-
Notifications
You must be signed in to change notification settings - Fork 1
/
communication.py
215 lines (185 loc) · 10.4 KB
/
communication.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
from abc import ABC, abstractmethod
import torch
from torch.utils.tensorboard import SummaryWriter
from utils.utils import get_network, get_iterator, get_model, args_to_string, EXTENSIONS, logger_write_params, print_model
import time
class Network(ABC):
def __init__(self, args):
"""
Abstract class representing a network of worker collaborating to train a machine learning model,
each worker has a local model and a local data iterator.
Should implement `mix` to precise how the communication is done
:param args: parameters defining the network
"""
self.args = args
self.device = args.device
self.batch_size_train = args.bz_train
self.batch_size_test = args.bz_test
self.network = get_network(args.network_name, args.architecture, args.experiment)
self.n_workers = self.network.number_of_nodes()
self.local_steps = args.local_steps
self.log_freq = args.log_freq
self.fit_by_epoch = args.fit_by_epoch
self.initial_lr = args.lr
self.optimizer_name = args.optimizer
self.lr_scheduler_name = args.decay
self.model = args.model
self.beta_supp = args.beta_supp
# create logger
if args.save_logg_path == "":
self.logger_path = os.path.join("loggs", args_to_string(args), args.architecture)
else:
self.logger_path = args.save_logg_path
os.makedirs(self.logger_path, exist_ok=True)
if not args.test:
self.logger_write_param = logger_write_params(os.path.join(self.logger_path, 'log.txt'))
else:
self.logger_write_param = logger_write_params(os.path.join(self.logger_path, 'test.txt'))
self.logger_write_param.write(args.__repr__())
self.logger_write_param.write('>>>>>>>>>> start time: ' + str(time.asctime()))
self.time_start = time.time()
self.time_start_update = self.time_start
self.logger = SummaryWriter(self.logger_path)
self.round_idx = 0 # index of the current communication round
# get data loaders
self.train_dir = os.path.join("data", args.experiment, args.network_name, "train")
self.test_dir = os.path.join("data", args.experiment, args.network_name, "test")
extension = EXTENSIONS["driving"] if "driving" in args.experiment else EXTENSIONS[args.experiment]
self.train_path = os.path.join(self.train_dir, "train" + extension)
self.test_path = os.path.join(self.test_dir, "test" + extension)
print('- Loading: > %s < dataset from: %s'%(args.experiment, self.train_path))
self.train_iterator = get_iterator(args.experiment, self.train_path, self.device, self.batch_size_test)
print('- Loading: > %s < dataset from: %s'%(args.experiment, self.test_path))
self.test_iterator = get_iterator(args.experiment, self.test_path, self.device, self.batch_size_test)
self.workers_iterators = []
train_data_size = 0
print('>>>>>>>>>> Loading worker-datasets')
for worker_id in range(self.n_workers):
data_path = os.path.join(self.train_dir, str(worker_id) + extension)
print('\t + Loading: > %s < dataset from: %s' % (args.experiment, data_path))
self.workers_iterators.append(get_iterator(args.experiment, data_path, self.device, self.batch_size_train))
train_data_size += len(self.workers_iterators[-1])
self.epoch_size = int(train_data_size / self.n_workers)
# create workers models
self.workers_models = [get_model(args.experiment, args.model, self.device,
optimizer_name=self.optimizer_name, lr_scheduler=self.lr_scheduler_name,
initial_lr=self.initial_lr, epoch_size=self.epoch_size)
for w_i in range(self.n_workers)]
# average model of all workers
self.global_model = get_model(args.experiment, args.model,
self.device,
epoch_size=self.epoch_size)
print_model(self.global_model.net, self.logger_write_param)
# write initial performance
if not self.args.test:
self.write_logs()
@abstractmethod
def mix(self):
pass
def write_logs(self):
"""
write train/test loss, train/tet accuracy for average model and local models
and intra-workers parameters variance (consensus) adn save average model
"""
if (self.round_idx - 1) == 0:
return None
print('>>>>>>>>>> Evaluating')
print('\t - train set')
start_time = time.time()
train_loss, train_rmse, train_mae = self.global_model.evaluate_iterator(self.train_iterator)
end_time_train = time.time()
print('\t - test set')
test_loss, test_rmse, test_mae = self.global_model.evaluate_iterator(self.test_iterator)
end_time_test = time.time()
self.logger.add_scalar("Train/Loss", train_loss, self.round_idx)
