This is a package for lattice QCD codes. Treating pseudo-femrion fields with various lattice Dirac operators, fermion actions with MPI.
This package is used in LatticeQCD.jl and a code in a project JuliaQCD.
- Constructing actions and its derivative for Staggered Fermion with 1-8 tastes (with the use of the rational HMC technique)
- Constructing actions and its derivative for Wilson Fermion
- (EXPERIMENTAL) Constructing actions and its derivative for Standard Domainwall Fermion
- Hybrid Monte Carlo method with fermions.
With the use of the Gaugefields.jl, we can also do the HMC with STOUT smearing.
This package will be used in LatticeQCD.jl. This package uses Gaugefields.jl. This package can be regarded as the additional package of the Gaugefields.jl to treat with Lattice fermions (pseudo- fermions).
In the package mode, Julia REPL,
add LatticeDiracOperators
The pseudo-fermin field is defined as
using Gaugefields
using LatticeDiracOperators
NX = 4
NY = 4
NZ = 4
NT = 4
Nwing = 1
Dim = 4
NC = 3
U = Initialize_4DGaugefields(NC,Nwing,NX,NY,NZ,NT,condition = "cold")
x = Initialize_pseudofermion_fields(U[1],"Wilson")
Now, x is a pseudo fermion fields for Wilson Dirac operator.
The element of x is x[ic,ix,iy,iz,it,ialpha]
. ic is an index of the color. ialpha is the internal degree of the gamma matrix.
Then, the Wilson Dirac operator can be defined as
params = Dict()
params["Dirac_operator"] = "Wilson"
params["κ"] = 0.141139
params["eps_CG"] = 1.0e-8
params["verbose_level"] = 2
D = Dirac_operator(U,x,params)
If you want to get the Gaussian distributed pseudo-fermions, just do
gauss_distribution_fermion!(x)
Then, you can apply the Dirac operator to the pseudo-fermion fields.
using LinearAlgebra
y = similar(x)
mul!(y,D,x)
And you can solve the equation
solve_DinvX!(y,D,x)
println(y[1,1,1,1,1,1])
If you want to see the convergence of the CG method, you can change the "verbose_level" in the Dirac operator.
params["verbose_level"] = 3
D = Dirac_operator(U,x,params)
gauss_distribution_fermion!(x)
solve_DinvX!(y,D,x)
println(y[1,1,1,1,1,1])
The output is like
bicg method
1-th eps: 1742.5253056262081
2-th eps: 758.2899742222573
3-th eps: 378.7020470573924
4-th eps: 210.17029515182503
5-th eps: 118.00493128655506
6-th eps: 63.31719669150997
7-th eps: 36.18603541453448
8-th eps: 21.593691953496077
9-th eps: 16.02895509383768
10-th eps: 12.920647360667004
11-th eps: 9.532250164198402
12-th eps: 5.708202470516758
13-th eps: 3.1711913019834337
14-th eps: 0.9672090407947617
15-th eps: 0.14579004932559966
16-th eps: 0.02467506197970277
17-th eps: 0.005588563782732157
18-th eps: 0.002285284357387675
19-th eps: 5.147142014626153e-5
20-th eps: 3.5632092739322066e-10
Converged at 20-th step. eps: 3.5632092739322066e-10
You can use the adjoint of the Dirac operator
gauss_distribution_fermion!(x)
solve_DinvX!(y,D',x)
println(y[1,1,1,1,1,1])
You can define the D^{\dagger} D
operator.
DdagD = DdagD_operator(U,x,params)
gauss_distribution_fermion!(x)
solve_DinvX!(y,DdagD,x)
println(y[1,1,1,1,1,1])
The Dirac operator of the staggered fermions is defined as
x = Initialize_pseudofermion_fields(U[1],"staggered")
gauss_distribution_fermion!(x)
params = Dict()
params["Dirac_operator"] = "staggered"
params["mass"] = 0.1
params["eps_CG"] = 1.0e-8
params["verbose_level"] = 2
D = Dirac_operator(U,x,params)
y = similar(x)
mul!(y,D,x)
println(y[1,1,1,1,1,1])
solve_DinvX!(y,D,x)
println(y[1,1,1,1,1,1])
The "tastes" of the Staggered Fermion is defined in the action.
