process.

    Shot noise (also known as Poisson noise) occurs in imaging due to the quantum nature of light.
    When photons hit an imaging sensor, they arrive at random times following Poisson statistics.
    This transform simulates this physical process in linear light space by:
    1. Converting to linear space (removing gamma)
    2. Treating each pixel value as an expected photon count
    3. Sampling actual photon counts from a Poisson distribution
    4. Converting back to display space (reapplying gamma)

    The noise characteristics follow real camera behavior:
    - Noise variance equals signal mean in linear space (Poisson statistics)
    - Brighter regions have more absolute noise but less relative noise
    - Darker regions have less absolute noise but more relative noise
    - Noise is generated independently for each pixel and color channel

RandomGridShuffle

Addes support for bounding boxes

Screenshot 2024-12-06 at 10 38 44

CorseDropout

Added an option to inpaint holes using inpaint_ns and inpaint_telea from OpenCV

GridDropout

Added an option to inpaint holes using inpaint_ns and inpaint_telea from OpenCV

MaskDropout

Added an option to inpaint holes using inpaint_ns and inpaint_telea from OpenCV

XYMasking

Added an option to inpaint holes using inpaint_ns and inpaint_telea from OpenCV

New transform TimeReverse

Added NewTransform TimeReverse

Reverse the time axis of a spectrogram image, also known as time inversion.

    Time inversion of a spectrogram is analogous to the random flip of an image,
    an augmentation technique widely used in the visual domain. This can be relevant
    in the context of audio classification tasks when working with spectrograms.
    The technique was successfully applied in the AudioCLIP paper, which extended
    CLIP to handle image, text, and audio inputs.

    This transform is implemented as a subclass of HorizontalFlip since reversing
    time in a spectrogram is equivalent to flipping the image horizontally.

New transform TimeMasking

Added NewTransform TimeMasking

Apply masking to a spectrogram in the time domain.

    This transform masks random segments along the time axis of a spectrogram,
    implementing the time masking technique proposed in the SpecAugment paper.
    Time masking helps in training models to be robust against temporal variations
    and missing information in audio signals.

    This is a specialized version of XYMasking configured for time masking only.
    For more advanced use cases (e.g., multiple masks, frequency masking, or custom
    fill values), consider using XYMasking directly.

New transform FrequencyMasking

Apply masking to a spectrogram in the frequency domain.

    This transform masks random segments along the frequency axis of a spectrogram,
    implementing the frequency masking technique proposed in the SpecAugment paper.
    Frequency masking helps in training models to be robust against frequency variations
    and missing spectral information in audio signals.

    This is a specialized version of XYMasking configured for frequency masking only.
    For more advanced use cases (e.g., multiple masks, time masking, or custom
    fill values), consider using XYMasking directly.

Added NewTransform FrequencyMasking

It is a specialized version of XYMasking that has the similar API as FrequencyMasking from torchaudio

New Transform Pad

Screenshot 2024-12-06 at 11 19 42
Pad the sides of an image by specified number of pixels.

    Args:
        padding (int, tuple[int, int] or tuple[int, int, int, int]): Padding values. Can be:
            * int - pad all sides by this value
            * tuple[int, int] - (pad_x, pad_y) to pad left/right by pad_x and top/bottom by pad_y
            * tuple[int, int, int, int] - (left, top, right, bottom) specific padding per side

This is the generalization of the torchvision transform with the same name

New Transform Erasing

Screenshot 2024-12-06 at 11 23 25

This is the generalization of the similar torchvision transform

Randomly erases rectangular regions in an image, following the Random Erasing Data Augmentation technique.

    This augmentation helps improve model robustness by randomly masking out rectangular regions in the image,
    simulating occlusions and encouraging the model to learn from partial information. It's particularly
    effective for image classification and person re-identification tasks.

New Transform AdditiveNoise

Screenshot 2024-12-06 at 11 26 17
Apply random noise to image channels using various noise distributions.

    This transform generates noise using different probability distributions and applies it
    to image channels. The noise can be generated in three spatial modes and supports
    multiple noise distributions, each with configurable parameters.

    Args:
        noise_type: Type of noise distribution to use. Options:
            - "uniform": Uniform distribution, good for simple random perturbations
            - "gaussian": Normal distribution, models natural random processes
            - "laplace": Similar to Gaussian but with heavier tails, good for outliers
            - "beta": Flexible bounded distribution, can be symmetric or skewed

        spatial_mode: How to generate and apply the noise. Options:
            - "constant": One noise value per channel, fastest
            - "per_pixel": Independent noise value for each pixel and channel, slowest
            - "shared": One noise map shared across all channels, medium speed

Sharpen

Added 'gaussian' method for image sharpening.

