Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update default params based on tuning search space #137

Merged
merged 7 commits into from
May 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 20 additions & 22 deletions fedot_ind/core/models/manifold/riemann_embeding.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ class RiemannExtractor(BaseExtractor):

Attributes:
estimator (str): estimator for covariance matrix, 'corr', 'cov', 'lwf', 'mcd', 'hub'
distance_metric (str): metric for tangent space, 'riemann', 'logeuclid', 'euclid'
tangent_metric (str): metric for tangent space, 'riemann', 'logeuclid', 'euclid'

Example:
To use this class you need to import it and call needed methods::
Expand Down Expand Up @@ -45,60 +45,58 @@ def __init__(self, params: Optional[OperationParameters] = None):
'tangent': self.extract_riemann_features,
'ensemble': self._ensemble_features}

self.n_filter = params.get('nfilter', 2)
self.estimator = params.get('estimator', 'scm')
self.covariance_metric = params.get('SPD_metric', 'riemann')
self.distance_metric = params.get('tangent_metric', 'riemann')
self.extraction_strategy = params.get(
'extraction_strategy ', 'ensemble')

self.covariance_transformer = params.get('SPD_space', None)
self.tangent_projector = params.get('tangent_space', None)
if np.any([self.covariance_transformer, self.tangent_projector]) is None:
self.spd_metric = params.get('SPD_metric', 'riemann')
self.tangent_metric = params.get('tangent_metric', 'riemann')
self.extraction_strategy = 'ensemble'

self.spd_space = params.get('SPD_space', None)
self.tangent_space = params.get('tangent_space', None)
if np.any([self.spd_space, self.tangent_space]) is None:
self._init_spaces()
self.fit_stage = True
self.extraction_func = extraction_dict[self.extraction_strategy]

self.logging_params.update({
'estimator': self.estimator,
'tangent_space_metric': self.distance_metric,
'SPD_space_metric': self.covariance_metric})
'tangent_space_metric': self.tangent_metric,
'SPD_space_metric': self.spd_metric})

def _init_spaces(self):
self.covariance_transformer = Covariances(estimator='scm')
self.tangent_projector = TangentSpace(metric=self.distance_metric)
self.spd_space = Covariances(estimator='scm')
self.tangent_space = TangentSpace(metric=self.tangent_metric)
self.shrinkage = Shrinkage()

def extract_riemann_features(self, input_data: InputData) -> InputData:
if not self.fit_stage:
SPD = self.covariance_transformer.transform(input_data.features)
SPD = self.spd_space.transform(input_data.features)
SPD = self.shrinkage.transform(SPD)
ref_point = self.tangent_projector.transform(SPD)
ref_point = self.tangent_space.transform(SPD)
else:
SPD = self.covariance_transformer.fit_transform(
SPD = self.spd_space.fit_transform(
input_data.features, input_data.target)
SPD = self.shrinkage.fit_transform(SPD)
ref_point = self.tangent_projector.fit_transform(SPD)
ref_point = self.tangent_space.fit_transform(SPD)
self.fit_stage = False
self.classes_ = np.unique(input_data.target)
return ref_point

def extract_centroid_distance(self, input_data: InputData):
input_data.target = input_data.target.astype(int)
if self.fit_stage:
SPD = self.covariance_transformer.fit_transform(
SPD = self.spd_space.fit_transform(
input_data.features, input_data.target)
SPD = self.shrinkage.transform(SPD)

else:
SPD = self.covariance_transformer.transform(input_data.features)
SPD = self.spd_space.transform(input_data.features)
SPD = self.shrinkage.fit_transform(SPD)

self.covmeans_ = [mean_covariance(SPD[np.array(input_data.target == ll).flatten()],
metric=self.covariance_metric) for ll in self.classes_]
metric=self.spd_metric) for ll in self.classes_]

n_centroids = len(self.covmeans_)
dist = [distance(SPD, self.covmeans_[m], self.distance_metric)
dist = [distance(SPD, self.covmeans_[m], self.tangent_metric)
for m in range(n_centroids)]
dist = np.concatenate(dist, axis=1)
feature_matrix = softmax(-dist ** 2)
Expand Down
5 changes: 2 additions & 3 deletions fedot_ind/core/models/recurrence/reccurence_extractor.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
from fedot.core.operations.operation_parameters import OperationParameters
from fedot.core.repository.dataset_types import DataTypesEnum

from fedot_ind.core.metrics.metrics_implementation import *
#from fedot_ind.core.metrics.metrics_implementation import *
from fedot_ind.core.models.base_extractor import BaseExtractor
from fedot_ind.core.models.recurrence.sequences import RecurrenceFeatureExtractor
from fedot_ind.core.operation.transformation.data.hankel import HankelMatrix
Expand Down Expand Up @@ -45,9 +45,8 @@ def __init__(self, params: Optional[OperationParameters] = None):
super().__init__(params)
self.window_size = params.get('window_size', 0)
self.stride = params.get('stride', 1)
self.rec_metric = params.get('rec_metric', 'cosine')
self.rec_metric = params.get('rec_metric', 'cosine') # TODO add threshold for other metrics
self.image_mode = params.get('image_mode', False)
self.rec_metric = 'cosine' # TODO add threshold for other metrics
self.transformer = TSTransformer
self.extractor = RecurrenceFeatureExtractor

Expand Down
2 changes: 1 addition & 1 deletion fedot_ind/core/operation/transformation/basis/fourier.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ def __repr__(self):
def __init__(self, params: Optional[OperationParameters] = None):
super().__init__(params)
self.threshold = params.get('threshold')
self.approximation = params.get('approximation', 'smooth')
self.approximation = 'smooth'
self.basis = None

self.logging_params.update({'threshold': self.threshold})
Expand Down
Loading
Loading