This package supports standard domainwall fermions. The Dirac operator of the domainwall fermion is defined as
L5 = 4
x = Initialize_pseudofermion_fields(U[1],"Domainwall",L5=L5)
println("x ", x.w[1][1,1,1,1,1,1])
gauss_distribution_fermion!(x)
params = Dict()
params["Dirac_operator"] = "Domainwall"
params["eps_CG"] = 1.0e-16
params["MaxCGstep"] = 3000
params["verbose_level"] = 3
params["mass"] = 0.1
params["L5"] = L5
D = Dirac_operator(U,x,params)
println("x ", x[1,1,1,1,1,1,1])
y = similar(x)
solve_DinvX!(y,D,x)
println("y ", y[1,1,1,1,1,1,1])
z = similar(x)
mul!(z,D,y)
println("z ", z[1,1,1,1,1,1,1])
The domainwall fermion is defined in 5D space. The element of x is x[ic,ix,iy,iz,it,ialpha,iL]
, where iL is an index on the five dimensional axis.
The action for pseudo-fermion is defined as
NX = 4
NY = 4
NZ = 4
NT = 4
Nwing = 1
Dim = 4
NC = 3
U = Initialize_4DGaugefields(NC,Nwing,NX,NY,NZ,NT,condition = "cold")
x = Initialize_pseudofermion_fields(U[1],"Wilson")
gauss_distribution_fermion!(x)
params = Dict()
params["Dirac_operator"] = "Wilson"
params["κ"] = 0.141139
params["eps_CG"] = 1.0e-8
params["verbose_level"] = 2
D = Dirac_operator(U,x,params)
parameters_action = Dict()
fermi_action = FermiAction(D,parameters_action)
The fermion action with given pseudo-fermion fields is evaluated as
Sfnew = evaluate_FermiAction(fermi_action,U,x)
println(Sfnew)
The derivative of the fermion action dSf/dU can be calculated as
UdSfdUμ = calc_UdSfdU(fermi_action,U,x)
The function calc_UdSfdU calculates the U dSf/dU
,
You can also use calc_UdSfdU!(UdSfdUμ,fermi_action,U,x)
In the case of the Staggered fermion, we can choose "taste". The action is defined as
x = Initialize_pseudofermion_fields(U[1],"staggered")
gauss_distribution_fermion!(x)
params = Dict()
params["Dirac_operator"] = "staggered"
params["mass"] = 0.1
params["eps_CG"] = 1.0e-8
params["verbose_level"] = 2
D = Dirac_operator(U,x,params)
Nf = 2
println("Nf = $Nf")
parameters_action = Dict()
parameters_action["Nf"] = Nf
fermi_action = FermiAction(D,parameters_action)
Sfnew = evaluate_FermiAction(fermi_action,U,x)
println(Sfnew)
UdSfdUμ = calc_UdSfdU(fermi_action,U,x)
This package uses the RHMC techniques.
In the case of the domainwall fermion, the action is defined as
L5 = 4
x = Initialize_pseudofermion_fields(U[1],"Domainwall",L5 = L5)
gauss_distribution_fermion!(x)
params = Dict()
params["Dirac_operator"] = "Domainwall"
params["mass"] = 0.1
params["L5"] = L5
params["eps_CG"] = 1.0e-19
params["verbose_level"] = 2
params["method_CG"] = "bicg"
D = Dirac_operator(U,x,params)
parameters_action = Dict()
fermi_action = FermiAction(D,parameters_action)
Sfnew = evaluate_FermiAction(fermi_action,U,x)
println(Sfnew)
UdSfdUμ = calc_UdSfdU(fermi_action,U,x)
We show the HMC code with this package.
using Gaugefields
using LatticeDiracOperators
using LinearAlgebra
using InteractiveUtils
using Random
function MDtest!(gauge_action,U,Dim,fermi_action,η,ξ)
p = initialize_TA_Gaugefields(U) #This is a traceless-antihermitian gauge fields. This has NC^2-1 real coefficients.
