diff --git a/examples/automl_example/api_example/time_series/ts_forecasting/ts_forecasting_example.py b/examples/automl_example/api_example/time_series/ts_forecasting/ts_forecasting_example.py index bd29bcb7d..1d7ac529d 100644 --- a/examples/automl_example/api_example/time_series/ts_forecasting/ts_forecasting_example.py +++ b/examples/automl_example/api_example/time_series/ts_forecasting/ts_forecasting_example.py @@ -12,7 +12,8 @@ 'eigen_basis', params={ 'low_rank_approximation': False, - 'rank_regularization': 'explained_dispersion'}).add_node('ar')} + 'rank_regularization': 'explained_dispersion'}).add_node('ar') + } for assumption in initial_assumptions.keys(): api_config = dict(problem='ts_forecasting', metric='rmse', @@ -24,4 +25,5 @@ metric_names = ('r2', 'rmse', 'mae') model, labels, metrics = industrial_common_modelling_loop( api_config=api_config, dataset_name=dataset_name, finetune=finetune) + finetune = False print(f'{assumption} have metrics - {metrics}') diff --git a/fedot_ind/core/operation/interfaces/industrial_preprocessing_strategy.py b/fedot_ind/core/operation/interfaces/industrial_preprocessing_strategy.py index c2aeecfe0..66d5ca546 100644 --- a/fedot_ind/core/operation/interfaces/industrial_preprocessing_strategy.py +++ b/fedot_ind/core/operation/interfaces/industrial_preprocessing_strategy.py @@ -125,7 +125,7 @@ def _predict_for_ndim(self, predict_data, trained_operation: list): prediction = [ pred.predict for pred in prediction if not isinstance( - pred, np.array)] + pred, np.ndarray)] if not isinstance(prediction[0], OutputData): prediction = NumpyConverter(