New transform SaltAndPepper

Screenshot 2024-12-06 at 11 52 54
Apply salt and pepper noise to the input image.

    Salt and pepper noise is a form of impulse noise that randomly sets pixels to either maximum value (salt)
    or minimum value (pepper). The amount and proportion of salt vs pepper noise can be controlled.

New transform PlasmaBrightNessContrast

Screenshot 2024-12-06 at 11 54 34
Apply plasma fractal pattern to modify image brightness and contrast.

    This transform uses the Diamond-Square algorithm to generate organic-looking fractal patterns
    that are then used to create spatially-varying brightness and contrast adjustments.
    The result is a natural-looking, non-uniform modification of the image.

New Transform PlasmaShadow

<img width="118...

Read more

Albumentations 1.4.21 Release Notes

01 Nov 00:15
91a0531
Compare
Choose a tag to compare
  • Support Our Work
  • Transforms
  • Core
  • Benchmark
  • Speedups

Support Our Work

  1. Love the library? You can contribute to its development by becoming a sponsor for the library. Your support is invaluable, and every contribution makes a difference.
  2. Haven't starred our repo yet? Show your support with a ⭐! It's just only one mouse click away.
  3. Got ideas or facing issues? We'd love to hear from you. Share your thoughts in our issues or join the conversation on our Discord server

Transforms

Auto padding in crops

Added option to pad the image if crop size is larger than the crop size

Old way

[
A.PadIfNeeded(min_height=1024, min_width=1024, p=1),
A.RandomCrop(height=1204, width=1024, p=1)
]

New way:

A.RandomCrop(height=1204, width=1024, p=1, pad_if_needed=True)

Works for:

You may also use it to pad image to a desired size.

Core

Random state

Now random state for the pipeline does not depend on the global random state

Before

random.seed(seed)
np.random.seed(seed)

transform = A.Compose(...) 

Now

transform = A.Compose(seed=seed, ...)

or

transform = A.Compose(...)
transform.set_random_seed(seed)

Saving used parameters

Now you can get exact parameters that were used in the pipeline on a given sample with

transform = A.Compose(save_applied_params=True, ...)

result = transform(image=image, bboxes=bboxes, mask=mask, keypoints=keypoints)

print(result["applied_transforms"])

Benchmark

Moved benchmark to a separate repo

https://github.com/albumentations-team/benchmark/

Current result for uint8 images:

Transform albumentations
1.4.20
augly
1.0.0
imgaug
0.4.0
kornia
0.7.3
torchvision
0.20.0
HorizontalFlip 8325 ± 955 4807 ± 818 6042 ± 788 390 ± 106 914 ± 67
VerticalFlip 20493 ± 1134 9153 ± 1291 10931 ± 1844 1212 ± 402 3198 ± 200
Rotate 1272 ± 12 1119 ± 41 1136 ± 218 143 ± 11 181 ± 11
Affine 967 ± 3 - 774 ± 97 147 ± 9 130 ± 12
Equalize 961 ± 4 - 581 ± 54 152 ± 19 479 ± 12
RandomCrop80 118946 ± 741 25272 ± 1822 11503 ± 441 1510 ± 230 32109 ± 1241
ShiftRGB 1873 ± 252 - 1582 ± 65 - -
Resize 2365 ± 153 611 ± 78 1806 ± 63 232 ± 24 195 ± 4
RandomGamma 8608 ± 220 - 2318 ± 269 108 ± 13 -
Grayscale 3050 ± 597 2720 ± 932 1681 ± 156 289 ± 75 1838 ± 130
RandomPerspective 410 ± 20 - 554 ± 22 86 ± 11 96 ± 5
GaussianBlur 1734 ± 204 242 ± 4 1090 ± 65 176 ± 18 79 ± 3
MedianBlur 862 ± 30 - 813 ± 30 5 ± 0 -
MotionBlur 2975 ± 52 - 612 ± 18 73 ± 2 -
Posterize 5214 ± 101 - 2097 ± 68 430 ± 49 3196 ± 185
JpegCompression 845 ± 61 778 ± 5 459 ± 35 71 ± 3 625 ± 17
GaussianNoise 147 ± 10 67 ± 2 206 ± 11 75 ± 1 -
Elastic 171 ± 15 - 235 ± 20 1 ± 0 2 ± 0
Clahe 423 ± 10 - 335 ± 43 94 ± 9 -
CoarseDropout 11288 ± 609 - 671 ± 38 536 ± 87 -
Blur 4816 ± 59 246 ± 3 3807 ± 325 - -
ColorJitter 536 ± 41 255 ± 13 - 55 ± 18 46 ± 2
Brightness 4443 ± 84 1163 ± 86 - 472 ± 101 429 ± 20
Contrast 4398 ± 143 736 ± 79 - 425 ± 52 335 ± 35
RandomResizedCrop 2952 ± 24 - - 287 ± 58 511 ± 10
Normalize 1016 ± 84 - - 626 ± 40 519 ± 12
PlankianJitter 1844 ± 208 - - 813 ± 211 -

Speedups

Albumentations 1.4.20 Release Notes

24 Oct 23:45
759d8de
Compare
Choose a tag to compare

Hotfix version.