Uold = similar(U)
substitute_U!(Uold,U)
MDsteps = 10
temp1 = similar(U[1])
temp2 = similar(U[1])
comb = 6
factor = 1/(comb*U[1].NV*U[1].NC)
numaccepted = 0
Random.seed!(123)
numtrj = 10
for itrj = 1:numtrj
@time accepted = MDstep!(gauge_action,U,p,MDsteps,Dim,Uold,fermi_action,η,ξ)
numaccepted += ifelse(accepted,1,0)
plaq_t = calculate_Plaquette(U,temp1,temp2)*factor
println("$itrj plaq_t = $plaq_t")
println("acceptance ratio ",numaccepted/itrj)
end
end
function calc_action(gauge_action,U,p)
NC = U[1].NC
Sg = -evaluate_GaugeAction(gauge_action,U)/NC #evaluate_GaugeAction(gauge_action,U) = tr(evaluate_GaugeAction_untraced(gauge_action,U))
Sp = p*p/2
S = Sp + Sg
return real(S)
end
function MDstep!(gauge_action,U,p,MDsteps,Dim,Uold,fermi_action,η,ξ)
Δτ = 1/MDsteps
NC,_,NN... = size(U[1])
gauss_distribution!(p)
substitute_U!(Uold,U)
gauss_sampling_in_action!(ξ,U,fermi_action)
sample_pseudofermions!(η,U,fermi_action,ξ)
Sfold = real(dot(ξ,ξ))
println("Sfold = $Sfold")
Sold = calc_action(gauge_action,U,p) + Sfold
println("Sold = ",Sold)
for itrj=1:MDsteps
U_update!(U,p,0.5,Δτ,Dim,gauge_action)
P_update!(U,p,1.0,Δτ,Dim,gauge_action)
P_update_fermion!(U,p,1.0,Δτ,Dim,gauge_action,fermi_action,η)
U_update!(U,p,0.5,Δτ,Dim,gauge_action)
end
Sfnew = evaluate_FermiAction(fermi_action,U,η)
println("Sfnew = $Sfnew")
Snew = calc_action(gauge_action,U,p) + Sfnew
println("Sold = $Sold, Snew = $Snew")
println("Snew - Sold = $(Snew-Sold)")
accept = exp(Sold - Snew) >= rand()
#ratio = min(1,exp(Snew-Sold))
if accept != true #rand() > ratio
substitute_U!(U,Uold)
return false
else
return true
end
end
function U_update!(U,p,ϵ,Δτ,Dim,gauge_action)
temps = get_temporary_gaugefields(gauge_action)
temp1 = temps[1]
temp2 = temps[2]
expU = temps[3]
W = temps[4]
for μ=1:Dim
exptU!(expU,ϵ*Δτ,p[μ],[temp1,temp2])
mul!(W,expU,U[μ])
substitute_U!(U[μ],W)
end
end
function P_update!(U,p,ϵ,Δτ,Dim,gauge_action) # p -> p +factor*U*dSdUμ
NC = U[1].NC
temps = get_temporary_gaugefields(gauge_action)
dSdUμ = temps[end]
factor = -ϵ*Δτ/(NC)
for μ=1:Dim
calc_dSdUμ!(dSdUμ,gauge_action,μ,U)
mul!(temps[1],U[μ],dSdUμ) # U*dSdUμ
Traceless_antihermitian_add!(p[μ],factor,temps[1])
