-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
217 lines (208 loc) · 8.19 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*
This file implements the 88 line matlab code.
Cite: Efficient topology optimization in MATLAB using 88 lines of code, E. Andreassen, A. Clausen, M. Schevenels, B. S. Lazarov and O. Sigmund, Struct Multidisc Optim, Volume 43, Issue 1, p.1 - 16, (2011).
This paper uses the modified SIMP (solid isotropic material with penalisation) approach for optimisation.
Compilation: time clang++ -Ofast main.cpp
If using openmp parallelisation
Compilation: time g++ -fopenmp -Ofast main.cpp
Execution: OMP_NUM_THREADS=threads ./a.out
Requires Eigen library
Author: Akhil Sathuluri
Next update: Change dense matrices to sparse
*/
#include<stdio.h>
#include<iostream>
#include<Eigen/Dense>
#include<Eigen/Sparse>
#include<Eigen/Core>
#include<Eigen/SparseCore>
#include<unsupported/Eigen/KroneckerProduct>
#include<cmath>
#include<algorithm>
// For plotting
#include <fstream>
#include<stdlib.h>
using namespace Eigen;
void top(int nelx, int nely, double volfrac, double penal, double rmin, int ft, int plot);
int main(int argc, char const *argv[]) {
// top(80,30,0.5,3,1.5,1,0);
top(120,40,0.5,3,1.5,1,1);
return 0;
}
void top(int nelx, int nely, double volfrac, double penal, double rmin, int ft, int plot){
// Define required variables
double E0, Emin, nu;
// Define material properties
E0 = 1;
Emin = pow(10,-9);
nu = 0.3;
// Element stiffness matrix
MatrixXd A11(4,4), A12(4,4), B11(4,4), B12(4,4);
A11 << 12,3,-6,-3,3,12,3,0,-6,3,12,-3,-3,0,-3,12;
A12 << -6,-3,0,3,-3,-6,-3,-6,0,-3,-6,3,3,-6,3,-6;
B11 << -4,3,-2,9,3,-4,-9,4,-2,-9,-4,-3,9,4,-3,-4;
B12 << 2,-3,4,-9,-3,2,9,-2,4,9,2,3,-9,-2,3,2;
// Four node bi-linear finite element
MatrixXd KE(8,8), tKE1(8,8), tKE2(8,8);
tKE1 << A11, A12, A12.transpose(), A11;
tKE2 << B11, B12, B12.transpose(), B11;
KE << 1/(1-pow(nu,2))/24*(tKE1 + nu*tKE2);
// Preparing indices for assembly
ArrayXXi nodenrs((nelx+1)*(nely+1), 1);
nodenrs.col(0) = ArrayXi::LinSpaced((nelx+1)*(nely+1), 0, (nelx+1)*(nely+1)-1);
nodenrs.resize(nely+1, nelx+1);
MatrixXi tnodenrs(nely, nelx);
// Since node numbers start from 0 in this case
tnodenrs = 2*(nodenrs.block(0,0,nely,nelx)+1);
VectorXi edofVec(Map<VectorXi>(tnodenrs.data(), tnodenrs.rows()*tnodenrs.cols()));
MatrixXi tedofMat(1,8), small(1,4), edofMat(nelx*nely,8);
small << 2,3,0,1;
tedofMat << 0, 1, 2*nely+small.array(), -2, -1;
edofMat = tedofMat.replicate(nelx*nely, 1);
edofMat = edofVec.replicate(1,8)+tedofMat.replicate(nelx*nely, 1);
MatrixXi iK(8*nelx*nely,8), jK(8*nelx*nely,8);
iK = (kroneckerProduct(edofMat,MatrixXi::Constant(8,1,1)).eval()).transpose();
iK.resize(64*nelx*nely,1);
jK = (kroneckerProduct(edofMat,MatrixXi::Constant(1,8,1)).eval()).transpose();
jK.resize(64*nelx*nely,1);
// Define loads and supports (assumes half MBB-beam )
VectorXd F = VectorXd::Zero(2*(nelx+1)*(nely+1));
F(1) = -1;
// std::cout << F(freedof) << std::endl;
// Update all these matrices to sparse in the next iteration
// SparseMatrix<double> F;
// F = (sF.matrix()).sparseView();
VectorXd U = VectorXd::Zero(2*(nelx+1)*(nely+1));
ArrayXi alldof = ArrayXi::LinSpaced(2*(nelx+1)*(nely+1), 0, 2*(nelx+1)*(nely+1)-1);
ArrayXi fixeddof(nely+2);
fixeddof.head(nely+1) = VectorXi::LinSpaced(nely+1, 0, 2*(nely+1));
fixeddof(nely+1) = 2*(nelx+1)*(nely+1)-1;
ArrayXi freedof(alldof.size()-fixeddof.size()); std::set_difference(alldof.data(), alldof.data()+alldof.size(), fixeddof.data(), fixeddof.data()+fixeddof.size(), freedof.data());
// Preparing filter
// Creating patches of neighbours based on rmin
VectorXi iH = VectorXi::Ones(nelx*nely*pow(2*(ceil(rmin)-1)+1, 2), 1);
VectorXi jH = VectorXi::Ones(iH.size(), 1);
VectorXd sH = VectorXd::Zero(iH.size(), 1);
int k = -1, e1 = 0, e2 = 0;
for (int i1 = 0; i1 < nelx; i1++) {
for (int j1 = 0; j1 < nely; j1++) {
e1 = i1*nely+j1;
