diff --git a/examples/automl_example/time_series/ts_classification/tmp.py b/examples/automl_example/time_series/ts_classification/tmp.py deleted file mode 100644 index e49dbd454..000000000 --- a/examples/automl_example/time_series/ts_classification/tmp.py +++ /dev/null @@ -1,31 +0,0 @@ -import numpy as np -from pdll import PairwiseDifferenceClassifier -from sklearn.datasets import make_blobs -from sklearn.ensemble import RandomForestClassifier - - -def multiclass_classification(): - # Set the random seed for reproducibility - np.random.seed(53) - - # Define the number of data points and features - n_samples = 10 - n_features = 2 - n_classes = 3 - - # Generate random data with 2 features, 10 points, and 3 classes - X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=0) - - base = RandomForestClassifier(class_weight="balanced", random_state=0) - pdc = PairwiseDifferenceClassifier(estimator=base) - pdc.fit(X, y) - print('score:', pdc.score(X, y)) - - pdc.predict(X) - pdc.predict_proba(X) - - assert pdc.score(X, y) == 1.0 - - -if __name__ == "__main__": - multiclass_classification() diff --git a/examples/automl_example/time_series/ts_classification/ts_classification_example.py b/examples/automl_example/time_series/ts_classification/ts_classification_example.py index 87e002b2d..59d89b585 100644 --- a/examples/automl_example/time_series/ts_classification/ts_classification_example.py +++ b/examples/automl_example/time_series/ts_classification/ts_classification_example.py @@ -1,16 +1,31 @@ from fedot_ind.core.architecture.pipelines.abstract_pipeline import ApiTemplate +from fedot_ind.core.repository.config_repository import DEFAULT_COMPUTE_CONFIG + +DATASET_NAME = 'Handwriting' +METRIC_NAMES = ('f1', 'accuracy', 'precision', 'roc_auc') + +COMPUTE_CONFIG = DEFAULT_COMPUTE_CONFIG +AUTOML_CONFIG = {'task': 'classification', + 'use_automl': True, + 'optimisation_strategy': {'optimisation_strategy': {'mutation_agent': 'bandit', + 'mutation_strategy': 'growth_mutation_strategy'}, + 'optimisation_agent': 'Industrial'}} +AUTOML_LEARNING_STRATEGY = dict(timeout=3, + pop_size=10, + n_jobs=2) + +LEARNING_CONFIG = {'learning_strategy': 'from_scratch', + 'learning_strategy_params': AUTOML_LEARNING_STRATEGY, + 'optimisation_loss': {'quality_loss': 'f1'}} + +INDUSTRIAL_CONFIG = {'problem': 'classification'} + +API_CONFIG = {'industrial_config': INDUSTRIAL_CONFIG, + 'automl_config': AUTOML_CONFIG, + 'learning_config': LEARNING_CONFIG, + 'compute_config': COMPUTE_CONFIG} if __name__ == "__main__": - dataset_name = 'Handwriting' - finetune = False - metric_names = ('f1', 'accuracy', 'precision', 'roc_auc') - api_config = dict(problem='classification', - metric='f1', - timeout=1, - pop_size=10, - with_tunig=False, - n_jobs=2, - logging_level=20) - result_dict = ApiTemplate(api_config=api_config, - metric_list=metric_names).eval(dataset=dataset_name, finetune=finetune) + result_dict = ApiTemplate(api_config=API_CONFIG, + metric_list=METRIC_NAMES).eval(dataset=DATASET_NAME, finetune=False) print(result_dict['metrics'])