end
end
function P_update_fermion!(U,p,ϵ,Δτ,Dim,gauge_action,fermi_action,η) # p -> p +factor*U*dSdUμ
#NC = U[1].NC
temps = get_temporary_gaugefields(gauge_action)
UdSfdUμ = temps[1:Dim]
factor = -ϵ*Δτ
calc_UdSfdU!(UdSfdUμ,fermi_action,U,η)
for μ=1:Dim
Traceless_antihermitian_add!(p[μ],factor,UdSfdUμ[μ])
#println(" p[μ] = ", p[μ][1,1,1,1,1])
end
end
function test1()
NX = 4
NY = 4
NZ = 4
NT = 4
Nwing = 1
Dim = 4
NC = 3
U = Initialize_4DGaugefields(NC,Nwing,NX,NY,NZ,NT,condition = "cold")
gauge_action = GaugeAction(U)
plaqloop = make_loops_fromname("plaquette")
append!(plaqloop,plaqloop')
β = 5.5/2
push!(gauge_action,β,plaqloop)
show(gauge_action)
x = Initialize_pseudofermion_fields(U[1],"Wilson")
params = Dict()
params["Dirac_operator"] = "Wilson"
params["κ"] = 0.141139
params["eps_CG"] = 1.0e-8
params["verbose_level"] = 2
D = Dirac_operator(U,x,params)
parameters_action = Dict()
fermi_action = FermiAction(D,parameters_action)
y = similar(x)
MDtest!(gauge_action,U,Dim,fermi_action,x,y)
end
test1()
if you want to use the Staggered fermions in HMC, the code is like:
function test2()
NX = 4
NY = 4
NZ = 4
NT = 4
Nwing = 1
Dim = 4
NC = 3
U = Initialize_4DGaugefields(NC,Nwing,NX,NY,NZ,NT,condition = "cold")
gauge_action = GaugeAction(U)
plaqloop = make_loops_fromname("plaquette")
append!(plaqloop,plaqloop')
β = 5.5/2
push!(gauge_action,β,plaqloop)
show(gauge_action)
x = Initialize_pseudofermion_fields(U[1],"staggered")
gauss_distribution_fermion!(x)
params = Dict()
params["Dirac_operator"] = "staggered"
params["mass"] = 0.1
params["eps_CG"] = 1.0e-8
params["verbose_level"] = 2
D = Dirac_operator(U,x,params)
Nf = 2
println("Nf = $Nf")
parameters_action = Dict()
parameters_action["Nf"] = Nf
fermi_action = FermiAction(D,parameters_action)
y = similar(x)
MDtest!(gauge_action,U,Dim,fermi_action,x,y)
end
We show the code of HMC with Wilson fermions with stout smearing.
using Gaugefields
using LatticeDiracOperators
using LinearAlgebra
using LatticeDiracOperators
function MDtest!(gauge_action,U,Dim,nn,fermi_action,η,ξ)
p = initialize_TA_Gaugefields(U) #This is a traceless-antihermitian gauge fields. This has NC^2-1 real coefficients.