Albumentations 1.4.19 Release Notes

23 Oct 20:36
13a510d
Compare
Choose a tag to compare
  • Support Our Work
  • Transforms
  • Core
  • Bug Fixes

Support Our Work

  1. Love the library? You can contribute to its development by becoming a sponsor for the library. Your support is invaluable, and every contribution makes a difference.
  2. Haven't starred our repo yet? Show your support with a ⭐! It's just only one mouse click away.
  3. Got ideas or facing issues? We'd love to hear from you. Share your thoughts in our issues or join the conversation on our Discord server

Transforms

Added mask_interpolation to all transforms that use mask interpolation, including:

by @ternaus

Core

  • Minimal supported python version is 3.9
  • Removed dependency on scikit-image
  • Updated Random number generator from np.random.state to np.random.generator. Second is 50% faster => speedups in all transforms that heavily use random generator
  • Where possible moved from cv2.LUT to stringzilla lut
  • Added parameter mask_interpolation to Compose that overrides mask interpolation value in all transforms in that Compose, now can use more accurate cv2.INTER_NEAREST_EXACT for semantic segmentation and can work with depth and heatmap estimation using cubic, area, linear, etc

BugFixes

Albumentations 1.4.18 Release Notes

08 Oct 22:32
47f9592
Compare
Choose a tag to compare
  • Support Our Work
  • Transforms
  • Core
  • Deprecations
  • Bugfixes

Support Our Work

  1. Love the library? You can contribute to its development by becoming a sponsor for the library. Your support is invaluable, and every contribution makes a difference.
  2. Haven't starred our repo yet? Show your support with a ⭐! It's just only one mouse click away.
  3. Got ideas or facing issues? We'd love to hear from you. Share your thoughts in our issues or join the conversation on our Discord server

Transforms

GridDistortion

Screenshot 2024-10-08 at 15 06 03

Added support for keypoints

GridDropout

Screenshot 2024-10-08 at 15 08 04

Added support for keypoints and bounding boxes

GridElasticDeform

Screenshot 2024-10-08 at 15 10 24

Added support for keypoints and bounding boxes

MaskDropout

Screenshot 2024-10-08 at 15 11 53

Added support for keypoints and bounding boxes

Morphological

Screenshot 2024-10-08 at 15 13 36

Added support for bounding boxes and keypoints

OpticalDistortion

Screenshot 2024-10-08 at 15 18 23

Added support for keypoints

PixelDropout

Screenshot 2024-10-08 at 15 19 46

Added support for keypoints and bonding boxes

XYMasking

Screenshot 2024-10-08 at 15 21 52

Added support for bounding boxes and keypoints

Core

Added support for masks as numpy arrays of the shape (num_masks, height, width)

Now you can apply transforms to masks as:

masks = <numpy array with shape (num_masks, height, width)>

transform(image=image, masks=masks)

Deprecations

Removed MixUp as it was doing almost exactly the same as TemplateTransform

Bugfixes

  • Bugfix in RandomFog
  • Bugfix in PlankianJitter
  • Several people reported issue with masks as list of numpy arrays, I guess it was fixed as a part of some other work as I cannot reproduce it. Just in case added tests for that case.

Albumentations 1.4.17 Release Notes

30 Sep 22:33
e7d5ef1
Compare
Choose a tag to compare
  • Support Our Work
  • Transforms
  • Core

Support Our Work

  1. Love the library? You can contribute to its development by becoming a sponsor for the library. Your support is invaluable, and every contribution makes a difference.
  2. Haven't starred our repo yet? Show your support with a ⭐! It's just only one mouse click away.
  3. Got ideas or facing issues? We'd love to hear from you. Share your thoughts in our issues or join the conversation on our Discord server

Transforms

CoarseDropout

  1. Added Bounding Box support
  2. remove_invisible=False keeps keypoints
Screenshot 2024-09-30 at 15 25 53

by @ternaus

ElasticTransform

Added support for keypoints

Screenshot 2024-09-30 at 15 29 36

by @ternaus

Core

Added RandomOrder Compose

Select N transforms to apply. Selected transforms will be called in random order with force_apply=True. 
Transforms probabilities will be normalized to one 1, so in this case transforms probabilities works as weights. 
This transform is like SomeOf, but transforms are called with random order. 
It will not replay random order in ReplayCompose.