-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathbenchmark_mxnet.py
98 lines (80 loc) · 4.47 KB
/
benchmark_mxnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import mxnet as mx
import numpy as np
import time
def vgg16_symbol():
data = mx.sym.Variable('data')
# conv1
conv1_1 = mx.sym.Convolution(data=data, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_1")
relu1_1 = mx.sym.Activation(data=conv1_1, act_type="relu", name="relu1_1")
conv1_2 = mx.sym.Convolution(data=relu1_1, kernel=(3, 3), pad=(1, 1), num_filter=64, name="conv1_2")
relu1_2 = mx.sym.Activation(data=conv1_2, act_type="relu", name="relu1_2")
pool1 = mx.sym.Pooling(data=relu1_2, kernel=(2, 2), stride=(2, 2), pool_type="max", name="pool1")
# conv2
conv2_1 = mx.sym.Convolution(data=pool1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_1")
relu2_1 = mx.sym.Activation(data=conv2_1, act_type="relu", name="relu2_1")
conv2_2 = mx.sym.Convolution(data=relu2_1, kernel=(3, 3), pad=(1, 1), num_filter=128, name="conv2_2")
relu2_2 = mx.sym.Activation(data=conv2_2, act_type="relu", name="relu2_2")
pool2 = mx.sym.Pooling(data=relu2_2, kernel=(2, 2), stride=(2, 2), pool_type="max", name="pool2")
# conv3
conv3_1 = mx.sym.Convolution(data=pool2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_1")
relu3_1 = mx.sym.Activation(data=conv3_1, act_type="relu", name="relu3_1")
conv3_2 = mx.sym.Convolution(data=relu3_1, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_2")
relu3_2 = mx.sym.Activation(data=conv3_2, act_type="relu", name="relu3_2")
conv3_3 = mx.sym.Convolution(data=relu3_2, kernel=(3, 3), pad=(1, 1), num_filter=256, name="conv3_3")
relu3_3 = mx.sym.Activation(data=conv3_3, act_type="relu", name="relu3_3")
pool3 = mx.sym.Pooling(data=relu3_3, kernel=(2, 2), stride=(2, 2), pool_type="max", name="pool3")
# conv4
conv4_1 = mx.sym.Convolution(data=pool3, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_1")
relu4_1 = mx.sym.Activation(data=conv4_1, act_type="relu", name="relu4_1")
conv4_2 = mx.sym.Convolution(data=relu4_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_2")
relu4_2 = mx.sym.Activation(data=conv4_2, act_type="relu", name="relu4_2")
conv4_3 = mx.sym.Convolution(data=relu4_2, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv4_3")
relu4_3 = mx.sym.Activation(data=conv4_3, act_type="relu", name="relu4_3")
pool4 = mx.sym.Pooling(data=relu4_3, kernel=(2, 2), stride=(2, 2), pool_type="max", name="pool4")
# conv5
conv5_1 = mx.sym.Convolution(data=pool4, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_1")
relu5_1 = mx.sym.Activation(data=conv5_1, act_type="relu", name="relu5_1")
conv5_2 = mx.sym.Convolution(data=relu5_1, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_2")
relu5_2 = mx.sym.Activation(data=conv5_2, act_type="relu", name="relu5_2")
conv5_3 = mx.sym.Convolution(data=relu5_2, kernel=(3, 3), pad=(1, 1), num_filter=512, name="conv5_3")
relu5_3 = mx.sym.Activation(data=conv5_3, act_type="relu", name="relu5_3")
pool5 = mx.sym.Pooling(data=relu5_3, kernel=(2, 2), stride=(2, 2), pool_type="max", name="pool5")
# fc6
flat6 = mx.sym.Flatten(data=pool5, name="flat6")
fc6 = mx.sym.FullyConnected(data=flat6, num_hidden=4096, name="fc6")
relu6 = mx.sym.Activation(data=fc6, act_type="relu", name="relu6")
drop6 = mx.sym.Dropout(data=relu6, p=0.5, name="drop6")
# fc7
fc7 = mx.sym.FullyConnected(data=drop6, num_hidden=4096, name="fc7")
relu7 = mx.sym.Activation(data=fc7, act_type="relu", name="relu7")
drop7 = mx.sym.Dropout(data=relu7, p=0.5, name="drop7")
# fc8
fc8 = mx.sym.FullyConnected(data=drop7, num_hidden=1000, name="fc8")
softmax = mx.sym.SoftmaxOutput(data=fc8, name="softmax")
return softmax
batch_size = 16
nb_epoch = 400
imgs = np.random.uniform(0, 1, (batch_size * 3 * 224 * 224))
imgs = imgs.reshape((batch_size, 3, 224, 224))
labels = np.random.randint(0,1000, batch_size)
train_iter = mx.io.NDArrayIter(data=imgs.astype(np.float32),
label=labels.astype(np.float32),
batch_size=batch_size)
vgg16 = vgg16_symbol()
model = mx.model.FeedForward(
ctx=mx.gpu(),
symbol=vgg16,
num_epoch=nb_epoch,
learning_rate=0.01,
momentum=0.9,
wd=0.00001,
initializer=mx.init.Xavier(factor_type="in", magnitude=2.34),
)
model.fit(X=train_iter)
print("Start")
t0 = time.time()
model.fit(X=train_iter)
t1 = time.time()
print("Batch size: %d" % (batch_size))
print("Iterations: %d" % (nb_epoch))
print("Time per iteration: %7.3f ms" % ((t1 - t0) * 1000 / nb_epoch))