Uold = similar(U)
dSdU = similar(U)
substitute_U!(Uold,U)
MDsteps = 10
temp1 = similar(U[1])
temp2 = similar(U[1])
comb = 6
factor = 1/(comb*U[1].NV*U[1].NC)
numaccepted = 0
numtrj = 100
for itrj = 1:numtrj
accepted = MDstep!(gauge_action,U,p,MDsteps,Dim,Uold,nn,dSdU,fermi_action,η,ξ)
numaccepted += ifelse(accepted,1,0)
plaq_t = calculate_Plaquette(U,temp1,temp2)*factor
println("$itrj plaq_t = $plaq_t")
println("acceptance ratio ",numaccepted/itrj)
end
end
function calc_action(gauge_action,U,p)
NC = U[1].NC
Sg = -evaluate_GaugeAction(gauge_action,U)/NC #evaluate_GaugeAction(gauge_action,U) = tr(evaluate_GaugeAction_untraced(gauge_action,U))
Sp = p*p/2
S = Sp + Sg
return real(S)
end
function MDstep!(gauge_action,U,p,MDsteps,Dim,Uold,nn,dSdU,fermi_action,η,ξ)
Δτ = 1/MDsteps
gauss_distribution!(p)
Uout,Uout_multi,_ = calc_smearedU(U,nn)
#Sold = calc_action(gauge_action,Uout,p)
substitute_U!(Uold,U)
gauss_sampling_in_action!(ξ,Uout,fermi_action)
sample_pseudofermions!(η,Uout,fermi_action,ξ)
Sfold = real(dot(ξ,ξ))
println("Sfold = $Sfold")
Sold = calc_action(gauge_action,U,p) + Sfold
println("Sold = ",Sold)
for itrj=1:MDsteps
U_update!(U,p,0.5,Δτ,Dim,gauge_action)
P_update!(U,p,1.0,Δτ,Dim,gauge_action)
P_update_fermion!(U,p,1.0,Δτ,Dim,gauge_action,dSdU,nn,fermi_action,η)
U_update!(U,p,0.5,Δτ,Dim,gauge_action)
end
Uout,Uout_multi,_ = calc_smearedU(U,nn)
#Snew = calc_action(gauge_action,Uout,p)
Sfnew = evaluate_FermiAction(fermi_action,Uout,η)
println("Sfnew = $Sfnew")
Snew = calc_action(gauge_action,U,p) + Sfnew
println("Sold = $Sold, Snew = $Snew")
println("Snew - Sold = $(Snew-Sold)")
ratio = min(1,exp(-Snew+Sold))
if rand() > ratio
substitute_U!(U,Uold)
return false
else
return true
end
end
function U_update!(U,p,ϵ,Δτ,Dim,gauge_action)
temps = get_temporary_gaugefields(gauge_action)
temp1 = temps[1]
temp2 = temps[2]
expU = temps[3]
W = temps[4]
for μ=1:Dim
exptU!(expU,ϵ*Δτ,p[μ],[temp1,temp2])
mul!(W,expU,U[μ])
substitute_U!(U[μ],W)
end
end
function P_update!(U,p,ϵ,Δτ,Dim,gauge_action) # p -> p +factor*U*dSdUμ
NC = U[1].NC
temps = get_temporary_gaugefields(gauge_action)
dSdUμ = temps[end]
factor = -ϵ*Δτ/(NC)
for μ=1:Dim
calc_dSdUμ!(dSdUμ,gauge_action,μ,U)
mul!(temps[1],U[μ],dSdUμ) # U*dSdUμ
Traceless_antihermitian_add!(p[μ],factor,temps[1])
end
end
function P_update_fermion!(U,p,ϵ,Δτ,Dim,gauge_action,dSdU,nn,fermi_action,η) # p -> p +factor*U*dSdUμ
#NC = U[1].NC
temps = get_temporary_gaugefields(gauge_action)
UdSfdUμ = temps[1:Dim]
factor = -ϵ*Δτ
Uout,Uout_multi,_ = calc_smearedU(U,nn)
for μ=1:Dim
calc_UdSfdU!(UdSfdUμ,fermi_action,Uout,η)
mul!(dSdU[μ],Uout[μ]',UdSfdUμ[μ])
end
dSdUbare = back_prop(dSdU,nn,Uout_multi,U)
for μ=1:Dim
mul!(temps[1],U[μ],dSdUbare[μ]) # U*dSdUμ
Traceless_antihermitian_add!(p[μ],factor,temps[1])
#println(" p[μ] = ", p[μ][1,1,1,1,1])
end
end
function test1()
NX = 4
NY = 4
NZ = 4
NT = 4
Nwing = 1
Dim = 4
NC = 3
U =Initialize_Gaugefields(NC,Nwing,NX,NY,NZ,NT,condition = "hot")
gauge_action = GaugeAction(U)
plaqloop = make_loops_fromname("plaquette")
append!(plaqloop,plaqloop')
β = 5.7/2
push!(gauge_action,β,plaqloop)
show(gauge_action)
L = [NX,NY,NZ,NT]
nn = CovNeuralnet()
ρ = [0.1]
layername = ["plaquette"]
st = STOUT_Layer(layername,ρ,L)
push!(nn,st)
#push!(nn,st)
x = Initialize_pseudofermion_fields(U[1],"Wilson")
params = Dict()
params["Dirac_operator"] = "Wilson"
params["κ"] = 0.141139
params["eps_CG"] = 1.0e-8
params["verbose_level"] = 2
D = Dirac_operator(U,x,params)
parameters_action = Dict()
fermi_action = FermiAction(D,parameters_action)
y = similar(x)
MDtest!(gauge_action,U,Dim,nn,fermi_action,x,y)
end
test1()
using LinearAlgebra
using Optimisers
using Wilsonloop
using Gaugefields
using LatticeDiracOperators
import Gaugefields.Abstractsmearing_module: get_parameters, zero_grad!, set_parameters!
