Skip to content

Commit

Permalink
Merge pull request #1998 from T-Fathima/branch_3
Browse files Browse the repository at this point in the history
Added modular exponentiation in Number Theory
  • Loading branch information
ajay-dhangar authored Nov 10, 2024
2 parents 822fd54 + 05f44e6 commit 8475d5d
Showing 1 changed file with 128 additions and 0 deletions.
128 changes: 128 additions & 0 deletions docs/Number theory/modular-exponentiation.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,128 @@
---
id: modular-exponentiation
title: "Modular Exponentiation"
sidebar_label: "Efficient Power Calculation"
sidebar_position: 15
description: "A comprehensive guide on Modular Exponentiation for fast computation of large powers in modular arithmetic."
tags: [Modular Exponentiation, number theory, cryptography, efficient algorithms]
---

# Modular Exponentiation

Modular exponentiation is an efficient method for computing large powers modulo some integer, commonly used in cryptography and other fields involving large number computations. This technique significantly reduces the time complexity from \(O(b)\) to \(O(\log b)\), making it feasible to compute large powers quickly.

## Basics of Modular Exponentiation

The goal is to compute \(a^b \mod m\) efficiently. Instead of multiplying \(a\) by itself \(b\) times, we use an algorithm that divides the exponentiation process in half each time, working in logarithmic time.

### Example

To compute \(3^{13} \mod 7\):
1. Break down the exponent 13 into powers of 2 (binary representation).
2. Compute each power modulo 7 and combine using properties of modular arithmetic.

## Algorithm: Fast Exponentiation

### Recursive Method
A recursive approach to modular exponentiation calculates each intermediate step modulo \(m\).
# Python Implementation
```python
def mod_exp(base, exponent, modulus):
if exponent == 0:
return 1
half_exp = mod_exp(base, exponent // 2, modulus)
half_exp = (half_exp * half_exp) % modulus
if exponent % 2 != 0:
half_exp = (half_exp * base) % modulus
return half_exp
```
# C++ Implementation
```cpp
#include <iostream>
using namespace std;

long long mod_exp(long long base, long long exponent, long long modulus) {
if (exponent == 0) {
return 1;
}

long long half_exp = mod_exp(base, exponent / 2, modulus);
half_exp = (half_exp * half_exp) % modulus;

if (exponent % 2 != 0) {
half_exp = (half_exp * base) % modulus;
}

return half_exp;
}

int main() {
long long base, exponent, modulus;
cout << "Enter base, exponent, and modulus: ";
cin >> base >> exponent >> modulus;

cout << "Result: " << mod_exp(base, exponent, modulus) << endl;

return 0;
}
```
# Iterative Method
An iterative version avoids recursion by using bitwise operations to halve the exponent at each step.
# Python Implementation
```python
def mod_exp(base, exponent, modulus):
result = 1
base = base % modulus
while exponent > 0:
if (exponent % 2) == 1:
result = (result * base) % modulus
exponent = exponent >> 1
base = (base * base) % modulus
return result
```

# C++ Implementation
```cpp
#include <iostream>
using namespace std;

long long mod_exp(long long base, long long exponent, long long modulus) {
long long result = 1;
base = base % modulus; // Ensure base is within the modulus

while (exponent > 0) {
// If exponent is odd, multiply result by the base
if (exponent % 2 == 1) {
result = (result * base) % modulus;
}
// Halve the exponent and square the base
exponent = exponent >> 1;
base = (base * base) % modulus;
}

return result;
}

int main() {
long long base, exponent, modulus;
cout << "Enter base, exponent, and modulus: ";
cin >> base >> exponent >> modulus;

cout << "Result: " << mod_exp(base, exponent, modulus) << endl;

return 0;
}
```
# Applications of Modular Exponentiation
Modular exponentiation has applications in areas where fast computation of powers modulo a number is essential:
1. Cryptography: Used in RSA and Diffie-Hellman protocols to secure data by performing computations on large numbers efficiently.
2. Digital Signatures: Ensures message integrity and authenticity by leveraging fast modular power computations.
3. Random Number Generation: Modular exponentiation helps generate random sequences within a specific range.
# Time Complexity
The time complexity of modular exponentiation, both in the recursive and iterative versions, is
O(logb), where b is the exponent.

0 comments on commit 8475d5d

Please sign in to comment.