-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathval.py
42 lines (32 loc) · 1.2 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from PIL import Image
from math import log10
import numpy as np
import os
def PSNR(pred, gt):
pred = pred.clamp(0, 1)
# pred = (pred - pred.min()) / (pred.max() - pred.min())
diff = pred - gt
mse = np.mean(diff.numpy() ** 2)
if mse == 0:
return 100
return 10 * log10(1.0 / mse)
def is_image_file(filename):
return any(filename.endswith(extension) for extension in [".png", ".jpg", ".jpeg", ".bmp"])
def main():
parser = argparse.ArgumentParser(description='PyTorch LapSRN')
parser.add_argument('--test_folder1', type=str, default='', help='sr image to use')
parser.add_argument('--gt_folder', type=str, default='', help='ground truth image to use')
opt = parser.parse_args()
image_list1 = sorted([os.path.join(opt.test_folder1, x) for x in os.listdir(opt.test_folder1) if is_image_file(x)])
psnr = 0.
for image_name in image_list1:
image_path = image_name.split('/')[-1].split('.')[0]
print image_path
hr = Image.open(os.path.join(gt_folder,image_path))
sr = Image.open(image_name)
psnr_tmp = PSNR(sr,hr)
psnr += psnr_tmp
psnr = psnr / len(image_list1)
print psnr
if __name__ == '__main__':
sys.exit(main())