# For debug
import InteractiveUtils
versionstring = """
$(InteractiveUtils.versioninfo())
LatticeDiracOperators $(pkgversion(LatticeDiracOperators))
Gaugefields $(pkgversion(Gaugefields))
Wilsonloop $(pkgversion(Wilsonloop))
"""
println(versionstring)
#---
const NX = 4
const NY = 4
const NZ = 4
const NT = 4
const Ncin = 2
const β0 = 2.45
const mass = 0.3
const mass_eff = 0.4
const Nf = 4
const filename = "mass005eff01_stout_2_1109.txt"
const paramfilename = "param_" * filename
const actionfilename = "diff_" * filename
const MDsteps = 20
const numtrj = 100
const numbatch = 1
const eta = 1e-4 #parameter for ADAM
const optimiser = Optimisers.Adam(eta)
const trainable = true
function MDtest!(gauge_action, U, Dim, nn, fermi_action, η, ξ, fermi_action_eff, numtrj, isbare)
p = initialize_TA_Gaugefields(U) #This is a traceless-antihermitian gauge fields. This has NC^2-1 real coefficients.
Uold = similar(U)
dSdU = similar(U)
substitute_U!(Uold, U)
temp1 = similar(U[1])
temp2 = similar(U[1])
comb = 6
factor = 1 / (comb * U[1].NV * U[1].NC)
numaccepted = 0
fp = open(filename, "w")
fp2 = open(paramfilename, "w")
fp3 = open(actionfilename, "w")
θ = get_parameters(nn)
state = Optimisers.setup(optimiser, θ)
dLdθ = zero(θ)
for itrj = 1:numtrj
accepted = MDstep!(gauge_action, U, p, MDsteps, Dim, Uold, nn, dSdU, fermi_action, η, ξ, fermi_action_eff, state, θ, dLdθ, fp3, isbare)
if itrj % numbatch == 0 && !isbare
println("θ_before = $θ ")
if trainable
println("dLdθ ")
display(dLdθ)
Optimisers.update!(state, θ, dLdθ / numbatch)
end
println("θ = $θ ")
set_parameters!(nn, θ)
dLdθ .= 0
end
for p in θ
print(fp2, p, "\t")
end
println(fp2, "\t")
flush(fp2)
flush(fp3)
numaccepted += ifelse(accepted, 1, 0)
plaq_t = calculate_Plaquette(U, temp1, temp2) * factor
println("$itrj plaq_t = $plaq_t")
#println(fp,"$itrj $plaq_t")
println("acceptance ratio ", numaccepted / itrj)
println(fp, "$itrj $plaq_t $(numaccepted / itrj) #itrj plaq_t acceptanceratio")
flush(fp)
end
close(fp)
close(fp2)
close(fp3)
end
function calc_action(gauge_action, U, p)
NC = U[1].NC
Sg = -evaluate_GaugeAction(gauge_action, U) / NC #evaluate_GaugeAction(gauge_action,U) = tr(evaluate_GaugeAction_untraced(gauge_action,U))
Sp = p * p / 2
S = Sp + Sg
return real(S)
end
function MDstep!(gauge_action, U, p, MDsteps, Dim, Uold, nn, dSdU, fermi_action, η, ξ,
fermi_action_eff, state, θ, dLdθ, fp3, isbare)
Δτ = 1 / MDsteps
gauss_distribution!(p)
#Uout, Uout_multi, _ = calc_smearedU(U, nn)
substitute_U!(Uold, U)