self.logger.add_scalar("Train/RMSE", train_rmse, self.round_idx)
self.logger.add_scalar("Train/MAE", train_mae, self.round_idx)
self.logger.add_scalar("Test/Loss", test_loss, self.round_idx)
self.logger.add_scalar("Test/RMSE", test_rmse, self.round_idx)
self.logger.add_scalar("Test/MAE", test_mae, self.round_idx)
self.logger.add_scalar("Train/Time", end_time_train - start_time, self.round_idx)
self.logger.add_scalar("Test/Time", end_time_test - end_time_train, self.round_idx)
# write parameter variance
average_parameter = self.global_model.get_param_tensor()
param_tensors_by_workers = torch.zeros((average_parameter.shape[0], self.n_workers))
for ii, model in enumerate(self.workers_models):
param_tensors_by_workers[:, ii] = model.get_param_tensor() - average_parameter
consensus = (param_tensors_by_workers ** 2).mean()
self.logger.add_scalar("Consensus", consensus, self.round_idx)
self.logger_write_param.write(f'\t Round: {self.round_idx} |Train Loss: {train_loss:.5f} |Train RMSE: {train_rmse:.5f} |Train MAE: {train_mae:.5f}|Eval-train Time: {end_time_train - start_time:.3f}')
self.logger_write_param.write(f'\t -----: {self.round_idx} |Test Loss: {test_loss:.5f} |Test RMSE: {test_rmse:.5f} |Test MAE: {test_mae:.5f}|Eval-test Time: {end_time_test - end_time_train:.3f}')
self.logger_write_param.write(f'\t -----: Time: {time.time() - self.time_start_update:.3f}')
self.logger_write_param.write(f'\t -----: Total Time: {time.time() - self.time_start:.3f}')
self.time_start_update = time.time()
if not self.args.test:
self.save_models(round=self.round_idx)
def save_models(self, round):
round_path = os.path.join(self.logger_path, 'round_%s' % round)
os.makedirs(round_path, exist_ok=True)
path_global = round_path + '/model_global.pth'
model_dict = {
'model_state': self.global_model.net.state_dict()
}
torch.save(model_dict, path_global)
for i in range(self.n_workers):
path_silo = round_path + '/model_silo_%s.pth' % i
model_dict = {
'model_state': self.workers_models[i].net.state_dict()
}
torch.save(model_dict, path_silo)
def load_models(self, round):
self.round_idx = round
round_path = os.path.join(self.logger_path, 'round_%s' % round)
path_global = round_path + '/model_global.pth'
print('loading %s' % path_global)
model_data = torch.load(path_global)
self.global_model.net.load_state_dict(model_data.get('model_state', model_data))
if not self.args.test:
for i in range(self.n_workers):
path_silo = round_path + '/model_silo_%s.pth' % i
print('loading %s' % path_silo)
model_data = torch.load(path_silo)
self.workers_models[i].net.load_state_dict(model_data.get('model_state', model_data))
class Peer2PeerNetwork(Network):
def mix(self, write_results=True):
"""
:param write_results:
Mix local model parameters in a gossip fashion
"""
# update workers
param_name = [name for name, _ in self.global_model.net.named_parameters()]
silo_batch_loss = []
for worker_id, model in enumerate(self.workers_models):
model.net.to(self.device)
if self.fit_by_epoch:
model.fit_iterator(train_iterator=self.workers_iterators[worker_id],
n_epochs=self.local_steps, verbose=0)
else:
batch_loss, _ = model.fit_batches(iterator=self.workers_iterators[worker_id], n_steps=self.local_steps,
round=self.round_idx)
silo_batch_loss.append(batch_loss)
if self.model == "CDL_FADNet" and self.round_idx == 0:
model.net.copy_weight_main2supp()
# write logs
if ((self.round_idx - 1) % self.log_freq == 0) and write_results:
for param_idx, param in enumerate(self.global_model.net.parameters()):
param.data.fill_(0.)
for worker_model in self.workers_models:
param.data += (1 / self.n_workers) * list(worker_model.net.parameters())[param_idx].data.clone()
self.write_logs()
# mix models
for param_idx, param in enumerate(self.global_model.net.parameters()):
if "supp" in param_name[param_idx] and self.model == "CDL_FADNet":
pass
temp_workers_param_list = [torch.zeros(param.shape).to(self.device) for _ in range(self.n_workers)]
for worker_id, model in enumerate(self.workers_models):
for neighbour in self.network.neighbors(worker_id):
coeff = self.network.get_edge_data(worker_id, neighbour)["weight"]
temp_workers_param_list[worker_id] += \
coeff * list(self.workers_models[neighbour].net.parameters())[param_idx].data.clone()
for worker_id, model in enumerate(self.workers_models):
for param_idx_, param_ in enumerate(model.net.parameters()):
if param_idx_ == param_idx:
param_.data = temp_workers_param_list[worker_id].clone()
self.round_idx += 1