From 66ee0301b8e9a7b13fb06ef279202d75cc4f3f30 Mon Sep 17 00:00:00 2001 From: v1docq Date: Fri, 26 Jan 2024 13:51:46 +0300 Subject: [PATCH] Api fixes --- fedot_ind/api/main.py | 25 +++++++++---------------- 1 file changed, 9 insertions(+), 16 deletions(-) diff --git a/fedot_ind/api/main.py b/fedot_ind/api/main.py index ab0dfd258..22d3893c6 100644 --- a/fedot_ind/api/main.py +++ b/fedot_ind/api/main.py @@ -67,6 +67,7 @@ def __init__(self, **kwargs): self.preprocessing = kwargs.get('industrial_preprocessing', False) self.backend_method = kwargs.get('backend', 'cpu') self.RAF_workers = kwargs.get('RAF_workers', None) + if self.output_folder is None: self.output_folder = default_path_to_save_results Path(self.output_folder).mkdir(parents=True, exist_ok=True) @@ -89,9 +90,11 @@ def __init__(self, **kwargs): self.predicted_labels = None self.predicted_probs = None self.predict_data = None - self.config_dict = None - self.ensemble_solver = None self.config_dict = kwargs + self.config_dict['available_operations'] = kwargs.get('available_operations', + default_industrial_availiable_operation( + self.config_dict['problem'])) + self.config_dict['optimizer'] = kwargs.get('optimizer', IndustrialEvoOptimizer) self.__init_experiment_setup() def __init_experiment_setup(self): @@ -101,9 +104,6 @@ def __init_experiment_setup(self): backend_method_current, backend_scipy_current = BackendMethods(self.backend_method).backend globals()['backend_methods'] = backend_method_current globals()['backend_scipy'] = backend_scipy_current - self.config_dict['available_operations'] = default_industrial_availiable_operation(self.config_dict['problem']) - - self.config_dict['optimizer'] = IndustrialEvoOptimizer def __init_solver(self): self.logger.info('Initialising Industrial Repository') @@ -132,13 +132,9 @@ def _preprocessing_strategy(self, input_data): batch_timeout = round(self.config_dict['timeout'] / FEDOT_WORKER_TIMEOUT_PARTITION) self.config_dict['timeout'] = batch_timeout self.logger.info(f'Batch_size - {batch_size}. Number of batches - {self.RAF_workers}') - self.ensemble_solver = RAFensembler(composing_params=self.config_dict, n_splits=self.RAF_workers, - batch_size=batch_size) - self.logger.info(f'Number of AutoMl models in ensemble - {self.ensemble_solver.n_splits}') - self.ensemble_solver.fit(input_data) - self.solver = self.ensemble_solver - else: - self.preprocessing = False + self.solver = RAFensembler(composing_params=self.config_dict, n_splits=self.RAF_workers, + batch_size=batch_size) + self.logger.info(f'Number of AutoMl models in ensemble - {self.solver.n_splits}') def fit(self, input_data, @@ -161,10 +157,7 @@ def fit(self, self.solver = self.__init_solver() if self.preprocessing: self._preprocessing_strategy(input_data) - fitted_pipeline = self.ensemble_solver - else: - fitted_pipeline = self.solver.fit(input_data) - return fitted_pipeline + return self.solver.fit(input_data) def predict(self, predict_data,