gauss_sampling_in_action!(ξ, U, fermi_action)
sample_pseudofermions!(η, U, fermi_action, ξ)
Sfold = real(dot(ξ, ξ))
println("Sfold = $Sfold")
Sgold = calc_action(gauge_action, U, p)
println("Sgold = $Sgold")
Sold = Sgold + Sfold
println("Sold = ", Sold)
for itrj = 1:MDsteps
U_update!(U, p, 0.5, Δτ, Dim, gauge_action)
P_update!(U, p, 1.0, Δτ, Dim, gauge_action)
#P_update_fermion!(U, p, 1.0, Δτ, Dim, gauge_action, dSdU, nn, fermi_action, η)
P_update_fermion!(U, p, 1.0, Δτ, Dim, gauge_action, dSdU, nn, fermi_action_eff, η, isbare)
U_update!(U, p, 0.5, Δτ, Dim, gauge_action)
end
Sfnew = evaluate_FermiAction(fermi_action, U, η)
println("Sfnew = $Sfnew")
if !isbare
Uout, Uout_multi, _ = calc_smearedU(U, nn)
Sfnew_eff = evaluate_FermiAction(fermi_action_eff, Uout, η)
println(fp3, "$Sfnew \t $(Sfnew_eff) #Sf, Sf_eff")
zero_grad!(nn)
end
if !isbare
temps = get_temporary_gaugefields(gauge_action)
UdSfdUμ = temps[1:Dim]
for μ = 1:Dim
calc_UdSfdU!(UdSfdUμ, fermi_action_eff, Uout, η)
mul!(dSdU[μ], Uout[μ]', UdSfdUμ[μ])
end
dSdUbare = back_prop(dSdU, nn, Uout_multi, U)
dSdw = deepcopy(get_parameter_derivatives(nn) * -1)
loss = (Sfnew - Sfnew_eff)^2
dLdw = (-2) * dSdw * (Sfnew - Sfnew_eff)
dLdθ .+= dLdw
println(dSdw)
println(dLdw)
println("loss = $loss")
end
Sgnew = calc_action(gauge_action, U, p)
Snew = Sgnew + Sfnew
println("Sgnew = $Sgnew")
println("Sg: Sgnew Sgold Sgnew-Sgold: $Sgnew $Sgold $(Sgnew-Sgold)")
println("Sf: Sfnew Sfold Sfnew-Sfold: $Sfnew $Sfold $(Sfnew-Sfold)")
println("Sold = $Sold, Snew = $Snew")
println("Snew - Sold = $(Snew-Sold)")
ratio = min(1, exp(-(Snew - Sold)))
if rand() > ratio
substitute_U!(U, Uold)
return false
else
return true
end
end
function U_update!(U, p, ϵ, Δτ, Dim, gauge_action)
temps = get_temporary_gaugefields(gauge_action)
temp1 = temps[1]
temp2 = temps[2]
expU = temps[3]
W = temps[4]
for μ = 1:Dim
exptU!(expU, ϵ * Δτ, p[μ], [temp1, temp2])
mul!(W, expU, U[μ])
substitute_U!(U[μ], W)
end
end
function P_update!(U, p, ϵ, Δτ, Dim, gauge_action) # p -> p +factor*U*dSdUμ
NC = U[1].NC
temps = get_temporary_gaugefields(gauge_action)
dSdUμ = temps[end]
factor = -ϵ * Δτ / (NC)
for μ = 1:Dim
calc_dSdUμ!(dSdUμ, gauge_action, μ, U)
mul!(temps[1], U[μ], dSdUμ) # U*dSdUμ
Traceless_antihermitian_add!(p[μ], factor, temps[1])
end
end
function P_update_fermion!(U, p, ϵ, Δτ, Dim, gauge_action, dSdU,
nn, fermi_action, η, isbare) # p -> p +factor*U*dSdUμ
temps = get_temporary_gaugefields(gauge_action)
UdSfdUμ = temps[1:Dim]