for (int i2 = std::max(i1-(int(ceil(rmin))-1), 0) ; i2 <= std::min(i1+(int(ceil(rmin))-1), nelx-1); i2++) {
for (int j2 = std::max(j1-(int(ceil(rmin))-1), 0) ; j2 <= std::min(j1+(int(ceil(rmin))-1), nely-1); j2++) {
e2 = i2*nely+j2;
k++;
iH(k) = e1;
jH(k) = e2;
sH(k) = std::max(0.0, rmin-sqrt(double(pow(i1-i2, 2)+pow(j1-j2, 2))));
}
}
}
}
// Similar to the sparse function in MATLAB
MatrixXd H = MatrixXd::Zero(nelx*nely, nelx*nely);
for (int ii = 0; ii < iH.size(); ii++) {
H(iH(ii), jH(ii)) += sH(ii);
}
VectorXd Hs(H.rows());
Hs = H.rowwise().sum();
// Initialise iteration
MatrixXd x = MatrixXd::Constant(nely, nelx, volfrac);
MatrixXd xPhys = x;
MatrixXd xnew = MatrixXd::Constant(nely, nelx, 0);
MatrixXd Ex = MatrixXd::Constant(nely, nelx, 0);
int loop = 0;
double change = 1;
VectorXd vKE(Map<VectorXd>(KE.data(), KE.cols()*KE.rows()));
MatrixXd sK = MatrixXd::Constant(64, nelx*nely, 0);
// Start iteration
MatrixXd ce = MatrixXd::Zero(edofMat.rows(), 1);
double c = 0.0;
MatrixXd dc = MatrixXd::Constant(nely, nelx, 0);
MatrixXd dv = MatrixXd::Ones(nely, nelx);
// Initialising iterations
while (change > 0.01) {
loop++;
Ex = (Emin+(xPhys.array().pow(penal)*(E0-Emin))).matrix();
VectorXd vEx(Map<VectorXd>(Ex.data(), Ex.cols()*Ex.rows()));
sK = vKE*vEx.transpose();
VectorXd vsK(Map<VectorXd>(sK.data(), sK.cols()*sK.rows()));
// We need a new K matrix at each iteration
MatrixXd K = MatrixXd::Constant(2*(nelx+1)*(nely+1), 2*(nelx+1)*(nely+1), 0);
for (int jj = 0; jj < iK.size(); jj++) {
K(iK(jj), jK(jj)) += sK(jj);
}
K = (K+K.transpose())/2.0;
// The following step needs Eigen 3.3.9 unstable update
U(freedof) = (K(freedof, freedof)).colPivHouseholderQr().solve(F(freedof));
// Resize the ce matrix into vector
ce.resize(nely*nelx,1);
// Objective function and sensitivity analysis
for (int ii = 0; ii < edofMat.rows(); ii++) {
ce(ii,0) = U(edofMat.row(ii)).transpose()*KE*U(edofMat.row(ii));
}
// Resize into a matrix
ce.resize(nely, nelx);
// The matrix Ex is already computed above
c = (Ex.array()*ce.array()).sum();
dc = (-penal*(E0-Emin)*xPhys.array().pow(penal-1))*ce.array();
dc.resize(nely*nelx,1);
dv.resize(nely*nelx,1);
// Filtering/Modification of sensitivities
if (ft == 1) {
VectorXd vx(Map<VectorXd>(x.data(), x.cols()*x.rows()));
VectorXd mvx = vx;
// Removing zeros for division
mvx = (vx.array() < pow(10,-3)).select(pow(10,-3), vx);
dc = ((H*(vx.array()*dc.array()).matrix()).array())/Hs.array()/mvx.array();
}
else if (ft == 2) {
dc = H*((dc.array()/Hs.array()).matrix());
dv = H*((dv.array()/Hs.array()).matrix());
}
// Resizing dc and dv back to normal
dc.resize(nely, nelx);
dv.resize(nely, nelx);
// Optimality criteria update of design variables
double l1 = 0.0, l2 = pow(10, 9), move = 0.2, lmid = 0.0;
while ((l2-l1)/(l1+l2) > pow(10, -3)) {
lmid = 0.5*(l1+l2);
// sqrt produces nan values
xnew = (ArrayXXd::Zero(nely, nelx)).max((x.array()-move).max((ArrayXXd::Ones(nely, nelx)).min((x.array()+move).min(x.array()*(-dc.array()/dv.array()/lmid).sqrt()))));
if (ft == 1) {
xPhys = xnew;
}
else if (ft == 2) {
xnew.resize(nely*nelx,1);
xPhys.resize(nely*nelx,1);
xPhys = (H*xnew).array()/Hs.array();
xnew.resize(nely, nelx);
xPhys.resize(nely, nelx);
}
if (xPhys.sum() > volfrac*nely*nelx) {
l1 = lmid;
}
else {
l2 = lmid;
}
}
change = (xnew - x).array().abs().maxCoeff();
x = xnew;
// Print results
printf("It.:%5i Obj.:%11.4f Vol.:%7.3f ch.:%7.3f\n",loop, c, xPhys.mean(), change);
// save results
if(plot != 0){
std::ofstream file("sol.txt", std::ios::trunc);
file << (1-xPhys.array()).matrix() << std::endl << std::endl;
// write code to read from this file and plot
system("./callplot.sh");
file.close();
}
}
std::cout << "Saving optimal solution ..." << std::endl;
std::ofstream file("sol.txt", std::ios::trunc);
file << (1-xPhys.array()).matrix() << std::endl << std::endl;
// Leave the final result plotted
std::cout << "Displaying optimal solution ..." << std::endl;
system("./callplot_final.sh");
file.close();
}