factor = -ϵ * Δτ
if !isbare
Uout, Uout_multi, _ = calc_smearedU(U, nn)
for μ = 1:Dim
calc_UdSfdU!(UdSfdUμ, fermi_action, Uout, η)
mul!(dSdU[μ], Uout[μ]', UdSfdUμ[μ])
end
dSdUbare = back_prop(dSdU, nn, Uout_multi, U)
for μ = 1:Dim
mul!(temps[1], U[μ], dSdUbare[μ]) # U*dSdUμ
Traceless_antihermitian_add!(p[μ], factor, temps[1])
end
else
for μ = 1:Dim
calc_UdSfdU!(UdSfdUμ, fermi_action, U, η)
mul!(dSdU[μ], U[μ]', UdSfdUμ[μ])
end
for μ = 1:Dim
mul!(temps[1], U[μ], dSdU[μ]) # U*dSdUμ
Traceless_antihermitian_add!(p[μ], factor, temps[1])
end
end
end
function test1()
Nwing = 0
Dim = 4
NC = Ncin
U = Initialize_Gaugefields(NC, Nwing, NX, NY, NZ, NT, condition="hot")
gauge_action = GaugeAction(U)
plaqloop = make_loops_fromname("plaquette")
append!(plaqloop, plaqloop')
β = β0 / 2
push!(gauge_action, β, plaqloop)
show(gauge_action)
L = [NX, NY, NZ, NT]
nn = CovNeuralnet()
layername = ["plaquette", "polyakov_x", "polyakov_y", "polyakov_z", "polyakov_t"]
ρ = (2 * rand(length(layername)) .- 1) * 1e-3
st = STOUT_Layer(layername, ρ, U)
push!(nn, st)
ρ = (2 * rand(length(layername)) .- 1) * 1e-3
st2 = STOUT_Layer(layername, ρ, U)
push!(nn, st2)
x = Initialize_pseudofermion_fields(U[1], "staggered")
gauss_distribution_fermion!(x)
params = Dict()
params["Dirac_operator"] = "staggered"
params["mass"] = mass
params["eps_CG"] = 1.0e-8
params["verbose_level"] = 2
D = Dirac_operator(U, x, params)
parameters_action = Dict()
parameters_action["Nf"] = Nf
fermi_action = FermiAction(D, parameters_action)
y = similar(x)
isbare = true
MDtest!(gauge_action, U, Dim, nn, fermi_action, x, y, fermi_action, 10, isbare)
x_eff = Initialize_pseudofermion_fields(U[1], "staggered")
params_eff = Dict()
params_eff["Dirac_operator"] = "staggered"
params_eff["mass"] = mass_eff
params_eff["eps_CG"] = 1.0e-8
params_eff["verbose_level"] = 2
D_eff = Dirac_operator(U, x_eff, params_eff)
parameters_action_eff = Dict()
parameters_action_eff["Nf"] = Nf
fermi_action_eff = FermiAction(D_eff, parameters_action_eff)
isbare = false
MDtest!(gauge_action, U, Dim, nn, fermi_action, x, y, fermi_action_eff, numtrj, isbare)
end
test1()
If you write a paper using this package, please refer this code.
BibTeX citation is following
@article{Nagai:2024yaf,
author = "Nagai, Yuki and Tomiya, Akio",
title = "{JuliaQCD: Portable lattice QCD package in Julia language}",
eprint = "2409.03030",
archivePrefix = "arXiv",
primaryClass = "hep-lat",
month = "9",
year = "2024"
}
and the paper is arXiv:2409.03030.